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Abstract

Does modelling stochastic interest rates, beyond stochastic volatility, improve pricing per-

formance on long-dated commodity derivatives? To answer this question, we consider futures

price models for commodity derivatives that allow for stochastic volatility and stochastic in-

terest rates and a correlation structure between the underlying variables. We examine the

empirical pricing performance of these models on pricing long-dated crude oil derivatives.

Estimating the model parameters from historical crude oil futures prices and option prices,

we find that stochastic interest rate models improve pricing performance on long-dated crude

oil derivatives, when the interest rate volatility is relatively high. Furthermore, increasing

the model dimensionality does not tend to improve the pricing performance on long-dated

crude oil option prices, but it matters for long-dated futures prices. We also find empirical

evidence for a negative correlation between crude oil futures prices and interest rates that

contributes to improving fit to long-dated crude oil option prices.
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1. Introduction

The role of commodity markets in the financial sector has increased in importance over the

last decade. A record high of $277 billion invested in commodity exchange-traded products

was observed in 20091 (which was 50 times larger than the decade earlier) with the crude oil

market being the most active commodity market. A variety of new products have become

available, including exchange-traded products, managed futures funds, and hedge funds that

boost activity in both short-term trading and long-term investment strategies. Commodities

markets along with real estate are becoming promising alternative investment vehicles beyond

equity markets, with commodity indices outperforming the S&P 500 index over the last

decade.
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Figure 1: Average daily open interest. The average daily open interest of crude oil futures contracts
with maturities more than or equal to 24 months (for ≥ 24) or 36 months (for ≥ 36) for each year from 2003
to 2013.

The crude oil futures and options are the world’s most actively traded commodity deriva-

tives, forming a major part of these activities. The average daily open interest in crude oil

futures contracts of all maturities has increased from 503,662 contracts in 2003 to 1,677,627

contracts in 2013.2 Even though the most active contracts are short-dated, the market for

long-dated contracts has also substantially increased. The maturities of the crude oil futures

contracts and the options on futures contracts have extended from 18 months in 1990 to over

9 years in recent years. The average daily open interest in crude oil futures contracts with

1Source: www.barchart.com/articles/etf/commodityindex
2The crude oil derivatives database, which includes information about the open interest and volume, was

obtained from the Chicago Mercantile Exchange (CME).
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maturities of two years or more was 41,601 contracts in December 2003, and reached a record

high of 202,964 contracts in 2008. Figure 1 displays the average daily open interest3 of crude

oil futures contracts for each year from 2003 to 2013 and reveals a considerable trading ac-

tivity for long-dated crude oil futures contracts in recent years. Motivated by the increasing

importance of long-dated commodity derivative contracts to the financial markets, we make

theoretical and empirical contributions on the pricing of long-dated commodity derivatives.

Studies dealing with pricing of long-dated derivatives typically use spot price models

with stochastic interest rates and/or stochastic volatility and are applied mostly in equity

or FX markets. Using European stock index options with maturities of up to two years

from the Swedish option market, Rindell (1995) demonstrates empirically that the stochastic

interest rate option pricing model of Amin and Jarrow (1992) outperforms the original Black

and Scholes (1973) model. Some of the early models do not include correlations, or a

sufficient number of factors, and many do not derive closed form option prices, including

Amin and Jarrow (1992), Amin and Ng (1993), Bakshi, Cao, and Chen (1997), and Grzelak

and Oosterlee (2011). By using long-term equity anticipation securities with maturities up to

three years, Bakshi, Cao, and Chen (2000) empirically demonstrate that stochastic volatility

and stochastic interest rate models improve pricing and hedging of long-term contracts.

In response, a class of hybrid pricing models emerged, predominantly with applications

in equity, insurance and foreign exchange markets, for instance Ballotta and Haberman

(2003), Schrager and Pelsser (2004), van Haastrecht, Lord, Pelsser, and Schrager (2009),

van Haastrecht and Pelsser (2011) and Grzelak, Oosterlee, and van Weeren (2012). In

particular, van Haastrecht et al. (2009), van Haastrecht and Pelsser (2011) and Grzelak

et al. (2012) discuss numerical solutions of models combining the stochastic volatility Schöbel

and Zhu (1999) model and the stochastic interest rate Hull and White (1990) model, with

full correlations between the underlying processes. van Haastrecht et al. (2009) apply the

hybrid model to the valuation of insurance options with long-term equity or foreign exchange

(FX) exposure. Equity and FX markets have been extensively studied with hybrid pricing

3The average daily open interest is calculated by summing all the open interest at the end of each trading
day with maturities more than or equal to 24 months (for ≥ 24) or 36 months (for ≥ 36) over a given year
and then dividing this sum by the number of trading days in that year.
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models, yet there is limited literature on commodity markets. This paper aims to contribute

to closing this gap.

One of the earliest commodity derivatives models is the Gibson and Schwartz (1990)

model with stochastic convenience yield and constant interest rates, examining pricing per-

formance of short-dated futures contracts. Schwartz (1997) confirms the importance of

stochastic interest rates for pricing longer maturity crude oil futures contracts, yet with

deterministic volatility specifications and by fitting the model to crude oil futures prices

only. Hilliard and Reis (1998) propose a commodity pricing model with stochastic conve-

nience yields, stochastic interest rates and jumps in spot prices and investigate how these

features impact futures, forwards and futures options. By modelling the short-run deviations

and the equilibrium level, Schwartz and Smith (2000) provide a better fit to medium-term

futures prices rather than short-term and long-term futures prices. None of these models

include stochastic volatility, an important feature for pricing long-dated contracts, as it has

been shown in Bakshi et al. (2000) and Cortazar, Gutierrez, and Ortega (2016a). A rep-

resentative, more recent literature of pricing commodity contingent claims with spot price

models includes Cortazar and Schwartz (2003), Casassus and Collin-Dufresne (2005), Geman

(2005), Geman and Nguyen (2005), Cortazar and Naranjo (2006) (futures prices), Demp-

ster, Medova, and Tang (2008) (spread options) and Fusai, Marena, and Roncoroni (2008)

(Asian-style options). These spot price models for commodity derivatives capture efficiently

characteristics of the different commodity markets, for instance, the mean reversion of agri-

cultural commodities and the seasonality of energy commodities. However, they have the

following limitations: a) to evaluate derivative prices, one needs to model and estimate the

commodity convenience yield, an unobservable variable; b) unspanned stochastic volatility

cannot be easily integrated in spot price models; c) it is difficult to obtain consistency with

the term structure of the forward commodity curve and d) in general, they do not provide

closed-form solutions for commodity derivatives.

Futures price models do not retain these limitations. Trolle and Schwartz (2009) intro-

duced a forward-price model for commodity derivatives and by using crude oil futures and

futures options, they empirically demonstrate the existence of unspanned volatility compo-

nents in the crude oil derivatives market. By fitting their model to a longer dataset of crude
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oil futures and options, Chiarella, Kang, Nikitopoulos, and Tô (2013) consider a commodity

pricing model within the Heath, Jarrow, and Morton (1992) framework and demonstrate

that a hump-shaped crude oil futures volatility structure provides a better fit to futures and

option prices and improves hedging performance. Pilz and Schlögl (2013) model commodity

forward prices with stochastic interest rates driven by a multi-currency LIBOR Market Model

and achieve a consistent cross-sectional calibration (i.e., single day) of the model to at-the-

money market data for interest rate options, commodity options and historically estimated

correlations.4 Cortazar et al. (2016a) investigate the pricing performance of different models

on commodity prices, namely crude oil, gold and copper. The constant volatility model fits

futures prices better, but fitting to option prices improves significantly when a stochastic

volatility model is considered. Chiarella, Kang, Nikitopoulos, and Tô (2016) present an

alternative approach to study the return-volatility relationship in commodity futures mar-

kets and analyse this relation in the crude oil futures markets and the gold futures markets.

However, most of these studies assume deterministic interest rates, thus they may not be

suitable for the evaluation of long-dated contracts.

We make both theoretical and empirical contributions to the literature. On theoretical

grounds, we develop a multi-dimensional stochastic volatility Heath et al. (1992) type model

that accommodates stochastic interest rates. The model features a full correlation structure

between the underlying variables and matches the entire initial forward commodity curve by

construction. The stochastic interest rate process is modelled by a Hull and White (1990)

process5 and the volatility is modelled by an Ornstein-Uhlenbeck process. It is a stochastic

volatility model that allows for multiple volatility factors with flexible volatility structures.

Empirical evidence in the crude oil futures market demonstrates that exponential decaying

or hump-shaped volatility curves are typical structures of its volatility factors, see Chiarella

et al. (2013), and it features unspanned volatility, see Trolle and Schwartz (2009).

4Cross-sectional calibration to market data for interest rate and commodity option volatility surfaces is
treated in a stochastic volatility extension of the LIBOR Market Model in Karlsson, Pilz, and Schlögl (2016).

5More specifically, it is modelled by the multidimensional Gauss/Markov generalisation of the Hull and
White (1990) model. Other interest rate specifications can be considered, for instance Cox, Ingersoll, and
Ross (1985), at the cost of losing the tractability of the option pricing equation, thus relying on numerical
methods to solve it.
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This class of models has an affine term structure representation that leads to quasi-

analytical European vanilla futures option pricing equations. Furthermore, it allows us

to model directly multiple futures prices simultaneously.6 In contrast, spot price models

require the modelling of the spot price and the interest rates, as well as making assumptions

about the convenience yield to be able to specify the futures prices. The proposed approach

directly models the full term structure of futures prices and provides tractable prices for

futures options. Thus, our model can be estimated by fitting to both futures prices and

option prices.7

From an empirical point of view, our main contributions are threefold. Firstly, we esti-

mate the parameters of the proposed models, from historical time series of both crude oil

futures prices and crude oil futures option prices (since this is the most active commodity

derivatives market), by using an extended Kalman filter maximum log-likelihood method-

ology. Due to the large number of parameters, the estimation process is treated in three

stages. In stage one, we estimate the parameters of the interest rate models by fitting the

implied yields to US Treasury yield rates. In stage two, we estimate the parameters of the

stochastic volatility futures price model using prices of crude oil derivatives. In stage three,

we run a sensitivity analysis to determine the impact of correlations between the underlying

variables on long-dated crude oil option prices, and estimate the correlation parameters. We

find evidence for a negative correlation between the futures price process and the interest rate

process, especially over periods of high interest rate volatility, and an insignificant impact of

the correlation between stochastic volatility and interest rates on option prices.

Secondly, we evaluate the contribution of stochastic interest rate models to improving the

pricing performance on long-dated crude oil derivatives, compared to models with determin-

istic interest rate specifications, in-sample as well as out-of-sample. To assess the impact of

stochastic interest rates under different market conditions, we consider three periods; August

6Note that it is the presence of convenience yields which permits us to specify directly the prices of
futures to several maturities, simultaneously on the same underlying, without introducing inconsistency to
the model. We focus on modelling observable quantities and unobservables such as convenience yields are
implied endogenously by the model in a consistent manner.

