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 

Abstract— Freezing of Gait (FOG) is a highly debilitating 

and poorly understood symptom of Parkinson’s disease (PD), 

causing severe immobility and decreased quality of life. 

Turning Freezing (TF) is known as the most common sub-type 

of FOG, also causing the highest rate of falls in PD patients. 

During a TF, the feet of PD patients appear to become stuck 

whilst making a turn. This paper presents an 

electroencephalography (EEG) based classification method for 

detecting turning freezing episodes in six PD patients during 

Timed Up and Go Task experiments. Since EEG signals have a 

time-variant nature, time-frequency Stockwell Transform (S-

Transform) techniques were used for feature extraction. The 

EEG sources were separated by means of independent 

component analysis using entropy bound minimization (ICA-

EBM). The distinctive frequency-based features of selected 

independent components of EEG were extracted and classified 

using Bayesian Neural Networks. The classification 

demonstrated a high sensitivity of 84.2%, a specificity of 88.0% 

and an accuracy of 86.2% for detecting TF. These promising 

results pave the way for the development of a real-time device 

for detecting different sub-types of FOG during ambulation. 

I. INTRODUCTION 

Freezing of gait (FOG) are episodes where Parkinson‟s 
disease (PD) patients suddenly become unable to walk and 
often feel as though their feet have been „glued‟ to the 
ground. Based on contexts of behavioral measures, different 
types of FOG have been observed including: start hesitation 
(Gait Initiation Failure), freezing whilst passing through 
narrow gaps, target hesitation, freezing when dual-tasking, 
freezing on an open runway and turning freezing (TF) [1]. TF 
is defined as the phenomenon in which the feet of PD 
patients appear to become stuck whilst usually making a tight 
turn. Importantly, TF is recognized to be the most frequent 
trigger of FOG, totaling 62.7% of all witnessed FOG 
episodes [1]. Turning is a complex motor task requiring 
motor and cognitive processing to support the correct 
selection, timing and scaling of movement.  TF has clinical 
importance as it increases the risk for falls and falls related to 
injuries [1]. However, the pathophysiological basis for these 
effects is not well known [2]. 
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Our group has previously developed an algorithm that 
could detect TF by analyzing energy power and brain 
effective connectivity of EEG signals with an averaged 
sensitivity around at 68% [3]. This EEG approach offers the 
potential to identify and detect freezing during turning due to 
its ability to track the dynamic physiological changes through 
the brain in real time. In addition, optimal EEG detection 
would allow for treatment options to be implemented in a 
timely manner to overcome and preferably prevent TF. As a 
result, it is critical that these detection methods will need to 
obtain high classification accuracies. With the goal of 
improving classification accuracy, the current paper aims to 
further explore the computational intelligence for EEG 
signals during TF by applying source separation technique 
(independent component analysis by entropy bound 
minimization, ICA-EBM) and S-Transform decomposition as 
feature extraction methods. The entropy bound estimation in 
ICA-EBM was chosen for its flexibility and its ability to 
approximate sources of a wide range of distributions that fit 
with EEG signals; which indeed improved classification 
performance in previous EEG studies [4]. The S-Transform 
was used to track alterations in signal magnitude, frequency 
and phase of selected EEG source as it has been shown to 
outperform classical techniques based on either frequency or 
time domain [5]. It is expected that, early TF detection can 
help to minimize the affect of TF through visual cues in 
treatment of PD. 

The main contributions of this paper are the novel 
technique that combined source separator ICA-EBM and 
EEG feature extraction using S-Transform decomposition. 
Artificial neural networks classified these extracted features, 
which were optimized by Bayesian inference techniques. The 
results of this study suggest that our proposed methodology is 
a promising non-invasive approach for improving Turning 
Freeze classification accuracy during ambulation in PD 
patients. 

