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4 

Abstract— This paper presents a classification of driver 
fatigue with electroencephalography (EEG) channels selection 
analysis. The system employs independent component analysis 
(ICA) with scalp map back projection to select the dominant of 
EEG channels. After channel selection, the features of the 
selected EEG channels were extracted based on power spectral 
density (PSD), and then classified using a Bayesian neural 
network. The results of the ICA decomposition with the back-
projected scalp map and a threshold showed that the EEG 
channels can be reduced from 32 channels into 16 dominants 
channels involved in fatigue assessment as chosen channels, 
which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, 
CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert 
classification of the selected 16 channels yielded a sensitivity of 
76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, 
the classification results of the selected 16 channels are 
comparable to those using the original 32 channels. So, the 
selected 16 channels is preferable for ergonomics improvement 
of EEG-based fatigue classification system. 

 

I. INTRODUCTION 

Driver fatigue is a common problem in transportation 
which reduces the ability to perform necessary driving skills 
such as control of the steering, tracking vehicle speed, visual 
awareness and searching, and sufficient selective attention 
especially during a monotonous condition of driving for a 
long period of time. This not only poses a significant risk of 
injury and fatality to the drivers but also to other road users 
such as passengers, motorbike users, other drivers and 
pedestrians. As a result, countermeasures for driver fatigue 
are needed that are reliable and easy to use in the context of 
driving [1, 2, 3]. 

Countermeasure methods designed to address driver 
fatigue include those employing: video measurement, 
psychological assessment and physiological measurement 
[4]. Video measurement based on facial expression is an 
indirect measurement of driver fatigue detection while 
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psychological assessment involves frequent self-report of 
fatigue status using the psychometric questionnaires and this 
is usually completed off-line. Moreover, a self-report fatigue 
assessment may result in biased feedback, given it is based 
on subjective assessment, especially in the context of liability 
regarding insurance and injury. Physiological measurement 
of driver fatigue includes using electroencephalography 
(EEG) to detect brain wave activity [3, 4], 
electrocardiography (ECG) to detect the heart rate variability 
[5], electro-oculography (EOG) and other eye tracking 
system to detect the eye movement [6]. This paper explores 
countermeasure driver fatigue detection using EEG as it 
directly measures neurophysiological activity when a person 
is driving, and is believed to provide a direct assessment of 
fatigue [4]. 

To improve the ergonomics of EEG associated with 
fatigue, fewer EEG channels that provide sensitive detection 
is clearly preferable, as this will result in greater ease of use 
and convenience. Independent component analysis (ICA) is a 
popular technique used for of blind source separation which 
estimates the source component from the EEG data [7, 8, 9]. 
Recently, the combination of ICA and feature extraction 
method has been used for 32 EEG channels driver fatigue 
classification [3]. To extend this study, current paper explores 
further use of ICA for selecting the dominant EEG channels 
for an effective driver fatigue countermeasure system. Here, 
ICA has the capability to separate EEG signals into 
independent components related to fatigue activity, and 
allowing back projection into EEG scalp maps. By further 
analysing the scalp map projection, the number of dominant 
EEG channels related to fatigue status can be selected. 
Therefore, this paper reports the use ICA with scalp map 
projection to reduce and select dominant EEG channels. A 
feature extraction algorithm based power spectral density 
(PSD) and classification algorithm based on Bayesian neural 
networks are applied to classify fatigue vs. alert states. 

II. METHODOLOGY 

A. Block Diagram of Drive Fatigue Analysis 

The method used in this study is shown in Fig.1. The 
process started with the EEG signal data collection in an 
experimental condition of simulated driving designed to 
cause driver fatigue [3]. The channel selection method 
involved ICA analysis with a projected scalp map and 
maximum-minimum-threshold criteria to determine the 
dominant channels. After selecting the EEG channels, EEG 
features were extracted using PSD and then classified by 
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Bayesian neural network. 