7One should also note that any seasonality in the spot price will be reflected in the term structure of
futures prices, which the model fits by construction.
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2005 – July 2007 which was characterised by relatively volatile interest rates, July 2007 –

July 2009 which covers the Global Financial Crisis (GFC) where the markets experienced

substantial turmoil, and 2011–2012 which exhibited very low interest rates and a very sta-

ble interest rate market. Numerical investigations reveal that the volatility of interest rates

plays an important role in the pricing of long-dated commodity derivatives, thus the selec-

tion of periods studied is made based on different volatility levels. By comparing the pricing

errors of the two models (deterministic interest rates against stochastic interest rates), we

find that the stochastic interest rates counterpart typically performs better compared to the

deterministic interest rates counterpart, an effect that is more pronounced as the maturity

of the crude oil futures options increases. These results are more evident during periods of

high volatility of interest rates.

Thirdly, we investigate the dimensionality of the model required to provide better pricing

performance on long-dated crude oil derivatives contracts. We find that three-dimensional

models provide better fit to futures prices of all maturities compared to two-dimensional

models. However, for long-dated crude oil option prices, three-dimensional models matter

only when the markets are volatile, see also Schwartz and Smith (2000) and Cortazar et al.

(2016a) for similar conclusions.

All in all, this leads to a quite high–dimensional model with a correspondingly large

number of parameters. This is a consequence of the objective to investigate the additional

contribution of including stochastic interest rates beyond stochastic volatility in a model of

commodity derivatives — given the literature, it is accepted that the latter is important,

and therefore must be included in an analysis investigating the contribution of the former.

In particular in light of this high dimensionality, we base our conclusions on out–of–sample

performance, rather than in sample where overfitting is a possibility.

The paper is structured as follows. Section 2 presents a term structure model for pricing

commodity derivatives incorporating stochastic volatility and stochastic interest rates. Sec-

tion 3 describes the crude oil derivative data used in the empirical analysis and provides the

details of the estimation methodology. Section 4 presents the estimation results and discusses

the empirical findings of pricing long-dated crude oil derivatives. Section 5 concludes.
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2. Commodity derivatives models and stochastic interest rates

We develop a futures price model for commodity derivatives incorporating stochastic

volatility and stochastic interest rates. The model can be easily adjusted to allow for de-

terministic interest rate specifications. Using these models, we assess the contribution of

stochastic interest rates beyond stochastic volatility when pricing long-dated commodity

derivatives. We first present the stochastic volatility–stochastic interest rate model and then

we specify a deterministic interest rate model.

2.1. Model setup

We consider a filtered probability space (Ω,FT ,F,P), T ∈ [0,∞) satisfying the usual

conditions8. Here Ω is the state-space, F = {Ft}t∈[0,T ] is a set of σ-algebras representing

measurable events and P is the historical (real-world) probability measure. We denote by

Q the risk–neutral probability measure equivalent to P, under which all asset prices dis-

counted by the continuously compounded savings account are martingales.9 We introduce

σ = {σ(t); t ∈ [0, T ]}, an n-dimensional stochastic volatility process modelling the un-

certainty in the commodity market, where we further assume that the components of the

volatility process σ(t) = {σi(t), . . . , σn(t)} follow the dynamics10

dσi(t) = κi(σi − σi(t))dt+ γidW
σ
i (t), (1)

where W σ(t) = {W σ
1 (t), . . . ,W σ

n (t)} is an n-dimensional vector of independent Wiener pro-

cesses under Q and for all t ∈ [0, T ], κ1, . . . , κn, σ1, . . . , σn, and γ1, . . . , γn are constants.

We let F (t, T, σ(t)) be the futures price of the commodity at time t ≥ 0, for delivery

at time T ∈ [t,∞), highlighting the dependence of F on the current state of the stochas-

8The usual conditions satisfied by a filtered complete probability space are: (a) F0 contains all the P-null
sets of F and (b) the filtration is right continuous

9Under the assumptions on the specific stochastic dynamics which follow, the existence of Q is equivalent
to the absence of arbitrage by results standard in the literature.

10Note that there is no mathematical issue with the fact that this implies that σi(t) may become negative
— this simply changes the sign of the impact of a change in W x

i (t) on futures prices. This observation is
not new: A number of papers in the literature use an Ornstein/Uhlenbeck process such as this to model
stochastic volatility, including Stein and Stein (1991), Schöbel and Zhu (1999), Lipton and Sepp (2008) and
van Haastrecht et al. (2009).
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tic volatility process σ(t) ∈ <n. Under the assumed dynamics (3) below, paths of fu-

tures prices are almost surely continuous, thus the spot price at time T of the underlying

commodity S(T ) can be obtained by taking the limit of the futures price as t → T , i.e.

S(T ) = limt→T F (t, T, σ(t)), t ∈ [0, T ], where this limit exists almost surely. We denote

r = {r(t); t ∈ [0, T ]} the stochastic process of the instantaneous short-rate of interest. By

using no-arbitrage arguments, Cox, Ingersoll, and Ross (1981) demonstrate that the futures

price process F (t, T, σ(t)) is a martingale under Q, i.e.

F (t, T, σ(t)) = EQ[S(T, σ(T ))|Ft
]
.

Under the general Heath et al. (1992) framework, the term structure of the futures prices

is infinite-dimensional, representing futures prices across a continuum of maturities. At this

level of generality, the stochastic dynamics are Markovian only in an infinite dimensional

state-space. We instead proceed along the lines of Chiarella and Kwon (2003), Björk, Landén,

and Svensson (2004) and Björk, Blix, and Landén (2006), restricting ourselves to a system

that can admit finite dimensional realisations, when the functional form of the futures price

volatilities σFi (t, T, σ(t)) is specified as follows:

σFi (t, T, σ(t)) = (ξ0i + ξi(T − t))e−ηi(T−t)σi(t) (2)

with ξ0i, ξi, and ηi ∈ < for all i ∈ {1, . . . , n}. Under Q, the commodity futures price processes

are then given by the driftless stochastic differential equations of the form:

dF (t, T, σ(t))

F (t, T, σ(t))
=

n∑
i=1

σFi (t, T, σ(t))dW x
i (t), (3)

i.e. σFi (t, T, σ(t)) are the F-adapted futures price volatility processes for all T > t and

W x(t) = {W x
1 (t), . . . ,W x

n (t)} is an n-dimensional vector of independent Wiener processes

under Q (in our empirical analysis, we will consider the case n = 2 and n = 3).

These volatility specifications are important for two reasons: Firstly, they allow for a

variety of volatility structures, such as exponentially decaying and hump-shaped, which are

typical volatility structures in the commodity market, see Trolle and Schwartz (2009) and
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Chiarella et al. (2013). Secondly, they lead to tractable solutions for futures prices as the

system now admits finite-dimensional realisations.

The instantaneous short rate of interest r(t) is modelled as11

r(t) = r(t) +
N∑
j=1

rj(t), (4)

drj(t) = −λj(t)rj(t)dt+ θjdW
r
j (t).

where for all t ∈ [0, T ], θ1, . . . , θN are constants, and {λi(t)}i=1,...,N and r(t) are deterministic

functions of time t.12 In our empirical analysis we will consider N = 1, 2 and 3.

We also make the following assumptions on the correlation structure of the associated

11As written here, this is a slightly generalised, multifactor version of the Hull and White (1990) model.
If the λj : <+ → < are locally bounded deterministic functions, the stochastic differential equations for each
of the factors rj each have a solution and the distribution of the factors is Gaussian (see e.g. Section 12.3 of
Musiela and Rutkowski (1997)). In the empirical analysis below, the λj are taken to be constant.

12Under the measure Q, for a zero coupon bond B(0, T ), i.e. observed at the initial time 0 and maturing
at a time T , it must hold that

B(0, T ) = EQ

[
exp

{
−
∫ T

0

r(t)dt

}]

= exp

{
−
∫ T

0

r(t)dt

}
EQ

exp

−
∫ T

0

N∑
j=1

rj(t)dt




In practical applications where this is required, such as the relative pricing of fixed income derivatives in a
model calibrated to cross–sectional (i.e., at a single point in time) data, the function r(t) is typically defined
implicitly to ensure that the model matches the initial term structure of interest at time zero exactly, i.e.

r(t) = − ∂

∂T
ln

B(0, T )

EQ
[
exp

{
−
∫ T
0

∑N
j=1 rj(t)dt

}]
where it is assumed that the market–observed zero coupon bond prices are interpolated in a differentiable
manner. In time–series estimation applications such as ours below, it is neither required nor desirable to let
r depend on t, so we take it to be constant.
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Wiener processes:

dW x
i (t)dW σ

j (t) =

ρ
xσ
i dt, if i = j,

0, otherwise

dW x
i (t)dW r

ĵ
(t) =

ρ
xr
i dt, if ĵ = 1,

0, otherwise

dW σ
i (t)dW r

ĵ
(t) =

ρ
rσ
i dt, if ĵ = 1,

0, otherwise

(5)

for i ∈ {1, . . . , n}, j ∈ {1, . . . , n} and ĵ ∈ {1, . . . , N}. The above-mentioned specifications

result in unspanned stochastic volatility in the model, as in Trolle and Schwartz (2009) and

Chiarella et al. (2013). More specifically, when the Wiener processes W x
i (t) and W σ

i (t) are

correlated, futures contracts can be used to partially hedge the volatility risk of the deriva-

tives, while when the Wiener processes W x
i (t) and W σ

i (t) are uncorrelated, the volatility

risk of the derivatives is unhedgeable by futures contracts. Note that for modelling conve-

nience, we assume that only the first Wiener process of the interest rate process W r
1 (t) can

be correlated with the futures price process and the futures volatility process. Under these

assumptions we have:

Proposition 1. The volatility specifications of (2) allow the instantaneous futures prices

F (t, T, σ(t)) at time t with maturity T , satisfying the dynamics (3), to be expressed in terms

of 6n state variables, namely xi(t), yi(t), zi(t), φi(t), ψi(t) and σi(t):

logF (t, T, σ(t)) = logF (0, T, σ(0))

− 1

2

n∑
i=1

(
γ1i(T − t)xi(t) + γ2i(T − t)yi(t) + γ3i(T − t)zi(t)

)
+

n∑
i=1

(
β1i(T − t)φi(t) + β2i(T − t)ψi(t)

)
, (6)
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where for i = 1, . . . , n the deterministic functions are defined as:

β1i(T − t) = $i(T − t) =
(
ξi0 + ξi(T − t)

)
e−ηi(T−t),

β2i(T − t) = ξie
−ηi(T−t),

γ1i(T − t) = β1i(T − t)2,

γ2i(T − t) = 2β1i(T − t)β2i(T − t),

γ3i(T − t) = β2i(T − t)2,

and the 5n state variables xi, yi, zi, φi, ψi satisfy the following dynamics:

dxi(t) =
(
− 2ηixi(t) + σ2

i (t)
)
dt,

dyi(t) =
(
− 2ηiyi(t) + xi(t)

)
dt,

dzi(t) =
(
− 2ηizi(t) + 2yi(t)

)
dt,

dφi(t) = −ηiφi(t)dt+ σi(t)dW
x
i (t),

dψi(t) =
(
− ηiψi(t) + φi(t)

)
dt,

(7)

subject to the initial condition xi(0) = yi(0) = zi(0) = φi(0) = ψi(0) = 0. The system also

includes the n stochastic volatility processes σi(t), i ∈ {1, . . . , n}, see equations (1), giving a

total of 6n state variables.

Proof. Along the lines of Chiarella et al. (2013).

