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Nonparametric Modelling of VO2 Response to Exercise
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Abstract— This paper investigates the modelling of oxygen
consumption (VO2) response to jogging exercise on treadmill.
Unlike most of the previous methods, which often use simple
parametric models, e.g., first order linear time invariant model,
this study applied a nonparametric kernel based regularised
method to estimate VO2 to address the ill-conditioned modelling
problem and achieve accurate estimation. In particular, it is
worthy to be noted that the selection of kernels will affect
the results for different modelling scenarios. Therefore, in this
research, both radial basis kernel and stable spline kernel were
selected for testing. In order to select the favourable kernel
for this system, a simulation related to VO2-jogging speed was
carried out. The results of simulation indicated that spline
kernel can achieve higher accuracy comparing to radial basis
function kernel. Experimentally, the kernel based estimation
method and spline kernel were tested using six participants.
From the results, an average impulse response is obtained. It
showed the VO2 estimation, based on the average finite impulse
response, is fitted well to the six observations collected from the
participants.

I. INTRODUCTION

Oxygen consumption on-kinetics is an important physio-
logical parameter for the determination of functional health
status and muscle energetics during physical exercise. Sev-
eral experiments suggest that oxygen consumption is mainly
controlled by intramuscular factor related metabolic system
[1], [2]. Unlike heart rate, which is affected by mood, stress,
etc., the maximum Oxygen uptake is considered as the
most accurate measurement of the fitness of cardiorespiratory
system. The main goal of this paper is to establish a nonpara-
metric model describing the relation between Oxygen uptake
(system output) and speed of jogging exercise on treadmill
(system input).

Previous researches conducted on the Oxygen uptake
modelling mainly focused on two aspects: Oxygen uptake
in static status and dynamic status. For the static status, a
linear static model was proposed to approximately estimate
Oxygen uptake based on a given range of walking speed [3].
Furthermore, a simple nonlinear static model was discussed
in [4], [5]. On the other hand, the dynamic modelling of the
Oxygen uptake during exercise also attracted the attention
of many researchers. For example, [6], [7] developed a
first order system to approximate the process based on step
response. Later, [8] developed a nonlinear dynamic model
for Oxygen uptake modelling during running exercise with
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pseudo random binary signal (PRBS) as the input. However,
broadly speaking, it is relatively difficult for the exercisers
to follow the PRBS signal as the treadmill speed.

Generally, the level of noise in VO2 measurement is quite
large and the individual variation of the Oxygen uptake is
quite different from, e.g., heart rate signal. Therefore, it can
be only roughly modelled as a first order system. Although
nonlinear dynamic model can characterise the system with
better accuracy, but it requires a relatively complex input to
stimulate the system. Mostly, for this kind of problem, a non-
parametric model such as impulse response (IR) model can
achieve higher accuracy, but it normally requires PRBS input
[9]. Recently, a new kernel based estimation method has been
developed [10], [11] for nonparametric model estimation.
In addition, in order to avoid ill-conditioned solutions due
to the existence of large noises, a regularised term can be
incorporated into the cost function [12], which can limit
the one-step variation of the estimated parameters. This new
kernel based method projects the parameters of IR into a
reproducing kernel Hilbert space (RKHS) which can reduce
high frequency components in IR model. Furthermore, more
accurate results can also be obtained by using this method
enabling us to employ any simple input such as step input.

In this paper, in order to implement nonparametric mod-
elling of VO2 response to the exercises, the kernel based
estimation method is adopted. For this research, we selected
radial basis function (RBF) kernel and stable spline (SS)
kernel. Particularly, we demonstrated that this method is
suitable when the input is a step response for this specific
VO2 − Speed system. Furthermore, we showed through a
simulation example that SS kernel can achieve higher accu-
racy comparing to RBF kernel for this problem. Eventually,
the proposed methods were experimentally validated by
using the VO2 data collected from six participants.

II. NEW MODELLING METHOD FOR VO2 DURING
EXERCISE

For most of the previous studies, the Oxygen uptake
during exercise (Fig.1) has been considered as an exponential
function [1]:

VO2(t) =VO0
2 +β × [1− e(t−T D)/τp ], (1)

which can be considered as a first order system from the
perspective of control theory, T D is the time delay, τp is the
time constant and VO0

2 is the initial value of Oxygen uptake.
However, sometimes, a first order system cannot obtain the
best results due to the individual variation of Oxygen uptake.
In order to obtain more acceptable results, we adopted a



nonparametric modelling method which make use of finite
impulse response to describe the system’s characteristic.
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Fig. 1. Oxygen uptake during running on treadmill.

A. Kernel Based Estimation method for Finite Impulse Re-
sponse

In this section, a new kernel based nonparametric estima-
tion method is exploited to model the Oxygen uptake during
running exercise.

