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Abstract

Based on the multi-currency LIBOR Market Model (LMM) this paper constructs a hybrid com-
modity interest rate market model with a stochastic local volatility function allowing the model to
simultaneously fit the implied volatility surfaces of commodity and interest rate options. Since liquid
market prices are only available for options on commodity futures, rather than forwards, a convexity
correction formula for the model is derived to account for the difference between forward and futures
prices. A procedure for efficiently calibrating the model to interest rate and commodity volatility
smiles is constructed. Finally, the model is fitted to an exogenously given correlation structure be-
tween forward interest rates and commodity prices (cross–correlation). When calibrating to options
on forwards (rather than futures), the fitting of cross–correlation preserves the (separate) calibration
in the two markets (interest rate and commodity options), while in the case of futures a (rapidly con-
verging) iterative fitting procedure is presented. The fitting of cross–correlation is reduced to finding
an optimal rotation of volatility vectors, which is shown to be an appropriately modified version of
the “orthonormal Procrustes” problem in linear algebra. The calibration approach is demonstrated in
an application to market data for oil futures.
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1 Introduction

The modelling of market risks for the pricing of derivative financial instruments has come a long way
since the seminal paper of ?. In particular, it is widely recognised that such models need to be calibrated
to all available liquid market prices, including options of various strikes and maturities, for all relevant
sources of risk. For commodity derivatives, the approach presented in this paper represents a step closer
to this ideal.
In addition to commodity prices and their stochastic dynamics, the valuation and risk management of
positions in commodity derivatives also depend on market interest rates and the stochastic dynamics
thereof. The market instruments, to which a model should be calibrated, include the swaption “cube”
(swaptions of (1) various maturities, (2) various strikes, on (3) swaps of various lengths) and commodity
options of various maturities and strikes. For commodities, futures are more liquid than forwards —
consequently (as well as to make the model more realistic) the correlation between commodity prices
and interest rates becomes a relevant model input already at the level of calibration.
The model presented in this paper, with its associated calibration method, is fitted to market prices for
swaptions in a swaption cube, options on commodity futures for various maturities and strikes, and of
course the underlying futures and interest rate term structures. Furthermore, it is fitted to exogenously es-
timated correlations between interest rates and commodity prices. The construction is based on a LIBOR
Market Model (LMM)1 for the interest rate market and the commodity market, with the two markets
linked in a manner analogous to the construction of the multicurrency LMM,2 where the convenience
yield takes the role of the interest rate in the commodity market (thus convenience yields are assumed to
be stochastic). To allow a fit to market–implied volatility smiles (and skews) of commodity and interest
rate options, the model is equipped with a stochastic local volatility function (SLV), following ?, ? and
??3.
Efficient calibration is achieved in two steps, by first calibrating the model to the interest rate market
separately, building on a synthesis of the calibration approaches for the LMM in ? and the SLV-LMM in
??. In order then to be able to calibrate efficiently to commodity futures, we consider two approximations
for calculating the difference between futures and forwards in the proposed model. The separate cali-
bration in the interest rate market in the first step is then followed by an iterative, two–stage calibration
to the commodity market, where in the second stage an orthonormal transformation of the commodity
volatility vectors is applied, rotating the commodity volatilities relative to the interest rate volatilities in
such a manner as to achieve the desired correlations between the two markets. The calibration of this
orthonormal transformation to the desired cross–correlations is cast in terms of a modified orthonormal
Procrustes problem, permitting an effective solution algorithm to be applied. We illustrate the use of the
model on real market data.
For the example, we chose U.S. Dollars (USD) as the “domestic” currency and Brent Crude Oil as
the commodity (the “foreign currency”). The “exchange rate” is given by the Brent Crude Oil futures
prices denoted in USD. These prices, when converted to forward prices using an appropriate convexity
correction, can be interpreted as forward exchange rates between the USD economy and an economy
where value is measured in terms of units of Brent Crude Oil (where convenience yields are interpreted
as the foreign interest rates). In the example, the model is calibrated to the USD swaptions volatility
cube, and the volatility smile of European-style options on Brent Crude Oil futures.
Hybrid modelling combining commodity and interest rate risk was initiated by ?, who modelled interest

1See the seminal papers by ?, ? and ?.
2See ?.
3? presented an extensions of ? with stochastic volatility.
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rate risk via stochastic dynamics of the continuously compounded short rate, without reference to a
full model calibrated to an initial term structure. Subsequently, a number of authors proposed models for
stochastic convenience yields, some of whom also incorporated stochastic dynamics of the term structure
of interest rates.4 In these models, continuously compounded convenience yields (and possibly interest
rates) typically are normally distributed, since they are assumed to be driven by a ? term structure
model with generalised (possibly multi-factor) Ornstein/Uhlenbeck dynamics. In such a model, effective
calibration to available commodity and interest rate options is difficult when only at–the–money options
are considered, and not possible for the full range of available strikes. At–the–money calibration is
a strength of lognormal LIBOR Market Models, and ? construct a hybrid model which exploits this,
also making use of an orthonormal rotation of volatility vectors to fit the cross–correlations between the
commodity and interest rate markets. By lifting the lognormality assumption, the present paper goes
beyond their work to allow calibration to the full swaption cube and commodity volatility surface, and it
refines the correlation fitting procedure through rotation by casting it as a modification of the orthonormal
Procrustes problem,5 which can be solved by a fast numerical algorithm.6

From a practical perspective, whether it is worthwhile to move beyond simple models (e.g., in the present
context, pricing commodity derivatives using an adaption of the ? model where the underlying commod-
ity follows geometric Brownian motion and interest rates are deterministic) depends on whether the more
sophisticated model produces substantially different derivative prices (and hedges) when compared to a
simpler benchmark. Relative to a model along the lines of ? or ?, a hybrid model of stochastic com-
modity prices and interest rates based on a stochastic local volatility LMM represents extensions in two
dimensions: fitting the implied volatility surface observed in the market, and integrating commodity and
interest rate risk. On the necessity of the former, there is little debate among practitioners: The pri-
mary purpose of the calibrated models is to price illiquid derivative products in a manner consistent with
observed prices for (typically simpler) products liquidly traded in the market; thus soon after implied
volatility smiles (contradicting the Black/Scholes assumption of geometric Brownian motion) appeared
in the market, practitioners recognised the need for models consistent with this observation.7 For the
latter, the impact of adding stochastic interest rates to a (stochastic volatility) commodity model has been
studied recently in a series of papers8 by Cheng, Nikitopoulos and Schlögl (2016a,b,c,d). ? find a no-
ticeable impact of interest rate volatility, as well as of correlation between the interest rate process and
the (commodity) futures price process, on the prices of long–dated futures options, with this impact be-
coming less pronounced for shorter maturities. Looking at the problem from a more traditional academic
perspective, ? find that allowing for stochastic interest rates improves the out–of–sample empirical per-
formance of their model. The impact on the hedging effectiveness (as opposed to pricing performance) of
incorporating interest rate risk into a model for commodity derivatives is studied in Cheng, Nikitopoulos
and Schlögl (?) and (?), where the first paper considers this question in a simulated model, while the sec-
ond conducts a back-test of hedging performance on empirical data. The latter study finds that in times of
market turbulence, especially during the Global Financial Crisis 2007–2009, augmenting a commodity
delta hedge with an interest rate hedge consistently improves hedge performance, more consistently in
particular than augmenting the delta hedge by vega or gamma. Thus a hybrid model provides benefits
for the pricing and risk management of vanilla products, and this effect would be more pronounced for

4See, for example, ?, ?, ?, ?, and ?.
5See ?.
6This algorithm is given as Algorithm 8.1 in ?.
7This is reported, for example, by ?.
8The stochastic interest rate dynamics used in these papers are simpler than the SLV-LMM dynamics considered here, but

nevertheless demonstrate the relevance of incorporating interest rate risk into a commodity derivatives model.
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more exotic products which explicitly condition jointly on interest rate and commodity risk.