 
Figure 1.  Block diagram of driver fatigue analysis in this study 

B. Data Collection of Drive Fatigue Experiment 

The EEG dataset was obtained from previous 
experimental studies [4]. Institutional Human Research 
Ethics Committee approval was obtained to conduct this 
study with 43 healthy participants aged between 18 and 55 
years. The study used a driving simulator called Divided 
Attention Steering Simulator (DASS, Stowood Scientific 
Instruments). Participants performed a monotonous 
simulated driving task for a maximum of 2 hours of 
simulated driving. During the simulation task, participants 
were required to maintain driving at the centre of the road.  
EEG, EOG, video recording of facial activity and subjective 
self-reported fatigue were taken. Also a reaction time 
response to a target on the computer screen was measured, 
the target appearing at random times during the simulated 
driving at any four corners of the screen.  

To verify the occurrence of fatigue the following 
strategies were used: (i) EOG analysis of eye blink rate and 
eye closure; (ii) reaction time of the divided attention task; 
(iii) subjective self-reported fatigue using scientifically 
validated tools such as the Chalder Fatigue Scale and the 
Stanford Sleepness Scale [4]. 

 
Figure 2.  EEG Experiment  with its location of  32 EEG Channels 

During the experiment, EEG  was assessed in 32 channels 
using the Active-Two EEG system (Biosemi) with the 
electrode positions as shown in fig.2 which are: FP1(1), 
AF3(2), F7(3), F3(4), FC1(5), FC5(6), T7(7), C3(8), 
CP1(9), CP5(10), P7(11), P3(12), PZ(13), PO3(14), O1(15), 
OZ(16), O2(17), PO4(18), P4(19), P8(20), CP6(21), 
CP2(22), C4(23), T8(24), FC6(25), FC2(26), F4(27), 
F8(28), AF4(29), FP2(30), FZ(31) and CZ(32) [4]. 

The data was divided into alert and fatigue data. The alert 
data was taken from the first five minutes of the EEG dataset 
at the beginning of the experiment. Fatigue data was taken 

from the last five minutes of the EEG dataset where fatigue 
was identified and verified. The alert and fatigue data were 
divided into segments of 20s and the first 20s segments with 
the least movement artifact were used for further analysis. 

C. Independent Component Analysis (ICA) with the Brain 
Map Back Projection and Min-Max-Threshold Criteria  

ICA performs a blind source separation (BSS) of the EEG 
data (x) based only on the criterion of the resulting source 
time courses which are maximally independent. In this study 
EEGLAB was used to perform ICA [7, 9]. In ICA, the 
recovered source signal u can be found by applying an 
unmixing matrix W(m × n) to the EEG data x, as follows: 

1u Wx x W u   (1)

where W denotes the unmixing matrix as the spatial filter for 
independence component (IC) estimation, W-1 (inverse of 
W), is the n × n mixing matrix with the columns has the 
relative weights of back-projected components to each of the 
scalp channels. The portion of the original EEG data x forms 
the i-th IC (xi) which is the product of the two vectors; the i-
th column of W and the i-th row of u, and the whole EEG 
data is the sum of the back-projected ICs of xi,, as follows: 

1
i i i ix W u x x    (2)

A visualization of scalp map back-projection of each 
component can be generated by mapping weights of W-1 to 
the corresponding EEG channels on the head model, as the 
back-projected components into the scalp. Next, the highest 
and the lowest values in the weights of each component 
were selected together with a min-max-threshold criteria to 
indicate significant features from particular channels and 
resulted in a channels selection with reduced channels. 

D. Feature Extraction and Classification 

Before feature extraction, data from the selected channels 
were segmented by applying a moving window of 2s. For 
the feature extraction, the power spectral density (PSD) was 
applied to 2s (512 points for 256 Hz of sampling rate) to 
each EEG segment [3, 10]. This converts the time domain of 
EEG data segment into frequency domain. EEG bands used 
for the features include delta (0.5Hz-3Hz), theta (3.5Hz-
7.5Hz), alpha (8Hz-13Hz) and beta (13.5Hz-30Hz). The 
total PSD of each EEG band was calculated using the 
numerical integration of trapezoidal rule, and this provided 4 
units of power values per channels, resulting in 4 × n-
channel units. 