The stochastic interest rate process r(t) does not affect the futures price process per se,

but it matters when we consider pricing options on futures contracts.

2.2. Affine class transformation

The initially infinite-dimensional Markovian model is now reduced to a model with 6n+N

state variables. The additional N state variables are from the stochastic interest rate pro-

cess specified by the equation (4). Note that this system is not affine. When the volatility

specifications (2) are applied to the dynamics (6), the σ2
i (t) term is not an affine transfor-

mation of σi(t), which would be required in order for the system to admit a closed-form

characteristic function of X(t, T ) = logF (t, T, σ(t)), see Duffie, Pan, and Singleton (2000).
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By introducing a latent stochastic variable νi(t)
4
= σ2

i (t) with νt = {ν1(t), . . . , νn(t)}, this

system can be transformed into the following affine system:

dX(t, T ) = −1

2

n∑
i=1

β2
1i(T − t)νi(t)dt+

n∑
i=1

β1i(T − t)
√
νi(t)dW

x
i (t),

where, for i = 1, 2, . . . , n,

dσi(t) = κi(σi − σi(t))dt+ γidW
σ
i (t),

dνi(t) = 2κi
(
σiσi(t) +

γ2i
2κi
− νi(t)

)
dt+ 2γi

√
νi(t)dW

σ
i (t),

and the instantaneous short-rate process r(t) follows the dynamics (4), with the correlation

structure being the same as in (5). For t ≤ To ≤ T and υ ∈ C, the r1(t)-discounted character-

istic functions of the logarithm of the futures prices φ(t)
4
= φ(t,X(t, T ), r1(t), ν(t), σ(t); υ, To, T ):

φ(t; υ, To, T )
4
= EQ

t

[
e−

∫ To
t r1(u) du exp

{
υ logF (To, T, σ(To))

}]
= EQ

t

[
e−

∫ To
t r1(u) du exp

{
υX(To, T )

}] (8)

can be expressed as:

φ(t; υ, To, T ) = exp
{
A(t; υ, To) +B(t; υ, To)X(t, T ) + C(t; υ, To)r1(t)

+
n∑
i=1

Di(t; υ, To)νi(t) +
n∑
i=1

Ei(t; υ, To)σi(t)}.
(9)

Lemma 1. The functions A(t; υ, To), B(t; υ, To), C(t; υ, To), Di(t; υ, To) and Ei(t; υ, To) in
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equation (9) satisfy the following complex-valued Ricatti ordinary differential equations:

∂B

∂t
=0,

∂C

∂t
=λ1C + 1,

∂Di

∂t
=− 1

2
β2
1i(T − t)(B − 1)B − 2(ρxσi β1i(T − t)γiB − κi)Di − 2γ2iD

2
i ,

∂Ei
∂t

=− 2σ̄iκiDi − ρxri θ1β1i(T − t)BC − 2ρrσi θ1γiCD

− (2γ2iDi − κi + ρxσi β1i(T − t)γiB)Ei,

∂A

∂t
=− 1

2
θ21C

2 −
n∑
i=1

γ2iDi −
n∑
i=1

(κiσ̄i +
1

2
γ2iEi + ρrσi θ1γiC)Ei,

(10)

where i ∈ {1, . . . , n}, subject to the terminal condition φ(To) = eυX(To,T ).

Proof. Along the lines of Duffie et al. (2000).

In the next section, we present the quasi-analytical pricing formulae for European vanilla

options on futures resulting from this affine transformation.

2.3. Pricing of European Option on Futures

We denote by Call(t, F (t, T, σ(t));To) and Put(t, F (t, T, σ(t));To) the price of the Euro-

pean style call and put option, respectively, with maturity To and strike K on the futures

price F (t, T, σ(t)) maturing at time T . The price of a call option can be expressed as the

discounted expected payoff under the risk-neutral measure:

Call(t, F (t, T, σ(t));To) = EQ
t

(
e−

∫ To
t r(s) ds

(
eX(To,T ) −K

)+)
. (11)

By using the Fourier inversion technique, Duffie et al. (2000) provide a semi-analytical for-

mula for the price of European-style vanilla options in the class of affine term structure

models. With a slight modification of the pricing equation in Duffie et al. (2000), equation
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(11) can be expressed as:

Call(t, F (t, T, σ(t));To) = e−
∫ To
t r(s) ds

N∏
i=2

EQ
t

[
e−

∫ To
t ri(s) ds

]
×

[
G1,−1(− logK)−KG0,−1(− logK)

]
,

(12)

where

Ga,b(y) =
φ(t; a, To, T )

2
− 1

π

∫ ∞
0

Im[φ(t; a+ ibu, To, T )e−iuy]

u
du. (13)

Note that i2 = −1 and Im(x + iy) = y. Note that the product starts at i = 2 because the

equation (12) is specific to the correlation structure (5) that allows only the first factor of

the interest rate process to be correlated with the futures price process. For European put

options, the discounted expected payoff is:

Put(t, F (t, T, σ(t));To) = EQ
t

(
e−

∫ To
t r(s) ds

(
K − eX(To,T )

)+)
= e−

∫ To
t r(s) ds

N∏
i=2

EQ
t

[
e−

∫ To
t ri(s) ds

]
×

[
KG0,1(logK)−G1,1(logK)

]
.

(14)

Quasi-analytical option pricing formulae greatly facilitate model estimation and calibration,

which we exploit in the next section where the model is estimated using historical data from

the crude oil derivatives market. Since the futures prices observed from the market are under

the historical measure, for estimation applications, we need to account for the market price

of risk and the market price of volatility risk, namely $i and $σ
i , respectively. Introducing

Wi(t) and Wσ
i (t), standard Wiener processes under the physical measure P, we have

dWi(t) = dW x
i (t)−$i

√
νi(t) dt,

dWσ
i (t) = dW σ

i (t)−$σ
i

√
νi(t) dt.

For comparison purposes, we also consider a model with deterministic interest rates, which

is described next.
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2.4. The deterministic interest rate model

The dynamics of the futures price process and the stochastic volatility process remain

the same as specified in equations (6) and (1), but the stochastic interest rate process is

replaced by a deterministic discount function. This discount function PNS(t, T ) is obtained

by using the Nelson and Siegel (1987) functional form of the time-t instantaneous forward

rate as follows:

fNS(t, T ) = b0 + b1e
−a(T−t) + b2a(T − t)e−a(T−t)

where a, b0, b1 and b2 are constant parameters to be determined. The yield to maturity is

then expressed as:

yNS(t, T ) =

∫ T
t
fNS(t, u) du

T − t
= b0 +

(b1 + b2)(1− e−a(T−t)
a(T − t)

− b2e−a(T−t). (15)

The discount function for the option with maturity T is simply PNS(t, T ) = e−yNS(t,T )(T−t).

We next conduct an empirical study using crude oil derivatives. The aim of the study

is to gauge the impact of stochastic interest rates beyond stochastic volatility on pricing

long-dated crude oil derivatives.

3. Description of data and estimation methodology

Using the models developed in Section 2, we conduct a sensitivity analysis of the im-

pact the different interest rate parameters have on commodity derivative prices. Since the

objective is to explore parameter sensitivities to suggest fruitful directions of inquiry in the

empirical analysis which follows in Section 4, the base parameters in this exploration are cho-

sen in a deliberately stylised fashion, so as to better illustrate the relevant effects (leaving

the analysis on empirically realistic parameter constellations to Section 4).13 The analysis

reveals that the correlation between the stochastic interest rates and the stochastic futures

price process has noticeable impact on prices of long-dated options, but remains negligible

for short-dated options, see Figure 2. Furthermore, Figure 3 reveals that as the volatility

13For this sensitivity analysis, we consider a one-dimensional version of the model for pricing ATM options
with the following parameter values; r̄ = 0.05, λ = 4, θ = 0.05, κ = 4, σ̄ = 0.5, γ = 0.6, K = 100.
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of interest rates increases, the value of the option increases with the impact being more

pronounced for longer-maturity options, while the long-term level of the interest rates does

not impact option prices in a similar manner.

Accordingly, in order to assess the contribution of stochastic interest rates on long-dated

crude oil derivative prices, we select three two-year periods to estimate the model parameters,

each period with marked differences in terms of interest rate levels and, most importantly,

volatilities. After investigations, based on descriptive statistics (see Table 1) and properties

of the interest rate process and futures price process (see Section 4.1), we have identified three

two-year periods that capture three different environments of the interest rates markets. The

first period is from 1st August 2005 to 31st July 2007 and it represents a period of relatively

high levels of interest rates (over 4.6%, see Table 1) with average levels of interest rate

volatility. The second period is from 1st July 2007 to 30th June 2009. This period spreads

over the GFC, where the level of interest rates has almost halved in the course of enormously

volatile market conditions. This period exhibits the highest volatility of interest rates over

the sample. The third period is from 1st January 2011 to 31st December 2012, a period of

extremely low interest rates featuring also low volatilities (interest rates were below 0.5%

for maturities under three years, see Table 1). This period is one of the lowest interest rate

volatility periods in the sample.14 These three periods can also be considered as pre-GFC,

during GFC and post-GFC sample periods.

3.1. Data description

3.1.1. Interest rate data

We use the US Treasury yield rates15 as the proxy to estimate the parameters in the

interest rate process in our model as well as to convert the prices of American options to

European options, as required when we consider the crude oil options. The reason for this

choice over other rates such as LIBOR is that the options in the dataset are exchange-traded

options, hence there is no counterparty credit risk involved. There are over ten different

14From 2013 onwards, the behaviour of interest rates in terms of level and volatility falls between the
extremes covered by the three periods studied here (see Figure 4), and does not add any new quality relative
to the results reported in our empirical analysis (and is therefore omitted).

15Data were obtained from www.treasury.gov.
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Figure 2: Impact of the correlation between futures prices and interest rates on call option
prices. The plot shows the ratio of option prices (between prices from a model with full correlation structure
and prices from a restricted model with ρrσ = 0) for a range of correlation coefficient parameter values and
for four different maturities; 0.5, 3, 10 and 20 years.

maturities in the dataset and we choose only four sets of yield rates (the 1-year, 2-year,

3-year and 5-year yields) that best match the maturities of the options used in the analysis.

Figure 4 displays the evolution of the US Treasury yields from 2005 to 2016, which includes

the sample periods used in our empirical study.

Summary statistics of the yields over the three sample periods considered in our analysis

are presented in Table 1. It is evident that the interest rate markets behaved very differently

over these three periods. The mean levels of interest rates have reduced from around 4.5%

in 2005 to around 2.5% in 2008 and down to 0.5% in 2011. Yet, the market experienced high

volatility over the GFC, with lower volatility levels in the pre-GFC period and extremely

low volatility in the post-GFC period. Note that the standard deviation of the 5-year bond

yields estimated in the period between January 2011 and December 2012 (0.539%) is almost

double the standard deviation (0.288%) of the corresponding yield in the period August

2005 to July 2007. The reason for this seemingly higher volatility is that the 5-year yield

at the beginning of 2011 is around 2% and it increases to 2.4% in early February 2011 and

then it quickly plummets to less than 1% in the beginning of 2011. To better quantify the

volatility of the interest rates during those three periods, we also present the linearly, as

well as the nonlinearly detrended standard deviation of the interest rates. The linearity and

nonlinearity are removed by subtracting a least-squares polynomial fit of degree 1 and degree

2 respectively. We observe that the nonlinearly detrended standard deviation of the 5-year

yield is lower during the post-GFC period.
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Figure 3: Impact of the volatility and long term levels of interest rates on call option
prices. The plot displays ratios of option prices (between prices from a model with full correlation struc-
ture and prices from a restricted model with ρxr = 0) for varying levels of volatility of interest rates
θ = 0.01, 0.05, 0.25, 0.50 (top three graphs) and ratios of option prices for varying long term levels of interest
rates {r, r0} = {0.01, 0.01}, {0.05, 0.05}, {0.10, 0.10}(bottom three graphs) and for three different maturities
T = 0.5, T = 3 and T = 20.