As noted above, the model considered in the present paper is assembled from individual components
based on the stochastic local volatility formulation of the LMM by ??. This represents one major strand
of the literature extending the LMM beyond at–the–money calibration. The other major strand is based
on the SABR model of ?, laid out in detail in ?. In the present context the choice of the SLV–LMM over
the SABR–LMM as the basis of the hybrid interest rate/commodity model is driven by three considera-
tions:

1. Specification of the stochastic volatility dynamics along the lines of ?? avoids the mathematical
problems associated with SABR,9 i.e. the log-normality of the volatility process and the undesir-
able behaviour of the stochastic differential equation (SDE) of the underlying for certain values of
the “constant elasticity of variance” (CEV) parameter β. The former implies divergence to infinity
of volatility almost surely in finite time. The latter involves non-uniqueness of the solution to the
SDE (for 0 < β < 1

2 ) and/or the process of the underlying financial variable being absorbed at
zero (for 0 < β < 1).

2. The SLV–LMM is directly amenable to calibration by an appropriately modified ? algorithm, in
which we directly, exogenously control the correlation structure of the underlying financial vari-
ables (as opposed to the correlation structure of the driving Brownian motions). In particular in the
absence of liquid market instruments containing useable information on “implied” correlations,10

correlation is subject to considerable “parameter uncertainty,” and having directly interpretable
correlation inputs assists in controlling for this source of “model risk.”

3. In the present paper, the SLV–LMM for each market (interest rates and the commodity) is driven by
a vector of independent Brownian motions. Thus correlations are introduced by the way volatility
is distributed over these Brownian motions (“factors”) by the vector–valued volatility functions.
This permits a two–stage procedure of fitting cross–correlations between markets after fitting the
models for the individual markets (though there is some coupling when calibrating to futures),
using orthonormal transformations.

The paper is organised as follows. The basic notation, the results of the single– and multi-currency
LMM and their interpretation in the context of commodities are presented in Section ??. In Section
?? the calibration of the commodity part of the Commodity LMM to plain vanilla options is discussed.
In Section ?? the relationship between futures and forwards in the model is presented, which permits
calibration of the model to futures as well as forwards. The calibration of the interest rate part of the
hybrid Commodity LMM will not be discussed in detail in this paper, because this problem has already
been addressed by many authors, e.g., ??, and most methods should be compatible with our model.
However, in Section ?? we discuss how both separately calibrated parts of the model – the interest rate
and the commodity part – can be merged in order to have one underlying d-dimensional Brownian motion
for the joint model and still match the market prices used for calibration of the particular parts. Section
?? illustrates the application of the model to real market data.

9See Section 3.10 of ?.
10Although swaption prices depend in theory on correlations between forward rates, in practice this dependence is too weak

for these correlations to be extracted in a meaningful way; see e.g. ?.
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2 The Commodity LIBOR Market Model

2.1 The LIBOR Market Model

For the construction of the LMM for the domestic interest rate market we assume a given probability
space (Ω,F ,P), where the underlying filtration {Ft, t ∈ [0, TN ]} coincides with the P-augmentation of
the natural filtration of a d-dimensional standard Brownian motion W , and EP

t [ · ] := EP[ · |Ft] denote
the conditional expectation on the information at time t. Let TN be a fixed time horizon, P (t, T ),
T ∈ [t, TN ] the bond price, i.e. the amount that has to be invested at time t to receive one unit of the
domestic currency at time T , hence P (T, T ) = 1 for every T ∈ [0, TN ]. Assuming the discrete-tenor
structure, 0 = T0 < T1 < . . . < TN , with intervals τn = Tn+1 − Tn, the forward LIBOR rate L(t, Tn)
with fixing period Tn as seen at time t is given by

L (t, Tn) = τ−1
n

(
P (t, Tn)
P (t, Tn+1) − 1

)
, q(t) ≤ n ≤ N − 1,

where q (t) is the index function of the LIBOR rate with the shortest maturity not fixed at time t, defined
as Tq(t)−1 ≤ t < Tq(t). The price of the discounted bond maturing at time Tn > t is then given by

P (t, Tn) = P
(
t, Tq(t)

) n−1∏
i=q(t)

1
1 + τiL (t, Ti)

.

The dynamics of the forward LIBOR rate L(t, Tn) as seen at time t ∈ [0, T ], under the PTn+1-forward
measure11 is given by

dL(t, Tn) = σL(t, Tn)>dW Tn+1(t), (1)

where σL(t, Tn) is a d-dimensional process, discussed later in this section. From Girsanov’s theorem,
the dynamics of L(t, Tn) are

dL(t, Tn) = σL(t, Tn)>
(
γL (t, Tn) dt+ dW Tn(t)

)
,

where W Tn is a d-dimensional vector–valued Brownian motion12 under the PTn-forward measure and
γL is determined by the volatility of the forward bond price process, i.e.

d

(
P (t, Tn)
P (t, Tn+1)

)
= P (t, Tn)
P (t, Tn+1)γL(t, Tn)dW Tn+1(t) with

γL (t, Tn) = τnσL(t, Tn)
1 + τnL(t, Tn) , (2)

relates dW Tn+1 to dW Tn by,

dW Tn(t) = dW Tn+1(t)− γL (t, Tn) dt. (3)

11This forward measure is the equivalent martingale measure associated with taking the zero coupon bond P (t, Tn+1) as
the numeraire, and under this measure (the existence of which is assured under the model assumptions below) forward LIBOR
L(t, Tn) is necessarily a martingale, i.e. driftless — see e.g. ?.

12Thus W Tn is a d-dimensional vector, each component W Tn
i , 1 ≤ i ≤ d, is a Brownian motion under the PTn -forward

measure, and the quadratic covariation between the components is zero: dW Tn
i dW Tn

j = 0 ∀i 6= j.
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Further results and the connection of this model to the framework of ? can be found in the original LMM
literature, commencing with ?, ?, ? and ?.

2.1.1 The Stochastic Local Volatility LMM

For most markets, implied volatilities calculated from traded option prices are strike dependent, i.e.
exhibit a volatility smile and skew (slope of the at-the-money volatility). To capture the skew, we assume
that the time-dependent volatility functions are of the separable form

σL (t, Tn) = ϕL (L (t, Tn))λL (t, Tn) , (4)

where λL (t, Tn) is a bounded deterministic d-dimensional function and ϕL : R+ → R+ is a time
homogenous local volatility function. This is a fairly general setup, and one model allowing for skewed
implied volatility is the displaced–diffusion model along the lines of ?, where, following the notation of
? (see their Remark 7.2.13), ϕL is given by

ϕL (L (t, Tn)) = bL (t, Tn)L (t, Tn) + (1− bL (t, Tn))L (0, Tn) .

When (1− bL (t, Tn)) /bL (t, Tn) < (L (0, Tn) τn)−1, the existence of path wise unique solutions follow
(?, Lemma 14.2.5).
To capture the volatility smile, we follow ? and scale the Brownian motions with a mean-reverting
stochastic volatility process given by,

dzL (t) = θ (zL,0 − zL (t)) dt+ η
√
zL (t)dZL (t) , (5)

where θ and η are positive constants, zL (0) = zL,0 = 1 and ZL is a Brownian motion under the spot
measure QB .13 The quadratic covariation of ZL and each component of W is assumed to be zero.
Assuming the LIBOR dynamics in (??) with the separable volatility function in (??) and stochastic
volatility (??), the stochastic local volatility LIBOR market model (SLV–LMM) specifies the dynamics
of the forward LIBOR rates for n = 1, . . . , N by

dL (t, Tn) =
√
zL (t)ϕL (L (t, Tn))λ>L (t, Tn) dW Tn+1 (t) . (6)

When calibrated to interest rate option market data, the model matches at-the-money volatilities through
λL, the skews (slope of the Black/Scholes implied volatilities) through bL and curvatures of the volatility
smiles through the volatility of variance η. The speed of mean reversion κ determines how fast the spot
volatility converges to the forward volatility, or more specifically, how fast zL (t) is pulled back to its
long–term mean level zL,0.
The relationship between spot measure QB and forward measures is given by standard results for the
LMM dating back to ? and ?:

dW Tn+1 (t) =
√
zL (t)µn (t) dt+ dWB (t) , (7)

µn (t) =
n∑

j=q(t)

τjϕL (L (t, Tj))
1 + τjL (t, Tj)

λL (t, Tj) . (8)

Moreover, we assume that the Brownian motion ZL (t) of the variance process zL (t) is independent of

13See for instance Section 4.2.3 of ?.
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the d-dimensional Brownian motion W and that all forward LIBORs and factors are driven by the same
scaling

√
zL (t).