II. METHODS

A. Data Collection and Pre-processing 

EEG data was collected from six PD patients with 
clinically confirmed freezing of gait in a structured series of 
Timed Up and Go (TUG) tasks. The patients were recruited 
from the Parkinson‟s Disease Research Clinic, Brain and 
Mind Center, The University of Sydney. This study was 
approved for by The Human Research and Ethics Committee 
of the University of Sydney. Assessments were performed in 
the practically-defined “off” state, with patients having been 
withdrawn from dopaminergic replacement therapy for more 
than twelve hours before testing. All subjects demonstrated 
multiple episodes of freezing during turning in the TUGs 
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(66.3% of turns elicited a TF on average). The EEG was 
recorded from 15 locations by Ag/AgCl scalp electrodes of a 
Bio-semi Active-Two system. These fifteen locations of 
interest were chosen based on our previous findings, which 
were reported as the most affected channels underlying 
Freezing of Gait in PD patients [7]. These electrodes were 
positioned over the following key cortical regions: F3, F4, 
FC1, FC2, C3, C4, CP1, CP2, CZ, P3, P4, PZ and O1, O2, 
OZ (F=frontal, C=central, P=parietal, O=occipital and 
Z=midline). The references were taken by averaging the two 
electrodes A1 and A2, which were placed on the ear lobes. 
The recording was segmented to 1-second durations and the 
sampling rate was 512 Hz. 

Two separate conditions were identified for each patient 
based on video recordings of the TUGs, which is currently 
used as the golden standard to characterize FOG [3] 

i) Normal Turning (NT): identified as a 2 second 
epoch of time in which a patient successfully 
made a right or left turn (180 degrees or 540 
degrees) inside a taped 1m

2
 box on the floor. 

ii) Turning Freezing (TF): identified as an epoch of 
time in which patients suddenly became unable 
to make a turn inside a taped 1m

2
 box on the 

floor, despite the intention to do so. The duration 
of TF episodes normally occur from 2 seconds to 
5 seconds. 

In this study, data from six PD patients resulted in 204 
seconds of EEG data samples of TF which were matched to 
204 seconds of EEG data samples of NT to be used for 
further analyses. Data were filtered using band-pass filter 
(0.5-40 Hz). Artifacts such as eye activity movement and 
heart rate signals were removed by Automatic Artifact 
Removal (AAR) using the EEGLab toolbox. In order to 
control inherent differences between electrodes and 
individual subjects, a Z-transformation was applied to 
normalize EEG data. 

B. Feature Extraction using S-Transform 

The S-transform is a time-frequency analysis technique 
proposed by Stockwell, Manishina and Lowe in 1996 [5]. 
The S-transform was developed on the basis of short time 
Fourier Transform (STFT) and continuous wavelet transform 
(WT) involving direct time-frequency mapping. The 
advantages of the S-transform are its linearity, lossless 
reversibility, multi-resolution and good time-frequency 
resolution. The S-Transform generates a constant relative 
bandwidth analysis while maintaining a direct link with the 
Fourier spectrum. In this study, four frequency bands were 
analyzed, namely: theta (4-8 Hz), alpha (8-13 Hz), low beta 
(lβ, 13-21 Hz) and high beta (hβ, 21-38 Hz).  

Given h(t) is a continuous signal, the S-transform is 
defined as: 
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Here, two parameters were extracted: the first is the 
maximum amplitude for each band at a time (t)     ( ). 
The second parameter was computed as the sum of amplitude 
of the each band at a time (t)     ( ). These main features 
were used to explore the neural correlates underlying the 
episodes of turning freezing.  

C. Source separation using ICA-EBM and input for 

classification 

For improving classification results for TF detection, 
several pre-processing steps were performed prior to feeding 
the data to our classifier. ICA-EBM was chosen as a source 
separator to our EEG data because it has been shown to 
improve classification result in some previous EEG studies 
[4]. At first, our EEG data were fed to the source separation 
ICA-EBM for further analysis. Its aim is to separate the 
mixed information into independent components. ICA-EBM 
provides flexible density matching through the use of contrast 
functions based on the maximum entropy principle [6]. ICA-
EBM can be applied to separate sources that are both sub- or 
super-Gaussian distributions using only a small class of 
nonlinear functions. The algorithm adopted a line search 
procedure and initially used updates that constrain the ICA 
de-mixing matrix to be orthogonal for robust performance 
[6]. The next step included a feature extraction module that 
transformed the pre-processed EEG signal into S-Transform 
decomposition based on 4 sub-bands. Only useful features 
with corrected p-values<0.05, as computed by the non-
parametric Wilcoxon Signed Rank Test, were employed as 
input for our classifier. 