Let us select t with sampling time T as the time index,
the relationship between the running speed (u) and Oxygen
uptake (y) can be considered as a single input single output
(SISO) dynamic system. Therefore, the discrete time output
calculated by using impulse response of this system can be
expressed as:

y(t) =
∞

∑
τ=0

u(t− τ)g(τ)+ ε(t), t = 1,2, · · ·N (2)

where g(·) represents the parameters of IR, ε(t) is the
Gaussian white noise and N is the total sampling number.

A widely used cost function of Eq.(2) can be expressed
as:

N

∑
t=1

(y(t)−Lt [g])2, (3)

where Lt [g] is:

Lt [g] =
∞

∑
τ=0

u(t− τ)g(τ). (4)

Although minimising the cost function (3) can be solved
by least square (LS) estimation or maximum likelihood (ML)
estimation directly, it is not appropriate for modelling the
Oxygen uptake, as the measurements are normally extremely
noisy [8]. Hence, to guarantee the validity of the obtained
model and avoid any ill-conditioned solution, a regularisation
term is crucial to weight the variation of the estimated
parameters in the objective function. Then, the cost function
can be rewritten as:

N

∑
t=1

(y(t)−Lt [g])2 + γ||g||2, (5)

where the first term implies the modelling error, γ is a
positive coefficient controlling the trade off between the error
term and regulariser ||g||2. For a normal regulariser ||g||2,
regularised least square estimation (ReLS) is a standard

solution to solve Eq.(5). In order to obtain a better IR
model of the Oxygen uptake model, we introduce a newly
developed kernel method [10], [11].

Assuming that function g ∈ Rm, then function g in reg-
ularisation term can be projected into a reproducing kernel
Hilbert space (RKHS), i.e., g→ gH (Rm×Rm→Rm×m(H )).
The advantage of this transform is penalising the high fre-
quency components in function g [11]. Furthermore, unlike
support vector regression (SVR) [13], the inputs and system
parameters from the error term are not projected to a higher
dimension which the original system parameters are hard to
recover from projected parameters. Eventually, the IR model
can be identified by minimising the cost function:

min
g∈H

(
N

∑
t=1

(y(t)−Lt [g])2 + γ||g||2H

)
. (6)

To solve Eq.(6), an output kernel OOO ∈ RN×N is defined as:

O(i, j) =
N

∑
x=1

u(i− x)

(
N

∑
a=1

u( j−a)K(i,a)

)
, (7)

where K(·, ·) is a selected kernel which is discussed later in
this section.

From the Representer Theorem for the system identifica-
tion [11], the solution of Eq.(6) is given by:

ĝ(t) =
N

∑
s=1

ĉsa(t,s), (8)

where a(t,s) is defined as:

a(t,s) =
N

∑
τ=1

(u(s)− τ)K(t,τ), (9)

and ĉs is the s− th element of ĉcc:

ĉcc = (OOO+ γIIIN)
−1 YYY , (10)

where vector YYY = [y(1),y(2), · · · ,y(N)]T and IIIN is the iden-
tity matrix with N dimension.

B. Kernel Selection

Several kernels can be applied to this kernel estimation
method, such as radial basis function (RBF) kernel, stable
spline (SS) kernel, diagonal/correlated (DC) kernel, etc. In
this research, the RBF kernel and the SS kernel are selected.
RBF kernel is widely used in kernel related methods since the
development of support vector machine (SVM). SS kernel
is developed in [10]. As it is known, the impulse response
is treated as a function which decays exponentially with
a certain rate, the SS kernel which belongs to amplitude
modulated locally stationary (ALMS) kernel can achieve de-
served results when modelling this impulse response model.
Therefore, the RBF kernel and SS kernel are selected for the
estimation of the impulse response of the Oxygen uptake:
• RBF kernel:

K(i, j) = e−ρ||i− j||2 , (11)

where ρ > 0.



• SS kernel:

K(i, j) =
c
2

e−β min(i, j)− c
6

e(−3β max(i, j)), (12)

where c,β > 0.

More details about the kernel and kernel estimation
method can be found in [14].

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Simulation

Generally, the relationship between the Oxygen uptake and
the jogging speed was considered as a first order system.
Therefore, the performance of this method can be tested on
a first order system involving a relatively large noise, the
system is assumed as:

Y (s) =
7U(s)

35s+1
. (13)

As seen, the time-constant and the gain are 35 and 7,
respectively.

In the system (13), we let the input U(s) be a step input,
assumed a Gaussian white noise with the SNR of 1dB, and
set the sampling time (T s) as 1s. The input and output is
shown in Fig.(2)
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Fig. 2. Input and noisy output (1dB SNR) of the system for simulation.