2.2 The Commodity Market

The approach incorporating a commodity market corresponds largely to the approach as described for
the log-normal case in Section 2.2 of ?, which in turn is based on the multi-currency extension of LI-
BOR market models introduced in ?. Therefore, we focus on the aspects related to the stochastic local
volatility extensions of the model. The setup for the commodity parallels the one for interest rates in the
previous section, and the corresponding volatility functions are denoted by σF and γF . As explained in
?, the commodity market can be seen as a “foreign interest market” with the commodity (e.g. crude oil)
as currency. “Foreign bond prices” C(t, T ) can be interpreted as “convenience yield discount factors”
for the commodity, defined as the amount of the commodity today which is equivalent to the discounted
(using domestic interest rates) value of receiving one unit of the commodity (e.g. one barrel of crude
oil) at time T , taking into account any storage costs and convenience yields.14 The same logic as for the
domestic interest rate market can be used to derive “forward rates” for the commodity market, but since
such “convenience yield instruments” are not traded for commodities, we construct the model by speci-
fying domestic interest rate dynamics on the one hand, and the dynamics of forward commodity prices
on the other hand. Then, as noted in ?, this implicitly determines the “foreign interest rate dynamics,”
i.e. the convenience yield dynamics in the present interpretation.

As in ?, the existence of a spot price process S(t) for the commodity is assumed, denoted in the local
currency (e.g. USD per barrel crude oil). Then, its forward value is given by

F (t, Tn) = C(t, Tn)S(t)
P (t, Tn) , (9)

for all n = 0, . . . , N . We assume the same tenor structure τn = Tn+1 − Tn for interest and commodity
markets. If this assumption needs to be lifted in order to reflect market reality, an interpolation on either
of the forwards can be applied. Since LIBORs have typically 3-month or 6-month tenors, and exchange
traded futures15 often have expiries with 1-month or 3-month time difference, the interpolation has to be
made for forward interest rates in most cases. See for instance ? on forward interest rate interpolation.
The forwards in (??) are necessarily martingales under the PTn-forward measure, i.e.

dF (t, Tn) = σ>F (t, Tn) dW Tn (t) , (10)

for all n = 0, . . . , N . To account for a stochastic local volatility dynamics for the commodity prices, the
dynamics for the commodity forward prices are set to

dF (t, Tn) =
√
zF (t)ϕF (F (t, Tn))λF (t, Tn) dW Tn (t) , (11)

where

dzF (t) = θF (zF0 − zF (t)) dt+ ηF

√
zF (t)dZF (t) , (12)

ϕF (F (t, Tn)) = bF (t, Tn)F (t, Tn) + (1− bF (t, Tn))F (0, Tn) , (13)

14Thus, the C(t, T ) represent the effect of the convenience yield net of storage cost.
15The futures versus forward relation will be discussed in Section ??.
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and θF , ηF positive constants, zF (0) = zF0 = 1 and bF (t, T ) a deterministic function mapping from
R+ → R+. The Brownian motions W Tn+1 , for n = 0, . . . , N − 1, are the same as in (??), ZF (t)
is a Brownian motions under the spot measure QB , and there is no correlation between the underlying
drivers and volatility drivers in the sense that for all n = 0, . . . , N − 1

dW
Tn+1
i dZL(t) = dW

Tn+1
i dZF (t) = dZF (t)dZL(t) = 0 ∀1 ≤ i ≤ d.

Note that the structure of the dynamics for the commodity forwards F (t, Tn) is the same as for the
interest forward rates L(t, Tn), except that they are martingales under different forward measures.
As demonstrated in ?, this fully specifies the hybrid model: Denote by γF (t, Tn) the volatility of the
quotient C(t, Tn)/C(t, Tn+1) of convenience yield discount factors, then γF (t, Tn) is determined by the
no-arbitrage relation of the multi-currency LMM,16

σF (t, Tn) = γF (t, Tn)− γL(t, Tn) + σF (t, Tn+1). (14)

where γL(t, Tn) is defined by (??) and σF (t, Tn) (and analogously σF (t, Tn+1)) by (??) above.
In addition to the no-arbitrage condition (??), cross-correlations specify linkages between the interest
rates and commodity forwards markets. Their form and calibration will be discussed in detail in Section
??.

3 Calibration with Time Dependent Parameters

This section discusses aspects of the calibration of the hybrid model, which consists in our approach
of two parts. The first part calibrates the (LIBOR) interest rate forward market and the commodity
market separately to their market instruments. The second part merges the two separate calibrations with
due regard to cross-correlations and the no-arbitrage condition. Readers who have their own preferred
individual calibration routines for the stochastic local volatility LMM of Section ??, as well as for the
stochastic local volatility commodity model of Section ??, may skip this and the following section and
continue directly with Section ??. As mentioned in the introduction, we focus on the calibration of the
commodity leg, since a calibration of the LIBOR market model in the context of stochastic local volatility
has already been addressed by many other authors, for instance ? and ?.

Since the Commodity LMM is based on commodity forwards, we have to calibrate to forward implied
volatilities or plain vanilla option prices written on forwards. However, commodities futures rather than
forwards are most liquidly traded (consider, for example, the Brent Crude Oil futures in the market
data example in Section ??) and thus forward prices have to be deduced from futures prices. As we are
working in a hybrid model that is integrating commodity and interest rate risk, it is not adequate to equate
forward prices with futures prices, as is still common among practitioners. Section ?? describes how to
take into account the distinction between futures and forwards when applying the calibration methods
proposed in the present section.

The calibration of the model to commodity forward instruments follows the ideas of ?? and is split into
two parts. First, a pre-calibration is performed to determine a globally constant speed of mean reversion
θF and volatility of variance ηF such that the volatility smile given from market option quotes is matched
as closely as possible. Second, the volatility term structure λF and the volatility skew structure bF are
fitted to option prices.

16See Equation (11) in ?.
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3.1 Step 1 – Calibrating the level of mean reversion and volatility of variance

To obtain an efficient calibration algorithm we follow ? and project the full dynamics of the commodity
forwards F ( · , Tn) in Equation (??) with time-dependent parameters onto a model with constant param-
eters using the parameter averaging technique. Formally, the SDE with time-dependent parameters is
replaced by an SDE with constant parameters for each maturity, where both have the same marginal
distribution. These parameters are called effective parameters, and let λF,n denote the effective volatility
and bF,n denote the effective skew, for all maturity times Tn. The dynamics of F (t, Tn) is then given by

dF (t, Tn) =
√
zF (t)

(
bF,nF (t, Tn) + (1− bF,n)F (0, Tn))

)
λF,n dW

Tn(t). (15)

We assume to have forward processes F ( · , T1), . . . , F ( · , TN ) with expiries T1, . . . , TN and we further
think of T0 as “now.” Times-to-maturity for an arbitrary calendar time t ≥ 0 are given by xn = Tn − t
for n = 0, 1, . . . , N . For the commodity calibration, market prices for call options17 on F ( · , Tn), with
payoff (F (Tn, Tn) − Ki)+, and for several strikes Ki, i = 1, . . . , kn, are assumed to be available and
are denoted by Cmkt

n,i .
Vanilla options on (??) can be calculated efficiently by the Fourier method.18 We denote the resulting
model call prices by Cmod

n,i .