3.1.2. Crude oil derivative data

We use Light Sweet Crude Oil (WTI) futures and options traded on the NYMEX16,

which is one of the richest datasets available on commodity derivatives. The average daily

number of actively traded futures contracts has increased from 34 in 2005 to 59 in 2012.

The futures dataset has 145,805 lines of data and the options dataset has close to 5 million

lines of data. Due to the enormous amount of data, for estimation purposes we make a

selection of contracts based on their liquidity and we use the open interest of the futures

as the proxy of its liquidity.17 Figure 5 shows the open interest of the futures contracts by

time-to-maturity for the first nine months and then the open interest of the futures contracts

with maturities of more than one year by calendar month. It is clear that liquidity is mainly

16The database has been provided by CME.
17Liquidity is generally very low for crude oil futures and options contracts with less than 14 days to expi-

ration. The liquidity of contracts with more than 14 days to expiration increases significantly. Furthermore,
prices for contracts with very short maturities may be erratic. Thus in our analysis, we use only contracts
with more than 14 days to expiration.

19



Figure 4: US Treasury yields. The figure displays the US Treasury yields with 1-year, 2-year, 3-year and
5-year maturity from January 2005 to December 2016.

concentrated on short-maturity contracts and on the December contracts. Thus we select

the first seven monthly contracts, then the next three contracts with maturity either in

March, June, September or December and then all contracts with maturity in December.

We also filter out abnormalities such as futures prices of zero and zero open interest. Thus

on a daily basis, we use around 10 − 15 futures contracts for the period 2005–2007, 2007–

2009, and 15 − 17 futures contracts for the period 2011–2012, extending our dataset of

futures maturities to eight years. For the crude oil futures option dataset, we select the

options with the underlying futures contracts being the ones used in the crude oil futures

dataset. That is, we take options on the first seven monthly futures contracts and the next

three contracts with maturity in either March, June, September, and all December contracts

with maturities of up to 5 years. For each option maturity, we consider six moneyness

intervals, 0.86–0.905, 0.905–0.955, 0.955–1.005, 1.005–1.055, 1.055–1.105 and 1.105–1.15.

We define moneyness as the option strike divided by the price of the underlying futures

contract. In each moneyness interval, we choose either call or put options, in order to use

only the out-of-the-money (OTM) and at-the-money (ATM) options that are closest to the

interval mean. In order to reduce the computational overhead, we select the OTM and ATM

options, as they are generally more liquid. Besides that, the OTM options have lower early

exercise approximation errors. On a daily basis we use around 50−77 options for the period

2005− 2007, around 60− 80 options for the period 2007− 2009 and 77− 95 options for the
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Period 1: August 2005 - July 2007
Maturity in years 1 2 3 5

Mean 4.773% 4.682% 4.648% 4.640%
Standard Deviation 0.389% 0.309% 0.297% 0.288%

Detrended S.D. 0.262% 0.250% 0.251% 0.247%
Nonlinear Detrended S.D. 0.115% 0.177% 0.198% 0.210%

Excess Kurtosis 0.411 0.268 0.012 -0.252
Skewness -1.222 -0.795 -0.557 -0.334

Period 2: July 2007 - June 2009
Maturity in years 1 2 3 5

Mean 2.075% 2.234% 2.462% 2.944%
Standard Deviation 1.381% 1.194% 1.074% 0.913%

Detrended S.D. 0.504% 0.522% 0.541% 0.499%
Nonlinear Detrended S.D. 0.422% 0.453% 0.472% 0.452%

Excess Kurtosis -0.774 -0.696 -0.624 -0.604
Skewness 0.556 0.585 0.599 0.303

Period 3: January 2011 - December 2012
Maturity in years 1 2 3 5

Mean 0.178% 0.363% 0.565% 1.140%
Standard Deviation 0.052% 0.173% 0.310% 0.539%

Detrended S.D. 0.049% 0.122% 0.194% 0.264%
Nonlinear Detrended S.D. 0.036% 0.086% 0.131% 0.172%

Excess Kurtosis -0.026 0.783 0.343 -0.520
Skewness 0.450 1.415 1.324 0.991

Table 1: Descriptive statistics of US Treasury yields. The table displays the descriptive statistics for
the 1-, 2-, 3- and 5-year US Treasury yields over three periods; August 2005 – July 2007, July 2007–June
2009 and January 2011 – December 2012.

period 2011− 2012.

These are American-style option prices, thus for the conversion to European-style option

prices, we use the Barone-Adesi and Whaley (1987) approximation method to back out the

corresponding implied volatilities, see Trolle and Schwartz (2009) for similar treatment. The

Barone-Adesi and Whaley (1987) approximation assumes a constant risk-free interest rate,

thus it can perform well for pricing short-dated contracts but it can potentially bring some

bias when pricing long-dated contracts. To reduce this bias, we compute this “constant”

risk-free interest rate parameter from bond prices that are inferred from market information.

More specifically, by using the Kalman filter and maximum likelihood, we estimate our

multi-factor stochastic interest rate model by fitting to US Treasury Bills data. Then by
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Figure 5: Liquidity of crude oil futures contracts by calendar month. The plot shows the liquidity
of the first nine months from the trading day as well as December and June contracts in the following years.
It shows that futures contracts with next-month delivery date are the most liquid and liquidity gradually
decreases over the following months. Futures contracts with maturities in December are very liquid even
after a few years and June contracts are moderately liquid. Contracts with maturities more than two years
are very illiquid in other months.

using the calibrated model, we calculate zero-coupon bonds, which are used to compute the

“constant” risk-free interest rate.18

3.2. Estimation method

Several methodologies have been proposed in the literature to estimate the parameters

of stochastic models, such as efficient method of moments, see Gallant, Hsieh, and Tauchen

(1997), maximum likelihood estimation, see Chen and Scott (1993), and the Kalman filter

method. Duffee and Stanton (2012b) perform an extensive analysis and comparison of these

methods and conclude that the Kalman filter is the best method among these three. In this

paper, we adopt the Kalman filter methodology to estimate the parameters of our model.

For the purpose of parameter estimation, we let r(t), λi(t) and θi(t) be constants for all i, i.e.

r(t) = r, λi(t) = λi and θi(t) = θi,∀i. With these time-varying functions taken as constants

18Despite this treatment, the approximation can potentially lead to mis-pricing and bias. This may well
reduce the improvement stochastic interest rate models bring over the deterministic counterparts for long-
dated contracts in our analysis, but does not detract from our results: Even using this approximation, we find
that stochastic interest rate models price more accurately long-dated contracts over periods of high interest
rate volatility. Further investigations on the bias resulting from applying the Barone-Adesi and Whaley
(1987) approximation to long-dated contracts, and additional improvements resulting from mitigating this
bias, are left for further research.
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the option pricing formula (12) is reduced to:

Call(t, F (t, T, σ(t));To) = e−r(To−t)
N∏
i=2

exp(−Ai(To − t)ri(t) +Di(To − t))×

[
G1,−1(− logK)−KG0,−1(− logK)

]
, (16)

where

Ai(τ) =
1− e−λiτ

λi
,

Di(τ) =
(
− θ2i

2λ2i

)(
Ai(τ)− τ

)
− θ2iAi(τ)2

4λi
.

There are 34 + 2N parameters19 that need to be estimated in the 3-dimensional model,

and 24 + 2N for the 2-dimensional model. Thus the estimation of the model parameters is a

computationally intensive exercise. To contain the issues arising from the high dimensionality

of the proposed models and associated with the stability of the large number of parameter

estimates, we subdivide the estimation procedure into three steps as follows.

1. Firstly, we estimate the parameters of the interest rate process by using US Treasury

yields.

2. Secondly, we estimate, separately, the parameters of the stochastic volatility model

used to describe the dynamics of the commodity futures price (without a correlation

structure)20 by using prices of commodity derivatives.

3. Thirdly, we perform a sensitivity analysis to assess the contribution of the model

correlation structure on commodity derivative prices, and we estimate the associated

correlation parameters.

We estimate the parameters of the interest rate dynamics by using Kalman filter and

maximum likelihood estimates. The estimation method for the futures price volatility pro-

19We use n = 3 of each ξ0, ξ, η, κ, γ, ρ
xr, ρxσ, ρrσ, $,$σ, N of each λ, θ and one of each r, f0, σf , σo. The

$i, $
σ
i , f0, σf , σo are the market price of risk, market price of volatility risk, initial time-homogenous futures

curve, measurement noise of the futures and options, respectively.
20The correlation between futures prices and its volatility is part of the stochastic volatility model, thus

it is estimated in Step 2. We assume though that the correlation ρrσ between interest rate process and
volatility process, as well as, the correlation ρxr between interest rate process and futures price process, are
both zero.
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cesses σFi and the volatility processes σi(t) involves using the extended Kalman filter and

maximum likelihood, where the model is re-expressed in a state-space form which consists

of the system equations and the observation equation, and then the maximum likelihood

method is employed to estimate the state variables.

The system equations describe the evolution of the underlying state variables. In this

model, the state vector is Ξt = {Ξi
t, i = 1, 2, . . . , n}, where Ξi

t consists of seven state variables

xi(t), yi(t), zi(t), φi(t), ψi(t), σ
i(t) and νi(t), see (7). This system can be put in a state-space

discrete evolution form as follows:

Ξt+1 = Φ0 + ΦXΞt + ωt+1. (17)

The ωt with t = 0, 1, 2, . . . are independent of each other, with zero mean and with the

covariance matrices conditional on time t a deterministic function of the state variable σ(t).

The observation equation links the vector Zt of the observable prices of futures and futures

options, as described and selected in Section 3.1.2, with the vector Ξt of the model state

variables, namely:

Zt = h(Ξt,ut), ut ∼ i.i.d.N(1,Ω), (18)

where ut is a vector of i.i.d. multiplicative Gaussian measurement errors with covariance

matrix Ω. The observation equation can be constructed by (6), which relates the logarithm

of the futures prices linearly to the state variables xi(t), yi(t), zi(t), φi(t) and ψi(t). However,

equation (12) relates option prices to the state variables through nonlinear expressions. The

application of the extended Kalman filter for parameter estimation involves linearising the

observation function h and making the assumption that the disturbance terms {ωt}t=0,1,... in

equation (17) follow multivariate normal distributions. From the Kalman filter recursions,

we can compute the likelihood function.

When interest rates are assumed to be stochastic, the interest rates needed for discounting

at each future date are calculated from the estimated values of the state variables of the

interest rate model. In particular, we have the estimated parameters of the interest rate

model r̄, λj, θj, where j = 1, 2, 3 (for the three-dimensional model). On each date, the
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Kalman filter updates rj(t). With known parameters and state variables, we use equation

(12) to calculate the theoretical option prices. Note that r2 and r3 are independent, so

they do not appear in the main option pricing function Ga,b(y). When interest rates are

assumed to be deterministic, the rates used for discounting at each future date are specified

by equation (15).