Then, the kernel method is applied to solve the IR of
the system. The settings of kernels and regulariser are listed
below:

• RBF kernel: ρ = 1×10−7

• SS kernel: c = 0.015, β = 0.008
• regulariser: γ = 0.2

Based on these values, the IR of the system and the
estimations are shown in Fig.(3) and Fig.(4). As we can see
from Fig.(3), the IR from SS kernel is closer to the true value
comparing to IR from RBF kernel. Moreover, from Fig.(4),
the estimation output from SS kernel is very close to the true
output without over-fitting. Therefore, we choose SS kernel
in our experiment section, as it can provide a better IR for
this problem.

A classic ridge regression without kernel is also applied to
solve the IR as a comparison. From Fig.(5), it can be seen
that the IR model from ridge regression without kernel is
inaccurate and noisy comparing to the kernel method. The
results from the kernel method is far better than the classic
ridge regression in this specific problem.
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Fig. 3. Comparison among true IR and estimated IR based on RBF kernel
and SS kernel.

0 50 100 150 200 250 300 350 400 450 500

time

-10

0

10

20

30

40

A
m

pl
itu

de

obervations
estimation(RBF)
estimation(SS)

Fig. 4. Estimated output from RBF kernel and SS kernel and observations.
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Fig. 5. IR from Ridge regression (γ = 0.2).

B. Experiments

To develop the impulse response model of VO2 response
to treadmill exercise, six healthy males participated in this
experiments; their physical characteristics are shown in Ta-
ble. I. All data were acquired by a portable gas analyzer
K4b2 (COSMED), which is the first portable system for
pulmonary gas exchange measurement with true breath-by-
breath analysis. The UTS Human Research Ethics Commit-
tee (UTS HREC 2009000227) approved this study and an
informed consent was obtained from every participant before
commencement of data collection.

TABLE I
AGE AND BMI OF PARTICIPANT

Participant 1 2 3 4 5 6
Age 45 37 52 52 43 50
BMI(kg/m2) 30.3 24.6 29.6 29.1 31.3 26.0

Prior the experiments, all participants were seated for
5mins, then stand next to treadmill for 2mins. During the
experiments, the participants were walking at 3km/h for
3mins, then they started to running for 7mins at 8km/h,
following by another walking at 3km/h for 3mins before
stop. The protocol of this experiment is shown in Fig.(6).
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Fig. 6. Protocol of exercise.

For the research, in this stage, we only focus on the
onset (from walking to running) VO2 response of treadmill
exercise. Therefore, we only took the data from t1 = 500s
to t2 = 1000s as shown in Fig.(6) for impulse response
modelling. Since the gas response recorded by K4b2 are
breath by breath based, the sampling is irregular, and the
quality of the data is often influenced by the breath frequency
of the subject. Thus, prior the modelling, we applied a
median filter for the data and interpolate the data with 1s
sampling time by using Matlab. For the developed impulse
response model, the sampling time is selected as 1s, and the
order of the model is selected as 300. The IR model can
therefore be expressed as:

y[n] = g[0]u[n]+g[1]u[n−1]+ · · ·+g[299]u[n−299]

=
299

∑
i=0

g[i]u[n− i].
(14)

With the selected 500 observations, firstly, we removed
the offset which is the average value of the initial 100 data.
Then, we applied the introduced kernel estimation approach
to estimate the IR model by using stable spline kernel
(c= 0.05, β = 0.01, γ = 0.4). The results are shown in Fig.(7)
and Fig.(8). Fig.(8) shows the estimated impulse responses
for all 6 participants. Although the values of the impulse
responses are slight different, the pattern of the responses
among participant is similar. We calculated the averaged
impulse response and highlighted it in Fig.(7). Based on
the estimated average impulse response model, we also
calculated the predicted VO2 output, and then compared it
with the experimental data, which is shown in Fig. (8). From
Fig. (8), we can observe that the estimation fits properly with
the experimental data without overfitting.
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Fig. 7. Average IR and individual IR from six participants.

IV. CONCLUSIONS

This paper established the first nonparametric model of
VO2 response to treadmill exercise by using the recently
proposed kernel based modelling method. Both stable spline
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Fig. 8. Comparison between estimated VO2 and measurements from six
participants.

kernel and radial basis function kernel have been studied
and tested by using numerical simulation, and it is observed
for impulse response modelling, the stable spline kernel
outperforms the radial basis function kernel. The averaged
impulse response model has been finally established based
on the experimental data of six treadmill exercisers. The
results of both simulation and experiment indicate that the
kernel based nonparametric modelling method is an effective
method for the estimation of impulse response of oxygen
consumption, and can provide accurate prediction of VO2
response during treadmill exercise.

REFERENCES

[1] J. A. Zoladz, B. Grassi, J. Majerczak, Z. Szkutnik, M. Korostyński,
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