D.  Classification  

For the classification algorithm, Bayesian neural 
networks (BNN) were implemented. Bayesian regularization 
framework has been proposed to improve the generalization 
abilities of neural networks regardless of finite and noisy 
obtainable data [4]. Applying Bayesian techniques to neural 
network training and prediction offers principle methods for 
determining optimal weight decay coefficients and model 
selection while making efficient use of training data. The use 
of the hyper parameters in the cost function can prevent the 
network from being trapped in poor generalization. As a 
result, a validation data set is not needed for Bayesian 
training. This is highly suitable for experiments such as ours 
where a limited set of data is only available for training and 
testing. 

 The BNN structure uses a 3-layer (input, hidden and 
output layers) feed-forward structure as follows: 
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where f1, f2 denotes the activation function, x presents the 
input vector, w denotes the weight matrix vector; wji i denotes 
the weight of the link between the i hidden node and the j 
input;  ̅kj denotes the weight of the link between i hidden 
node and the output, bk and bj denote the biases; m denotes 
the number of outputs; n denotes the number of inputs.  

 The BNN training modifies the objective function of the 
networks such as the sum of squared error (mse) 
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where    is the error function,    is the desired output, and     
is the actual output. 

The regularization improves the model‟s generalization by 
adding the sum of squared weight function    to the 
objective function component ( ) : 

 ( )                                       ( ) 

where β and α are two hyper-parameters which indicate 
minimal error, and minimal weights to seek in the learning 
process.  

This addition is proposed to find best generalization by 
optimizing these parameters in the Bayesian framework [4, 
6]. To improve the efficiency of the optimization, Bayesian 
was added to the Levenberg-Marquardt and to be used for the 
Gauss-Newton approximation to the Hessian matrix, 
available in this optimization algorithm for learning.  

For Bayesian neural network classification, a validation set 
is not required in a neural network training procedure. As a 
result, the current dataset was randomly divided into a 
training set and a test set with each containing 50% of the 
original data from all six patients. The input included the sum 
amplitude       ( ) and the maximum amplitude       ( ) 
obtained from the EEG signals based on four sub-bands from 
two events (NT and TF). In comparison, the features were 
extracted by S-Transform in both cases, with ICA-EBM and 
without ICA-EBM were used for classification. The desired 
output was set at 1 in cases of TF and 0 in cases of NT. This 
system is expected to test with the new patients in the future. 

III. RESULTS 

A. Feature Extraction Results 

Figure 1 show the time-frequency distributions of S-
transform based on the above EEG signals from the frontal 
F4 electrode of one PD patient. The NT segments in run from 
0 to 5 seconds and the TF segments run from 6 to 10 seconds. 
As clearly demonstrated, there are significant increases 
during TF across theta, alpha, low beta and specifically high 

 

Figure 1.  Time-frequency distribution in NT( 1-5s), TF ( 6-10s)  in F4.  

TABLE I.  FEATURE EXTRACTION 

Location Band Normal Turning Turning Freezing Significant 

        ( ) ± std       ( ) ± std  

F3 
lβ 0.26±0.09 0.29±0.09 ** 

hβ 0.29±0.10 0.34±0.08 *** 

F4 
lβ 0.22±0.09 0.26±0.09 ** 

hβ 0.26±0.10 0.32±0.09 *** 
FC1 hβ 0.32±0.09 0.36±0.09 ** 

FC2 hβ 0.30±0.09 0.35±0.09 *** 

C3 hβ 0.33±0.09 0.37±0.09 *** 

C4 
lβ 0.24±0.10 0.27±0.10 * 

hβ 0.27±0.09 0.31±0.09 ** 

CP1 hβ 0.32±0.09 0.37±0.09 ** 

CP2 hβ 0.32±0.09 0.36±0.08 ** 

CZ 
lβ 0.29±0.09 0.33±0.10 ** 

hβ 0.32±0.09 0.37±0.10 *** 

P3 hβ 0.36±0.11 0.41±0.10 ** 

P4 hβ 0.33±0.10 0.37±0.09 ** 
Pz hβ 0.35±0.10 0.40±0.09 *** 

O1 

θ 0.30±0.12 0.33±0.08 * 

α 0.58±0.22 0.66±0.18 ** 

lβ 0.51±0.21 0.59±0.16 *** 

hβ 0.44±0.15 0.51±0.12 *** 

OZ 

α 0.59±0.23 0.67±0.18 ** 

lβ 0.51±0.21 0.60±0.15 *** 

hβ 0.43±0.14 0.50±0.11 *** 

O2 

θ 0.30±0.12 0.32±0.10 * 

α 0.58±0.25 0.65±0.20 * 

lβ 0.48±0.22 0.58±0.17 *** 

hβ 0.40±0.15 0.48±0.11 *** 

 
*:   Significant at 0.001 < p ≤ 0.05 and Cohen’s d < 0.3 

**:   Significant at 0.0001 <p ≤ 0.001 and Cohen’s 0.3 ≤ d <0.4 
***:  Significant at p≤0.0001 and Cohen’s d ≥ 0.4 

beta frequency bands. 