The calibration problem of the first step is then to find parameters θF , ηF and b̄F,n, λ̄F,n for n =
1, . . . , N , such that ∑

n = 1, . . . , N,
i = 1, . . . , kn

(
Cmod
n,i − Cmkt

n,i

)2 −→ min .

For the global parameters θF for mean reversion level of the variance process, and ηF for volatility
of variance, this optimisation yields their final values in the calibration. The term structure and skew
parameters, b̄F,n and λ̄F,n respectively, will be adapted in the next step to fit the market as closely as
possible.

3.2 Step 2 – Calibrating the Volatility Term- and Skew-Structure

The calibration of the volatility term structure follows the approach given in ?, but we include the cali-
bration of the skew structure into this procedure.

The term structure of volatility levels is assumed to be piecewise constant for a specified grid of calendar
times ti = (0, t1, . . . , tnc) and times to maturity xj = (x0, x1, . . . , xnf

), which defines a (nc × nf )
matrix of volatilities V = (vi,j)1≤i≤nc,1≤j≤nf

. The relation of the d-dimensional model volatility vectors
λ(t, Tn) (for all n) and matrix V is given by

‖ λ(t, Tn) ‖ =
∑

0 ≤ i ≤ nc − 1
0 ≤ j ≤ nf − 1

1{ti≤t<ti+1, xj≤Tn−t<xj+1} vi,j . (16)

The number of forward times nf in the volatility matrix do not need to coincide with the number of

17For notational simplicity, we assume that the option expires at the same time the futures does. In most cases the option
expires a few days before the futures expiry. In some cases, like for EUA carbon emission futures, the option can even expire
several months before the underlying futures.

18For details, see e.g. ? (Chapter 9).
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traded forwards N , and especially in regions of large forward times a rougher spacing can be chosen
for xj , since volatilities tend to flatten out with increasing forward time. To be able to price options on
all of the forwards, the maturity of the longest available forward has to be smaller or equal to the latest
calendar time and the longest time to maturity, TN ≤ min{tnc , xnf

}.
We refer to ? for a more detailed discussion on the setup with piecewise constant volatilities, and how to
compute total variances efficiently for given calendar and forward times.
In the next section we will use the correlations to obtain a map from the volatility levels ‖λF (t, Tn)‖
to the components of the volatility vectors λF (t, Tn) that are multiplied by the d-dimensional Brownian
motion in (??).

In a manner analogous to the volatility levels, we define a (nc × nf )-dimensional matrixB = (bi,j)1≤i≤nc,1≤j≤nf

for the matrix of piecewise constant skews. To keep notation simple, we use the same grid as for the
volatility term structure. The entry bi,j represents the skew corresponding to forward F (t, Tn) with
ti−1 ≤ t < ti and xj−1 ≤ Tn − t < xj .

The optimisation of Step 2 is defined with respect to a set of calibration criteria. The first calibration
criterion measures the quality of fit and is as in Step 1 defined by the sum of squared differences between
market and model prices,

q =
∑

n = 1, . . . , N,
i = 1, . . . , kn

(
Cmod
n,i − Cmkt

n,i

)2
. (17)

Since the number of parameters is potentially quite large (and larger than the number of market prices in
(??)), we follow ? and specify for the volatility two smoothness criteria sλ given by,

sλ = ηλ,1

nf∑
j=1

nc−1∑
i=1

(vi+1,j − vi,j)2 + ηλ,2

nc∑
i=1

nf−1∑
j=1

(vi,j+1 − vi,j)2. (18)

The first term measures departures from time–homogeneity; it demands that volatilities with different
calendar times but the same time to maturity do not deviate from each other too much. The second term,
the forward time smoothness, forces the volatility term structure to be smooth in time to maturity for
each fixed calendar time. The larger the weight ηλ,1, the more volatility and skew become (calendar)
time homogeneous. The larger the weights ηλ,2, the flatter the volatility and skew becomes in forward
time direction.
We specify an analogous smoothness function for the skew term structure sb with corresponding weights
ηb,1 and ηb,2

sb = ηb,1

nf∑
j=1

nc−1∑
i=1

(bi+1,j − bi,j)2 + ηb,2

nc∑
i=1

nf−1∑
j=1

(bi,j+1 − bi,j)2. (19)

The smile contribution to the implied volatility coming from the parameters fixed in the first calibration
step of Section ?? is unaffected by the smoothness criteria here.

Remark 3.1 Although the number of parameters is potentially quite large, the optimisation, for instance
using a Levenberg–Marquardt approach for minimising the objective value q + sλ + sb, usually gives
stable calibration results, since the smoothness criteria force the parameters to a non-parametric but
structured form.
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Remark 3.2 The reason why we have not used the effective parameters b̄F,n and λ̄F,n from the global
calibration of ?? as target values in our second calibration ??, as for example proposed in ?, is that we
here assumed the more complex case of calibrating to options on futures. This requires to compute the
convexity correction in each optimisation step, which changes the relation between options prices and
the effective volatility and skew parameters. Therefore, the advantage of using pre-computed effective
parameters for calibration is not applicable in our general case.

Remark 3.3 As pointed out by ?, the degree of freedom is potentially quite large here, and obtaining the
volatility and skew term-structure simultaneously is computationally inefficient. One could assume the
skew bF and volatility λF to be two almost orthogonal problems (changing the volatility has an minor
impact on the skew and vice versa) and solve for them separately. Step 2 can therefore be divided into
two parts. First, solve for the skew term structure by fixing the volatility parameters, e.g., to the ones
obtained in the first step, λ̄F,n, together with η and θ. And since the time-dependent skew can be solved
for explicitly as in ?, one can target the implied skews from Step 1 instead of option prices and reduce
the computational time significantly by avoiding Fourier pricing within each iteration. Then, given the
skew term-structure and the parameters η and θ, the volatility term structure is calibrated. However, as
mentioned in Remark ??, due to the futures-forward convexity correction we cannot target the implied
volatilities directly here.

3.3 Construction of the decomposed volatilities λF (t, Tn) from ‖λF (t, Tn)‖

The method for constructing a map from V = ‖λF (t, Tn)‖ in Equation (??) to λF (t, Tn) via volatility
factor decomposition or PCA described in ? remains applicable in the present setting, and we provide
a brief summary for the reader’s convenience. Due to the dependence of the convexity correction for
futures contracts on interest rate dynamics (see Sections ?? and ??, below), the volatility factor decom-
position has to be included in the calibration process when calibrating to futures and options on futures.
As in ?, there is a separate factor decomposition for every calendar time step to be covered by the cal-
ibrated volatility function, thus in the following we fix this to an arbitrary ti. Let vi denote the ith row
(corresponding to calendar time ti) of V , written as column vector. The matrix C of commodity for-
ward correlations is exogenously given and assumed to be constant over calendar time. For each ti, the
covariance matrix then is calculated by

Σ = (viv>i )� C, (20)

where � means component–wise multiplication (Hadamard product). Decomposing

Σ = RD1/2(RD1/2)>

results in orthonormal eigenvectors of Σ in the columns of R = (rj,k)1≤j,k≤nf
and the corresponding

eigenvalues on the diagonal of the matrix D = (ξj,k)1≤j,k≤nf
. Choosing the largest d eigenvalues, R

and D can be reduced to matrices R ∈ Rnf×d and D ∈ Rd×d by retaining only the corresponding d
columns in R and d× d sub-matrix in D. For the factor–reduced volatilities we then have

v2
i,j =

d∑
k=1

r2
j,kξk (j = 1, . . . , nf ). (21)

and the stepwise constant volatility function for the forwards is λijk = rj,k
√
ξk.
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Remark 3.4 Under the convexity adjustments suggested in Section ??, the forward returns correlation
matrix C in (??) is also the correlation matrix of futures returns.

4 Futures/Forward Relation and Convexity Correction

The calibration method in Section ?? is applicable only when forwards and options on forwards are
available. This section presents a model–consistent approximate conversion of futures prices to forward
prices for all relevant data for calibration, in order to apply the methods of the previous section.