The Bayesian neural network was used as a classification 
algorithm which was able to handle the overfitting issue for 
the non-linear classification of biomedical signals [11]. The 
probability distribution of the network parameters is 
considered in Bayesian learning to provide the best 
generalization of the network. The Bayesian neural network 



  

structure uses a three layered feed-forward structure and 
modeled by: 
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where f(.) is the transfer functions ( in this case hyperbolic 
tangent function), m is the input nodes number (i=1, 2, …, 
m), l is the hidden nodes number (j=1, 2, …, l), p is the 
number of output (k=1, 2, …, p), wji is the weight to the 
hidden unit yj from input unit xi, wkj denotes the weights to 
output (zk) from hidden unit (yj), bj and bk are the biases. 
According to Bayesian framework [12], the performances 
function is calculated as follows: 

 ( ) ( ) ( )D WF w E w E w    (4)

where   and   are hyper-parameters with the ratio /   

that controls the effective complexity of the network 
structure, ED(w) is the error function, and EW(w) is the sum 
square of weight function. By introducing hyper-parameters 
in the cost function, the weights of neural network can be 
prevented from being too large, which would result in poor 
generalization for new test cases. As a result, a validation set 
is not required in a neural network training procedure. The 
optimal network structure is the network that has the highest 
log evidence value. For the performance indicators of the 
classification, the sensitivity (true positive rate), specificity 
(true negative rate) and accuracy were reported. 

III. RESULTS 

ICA was applied using EEGLAB, based on an Infomax 
ICA algorithm [7]. The dataset for the ICA analysis was 
constructed in n×t×p dimension of data, where, n×t 
represents each EEG dataset (n-channels; in this study 32 
channels,  t represents 20 seconds duration of the EEG data) 
and  p represents number of participant (in this study p 
equals 43 participants. The ICA analysis returns 32 
weighted (overall ICA results for 43 participants) source 
components. From the result of the ICA, an inverse weight 
matrix W-1 was obtained which represents the spatial 
distribution of each source component on the original 32 
EEG channels. By mapping back these weights to 32 
channels on the scalp, an ICA scalp map back projection can 
be obtained as shown in Fig3. The weight value in each 
component has different peaks with values between -4.01 
and +5.27 units of amplitude and this is visualized in 
different colors in the scalp map (red and blue the highest 
value of amplitude but in opposite polarity). 

By finding the maximum and minimum values for each 
column of the inverse weight matrix W-1, a represented 
channel can be found. A threshold value was applied with a 
value of 70% of more than or less than the maximum inverse 
weight matrix value for the final channel selection, with the 
result shown in Table 1. The result shows that there were 14 

EEG channels that provided the maximum weight value 
above +3.75 including: P8(20), O1(15), T8(24), P4(19), 
P3(12), CP6(21), T7(7), CP5(10), F3(4), FC1(5), FC2(26), 
AF4(29), FC5(6), AF3(2) and 2 EEG channels that provided 
minimum value lower than +3.75 including F8(28) and 
FP2(30)). This provided a selection of 16 EEG channels as 
the chosen channels, from the lower to higher electrode 
number which includes: AF3, F3, FC1, FC5, T7, CP5, P3, 
O1, P4, P8, CP6, T8, FC2, F8, AF4 and FP2. 

 
Figure 3.   Scalp map of the dominant features for fatigue driver 

TABLE I.  THE SELECTED EEG CHANELS AFTER APPLYING THE MIN-
MAX AND THRESHOLD 

ICA_Component Channels Name (Number) Weight Value 

Value > 70% of the maximum inverse weight matrix W-1
 

11 P8(20) +4.25 

14 O1(15) +4.15 

17 T8(24) +4.46 

18 P4(19) +4.31 

19 P3(12) +4.35 

20 CP6(21) +4.44 

24 T7(7) +4.40 

25 CP5(10) +5.08 

26 F3(4) +5.27 

27 FC1(5) +4.44 

28 FC2(26) +4.99 

29 AF4(29) +4.92 

30 FC5(6) +4.70 

31 AF3(2) +4.14 

Value <70% of the minimum inverse weight matrix W-1

22 F8(28) -3.78 

23 FP2(30) -4.01 

 A classification between alert state and fatigue state 
was done based on the 16 EEG channels. For comparison, 
the result of the classification using the remaining of 
unchosen 16 EEG channels is also provided. In addition, the 
classification using the original 32 EEG channels is 
provided. Before feature extraction, data from the selected 
channels were segmented by applying a moving window of 