To investigate significant differences between periods of 
NT and periods of TF, a Wilcoxon Signed-Rank Test was 
conducted on the sample of 6 patients. Table 1 shows the 
significant maximum amplitude (    ( )) in the four sub-
bands between periods of NT and TF. Smaller p-values (p-
values ≤0.0001) and larger Cohen‟s d (d≥0.4) indicated the 
biggest differences in features between the two conditions.   

The largest significant increase in activity was found in 
low beta and high beta across the brain regions during TF. 
The strongest maximum differences were found in high beta 
activity from frontal F4 (d=0.6143) and occipital O2 
(d=0.5919) locations. Moreover, maximum alpha band 
activity increased significantly only in occipital locations O1, 
O2 and Oz during TF stages. Theta band increased 
remarkably only in occipital locations O1, O2 during TF. 

B. Source Separator ICA-EBM and Classification results 

In this stage, EEG data was fed into the ICA-EBM, which 
resulted in ICA separated sources of EEG data. Based on our 
previous finding, the additional optimal systems comprised 
four locations F3, C4, P4 and O2, which were selected for TF 
detection [7]. These optimized ICA data sources were further 
segmented for feature extraction using the S-Transform. The 
mean and maximum amplitude from four EEG frequency 
bands of each location were used to evaluate their ability in 
detecting TF. These significant features with p-values ≤ 0.05 
were used as the main parameters for detecting TF events in 
PD patients.  

Classification results for     TF    events     detection  using   



  

TABLE II.  CLASSIFICATION RESULTS 

Cha ICA  H Training Testing 

    Sen Spe Acc Sen Spec Acc 

15 No  4 79.8% 78.7% 79.2% 79.1% 77.1% 78.2% 

15 Yes  4 84.6% 88.0% 86.3% 83.0% 87.6% 85.4% 

4 No  7 76.3% 72.3% 74.2% 75.7% 70.3% 73.3% 

4 Yes  7 85.8% 88.0% 86.8% 84.2% 88.0% 86.2% 

Cha: Number of Channels; ICA: ICA-EBM; H: Hidden Node; Sen: 

Sensitivity; Spe: Specificity; Acc: Accuracy 

S-Transform decomposition as the feature methods and 
Bayesian neural networks as the classifier are shown in Table 
II. The outcome indicated that the S-Transform based feature 
extraction provided respectable results for TF detection, with 
79.1% of sensitivity, 77.1% of specificity and 78.2% of 
accuracy for the test set. Interestingly, further   improvements 
were obtained when using the combination of ICA-EBM as 
the source separator before extracting feature, which 
improved outcomes to a sensitivity of 83.0%, a specificity of 
87.6% and an accuracy of 85.4% in detecting TF. Moreover, 
as we expected, the best performance for TF detection was 
achieved when using our predefined regions of interest (4 
locations) plus ICA-EBM for pre-processing. For this 
combination the results were a sensitivity of 84.2%, a 
specificity of 88.0% and an accuracy of 86.2%. 

Figure 2 shows the results in the receiver operating 
characteristic (ROC) curve and analyses. The bold red 
colored line represents the ROC curve for the method using 
the source separation of ICA-EBM. The star blue colored line 
represents the method without source separation. The ROC 
curve is a plot of the true positive rate versus the false 
positive rate utilizing different threshold ratios as a sweeping 
variable. The areas under the curve (AUC) of ROC were also 
calculated to quantitatively evaluate classification 
performance [4]. It can be seen that the method using the 
inclusion of the source separation of ICA-EBM had a higher 
AUC of 0.9296 compared to the method without inclusion of 
the source separation, which had an AUC of 0.8127. 