3.3. Computational details

The program is written in Matlab. The log-likelihood function is maximised using

Matlab’s “fminsearch” routine to search for the minimal point of the negative of the log-

likelihood function. “fminsearch” is an unconstrained nonlinear optimisation routine and it

is derivative-free. The Ricatti ordinary differential equations of the characteristic function

φ in equation (9) are solved by Matlab’s “ode23”, which is an automatic step-size Runge-

Kutta-Fehlberg integration method. This method uses lower order formulae compared to

other ODE methods, which can be less accurate, but the advantage is that this method is

fast comparing to other methods. The integral in (12) is computed by the Gauss-Legendre

quadrature formula with 19 integration points and truncating the integral at 33. We find

that these numbers of integration points and truncation of the integral provide a good trade-

off between computational time and accuracy. Appendix A discusses in detail the methods

employed to make the estimation procedure more time efficient.

4. Estimation results and empirical analysis

As part of the estimation applications, we conduct several investigations into the pricing

performance of the models developed in Section 2. In the estimation part, we discuss the

statistical significance and the economic significance of the estimated parameters over three

distinct sample periods, characterised by different market conditions; typically low against

high interest rate volatility environments. In the empirical analysis, we firstly evaluate the

ability of stochastic interest rate models to improve pricing performance on long-dated crude

oil derivatives compared to models with deterministic interest rate specifications. Secondly,

we assess both in-sample and out-of-sample pricing performance on long-dated crude oil

options with maturities up to five years. Thirdly, given the multi-dimensional nature of the
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models, we investigate the sufficient number of dimensions required for the models to provide

satisfactory levels of pricing performance and we discuss the trade-off between computational

effort and numerical accuracy.

4.1. Estimation

The results of the three-step estimation of the proposed models, as described in Sec-

tion 3.2, are discussed next.

4.1.1. Interest rate process

The estimation results of the multi-dimensional affine term structure models for the in-

terest rate process are summarised in Table 2. We estimated the interest rate process for

N = 1, 2, 3, to determine the number of model dimensions required to provide a satisfactory

fit to interest rate data. The results reveal that the three-dimensional affine term structure

model provides the best fit for all maturities, as RMSE (root-mean-square-errors) are consis-

tently lower for all maturities. This is consistent with results by Litterman and Scheinkman

(1991) and Fan, Gupta, and Ritchken (2007) in the swaption market. Therefore, we consider

the three-dimensional version of interest rate models in the subsequent analysis.

The estimated long-term mean level r in the first period is 4.96%, which is much higher

than the long-term mean level of 0.9519% estimated in the second period and of −0.20%

estimated in the third period. These parameter estimates are consistent with the statistical

properties of the interest rates over these three periods, see Table 1. Similarly, the estimated

volatility parameters θi of the interest rate process reflect the observed variation in the

interest rates markets over the three periods. Specifically, the August 2005–July 2007 period

is characterised by high levels of interest rates and relatively high volatility (ranging from

0.8%-1.5%), the July 2007–July 2009 period is characterised by lower interest rates with

considerable volatility (ranging from 1.28%-2.77%), while the January 2011–December 2012

period exhibits much lower interest rates and very low volatility.

4.1.2. Futures price process

Next, we estimate the stochastic volatility models developed in Section 2, by assuming

zero correlation between the futures price process and the interest rate process and between
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Period 1: Aug 05–Jul 07
N=1 N=2 N=3
i = 1 i = 1 i = 2 i = 1 i = 2 i = 3

λ0i 0.0492 -0.0401 3.9081 0.0752 0.2766 1.5860
(0.0005) (0.0002) (0.5768) (0.0047) (0.0007) (0.0043)

θi 0.0058 0.0058 0.0164 0.0152 0.0080 0.0130
(0.0011) (0.0004) (0.0020) (0.0008) (0.0004) (0.0012)

r 4.1592% 3.9112% 4.9611%
(0.0025) (0.0016) (0.0010)

log L 11255 12803 13240
RMSE 1yr 4.1033% 1.0425% 0.4885%
RMSE 2yr 1.1798% 0.4110% 0.2823%
RMSE 3yr 0.6045% 0.3392% 0.1559%
RMSE 5yr 0.5367% 0.1346% 0.0476%

Period 2: Jul 07–Jun 09
N=1 N=2 N=3
i = 1 i = 1 i = 2 i = 1 i = 2 i = 3

λ0i 0.1525 -0.2616 0.3158 -0.1572 0.4283 0.1247
(0.0034) (0.0216) (0.0237) (0.0065) (0.0021) (0.0010)

θi 0.0183 0.0079 0.0188 -0.0277 0.0128 -0.0235
(0.0015) (0.0014) (0.0020) (0.0002) (0.0010) (0.0001)

r 1.7960% 1.9715% 0.9519%
(0.0010) (0.0020) (0.0003)

log L 11344 12024 13735
RMSE 1yr 41.7333% 16.2820% 11.9594%
RMSE 2yr 16.0380% 3.6141% 1.8584%
RMSE 3yr 6.5301% 3.1575% 1.3201%
RMSE 5yr 4.7623% 1.1613% 0.1860%

Period 3: Jan 11–Dec 12
N=1 N=2 N=3
i = 1 i = 1 i = 2 i = 1 i = 2 i = 3

λ0i -0.6491 -0.3913 0.5144 0.1223 -0.4987 -1.2297
(0.0038) (0.0093) (0.0585) (0.0116) (0.0034) (0.0303)

θi 0.0010 0.0027 0.0025 0.0021 0.0019 3.98E-05
(0.0001) (0.0001) (0.0003) (0.0001) (0.0003) (0.0000)

r 0.0700% -0.2828% -0.2018%
(0.0000) (0.0001) (0.0004)

log L 11602 13057 13595
RMSE 1yr 47.6749% 22.5815% 15.3528%
RMSE 2yr 9.8461% 5.6910% 3.8036%
RMSE 3yr 4.7325% 2.8091% 1.2320%
RMSE 5yr 0.9182% 0.3006% 0.0661%

Table 2: Parameter estimates of the interest rate process. The table displays the maximum-likelihood
parameter estimates (with the standard errors in parenthesis) and the root-mean-square errors (RMSE) of
multi-dimensional affine term structure models for N = 1, 2, 3 over three periods, August 2005 – July 2007,
July 2007–June 2009 and January 2011 – December 2012.
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the interest rate process and the stochastic volatility process (i.e. ρxri = ρrσ = 0) over the

three periods. The estimation results of fitting the two-dimensional model and the three-

dimensional model, to crude oil futures and options are shown in Table 3 and Table 4,

respectively. Thus, the tables display the estimates obtained under the assumption of ρxri =

ρrσ = 0. The correlation coefficients are estimated separately as discussed in Section 4.1.4.

The estimated parameter values show that the volatility factors driving the futures price

process are highly persistent (low κi) and they are typically exponentially decaying (low ξi

estimates) or may exhibit humps, when ξi estimates are large, as it has been empirically

shown also in Chiarella et al. (2013). The high values of the correlation coefficients ρxσ

between innovations in the futures price process and the volatility process reflect the existence

of unspanned volatility components in the crude oil futures markets, see Trolle and Schwartz

(2009). Factors with higher ηi drive mainly the short end of the term structure. Furthermore,

in line with Dennis, Mayhew, and Stivers (2006) and Chiarella et al. (2016), the negative

correlations in Period 1 and 2 imply a negative return–volatility relationship in the crude oil

futures markets over these periods leading up to the GFC, where systematic market wide

shocks impact the market. The more quiet Period 3 displays a positive return–volatility

relationship consistent with the fact that the market was mostly in backwardation.21 The

market price of volatility risk $σ
i in the crude oil market has negative components, consistent

with several empirical studies, see for instance Doran and Ronn (2008) and Chiang, Hughen,

and Sagi (2015).

4.1.3. Sensitivity analysis of the correlations

A sensitivity analysis of the correlation ρxr between the interest rate process and the

futures price process, as well as the correlation ρrσ between the interest rate process and the

stochastic volatility process, is performed to determine their impact on futures and option

21According to Dennis et al. (2006) and Chiarella et al. (2016), commodity futures markets with low volatil-
ity are driven predominantly by commodity specific effects, for example, crude oil behaves as a consumption
asset (inverted futures markets) and gold as an investment asset, postulating respectively, positive and nega-
tive return-volatility relationships (i.e., positive and negative correlation). However, in high volatility market
conditions, commodity markets are affected also by market-wide shocks and may behave differently. Thus,
over the Period 1 and 2, where the GFC effects were dominating, the crude oil markets experienced extended
periods of contango market conditions (meaning, futures prices exceed spot prices), which is consistent with
negative correlation.
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prices. By using the estimated model parameters of the zero-correlation models, see Table 3

and Table 4, we price call options with a different correlation structure. In our analysis, we

select an at-the-money (ATM) option with a maturity of 4,000 days and a strike of $100.

These numbers are chosen for illustration purposes only and we present the results for two

of the periods. The results are presented in Table 5.

From this analysis, we draw several conclusions. Firstly, the impact of the correlation ρrσ

between the interest rate process and the stochastic volatility process on the option prices

is insignificant even for maturity as long as 4,000 days (see Table 5). For ρxr = 0,22 we see

that the percentage difference of the option price (comparing ρrσ = 0.50 and ρrσ = 0) is

(10.51 − 10.416)/10.51 = 0.894% for the period 2005 − 2007 and the percentage difference

of the option price (comparing ρrσ = 0.50 and ρrσ = 0) is (28.201− 28.187)/28.201 = 0.05%

for the period 2011− 2012.

Secondly, the correlation ρxr between the interest rate process and the underlying futures

price process has a noticeable impact on the option prices. More specifically, due to the

differences in the interest rate volatilities estimated for these periods, the impact of the

correlation on the option prices in the period 2005 − 2007 is more than twice as large as

in the period from 2011 − 2012. For instance, the percentage difference of the option price

(comparing ρxr = 0 and ρxr = −0.50) is (10.51 − 10.857)/10.51 = −3.30% for the period

2005 − 2007 and the percentage difference of the option price (comparing ρxr = 0 and

ρxr = −0.50) is (28.201−28.591)/28.201 = −1.38% for the period 2011−2012. Consequently,

as the impact of the correlation between the stochastic interest rate process and the stochastic

volatility to the option price is negligible, we set ρrσ1 = ρrσ2 = ρrσ3 = 0 and we only estimate

ρxri .

4.1.4. The correlation ρxri

Table 6 and Table 7 present the estimates of the correlation coefficient ρxri for the two-

dimensional and the three-dimensional model, respectively. The remaining parameter es-

22Throughout this section, we use the shorthand notation ρxr = 0 to refer to ρxr1 = ρxr2 = ρxr3 = 0, and
the same interpretation for ρrσ.
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timates are the same as in Table 3 and Table 4. The correlation coefficients between the

interest rate process and the futures price process reach quite high values in absolute terms,

ranging from −0.69 to 0.54, for the two-dimensional model and from −0.62 to 0.59, for the

three-dimensional model, underscoring the important (though not invariant) relationship

between interest rates and futures prices. We observe that, especially over the high interest

rate volatility periods of 2005−2007 and 2007−2009, these correlations are always negative.

