Nonopiod Drugs in the Treatment of Cancer Pain

Janette Vardy and Meera Agar

ABSTRACT

The WHO analgesic ladder for the treatment of cancer pain provides a three-step sequential approach for analgesic administration based on pain severity that has global applicability. Nonopiods were recommended for mild pain, with the addition of mild opioids for moderate pain and strong opioids for severe pain. Here, we review the evidence for the use of nonopiod analgesic agents in patients with cancer and describe the mode of action of the main drug classes. Evidence supports the use of anti-inflammatory drugs such as acetaminophen/paracetamol and nonsteroidal anti-inflammatory drugs (NSAIDs) for mild cancer pain. Adding an NSAID to an opioid for stronger cancer pain is efficacious, but the risk of long-term adverse effects has not been quantified. There is limited evidence to support using acetaminophen with stronger opioids. Corticosteroids have a specific role in spinal cord compression and brain metastases, where improved analgesia is a secondary benefit. There is limited evidence for adding corticosteroids to stronger opioids when pain control is the primary objective. Systematic reviews suggest a role for antidepressant and anticonvulsant medications for neuropathic pain, but there are methodologic issues with the available studies. Bisphosphonates improve pain in patients with bony metastases in some tumor types. Denosumab may delay worsening of pain compared with bisphosphonates. Larger studies of longer duration are required to address outstanding questions concerning the use of nonopiod analogesia for stronger cancer pain.

J Clin Oncol 32:1677-1690. © 2014 by American Society of Clinical Oncology

INTRODUCTION

Up to 90% of patients with cancer experience pain at some stage of their cancer journey, with a third rating the intensity of their pain as moderate to severe, and up to half being undertreated. The WHO analgesic ladder, which provides guidelines for the treatment of cancer pain, was published in 1986 and updated in 1996. The guidelines recommend a sequential three-step approach for analgesic administration based on pain severity, with nonopiods for mild pain, weak opioids for moderate pain, and strong opioids for severe pain. In addition to drug selection based on the severity of the pain and individualized for the patient, recommendations include the use of oral medications whenever possible, with fixed scheduled dosing according to the pharmacokinetics of the drug rather than on demand and regular assessment and re-evaluation of the pain. It is recommended that the drugs used in step 1 be continued as opioids are added. The rationale for adding a nonopiod to an opioid is to add a drug with a different mechanism of action with the aim of improving analgesic control and/or reducing opioid requirements and minimizing opioid adverse effects.

When the WHO guidelines were developed to address the issue of undertreated pain, there was limited evidence to inform them. Rather, they were developed to provide a framework to guide international policy for the treatment of cancer pain with pain relief that was affordable and readily accessible globally. Despite controversies about whether the second step should be omitted and whether nonopiod analgesic agents should be continued once an opioid is required, the WHO analgesic ladder remains the mainstay of management of cancer pain. Individual studies and systematic reviews that have evaluated the WHO guidelines have shown that they can control cancer pain in 45% to 100% of patients.

The most common nonopiod agents used to treat cancer pain include acetaminophen/paracetamol; anti-inflammatory agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids; antineuropathic agents, which include tricyclic antidepressants and anticonvulsants; and bisphosphonates. The mode of action of each drug is outlined in Table 1, and the major studies that have evaluated their use in people with cancer are outlined in Tables 2 to 6.