We introduce the notation G(t, T ) for a futures price at time t with maturity T , and, as before, F (t, T )
will be the corresponding forward price. From no-arbitrage theory we know F (T, T ) = G(T, T ) and
that prices of plain vanilla options on forwards and futures must coincide, whenever the maturities of
option, forward and futures are the same. This allows us to use the call prices of options on futures for
calibration of forwards, and we only have to assure that the (virtual) forwards have the same maturities as
the futures. Due to equation (??) the forward F ( · , Tn) is an exponential martingale under the Tn-forward
measure.

Denoting by EB the expectation under the spot risk–neutral measure QB , futures follow the general
relation

G (t, T ) = EBt [S (T )] , (22)

see ?, where S(t) is the spot price, which satisfies by no-arbitrage constraints S(t) = F (t, t) = G(t, t)
for all t. Integrating (??) and using (??)-(??) gives,

F (Tn, Tn) = F (t, Tn) +
∫ Tn

t

√
zF (s)ϕF (F (s, Tn))λ>F (s, Tn)dW Tn(s)

= F (t, Tn) +
∫ Tn

t

√
zF (s)

√
zL(s)ϕF (F (s, Tn))λ>F (s, Tn)µn−1(s)ds

+
∫ Tn

t

√
zF (s)ϕF (F (s, Tn))λ>F (s, Tn)dWB(s).

Putting these relations together and taking the QB-expectation for the futures, as in (??), results in

G(t, Tn) = EBt [F (Tn, Tn)]

= F (t, Tn) + EBt
[∫ Tn

t

√
zF (s)

√
zL(s)ϕF (F (s, Tn))λ>F (s, Tn)µn−1(s)ds

]
+ EBt

[∫ Tn

t

√
zF (s)ϕF (F (s, Tn))λ>F (s, Tn)dWB(s)

]
= F (t, Tn) + EBt

[∫ Tn

t

√
zF (s)

√
zL(s)ϕF (F (s, Tn))λ>F (s, Tn)µn−1(s)ds

]
(23)

= F (t, Tn) +D (t, Tn) , (24)

the third equality follows since the last expectation is that of an Itô integral, further letting D(t, Tn)
denote the convexity correction.

From here we consider two alternative ways to proceed.
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4.1 Approximation 1 - Freeze all risk factors

The first crude approximation would be to freeze all random variables by setting Li = L(0, Ti), F j =
F (0, Tj) and z̄L = zL(t) = 1, z̄F = zF (t) = 1 such that the convexity correction D(t, Tn) can be
approximated by,

D(t, Tn) ≈
∫ Tn

t
ϕF (Fn)

n−1∑
j=q(s)

τjϕL(Lj)
1 + τjLj

λ>F (s, Tn)λL(s, Tj)ds. (25)

? demonstrate how the integrals in Equation (??) can be computed when the volatility functions are
piecewise constant. Since Fn is unknown, it is necessary to solve equation (??) for F (t, Tn) using
the approximation (??) above. This is straightforward for displaced diffusions with ϕF (Fn) piecewise
constant subject to the integration variable s.

4.2 Approximation 2 - Freeze LIBORs and Commodity forwards

For the second approximation we choose to freeze the LIBORs and commodity forwards but keep the
volatility stochastic. SetLi = L(0, Ti) andF j = F (0, Tj) and use conditioning for the stochastic volatil-
ity processes. If the expectation and the integration can be interchanged it follows from the independence
of the stochastic volatility processes that the convexity correction D(t, Tn) can be approximated by,

D(t, Tn) ≈
∫ Tn

t
ϕF (Fn)

n−1∑
j=q(s)

τjϕL(Lj)
1 + τjLj

λ>F (s, Tn)λL(s, Tj)EBt
[√
zF (s)

]
EBt
[√
zL(s)

]
ds. (26)

? show that the first moments of the squared volatility process can be represented as

EBt
[√

z (T )
]

=
√

2e−θ(T−t)

n (t, T ) e−
n(t,T )

2

∞∑
j=0

(n (t, T ) /2)j

j!
Γ (d/2 + j + 1/2)

Γ (d/2 + j) , (27)

where Γ(x) is the Gamma function, and the parameters n and d are given by

n(t, T ) = 4θe−θ(T−t)

η2(1− e−θ(T−t))
, d = 4θz0

η2 . (28)

We illustrate the accuracy of the two approximations in Figure ??. Clearly the stochastic volatility factors
have too much impact on the futures–forward convexity to be neglected. As demonstrated, Approxima-
tion 2 performs exceptionally well and produces an error less than 2 basis points, which is more than
acceptable within a calibration routine.

5 Merging Interest Rate and Commodity Calibrations

The calibrations for the interest rate market and the commodity market have so far been considered
separately, with exception of the convexity correction in Section ??. This section focuses on linking the
calibrations of the two asset classes in order to get a joint commodity and LMM calibration. The relation
between these two asset classes is determined by their cross-correlation matrix, which is assumed to be
constant over time. Before addressing the problem of merging the calibrations in Section ??, we briefly
discuss how to generate the cross-correlation matrix from historical data in Section ??.
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Figure 1: Left: Futures prices from Monte Carlo simulation, Approximation 1 and Approximation 2.
Right: Relative error in basis points (bps). With λL = 0.20, λF = 0.30, bL = 0.9, bF = 0.8, θL = θF =
1, ηL = 0.5, ηF = 0.4, Corr (dL (t, Tj) , dL (t, Tk)) = Corr (dF (t, Tj) , dF (t, Tk)) = 0.9.

5.1 The Exogenous Cross-Correlations

The cross–correlations between commodity forwards and interest rate forwards are much less pro-
nounced than the correlations between the futures and forwards, respectively, within the asset classes.
This makes the estimation for cross-correlations from historical data less stable than for the correlations
within the asset classes. For example, the structure of the cross-correlation matrix between Brent Crude
Oil futures and USD interest rate forwards in Figure ?? of Section ?? can hardly be explained by ob-
vious rationales. Therefore, one might decide to specify exogenously a very simple cross-correlation
structure in practice. The simplest case would be to assign a single value to all cross-correlation in the
matrix Rexogen

LF . If this seems too crude, a linear relationship can be fitted by regressing the empirical
cross-correlations for the forward interest rates and commodity futures on a 2-dimensional plane.

5.2 The Cross-Calibration

The quadratic (cross-)covariation process for commodity forwards with maturity Tm and forward interest
rates with settlement Tn is given by the dynamics

dL(t, Tn)dF (t, Tm) =
(√

zL(t)ϕL(L(t, Tn))λL(t, Tn)
)>(√

zF (t)ϕF (F (t, Tm))λF (t, Tm)
)
dt,

where we have used the fact that

dW Tn+1(t) = dW Tm(t) +
√
zL(t)

(
µn(t)− µm−1(t)

)
dt,

and dt dW Tm = 0. Similar to the pure interest forward rate correlations, the cross-correlations of the
increments are given by

Corr
(
dL(t, Tn), dF (t, Tm)

)
= λL(t, Tn)λ>F (t, Tm)
‖ λL(t, Tn) ‖ ‖ λF (t, Tm) ‖ , (29)

since only the factorised λF and λL are (column-)vectors, and all other values in the equation above are
scalars. Abbreviate

ΛL = (λ>L (t, Tn))1≤n≤N = (λL;n,k(t))1≤n≤N,1≤k≤d, (30)
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ΛF = (λ>F (t, Tm))1≤m≤M = (λF ;m,k(t))1≤m≤M,1≤k≤d, (31)

ULF =
(
‖ λL(t, Tn) ‖ ‖ λF (t, Tm) ‖

)
1≤n≤N,1≤m≤M , (32)

wherem and n are indices for different expiries and forward (settlement) times, respectively, and k is the
index relating to the stochastic factor. We skip the calendar time dependence, since it could be considered
as fixed throughout the rest of this subsection. Then, the model cross-correlation in (??) can be written
as

Rmodel
LF = (ΛLΛ>F )� ULF , (33)

where � denotes the element-wise division. Merging the individual interest rate and commodity cali-
brations in order to get a joint calibration means to modify the calibrated matrices ΛL and ΛF such that
equation (??) is matched (maybe only as closely as possible) for an exogenously given correlation matrix
Rexogen
LF ,

Rexogen
LF ≈ (ΛLΛ>F )� ULF = Rmodel

LF .