This is consistent with studies such as Akram (2009), Arora and Tanner (2013) and Frankel

(2014), which provide empirical evidence for a negative relationship between oil prices and

interest rates. Akram (2009) conducts an empirical analysis based on structural VAR models

estimated on quarterly data over the period 1990–2007. One of his results suggests that there

is a negative relationship between the real oil prices and real interest rates. Furthermore,

Arora and Tanner (2013) suggest that oil prices consistently fall with unexpected rises in

short-term real interest rates through the whole sample period from 1975 to 2012. They

also found that oil prices have become more responsive to long-term real interest rates over

time. Frankel (2014) presents and estimates a “carry trade” model of crude oil prices and

other storable commodities. Their empirical results support the hypothesis that low interest

rates contribute to the upward pressure on real commodity prices via a high demand for

inventories. Even though our empirical analysis does not refer to the correlations between

the actual financial observables as the above econometric studies do, it reveals a negative

correlation between innovations of the crude oil futures prices and innovations in the interest

rate process. This implies that crude oil futures prices and crude oil spot prices have a

similar response to changes in the interest rates.

4.2. Pricing performance on long-dated crude oil derivatives

The in-sample and out-of-sample pricing performance of stochastic interest rate models on

long-dated crude oil derivatives is discussed next, by comparing to models with deterministic

interest rate specifications.

4.2.1. Model Fit

Comparing Table 3 and Table 4, we note that overall the three-dimensional models out-

perform the two-dimensional models, by consistently providing better log-likelihood (log
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L) and Akaike’s information criterion (AIC) values over all three sample periods. More

specifically, the three-dimensional models provide a better fit to futures prices (compared

to the two-dimensional models) as they produce lower RMSE over all three sample periods.

However, when fitting to the implied volatility, the improvement in the RMSE between the

two-factor models and the three-factor models is marginal, in the pre-GFC Period 1 and the

post-GFC Period 3. For the period 2005 − 2007, the two-dimensional model seems to fit

slightly better the very long maturities of the 4-year and 5-year implied volatility. As it has

been also shown in Schwartz and Smith (2000) and Cortazar et al. (2016a), increasing the

dimensionality of multi-dimensional models does not always improve pricing on long-dated

commodity contracts. Yet, the fit to implied volatilities over Period 2 (covering the GFC

period, where the crude oil market experienced extreme variations) is improving consider-

ably between two-dimensional and three-dimensional models i.e., by 104 basis points (from

3.9361% to 2.8921%) for 4-year contracts and by 115 basis points (from 3.8580% to 2.7094%)

for 5-year contracts. Thus, when markets experience significant volatility, three-dimensional

futures price models tend to provide a better fit to implied volatility of long-dated contracts,

while under typical market conditions, two-dimensional futures price models may suffice.

Furthermore, we compare the model fit of the models ignoring correlation between the

futures price process and interest rate process, thus assuming ρxri = 0,23 see Table 3 and

Table 4, to the models that take the correlation coefficients into account, as presented in

Table 6 and Table 7, respectively. The models which allow for correlation provide both better

log L and AIC, underscoring the importance of the correlations to improving model fit. In

Period 3, the inclusion of the correlation ρxri marginally improves the fit of both futures prices

and implied volatility. This is mainly because during that period interest rates and their

volatility were very low and therefore the interest rate process has very little impact on the

option prices. However, we observe a substantial improvement in the RMSE of the implied

volatility in Period 2 (GFC period), when incorporating the correlation ρxri . For instance, in

the three-dimensional model, the RMSE of the implied volatility of options with five years

to maturity improves by 52 basis points (from 2.7094% to 2.1850%) for Period 2 and by

23Recall that according to the sensitivity analysis in Section 4.1.3, we also assume that the correlation
coefficient ρrσi = 0.
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26 basis points for Period 1. We also observe a moderate improvement over the pre-GFC

period (2005−2007) to the fit of implied volatilities of all maturities and both models. Thus,

in periods of high uncertainty, including more factors and taking correlations into account

improve the fit to long-dated crude oil derivatives. Over periods of typical market conditions,

adding more factors does not bring improvement, but including correlations does.

4.2.2. Deterministic vs stochastic interest rates

Next, we examine the impact of including stochastic interest rates when pricing long-

dated crude oil derivatives. It is well documented that stochastic volatility alone improves

pricing performance on long-dated equity derivatives, see Bakshi et al. (2000), as well as

long-dated commodity derivatives, see Cortazar et al. (2016a). Yet, stochastic interest rates

are important when considering long-dated commodity commitments, see Hilliard and Reis

(1998) and Grzelak et al. (2012). Thus, we compare the pricing performance of the proposed

three-factor futures price model that incorporates both stochastic volatility and stochas-

tic interest rates with corresponding models that assume deterministic interest rates (i.e.

discounted by the corresponding Treasury yields).

We also use the model parameters estimated in the previous section to assess out-of-

sample performance by re-running the scenarios with extended data. The data extends

from 1st August 2007 to 31st December 2007 for the first period, from 1st July 2009 to 31st

December 2009 for the second period and from 1st January 2013 to 30th June 2013 for the

third period. Figure 6 displays the average of the RMSE across all maturities between the

volatility implied by the market option prices on that day and the implied volatility from

the estimated model (as described in Section 3.1.2) for the three sample periods used in our

analysis. Figure 7 and Figure 8 display the average of the daily RMSE between the implied

volatility from the estimated models and the observed implied volatility for maturities of

2, 3 and 4, 5 years, respectively. Since the liquidity of the crude oil long-dated contracts

is concentrated in the December contracts, we assess the model fit to December contracts

which are in the second, third, fourth and fifth year to maturity. The results of both the

in-sample and out-of-sample analysis are summarised in Table 8.

We observe that models that incorporate stochastic interest rates typically improve pric-
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ing performance, yet the improvement becomes more evident as the maturity of the option

contracts increases. For maturities of up to two years, the improvement is minimal or not

discernible for both the in-sample and the out-of-sample analysis. Indeed, Figure 7 and

Figure 8 display occasions, where the deterministic interest rate specifications lead to lower

(in-sample) RMSE over part of the sample compared to the stochastic interest rate speci-

fications.24 Yet, stochastic interest rate specifications have a clear advantage over periods

where markets experience extreme variation, see the middle panels of Figure 7 and Figure 8.

Table 8 also reveals that the in-sample improvement on RMSE of implied volatilities reaches

100 basis points, on average, for maturities up to 5 years in the GFC period, and 47 basis

points in the pre-GFC period. In contrast, in Period 3, which is characterised by extremely

low interest rate volatilities, stochastic interest rate models do not provide any improvement

in the in-sample pricing performance but improve out-of-sample pricing performance, espe-

cially for long-dated contracts. Most specifically, the out-of-sample improvement on RMSE

of implied volatilities reaches 80 basis points, on average, for maturities up to 5 years in the

pre-GFC period and 35 in the post-GFC period (Period 3).

Thus, stochastic interest rates become relevant and important to pricing long-dated con-

tracts, when the interest rate volatility is high. During the period January 2011–December

2012, where the interest rate volatility was low, marginal improvement in pricing perfor-

mance is observed for all maturities. Thus, when interest rate are not volatile, stochastic

interest rates will not improve in-sample pricing performance, but they do contribute to

improving out-of-sample pricing performance to some extent.

4.2.3. Robustness of the results

To assess the robustness of the estimation and of the results, several measures have been

considered. The model performance is assessed through log-likelihood and the Akaike crite-

rion, and both lead to the same conclusions. Also, all estimates are statistically significant,

24By construction, the stochastic interest rate specification will always lead to a better fit in–sample when
the entire sample is considered, but since the models are estimated using the full sample, this does not
necessarily preclude better RMSE for the simpler model on particular sub-samples. The key test, however,
remains the out–of–sample performance.

33



as is evident from Table 3 and Table 4.

Secondly, the three-step estimation approach has been employed to reduce the dimension-

ality of the estimation problems and improve the stability of the parameter estimates.25 The

stochastic interest rate process has been estimated separately to the commodity derivatives

price model, as the former involves fitting to interest rate data only. The estimated models

retain the market observed features at the corresponding sample periods, such as high mean

interest rate in the pre-GFC period, low interest rate volatility in the post-GFC period and

high interest rate volatility during the GFC. In addition, the correlation coefficient that links

these two markets has been estimated in a third estimation step. This lowers the computa-

tion cost and allows us to concentrate on the impact of the correlation. The impact of the

correlation coefficient on the proposed models has been subjected to a sensitivity analysis,

see Section 4.1.3. Table 3 and Table 6, as well as, Table 4 and Table 7 present the estima-

tion results of a restricted model of zero correlation and a model with non-zero correlation,

respectively. They reveal the manner in which a model with non-zero correlation coefficient

can provide a better fit to market data. There is also consistency of the estimated model

coefficients with the descriptive statistics, i.e. the empirically observed negative correlation

between innovations in the interest rates and futures prices, a result that holds for all three

sample periods.

Thirdly, the optimisation procedure involved in the estimation was repeated with numer-

ous different plausible initial parameter guesses to reduce the risk of not reaching the global

optimum, in a manner similar to Trolle and Schwartz (2009) and Chiarella et al. (2013).

Fourthly, the results are economically significant. Taking into consideration that the cur-

rent bid-ask spreads for 0.5-year, 1.5-year and 2.5-year options, expressed in terms of implied

volatility differences, are around 1.06%, 1.41% and 2.67%26 respectively, the improvement

25Conceivably, further gains could be achieved by combining steps into a larger, simultaneous estimation.
However, this is at the risk of introducing instability, for marginal potential gain, so we did not pursue this
avenue of inquiry further.

26These numbers represent the average bid-ask spreads (expressed in terms of implied volatilities differ-
ences) of the corresponding maturities of Dec-2016, Dec-2017 and Dec-2018 option contracts observed in
June 2016. For example, for the implied volatility of the Dec-2017 contracts, we use the Dec-2017 futures
prices, 1.5-year Treasury yields and a minimisation routine to match the implied volatility to the Dec-2017
futures option prices.
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in the maximum absolute differences between the volatility implied by the market crude oil

option prices and the model implied volatility (of the deterministic interest rate model and

the stochastic interest rate model) observed in the in-sample period and the out-of-sample

period, are of similar magnitude as the implied volatility differences of the bid-ask spread

prices, especially in periods of high interest rate volatility such as the pre-GFC and GFC pe-

riods, see Table 9.27 Furthermore, over the GFC, the stochastic interest rate model provides

lower absolute model/market differences compared to the deterministic interest rate model,

in particular out of sample and for longer maturities. These observations underscore the

importance of stochastic interest rate models for pricing long-dated commodity derivatives.

In particular, given that when hedging long-dated commodity derivative contracts this ef-

fect would accumulate over the repeated re-balancing of the dynamic hedging strategy, one

would expect the inclusion of stochastic interest rates in the model to improve its hedging

performance.

The use of the Kalman filter estimation method (standard or extended) builds on exten-

sive literature on this topic, in which it has been widely and successfully applied, including

in the context of models similar to the one at hand.28 It is recognised that the method

involves simplifying assumptions (such as linearity of the observation equation, Gaussian

state space, etc.), which may lead to a suboptimal estimation of the model parameters.