 

Figure 2.  AUC plot 

IV. DISCUSSION 

In this paper, TF was found to be associated with a 
remarkable increase in high beta activity across the cortex. 
The most prominent results were found for high beta in the 
frontal F4 and occipital O2 locations. These findings are in 
accordance with our previous work using FFT and functional 
magnetic resonance imaging for analyzing turning behavior 
in PD patients [2, 3]. Based on these results, we hypothesize 
that the subthalamic nucleus (STN) of PD patients with 
freezing, which has been shown to shut down motor activity 
using high beta frequencies, likely underlies the trigger of TF 
[2]. Indeed, deep brain stimulation of the STN, specifically 
when using lower 60Hz frequencies can often alleviate FOG 
in PD [2]. The significant increase in high beta of frontal 

regions could further implicate the recruitment of a putative 
stopping network that worsens freezing behavior.  

In terms of classification, the application of source 
separation using ICA-EBM improved the classification 
performance as compared to the case without source 
separation. Altogether, the result shows that the combination 
of the ICA-EBM (source separator) and the S-Transform 
(feature extraction) significantly improved the sensitivity and 
specificity of TF detection. 

V. CONCLUSION 

During turning freezing, PD patients showed an increase 
in beta activities across regions that implicate involvement of 
the STN and a potential recruitment of a hyper-direct 
stopping network, which may be manifested pathologically as 
a freeze as sensorimotor processing becomes more complex. 
The current study provided additional support toward 
detecting freezing during turning by using the combination of 
PCA, ICA-EBM, S-Transform analysis and BNN. This 
method improved classification results in detecting TF in PD. 
This novel methodology will help the development of a real-
time detection device for different sub-types of FOG in PD. 
Also, the understanding of underlying neurobiology will 
ultimately promote the development of novel therapies and 
technologies to assist with the management of FOG in PD.  

ACKNOWLEDGMENT 

The authors would like to dedicate this work to the 
memory of Dr A.M. Ardi Handojoseno who contributed 
significantly to our research in Parkinson‟s disease.  His 
intellect, kindness and compassion will always remain deeply 
in our hearts. 

REFERENCES 

[1] J. D. Schaafsma, Y. Balash, T. Gurevich, A. L. Bartels, J. M. 

Hausdorff, and N. Giladi, "Characterization of freezing of gait 

subtypes and the response of each to levodopa in Parkinson's disease," 

European Journal of Neurology, vol. 10, pp. 391-398, 2003. 
[2] M. Gilat, J. M. Shine, C. C. Walton, C. O‟Callaghan, J. M. Hall, and 

S. J. G. Lewis, "Brain activation underlying turning in Parkinson‟s 

disease patients with and without freezing of gait: a virtual reality 

fMRI study," Npj Parkinson's Disease, vol. 1, p. 15020, 2015 
[3] A. M. A. Handojoseno, M. Gilat, Q. T. Ly, H. Chamtie, J. M. Shine, 

T. N. Nguyen, et al., "An EEG study of turning freeze in Parkinson's 

disease patients: The alteration of brain dynamic on the motor and 
visual cortex," in 2015 37th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), 2015, 

pp. 6618-6621 
[4] R. Chai, G. Naik, T. N. Nguyen, S. Ling, Y. Tran, A. Craig, et al., 

"Driver Fatigue Classification with Independent Component by 

Entropy Rate Bound Minimization Analysis in an EEG-based 
System," IEEE Journal of Biomedical and Health Informatics, vol. 

PP, pp. 1-1, 2016 

[5] R. G. Stockwell, L. Mansinha, and R. P. Lowe, "Localization of the 
complex spectrum: the S transform," IEEE Transactions on Signal 

Processing, vol. 44, pp. 998-1001, 1996. 

[6] X. L. Li and T. Adali, "Independent Component Analysis by Entropy 
Bound Minimization," IEEE Transactions on Signal Processing, vol. 

58, pp. 5151-5164, 2010 

[7] Q. T. Ly, A. M. A. Handojoseno, M. Gilat, N. Nguyen, R. Chai, Y. 
Tran, H. T. Nguyen et al., "Identifying montages that best detect the 

electroencephalogram power spectrum alteration during freezing of 
gait in Parkinson's disease patients," in 2016 38th Annual 

International Conference of the IEEE Engineering in Medicine and 

Biology Society (EMBC), 2016, pp. 6094-6097 