Note that the skew parameter, being part of ϕL(·) and ϕC(·), as well as the smile parameter, being part
of the specification of the square root processes zF (t) and zL(t), need not to be modified, as they do not
determine the cross-correlations, as equation (??) demonstrates.

Clearly, there are many possible approaches to improve the relationRexogen
LF ≈ Rmodel

LF . The approach we
propose in this section will be guided by the following. Firstly, the quality of the individual calibrations
to market instruments relating to one asset class only – interest rates or commodities – is more important
that the cross-correlation fit. This is because these market instruments are much more liquidly traded,
and therefore provide reliable information. Secondly, the adjustment step needs to be carried out in an
efficient way, having a common fit criterion for the approximation.
An approach that combines these considerations is to find a rotation matrix Q, that is applied to one of
the calibrated matrices, say ΛF , with the objective (following ? in our choice of metric) to minimise the
Frobenius distance between the model and the exogenous covariance matrices. Formally, a matrix Q is
sought, such that

‖ Rexogen
LF � ULF − ΛL(ΛFQ)> ‖F−→ min, subject to QQ> = Id, (34)

with Id the (d × d) identity matrix and ‖ . ‖F the Frobenius norm. From the theory of normal dis-
tributions it follows that an orthonormal rotation changes the cross-covariances, but not the covariance
matrices ΣL = ΛLΛ>L and ΣF = ΛFΛ>F , hence, the individual calibrations remain unaffected.

For the problem of (??) it is quite reasonable to assume d ≤ N , i.e., the number of stochastic factors has
to be equal or less than the number of forward interest rates.19

The problem of finding the Q satisfying (??) is similar to the so-called “orthonormal Procrustes” prob-
lem: For given matrices A,B ∈ Rm×p, find an orthonormal matrix Q ∈ Rp×p that minimises the
distance between A and B,

‖ A−BQ ‖F −→ min, such that QQ> = Id, (35)

19Note that the roles of ΛL and ΛF can be interchanged, and the sufficient assumption actually is d ≤ max{M, N}.
Furnishing the model with more stochastic factors than max{M, N} contributes only spurious complexity to the model. From
a practical point of view, the aim is to keep the number of stochastic factors small.
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In ?, Section 12.4.1 it is shown that the solution is given by Q = UV >, where U and V result from the
singular value decomposition (SVD) of B>A, i.e. B>A = UDV >.
Unfortunately, (??) is more complicated than the Procrustes problem in (??), because in our case Q
comes under a transposition. As stated in ?, Section 8.3.3, “there seems to be no algebraic solution
to the problem” (??), to which they refer as a “scaled orthonormal Procrustes” problem. However, the
authors discuss a numerical solution, based on an algorithm of ?, that works well in our case, as we will
demonstrate in Section ?? below.

Algorithm 1 Orthogonal scaled procrustes
1: procedure OSPROCRUSTES(Q0, X1, S,X2,TOL,MAXITER)
2: r ←‖ X1 ‖F
3: iter← 0
4: δ ← 2 · TOL
5: Q← Q0
6: while δ > TOL and iter < MAXITER do
7: Z ← S(X>2 X1 + S>Q>(rI −X>1 X1))
8: Compute singular value decomposition Z = UDV >

9: Qnew ← V U>

10: δ ← | ‖ X1QS −X2 ‖F − ‖ X1QnewS −X2 ‖F |
11: iter← iter + 1
12: Q← Qnew
13: end while
14: return Q
15: end procedure

Proposition 5.1 The problem (??) is equivalent to the problem of finding a T satisfying

‖ DLTD
>
F − U>L ΣLFUF ‖F −→ min, such that TT> = Id, (36)

where the matrices used are from the singular value decompositions20

ΛL = ULDLV
>
L UL ∈ RN×N , DL ∈ RN×d, VL ∈ Rd×d

ΛF = UFDFV
>
F UF ∈ RM×M , DF ∈ RM×d, VF ∈ Rd×d,

and
ΣLF := Rexogen

LF � ULF .

The orthonormal solution Q of (??) is given by

Q = (VLTV >F )> (37)

Proof: Substituting the SVD yields

‖ ΛL(ΛFQ)> − ΣLF ‖F =‖ ULDLV
>
L Q

>VFD
>
FU
>
F − ΣLF ‖F

=‖ ULDLTD
>
FU
>
F − ΣLF ‖F abbreviating T := V >L Q

>VF

=‖ DLTD
>
FU
>
F − U>L ΣLF ‖F UL is orthonormal

20Note that rank(ΛL) = d ≤ N and rank(ΛF ) = d ≤M
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=‖ DLTD
>
F − U>L ΣLFUF ‖F UF is orthonormal

�

The solution for T in (??) can be numerically approximated by Algorithm 8.1 in ?. See also ? for a
nice description of the algorithm with an application in the context of portfolio risk management. For
completeness we reproduce the algorithm here (see Algorithm ??).

The objective is to find a Q that minimises

‖ X1QS −X2 ‖F , subject to QQ> = I,

where S has entries on its diagonal only.

The stopping of the numerical procedure is controlled by the maximal number of iterations (MAXITER)
and the tolerance in change of the Frobenius norm (TOL) in the objective above.

As initial guess the trivial transformation Q0 = I can be used.

5.3 Cross-Calibration Computational Complexity

We conclude the section with a note on the computational effort required by the proposed algorithm.
From a theoretical point of view, one would expect the Procrustes method to be faster than the Levenberg–
Marquardt optimisation as used in ?, because the number of parameters to be optimised is given by
nopt = d(d − 1)/2, which means the dimension of the optimisation problem grows quadratically in the
number of stochastic factors d.

The Levenberg-Marquardt optimisation requires at least O(n3) or O(mn2) operations in each iteration
step (see ?, Section 10.3), where n is the number of optimisation parameters, and m is the number of
residuals in the objective function. In our case we get O(n3

opt) = O(d6) operations per iteration for the
unconstrained optimisation problem. The constraintQQ> = I is non-linear, hence cannot be represented
by simple bounds for the parameters, though it is possible to re-parametrise the problem expressing the
orthonormal transformation Q by nopt successive rotations, where the angles are the new parameters in
an unconstrained Levenberg–Marquardt optimisation, see ? for a detailed description.

In contrast, the Procrustes problem requires only O(d3) operations per iteration for the matrix multipli-
cations and the singular value decomposition.

We applied the Procrustes method to several randomly chosen 100 × 100 cross-correlation matrices,
and it converged in all cases within a tolerance of less than 10−5 after 200 seconds and about 120, 000
iterations. Our results are in line with the numerical experiments in ?, in which the Procrustes problem
turned out to be much faster than the least-squares optimisation using Levenberg–Marquardt. That paper
reports that the latter method failed to optimise a 65 × 65 transformation even “after several hours,”
whereas the Procrustes method found an approximate solution in “about 5 minutes.”

The transformation problems we encounter in the model calibration might be of much smaller size than
dimension 100, typically somewhere between 4 − 20. However, in the case of calibrating the model to
commodity futures, the computation of the optimal transformation matrix has to be iterated, which led
us to prefer the much more efficient Procrustes algorithm over the “brute force” Levenberg–Marquardt
optimisation used in ?.
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6 Applying the calibration to market data

6.1 Summary of the Calibration Procedure

The following scheme summarises the steps of the calibration procedure, bringing together the steps
discussed in the previous sections and assuming the calibration of the (domestic) interest rate LMM has
already been carried out.21

I. Preliminary calculations applied to the LMM calibration outcome.

1. For each calendar time ti (1 ≤ i ≤ nL):

(a) Compute the covariance matrix ΣL
i as in (??).