However, this does not detract from our results, most importantly the fact that the more

advanced stochastic volatility–stochastic interest rate model outperforms the corresponding

27This compares favourably to other studies. For example, Chiang et al. (2015) report RMSE which is
about ten times higher than the current bid–ask spread.

28The Kalman filter is an estimation method which has been extensively used in the literature of estimat-
ing model parameters from market data, including commodity futures and options. The quasi-maximum
likelihood is used for the estimation (calibration) of the parameter values. This assumes a Gaussian dis-
tribution to approximate the true distribution of the pricing errors, see Harvey (1989). For applications
of the Kalman filter to commodity markets, where estimation of model parameters by fitting to futures
prices typically implies a linear measurement equation, see Schwartz (1997), Schwartz and Smith (2000),
Dempster et al. (2008), Dempster, Medova, and Tang (2012), and Casassus, Liu, and Tang (2013). Model
parameter estimation by fitting to futures and options data typically requires an extended version of the
classical Kalman filter, where the measurement equation for fitting to option prices is linearized, for instance
see Trolle and Schwartz (2009), Chiarella et al. (2013) and Cortazar, Gutierrez, and Ortega (2016b). Duffee
and Stanton (2012a) have demonstrated that for models with dynamic affine term structures (see Duffie and
Kan (1996)), the Kalman filter (and the extended Kalman filter) outperforms other standard estimation
approaches such as Maximum Likelihood and Efficient Method of Moments.
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deterministic interest rate model, in particular out of sample, during periods of high interest

rate volatility, and for longer maturities. This is despite any shortcomings of the estimation

method, and a method which overcomes these shortcomings might strengthen the results.

However, given that the Kalman filter remains the method of choice in the literature, we

leave this point to further research.

5. Conclusion

We make both theoretical and empirical contributions to pricing long-dated commodity

derivatives. Our theoretical contributions lie in developing futures price models for commod-

ity derivatives that allow for both stochastic volatility and stochastic interest rates, as well as

a correlation structure between the underlying variables. The proposed models have several

advantages. Firstly, they are multi-dimensional futures price models that model directly

the entire term structure of the futures prices and avoid the need to model the unobserved

convenience yield directly. Secondly, the models are consistent with empirically observed

market features such as unspanned volatility and a variety of volatility structures. Thirdly,

the models are tractable, as they provide affine structures for futures prices and quasi an-

alytical solutions for commodity options. Thus the models can be used for estimation and

calibration purposes. Fourthly, the models are well suited for pricing and hedging applica-

tions involving long-dated commodity derivatives, as they allow for both stochastic volatility

and stochastic interest rates and can fit the term structure of derivative prices.

Our empirical contributions include a study on the ability of stochastic volatility–stochastic

interest models to improve pricing of long-dated crude oil derivatives. We estimate the model

parameters from historical time series of both crude oil futures prices and option prices, over

three periods characterised by different interest rate market conditions (in terms of interest

rate volatility). To this end, we further conduct a sensitivity analysis on the contribution of

the model parameters such as the correlations and the interest rate volatility to commodity

derivative prices. We also evaluate the improvement of pricing performance on long-dated

crude oil derivatives achieved, by including stochastic interest rate dynamics (beyond stochas-

tic volatility) in the model. Additionally, we investigate the number of dimensions required
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for the models to provide satisfactory levels of pricing performance. The empirical analy-

sis leads to the following conclusions. First, stochastic volatility futures price models that

incorporate stochastic interest rates typically improve pricing performance on long-dated

crude oil derivatives (compared to models with deterministic interest rate specifications), an

improvement that is especially evident over periods of high interest rate volatility and for

longer-maturity contracts. Second, the pricing performance improvement is more prominent

and consistent in the out-of-sample fitting. Third, in periods of high uncertainty, including

more factors and taking correlations into account improve the fit to long-dated crude oil

derivatives. Over periods of typical market conditions, adding more factors does not bring

improvement, but it is important to consider the correlations. Fourth, there is empirical

evidence for a negative correlation between the futures price process and the interest rate

process, especially over periods of high interest rate volatility. Fifth, the correlation between

the futures price volatility process and the interest rate process has negligible impact on the

pricing of long-dated crude oil contracts.

These empirical results may well provide useful insights to practitioners. Increasing the

dimension of multi-dimensional futures price commodity models may improve the model fit

to historical market data, but it comes with additional computational effort. Our results

show that for pricing long-dated crude oil commodities, two-dimensional stochastic volatility-

stochastic interest rate models are adequate under typical market conditions but they do not

suffice under market turmoil. The key point, however, is that in periods of high interest rate

volatility (at levels well in line with recent historical precedent), modelling stochastic interest

rates and including correlations do matter for pricing longer maturity crude oil derivatives.

Otherwise, using deterministic interest rates will be sufficient, but it is unwarranted to remain

complacent in assuming that interest rate volatilities will remain too low to matter.
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Appendix A. Methods to reduce computational time

One of the biggest challenges is the formidable amount of computational time required

for the estimation of parameters. Although this model admits quasi-analytic solutions for

option pricing, complex-valued numerical ODE approximation together with complex-valued

numerical integration are needed for each option price. Furthermore, for each day of the crude

oil data, a numerical Jacobian needs to be calculated for the linearisation of option prices

in the Kalman filter update. To complete one day of the data, which typically involves the

calculation of around 70 options and its Jacobian for the Kalman filter update, may take

10 to 15 minutes on a desktop running a second generation quad-core i7 processor. So that

is about 5, 000 to 7, 500 minutes for the program to process two years (about 500 trading

days) of data in order to calculate one log-likelihood. Matlab’s “fminsearch” routine may

take several hundreds of iterations for it to converge to a local maximum.

The key observation to massively reduce the computational time is that, given a set

of parameters of our model, the characteristic function φ(t; a + ibu, To, T ) is a function of

a, b, u, To, T . To and T are set to be the same because all the crude oil options traded in

CME expire only a few days before the underlying futures contracts. So for each iteration we

precalculate six tables for the characteristic functions. These are φ(t; 0, T, T ), φ(t; 1, T, T ),

φ(t; 1− iu, T, T ), φ(t;−iu, T, T ), φ(t; 1 + iu, T, T ) and φ(t; iu, T, T ) where values of the vari-

able u are determined by the 19 integration points on the interval from 0 to 33 calculated

using Gauss-Legendre quadrature, and the values of the maturity T are 14, 15, 16, . . . , 1850,

because the shortest maturity is only 14 days and the longest maturity is five years. Ob-

serving the fact that each calculation of the characteristic function is independent of the

others, we also take advantage of the parallel toolbox available in Matlab by using Matlab’s

“parfor” loop. Applying all of the above reduces the time required to process one iteration

(2 years of data) from 5, 000 to 7, 500 minutes to around 2 minutes. The total time required

for the parameters to converge to an optimum can still take a few days.
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Period 1 Period 2 Period 3
Aug 2005–Jul 2007 Jul 2007–Jun 2009 Jan 2011–Dec 2012
i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

ξ0i 0.0564 1.2693 0.2878 0.6817 0.9683 0.1988
(0.0002) (0.0589) (0.0012) (0.0271) (0.0357) (0.0026)

ξi 0.1034 0.0297 -0.0340 0.0067 0.0015 0.0046
(0.0023) (0.0000) (0.0072) (0.0001) (0.0000) (0.0000)

ηi 0.0872 0.1892 0.3769 0.0017 0.0049 0.2704
(0.0018) (0.0016) (0.0084) (0.0001) (0.0002) (0.0053)

κi 0.0859 0.0193 -0.0095 0.1164 0.0053 0.1222
(0.0005) (0.0004) (0.0003) (0.0025) (0.0001) (0.0028)

γi 0.0181 0.0488 0.02079 0.1956 0.0449 0.2114
(0.0002) (0.0003) (0.0119) (0.0020) (0.0002) (0.0028)

ρxσi -0.4126 -0.4416 0.0432 0.0074 -0.4376 0.0127
(0.0020) (0.0006) (0.0033) (0.0002) (0.0062) (0.0002)

$i 0.1145 0.4785 -0.0338 0.6270 -0.0130 0.2238
(0.0023) (0.0153) (0.0020) (0.0858) (0.0004) (0.0107)

$σ
i -0.0090 -0.0917 0.7518 0.4740 -2.1178 0.7654

(0.0001) (0.0015) (0.0119) (0.0057) (0.0067) (0.0325)
f0 7.305 26.723 3.675
σf 2.00% 0.95% 2.00%
σO 6.87% 1.96% 6.95%

log L -60139 -78143 -62160
AIC 120316 156324 124358

RMSE Futures 2.8635% 1.8292% 1.6565%
RMSE Imp.Vol. 4mth 1.2075% 6.9984% 1.7917%
RMSE Imp.Vol. 12mth 1.4787% 4.4972% 1.7302%

RMSE Imp.Vol. 2yr 1.9997% 4.1097% 1.4997%
RMSE Imp.Vol. 3yr 2.3210% 3.3924% 0.9885%
RMSE Imp.Vol. 4yr 2.4634% 3.9361% 1.0235%
RMSE Imp.Vol. 5yr 2.6908% 3.8580% 1.3064%

Table 3: Parameter estimates of the two-dimensional model for crude oil futures and options,
when ρxri = ρrσi = 0. The table displays the maximum-likelihood estimates (with the standard errors
in parenthesis) of the two-dimensional model specifications for the three two-year periods, namely, August
2005 – July 2007, July 2007–June 2009 and January 2011 – December 2012. Here f0 is the time-homogenous
futures price at time 0, namely F (0, t) = f0,∀t. The quantities σf and σo are the standard deviations of the
log futures prices measurements errors and the option price measurement errors, respectively. We normalise
the long run mean of the volatility process, σi, to one to achieve identification.
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Period 1 Period 2 Period 3
Aug 2005–Jul 2007 Jul 2007–Jun 2009 Jan 2011–Dec 2012

i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3
ξ0i 0.0295 0.3164 2.0226 0.2759 0.5926 1.0962 0.6734 0.3183 0.0143

(0.0015) (0.0005) (0.0405) (0.0035) (0.0035) (0.0049) (0.0062) (0.0082) (0.0004)
ξi 0.2710 0.0334 0.0068 0.4128 0.0047 0.01078 0.0037 0.0104 0.0519

(0.0090) (0.0004) (0.0001) (0.0069) (0.0002) (0.0008) (0.0000) (0.0004) (0.0016)
ηi 0.1748 0.3526 0.0209 0.2361 0.4044 0.0152 0.0053 0.2972 0.0597

(0.0004) (0.0200) (0.0003) (0.0025) (0.0035) (0.0011) (0.0000) (0.0006) (0.0002)
κi 0.0287 0.0670 -0.0319 0.0068 0.0263 -0.0150 0.0105 0.1606 0.0025

(0.0005) (0.0001) (0.0010) (0.0002) (0.0002) (0.0002) (0.0002) (0.0052) (0.0000)
γi -0.0311 1.0054 0.0064 -0.0487 0.6015 0.00244 -0.0516 -0.2799 0.0750

(0.0009) (0.0254) (0.0002) (0.0009) (0.0180) (0.0003) (0.0005) (0.0005) (0.0038)
ρxσi -0.0894 -0.0962 -0.1767 0.0946 -0.2077 0.1643 0.4008 0.0015 0.0159