  

2s with overlapping 1.75s to the 20s segments of fatigue and 
alert data. This provided 73 overlapping segments from one 
participant. As a result, 3139 units for alert state and 3139 
units for fatigue state from the 43 participants were 
obtained. The PSD as a frequency domain algorithm was 
used for the feature extraction algorithm.  The total power of 
the 4 EEG bands (delta, theta, alpha and beta bands) was 
calculated, resulting 4 units of total PSD value from each 
EEG channels, that is, 64 units of total PSD from the 16 
dominant EEG channels.  

 

Figure 4.  Log evidence from the Bayesian neural network classifier 
training  for using the dominant 16 EEG channels 

For the training of the Bayesian neural network, the 
dataset was divided into 50% for the training set and the 
remaining 50% used for the test set. Table II, shows the 
classification result with the classification algorithm based 
on the Bayesian neural network. The plot of the log 
evidence against the optimum number of hidden nodes of 
the Bayesian neural network classifier is shown in Fig 4. 
The optimum number of hidden nodes was 8 to achieve the 
highest classification of the selected 16 EEG channels for 
classification fatigue vs. alert states using the dominant 16 
EEG channels. 

TABLE II.  THE RESULS OF CLASSIFICATION 

Channels used Sensitivity Specificity Accuracy

The dominant 16 EEG channels 76.8.% 74.3% 75.5% 

The least dominant 16 EEG channels 71.6% 61.2% 66.4% 

The original 32 EEG channels 77.2% 75.6% 76.4% 

The result of classification on the test sets shows that 
using the dominant 16 EEG channels resulted in a sensitivity 
of 76.8%, a specificity of 74.3% and an accuracy of 75.5%. 
For comparison, the result using the rest of un-selected 16 
EEG channel resulted in a lower sensitivity of 71.6%, 
specificity of 61.2% and accuracy of 66.4%. The 
classification using 32 EEG channels resulted in slightly 
higher values of sensitivity at 77.2%, specificity at 75.6% 
and accuracy at 76.4%.  

Given that the 32-channels provide minimal benefit, the 
dominant 16 EEG channels selected by ICA is preferable, 
given it involves 50% fewer channels with an overall 
accuracy of less than 1%. This suggest the selected 16 
channels based on the ICA with its scalp map back 
projection and the min-max-threshold of the inverse weight 
matrix approaches, results in an acceptable sensitivity, 
specificity and accuracy. 

IV. CONCLUSION 

In this study, a channels selection method has been 
applied based on ICA with a back projected scalp map and 
min-max-threshold method of the inverse weight matrix of 
the ICA. The result of the channels selection process 
resulted in 16 EEG channels being selected, including AF3, 
F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, 
AF4, FP2 from the original 32-EEG channels. The feature 
extractor based on PSD and the classifier based on Bayesian 
neural network were applied to these 16 EEG channels to 
classify the alert and fatigue states. The classification results 
based on the dominant 16 EEG channels provided a 
sensitivity of 76.6%, a specificity of 74.3% and an accuracy 
of 75.5%. For comparison, the classification using the least 
dominant 16 EEG channels resulted in a lower sensitivity, 
specificity and accuracy. Also the overall accuracy using the 
selected 16 EEG channels was comparable in sensitivity, 
specificity and accuracy to a classification using the 32 EEG 
channels. This suggests that the implementation of an ICA 
technique with back projected scalp map and min-max-
threshold method is able to select the dominant EEG 
channels, and therefore holds great promise for developing 
effective EEG-based fatigue countermeasures. 
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