(b) Decompose ΣL
i into λLi using PCA as described in Section ??.

II. Hybrid Calibration.

1. Calibrate on all commodity data to obtain the global θF , and ηF .

2. Calibrate on all data to obtain the skew term-structure BF , see Remark ??.

3. For each calendar time ti (1 ≤ i ≤ nF ):

(a) Compute the covariance matrix ΣF
i as in (??).

(b) Decompose ΣF
i into UFi using PCA as described in Section ??.

(c) Compute the rotation matrix Q using Algorithm ??

4. Compute forward prices from futures prices using (??).

5. Compute model options prices on forwards.

6. Continue with Step ?? until a sufficiently close fit to commodity market instruments
and assumed cross–correlations is reached.

The dynamics of the thus calibrated hybrid Commodity LMM with SLV can then be written as follows.
Let W be a d-dimensional Brownian motion and denote by λLi,j and λFi,j the d-dimensional vectors in ΛL
and ΛF of volatilities for calendar times t ∈ [ti−1, ti) and times to maturity x ∈ [xj−1, xj). Then, the
dynamics of the forward interest rates L(t, T ) and the dynamics of the commodity forwards F (t, T ) are

dL(t, Tk) =
√
zL (t)ϕL (L (t, T ))λLi,jdW Tk+1(t),

dF (t, Tk) =
√
zF (t)ϕF (F (t, T ))λFi,jdW Tk(t),

for all maturity times satisfying Tk = ti + xj (for some 1 ≤ i ≤ nc and 1 ≤ j ≤ mf or 1 ≤ j ≤ nf ,
respectively) and all calendar times ti−1 ≤ t < ti.

21Note that we must iterate over repeated calibration to the commodity market and to the cross–correlations, as the conversion
of commodity futures into forwards depends on cross–correlations.
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Figure 2: Left: Historical Brent Crude Oil 1M, 1Y, 2Y and 4Y Futures contracts between January 2014
and March 2015. Historical Brent Crude Oil 1M, 1Y, 2Y and 4Y at-the-money implied volatilities
between January 2014 and March 2015

6.2 Calibration Setup

The Brent Crude Oil is selected as commodity, and the USD forward rate as interest rate.
The calibration date is January 13th, 2015. Figure ?? illustrates the historical Brent crude oil futures and
implied volatilities for a selected number of contracts. As one can observe, the futures price (implied
volatility) are close to their lowest (highest) levels on the selected calibration date; thus we are using a
somewhat “stressed” market scenario to best illustrate the effectiveness of the calibration.
We assume that both the instantaneous volatility functions and skew functions are piecewise constant.
The LIBOR forward rates and Brent crude oil futures correlation matrix as used for calibration is histor-
ically estimated from the time series of LIBOR forward rates and Brent futures prices covering 3 months
before the calibration date.
For the correlations and cross-correlations we use a parametric form given for the correlation of the
underlying (LIBOR, oil futures) with fixings/maturities Tk and Tj , which is given by22

Corr (dL (t, Tj) , dL (t, Tk)) = q (Tj − t, Tk − t) ,

where

q (x, y) = ρ∞ + (1− ρ∞) exp (−a (min (x, y)) |x− y|) , (38)

a (z) = a∞ + (a0 − a∞) e−κz, (39)

and subject to 0 ≤ ρ∞ ≤ 1, a0, a∞, κ ≥ 0. The two calibrated correlation matrices for the LIBOR
forward rates and the Brent crude oil futures are illustrated in Figure ??.

6.3 The Interest Rate Calibration

The calibration of the SLV–LMM for the USD interest rate market was conducted based on ? by first
performing a pre–calibration to fit the SLV–LMM, with constant parameters for each tenor and expiry, to
the swaption cube. Figure ?? illustrates the obtained effective at–the–money volatility λ̄mkt

n,m and effective

22The origins of this parametric form can be traced back to ?; see Chapter 22 of ? for a detailed discussion of the rationale
behind a parametric form of this type. Our notation follows ?.
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calibrated implied skew term structure for the swaption cube.

skew b̄mkt
n,m for each tenor Tn and expiry Tm.

These obtained model parameters then serve as target values in the main calibration when calibrating
the volatility and skew term–structure as described in ?. Figure ?? shows the resulting volatility and
skew term-structure obtained by the main calibration. Figure ?? shows the quality of fit of the effective
at–the–money volatility λ̄mkt

n,m and effective skew b̄mkt
n,m. The overall model fit to the implied volatility is

very good as demonstrated by Figure ?? for selected expiries and tenors. Moreover, we chose dL = 4
factors, which typically explain about 99.99% of the overall variance.

6.4 The Cross-Calibration

The calibration of the Brent Crude Oil futures was achieved by the method described in Section ??. The
market instruments are futures and options on futures. Figure ?? shows the calibrated volatility and skew
surface. Calendar and forward times go out to 3 years, and although on the exchange futures with expiries
in every month are traded, we chose the calendar and forward time vectors to be unequally spaced (while
still calibrating to all traded instruments), [0, 1M, 3M, 6M, 9M, 1Y, 2Y, 3Y]. This setup speeds up
the calibration without losing much structure in the volatility surface, since the market views futures
with long maturity to have almost flat volatility. For weighting in the calibration objective function
we have chosen ηλ,1 = ηb,1 = 0.1 (time homogeneity, i.e. smoothness in calendar time direction),
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Figure 5: Left: The calibrated effective volatility λ̄mkt
n,m for the swaption cube. Right: The calibrated

effective skew b̄mkt
n,m for the swaption cube

Number of Factors 1 2 3 4 5 . . . 19

Percentage of
98.14 99.84 99.96 99.98 99.99 . . . 100

Overall Variance

Table 1: The percentage of overall variance that can be generated by the first i factors, obtained from
PCA of the commodity forward covariance matrix for the first calendar time t1.

ηλ,2 = ηb,2 = 0.01 (smoothness in forward time direction).
The exogenously given target cross-correlation matrix (calculated from the historical time series covering
3 months before the calibration time) and the estimated cross-correlation from historical futures returns
and the cross-correlation matrix for the calendar time that fitted worst are illustrated in Figure ??.
Finally, we link both separately calibrated volatility matrices to one set of stochastic factors. Table ??
shows how much of the overall variance, i.e. of the sum of variances over all factors, can be explained by
the leading factors, when the factors are sorted according to decreasing contribution to total variance of
the commodity forwards. The first two factors already account for more than 99% of the overall variance.
Note that if it is necessary to interpolate the forward interest rate volatility matrix in order to match
the calendar times of the commodity volatility matrix, the forward rate covariance matrix will change
and, hence, eigenvalue decompositions of the calendar time adjusted covariance matrices yield different
results than an eigenvalue decompositions of the original covariance matrices as used for calibration.
However, these differences should not be substantial as long as the calibrated volatility matrix is suffi-
ciently smooth in calendar time.
The model fit to the commodity implied volatility is illustrated in Figure ??.

6.5 Pricing Performance and Accuracy

The calibration routine was written in MATLAB and timing the execution was performed on a Intel Core
i7-2600K 3.40GHz.
The interest rate volatility and skew term-structure calibration takes roughly 15 seconds, and the cross-
correlation calibration (including fitting the commodity volatility) takes just roughly 10 seconds, where
the cross-calibration takes about roughly 2 seconds. This would be fast enough for production purposes
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Figure 6: The calibrated interest smile with maturity 0.25, 0.5, 1, 2, 3, 5 years and tenors 1, 2, 3 years.

in most instances, though the fact that this prototype implementation runs in a serial, interpreted lan-
guage environment leaves scope for substantial speed-ups through through parallelisation and the use of
a compiled programming language (such as C++).

We conclude this section by studying the accuracy of the pricing derived in this paper and used within the
calibration routine. We focus only on the overall hybrid calibration since ? already performed extensive
numerical tests on the accuracy of the parameter averaging approximation for the interest rate calibration
itself, which is input to our routine. To summarize ?, in terms of (interest rate) Black volatility, the
author reported a difference between the Monte Carlo simulation and the semi-analytic approximations
for interest rate swaptions, which was within 15 basis points for at-the-money swaptions, and about 20
basis points for in-the-money and out-of-the-money swaptions, for various tenors, expiries and strikes.