(0.0024) (0.0040) (0.0064) (0.0031) (0.0009) (0.0113) (0.0005) (0.0000) (0.0003)
$i -0.3211 1.6172 -16.4285 0.9070 10.3959 -9.0959 0.2504 0.0037 -0.0586

(0.0106) (0.0268) (0.3864) (0.0076) (0.0268) (0.0172) (0.0025) (0.0000) (0.0028)
$σ
i 1.1087 0.1652 -1.8788 2.3040 -0.2619 0.0675 -0.2761 0.8139 -1.0503

(0.0030) (0.0001) (0.0349) (0.0541) (0.0035) (0.0028) (0.0043) (0.0091) (0.0177)
f0 9.0851 23.5172 5.5110
σF 1.27% 0.45% 1.66%
σO 3.15% 0.65% 11.34%

log L -38670 -65291 -31096
AIC 77394 130636 62246

RMSE Futures 1.2995% 1.1421% 1.2535%
RMSE Imp.Vol. 4mth 1.1827% 3.6883% 1.7927%
RMSE Imp.Vol. 12mth 1.6173% 2.8619% 1.7064%

RMSE Imp.Vol. 2yr 1.9285% 3.0689% 1.5372%
RMSE Imp.Vol. 3yr 2.1934% 2.9486% 1.0613%
RMSE Imp.Vol. 4yr 2.5390% 2.8921% 0.8927%
RMSE Imp.Vol. 5yr 2.9145% 2.7094% 0.9096%

Table 4: Parameter estimates of the three-dimensional model for crude oil futures and options,
when ρxri = ρrσi = 0. The table displays the maximum-likelihood estimates (with the standard errors in
parenthesis) of the three-dimensional model specifications for the three two-year periods, namely, August
2005 – July 2007, July 2007–June 2009 and January 2011 – December 2012. Here f0 is the time-homogenous
futures price at time 0, namely F (0, t) = f0,∀t. The quantities σf and σo are the standard deviations of the
log futures prices measurements errors and the option price measurement errors, respectively. We normalise
the long run mean of the volatility process, σi, to one to achieve identification.
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Period Aug 2005–Jul 2007
ρrσ

-0.50 -0.30 -0.15 0 0.15 0.30 0.50

ρ
x
r

-0.50 10.967 10.922 10.889 10.857 10.825 10.794 10.753
-0.30 10.823 10.78 10.748 10.717 10.686 10.656 10.617
-0.15 10.717 10.675 10.644 10.613 10.583 10.554 10.516

0 10.611 10.57 10.54 10.51 10.481 10.453 10.416
0.15 10.506 10.466 10.437 10.408 10.38 10.353 10.317
0.30 10.403 10.364 10.335 10.307 10.28 10.253 10.218
0.50 10.266 10.228 10.201 10.174 10.148 10.122 10.089

Period Jan 2011–Dec 2012
ρrσ

-0.50 -0.30 -0.15 0 0.15 0.30 0.50

ρ
x
r

-0.50 28.605 28.6 28.595 28.591 28.587 28.583 28.577
-0.30 28.449 28.443 28.439 28.435 28.43 28.426 28.421
-0.15 28.332 28.326 28.322 28.318 28.314 28.309 28.304

0 28.215 28.209 28.205 28.201 28.197 28.193 28.187
0.15 28.098 28.093 28.089 28.085 28.081 28.077 28.071
0.30 27.982 27.977 27.973 27.969 27.965 27.961 27.955
0.50 27.828 27.823 27.819 27.815 27.811 27.807 27.802

Table 5: Call Option prices for varying correlation coefficients. Futures=100, strike=100,
maturity=4000 days. We denote for example ρxr = −0.50 to mean ρxr1 = ρxr2 = ρxr3 = −0.50 and
similarly for ρrσ.

Period 1 Period 2 Period 3
Aug 2005–Jul 2007 Jul 2007–Jun2009 Jan 2011–Dec 2012
i = 1 i = 2 i = 1 i = 2 i = 1 i = 2

ρxri -0.6166 -0.3014 -0.0102 -0.6640 0.5420 -0.6409
(0.0133) (0.0045) (0.0007) (0.0597) (0.0061) (0.0099)

log L -59977 -73689 -61299
AIC 119996 147420 122640

RMSE Futures 2.8408% 1.7729% 1.6563%
RMSE Imp.Vol. 4mth 1.2174% 6.8423% 1.7916%
RMSE Imp.Vol. 12mth 1.4736% 4.2386% 1.7233%

RMSE Imp.Vol. 2yr 1.9605% 4.1089% 1.4987%
RMSE Imp.Vol. 3yr 2.2144% 3.3136% 0.9987%
RMSE Imp.Vol. 4yr 2.2947% 3.6888% 1.0082%
RMSE Imp.Vol. 5yr 2.4606% 3.7230% 1.2727%

Table 6: Parameter estimates of ρxri for the two-dimensional model for crude oil futures and
options. The table displays the maximum-likelihood estimates of ρxri (with the standard errors in paren-
thesis) of the two-dimensional model specifications for the three two-year periods, namely, August 2005 –
July 2007, July 2007–June 2009 and January 2011 – December 2012.
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Period 1 Period 2 Period 3
Aug 2005–Jul 2007 Jul 2007–Jun2009 Jan 2011–Dec 2012

i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3
ρxri -0.6222 -0.3822 -0.5444 -0.0245 -0.1426 -0.0951 -0.3167 0.59167 -0.4583

(0.0013) (0.0110) (0.0256) (0.0003) (0.0062) (0.0009) (0.0052) (0.0005) (0.0002)
log L -35893 -63557 -31372
AIC 71846 127174 62804

RMSE Futures 1.3067% 1.1125% 1.2452%
RMSE Imp.Vol. 4mth 1.1792% 3.6571% 1.7925%
RMSE Imp.Vol. 12mth 1.6091% 2.9659% 1.7078%

RMSE Imp.Vol. 2yr 1.8815% 3.0873% 1.5345%
RMSE Imp.Vol. 3yr 2.0380% 2.5734% 1.0497%
RMSE Imp.Vol. 4yr 2.3487% 2.3525% 0.8897%
RMSE Imp.Vol. 5yr 2.6539% 2.1850% 0.9139%

Table 7: Parameter estimates of ρxri for the three-dimensional model for crude oil futures
and options. The table displays the maximum-likelihood estimates of ρxri (with the standard errors in
parenthesis) of the three-dimensional model specifications for the three two-year periods, namely, August
2005 – July 2007, July 2007–June 2009 and January 2011 – December 2012.

Period 1: Aug 05–Jul 07 Period 2: Jul 07–Jun 09 Period 3: Jan 11–Dec 12
IS OS IS OS IS OS

Sto Det Sto Det Sto Det Sto Det Sto Det Sto Det
4mth 1.18% 1.18% 1.30% 1.34% 3.24% 3.27% 4.98% 5.21% 1.75% 1.75% 1.88% 1.88%
12mth 1.61% 1.63% 2.43% 2.59% 3.05% 3.22% 2.59% 2.70% 1.72% 1.72% 1.64% 1.67%
2year 1.90% 1.98% 2.38% 2.58% 3.24% 3.49% 2.42% 2.50% 1.53% 1.51% 1.59% 1.65%
3year 2.39% 2.68% 2.50% 3.15% 2.87% 3.51% 1.21% 1.25% 1.27% 1.18% 1.43% 1.60%
4year 2.75% 3.13% 2.87% 3.77% 2.65% 3.52% 0.86% 1.03% 1.02% 0.89% 1.54% 1.81%
5year 3.11% 3.58% 3.23% 4.06% 2.42% 3.42% 1.18% 1.42% 1.04% 0.89% 1.91% 2.26%

Table 8: RMSE of implied volatility. The table displays the RMSE between the observed implied
volatility and the implied volatility from the estimated model for different maturities. In-sample (IS) and
out-of-sample (OS) analysis is included.

Period 1: Aug 05–Jul 07 Period 2: Jul 07–Jun 09 Period 3: Jan 11–Dec 12
IS OS IS OS IS OS

Sto Det Sto Det Sto Det Sto Det Sto Det Sto Det
1year 4.24% 4.35% 4.98% 5.21% 8.72% 9.53% 4.32% 4.56% 5.49% 5.55% 4.81% 4.80%
2year 4.65% 5.04% 4.98% 5.20% 9.18% 9.82% 4.15% 4.40% 6.55% 6.45% 4.67% 4.81%
3year 4.98% 4.99% 4.19% 4.75% 7.24% 7.50% 2.21% 2.37% 4.78% 4.58% 3.64% 3.92%
4year 5.63% 5.96% 4.11% 5.07% 8.16% 9.06% 1.70% 2.14% 3.49% 2.95% 3.55% 3.89%
5year 6.81% 6.79% 4.93% 6.48% 8.85% 9.75% 2.29% 2.95% 4.07% 3.14% 4.67% 5.08%

Table 9: Maximum absolute difference in implied volatilities. The table displays the maximum
absolute difference between the volatility implied by the market crude oil option prices and the model implied
volatility (from the deterministic interest rates model and the stochastic interest rates model) observed in
the in-sample (IS) period and the out-of-sample (OS) period, over a range of maturities.
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Figure 6: RMSE of implied volatility for all maturities. The graph displays the average of the daily
RMSE of the implied volatility across all maturities. The top panel displays the fitting between August
2005 – July 2007 (and August 2007–December 2007 for the out-of-sample), the middle panel displays the
fitting between July 2007 – June 2009 (and July 2009–December 2009 for the out-of-sample) and the bottom
panel displays the fitting between January 2011 – December 2012 (and January 2013–June 2013 for the
out-of-sample). The RMSE is defined to be between the volatility implied by observed market prices of the
crude oil options and the implied volatility from the estimated model.
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Figure 7: RMSE of implied volatility with 2-year and 3-year maturities. The graphs show the
daily RMSE of the implied volatility (the RMSE between the observed implied volatility and the implied
volatility from the estimated model). The top panel displays the fitting between August 2005 – July 2007
(and August 2007–December 2007 for the out-of-sample), the middle panel displays the fitting between July
2007 – June 2009 (and July 2009–December 2009 for the out-of-sample) and the bottom panel displays the
fitting between January 2011 – December 2012 (and January 2013–June 2013 for the out-of-sample). The
graphs on the left show the RMSE of options fitted to December contracts which are in the second year,
while the graphs on the right show the RMSE of options fitted to December contracts which are in the third
year from the beginning of the sample period.
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Figure 8: RMSE of implied volatility with 4-year and 5-year maturities. The graphs show the
daily RMSE of the implied volatility (the RMSE between the observed implied volatility and the implied
volatility from the estimated model). The top panel displays the fitting between August 2005 – July 2007
(and August 2007–December 2007 for the out-of-sample), the middle panel displays the fitting between July
2007 – June 2009 (and July 2009–December 2009 for the out-of-sample) and the bottom panel displays the
fitting between January 2011 – December 2012 (and January 2013–June 2013 for the out-of-sample). The
graphs on the left show the RMSE of options fitted to December contracts which are in the fourth year,
while the graphs on the right show the RMSE of options fitted to December contracts which are in the fifth
year from the beginning of the sample period.
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