For the overall hybrid calibration, we let Market refer to the market implied commodity volatilities,
MC to the implied commodity volatilities from the Monte Carlo simulation of the calibrated model
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Figure 7: Left: The calibrated commodity volatility surface. Right: The calibrated commodity skew
surface.
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and Approx to the implied commodity volatilities obtained from the semi-analytic approximations used
within the calibration.
Table ?? and Figure ?? provide full a comparison of (correlated hybrid) commodity implied Black volatil-
ities, for the market volatilities, Monte Carlo simulated commodity implied Black volatilities and those
obtained from the semi-analytic approximations (used within the calibration), for different expiries and
strike offsets. For each expiry 0.16, 0.24, 0.32, 0.58, 0.82, 1.79, 2.28 and 3.79 years,23 we price the
options written on commodity futures with strikes offsets -15%, -7.5%, 0%, +7.5% and +15% (the +15%
implied volatility was not available for the 0.16Y option). The model parameters are the ones obtained
from the calibration in this section. For the Monte Carlo simulation we use 1,000,000 paths with monthly
time steps.

The semi-analytical approximation demonstrates similar accuracy as in ?, this can be seen by the reported
MC-Market error. All reported errors are below 25 bps of Black volatilities. For options with expiry
longer than 1Y, the approximation error is about or below 10 bps. As in ? the approximation quality
seems to improve for options with longer maturity. This is an effect due to the Monte Carlo discretisation

23These are a selection of current expiries, i.e., the time between the calibration date 13 January 2015 and the various expiry
dates, for the standardised commodity options.
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Figure 9: The calibrated commodity smile.
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error rather than an approximation error, due to the low number of time steps used within the simulation.
We noticed that by increasing the number of steps per year, this error decreased.
MC-Market, illustrates the differences in Black volatility between the given market implied volatilities
and the ones obtained by the Monte Carlo simulation. This numerical test is performed to demonstrate
that given the full calibrated model, which was calibrated using the semi-analytical approximation, we
are able to regenerate the market implied volatilities without loss of essential information. The biggest
differences are for the short dated options where we observed a difference of 40 bps for the 0.16Y ATM
option. As the expiry increases, this error, for all strikes, decreases, where we obtain an error of 20-30
bps for the 0.24Y and 0.32Y expiries, an error of 10-20 bps for the 0.58Y and 0.82Y expires. For the
longer expiries this error decreases to about or below 10 bps.

7 Conclusion

As the market data example in the previous section demonstrates, the LMM approach to term structure
modelling remains is one of the most flexible for good calibration of the model to market data, even when
it is extended to allow for market quotes across multiple strikes (volatility “skews” and “smiles”) and the
integration of (and correlation between) multiple sources of risk — commodity and interest rate risk in
our present example. This is due to actual market observables (in particular forward LIBORs) being
modelled directly and model prices for calibration instruments (e.g. caps/floors, swaptions, commodity
futures and options) being available either in exact or accurate approximate closed form.
The dynamics of all market variables can be expressed in terms of the same, vector–valued Brownian
motion and correlation between market variables is obtained via the sum products of the respective
vector–valued volatilities. As a consequence, the calibration across multiple sources of risk can be broken
down into stages, simplifying the high–dimensional optimisation problems to be solved at each stage.
The interest rate market can be calibrated separately using well established procedures. We chose to base
our interest rate volatility calibration on the robust and widely used method of ?, but this could easily be
replaced by a different method without impacting the remainder of our calibration approach. The model
is fitted to an exogenously given correlation structure (typically estimated statistically from historical
data) between forward interest rates and commodity prices (cross–correlation) — without impacting
the interest rate volatility calibration already obtained — via a modified version of the “orthonormal
Procrustes” problem in linear algebra, for which an efficient numerical solution exists.
Finally, it is worth noting that a model which is calibrated to the term structures of commodity futures and
options will implicitly reflect any seasonality and/or mean reversion of commodity prices. If seasonality
is present and priced by the market, this information will be contained in the initial term structure of
commodity futures prices, and integrated into the model by the fact that it fits the initial observed term
structure by construction. If mean reversion is present and priced by the market, this information will
be contained in the term structure of commodity volatilities, or, more completely, the commodity option
implied volatility surface, to which the model is calibrated.24
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implied volatilities.
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Expiry Offset Market Approx MC Approx-Market MC-Approx MC-Market

0.16y

-15% 50.37 50.11 50.36 -0.26 0.25 -0.01
-7.5% 47.01 47.05 47.30 0.04 0.25 0.29

0% 44.12 44.27 44.52 0.15 0.25 0.40
7.5% 41.98 41.72 41.97 -0.26 0.25 -0.01

0.24y

-15% 46.59 46.10 46.35 -0.49 0.25 -0.24
-7.5% 43.83 43.93 44.18 0.10 0.25 0.35

0% 41.82 41.97 42.21 0.15 0.24 0.39
7.5% 40.13 40.20 40.42 0.07 0.22 0.29
15% 39.13 38.57 38.77 -0.56 0.20 -0.35

0.32y

-15% 44.25 44.22 44.42 -0.04 0.20 0.16
-7.5% 42.24 42.11 42.32 -0.12 0.21 0.09

0% 40.35 40.42 40.64 0.07 0.22 0.29
7.5% 39.21 39.10 39.32 -0.11 0.22 0.12
15% 38.05 38.09 38.32 0.04 0.23 0.27

0.58y

-15% 39.63 39.60 39.78 -0.03 0.18 0.15
-7.5% 37.86 37.88 38.04 0.02 0.16 0.19

0% 36.48 36.45 36.61 -0.04 0.16 0.13
7.5% 35.23 35.27 35.43 0.04 0.16 0.20
15% 34.32 34.30 34.46 -0.02 0.16 0.14

0.82y

-15% 37.03 37.02 37.18 0.00 0.16 0.15
-7.5% 35.54 35.55 35.71 0.01 0.16 0.17

0% 34.32 34.31 34.47 -0.02 0.16 0.15
7.5% 33.24 33.26 33.42 0.02 0.16 0.18
15% 32.41 32.38 32.53 -0.03 0.15 0.11

1.79y

-15% 30.05 30.05 30.17 0.00 0.12 0.12
-7.5% 28.88 28.88 28.99 0.00 0.11 0.11

0% 27.93 27.93 28.03 -0.01 0.10 0.09
7.5% 27.15 27.15 27.26 0.01 0.10 0.11
15% 26.56 26.54 26.64 -0.02 0.10 0.08

2.28y

-15% 29.12 29.15 29.23 0.03 0.08 0.11
-7.5% 27.93 27.91 27.99 -0.01 0.08 0.06

0% 26.97 26.97 27.04 0.00 0.07 0.07
7.5% 26.25 26.27 26.34 0.02 0.07 0.09
15% 25.82 25.79 25.86 -0.03 0.07 0.04

3.79y

-15% 25.08 25.07 25.10 -0.02 0.04 0.02
-7.5% 24.44 24.45 24.48 0.01 0.03 0.04

0% 23.96 24.00 24.03 0.03 0.03 0.06
7.5% 23.75 23.68 23.71 -0.07 0.03 -0.04
15% 23.42 23.49 23.51 0.07 0.03 0.09

Table 2: Pricing results for implied Black commodity volatilities, for commodity options with expiries
0.16, 0.24, 0.32, 0.58, 0.82, 1.79, 2.28 and 3.79 years, and strikes offsets -15%, -7.5%, 0%, +7.5% and
+15% . The values are reported in percent (%).
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Figure 10: Reported errors between the volatilities implied from the Market, the Monte Carlo (MC)
simulation and the semi-analytic approximations (Approx) used in within the calibration. The values are
reported in basis points (bps).
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