ACETAMINOPHEN/PARACETAMOL

Acetaminophen (known in some countries as paracetamol) is an inexpensive analgesic that is used globally. Although it was developed over a hundred years
<table>
<thead>
<tr>
<th>Class of Drug</th>
<th>Pharmacokinetics</th>
<th>Analgesic Mode of Action</th>
<th>Common Toxicities</th>
<th>Medication Interactions</th>
<th>Major Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>Rapid and complete absorption from GI tract; Hepatic conjugation with glucuronide and sulphate metabolites; Peak plasma concentration in 3060 minutes; Half-life approximately 2 hours</td>
<td>Exact mechanism remains unclear; inhibits production of lipooxygenase and cyclooxygenase, decrease prostaglandin and interleukin-1 in hypothalamus; release of endogenous opioids that inhibit descending pain pathways</td>
<td>In overdose: hepatotoxicity, acute renal tubular necrosis; Rare: idiosyncratic fatal hepatotoxicity</td>
<td>Potential to increase international normalized ratio in patients on warfarin; Risk of increased metabolism with anticonvulsants, carbamazepine, barbiturates; Potential interaction with tyrosine kinase inhibitors (sorafenib, dasatinib, imatinib), leading to inhibition of acetaminophen glucuronidation</td>
<td>Use with care in patients with hepatotoxicity</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Complete bioavailability; binds to albumin; minimal first-pass hepatic metabolism; Half-life approximately 2-2.5 hours; Marked individual variation</td>
<td>Inhibit cyclooxygenase, decrease conversion of arachidonic acid to prostaglandin, thromboxane, and prostacyclin synthesis</td>
<td>Dyspepsia, GI bleeding, cardiovascular, nephrotoxicity, hypertension, transaminis</td>
<td>Risk of drug interactions with antiplatelet and anticoagulant agents, antihypertensives, corticosteroids</td>
<td>Recent peptic ulcer disease, prior NSAID gastroduodenopathy, bleeding diathesis, renal disease, major cardiovascular disease</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Prednisolone and prednisone: Highly protein bound; Peak concentration 1-2 hours after oral dose; Rapid conversion from prednisone into prednisolone in the liver</td>
<td>Exact mechanism remains unclear, but potential effects at all steps of nociception (transduction, transmission, modulation, and pain perception); Mediate their anti-inflammatory effect by inhibition of collagenase and proinflammatory cytokines or stimulating lipocortin production; Reduce vascular permeability; Inhibit prostaglandin synthesis</td>
<td>Immunosuppression; Sodium and water retention, hypertension, increased appetite, emotional lability, depression, insomnia, psychosis; Hypertension; Myopathy; Cushingoid appearance; Impaired wound healing, skin thinning, osteoporosis, avascular necrosis of femoral head; Cataracts; Dyspepsia, peptic ulceration, fatty liver</td>
<td>NSAIDs; Anticoagulants</td>
<td>Concurrent NSAID use; Diabetes; Active peptic ulcer disease</td>
</tr>
<tr>
<td>Tricyclic antidepressants, eg, amitriptyline, imipramine (tertiary amine), nortriptyline (secondary amine)</td>
<td>Genetic polymorphisms in metabolic pathways result in large pharmacokinetic variability</td>
<td>Inhibit presynaptic update of serotonin and noradrenaline enhancing pain inhibitory pathways; block voltage-dependent sodium channels</td>
<td>Antimuscarinic side effects (eg, dry mouth, constipation, urinary retention, blurred vision); Postural hypotension; Gait disturbance; Sedation; Confusion; Sudden cardiac death</td>
<td>Anticholinergics; Psychoactive medications; Class IC antiarrhythmics and selective serotonin reuptake inhibitors metabolized by P4502D6 can lead to toxic concentrations of tricyclic antidepressants</td>
<td>Cardiac conduction blocks; Arrhythmia; Epilepsy</td>
</tr>
</tbody>
</table>

(continued on following page)
<table>
<thead>
<tr>
<th>Class of Drug</th>
<th>Pharmacokinetics</th>
<th>Analgesic Mode of Action</th>
<th>Common Toxicities</th>
<th>Medication Interactions</th>
<th>Major Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabapentin, pregabalin</td>
<td>Gabapentin circulates mainly unbound; renal excretion unchanged; dose may need reduction in renal impairment. Pregabalin is rapidly absorbed after oral administration, with 90% oral bioavailability independent of dose; renal excretion unchanged; dose may need reduction in renal impairment.</td>
<td>Block with subunit of voltage-dependent calcium channels<sup>21</sup></td>
<td>Somnolence</td>
<td>Psychoactive medications may potentiate side effects</td>
<td>Suicidal ideation</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>Slow oral absorption Peak concentration 4-24 hours Steady-state depends on autoinduction by carbamazepine and heteroinduction by other enzyme-inducing medication and ranges between 1 and 2 weeks Conjugated metabolites excreted in the urine</td>
<td>Blocks voltage-dependent sodium channels<sup>20</sup></td>
<td>Dermatologic reactions Hypersensitivity Seizures Renal and hepatic dysfunction Aplastic anemia and agranulocytosis Anticholinergic effects Suicidal ideation Confusion</td>
<td>Interactions between CYP3A4 inducers or inhibitors and carbamazepine Monoamine oxidase inhibitors Bone marrow depression Systemic lupus erythematosus Hepatic porphyria Hepatic failure Atrialventricular block</td>
<td></td>
</tr>
<tr>
<td>Bisphosphonates</td>
<td>Poor oral absorption Renal excretion (approximately 70%), remainder taken up by bone Half-life elimination 2-136 hours</td>
<td>Inhibit osteoclast bone resorption by attaching to hydroxyapatite binding sites; decrease osteoclast activity by decreasing osteoclast progenitor cells and increasing osteoclast apoptosis</td>
<td>Acute-phase reactions Ocular inflammation Renal toxicity Electrolyte disturbance Hypocalcemia Osteonecrosis of jaw</td>
<td>Aminoglycosides and phosphate supplements may increase risk of hypocalcemia NSAIDs increase risk of gastric ulceration Creatinine clearance < 30 mL/min</td>
<td></td>
</tr>
<tr>
<td>Denosumab</td>
<td>Administered subcutaneously Not renally excreted Half-life elimination approximately 28 days</td>
<td>Fully human monoclonal antibody that binds RANKL, which regulates migration of tumor cells into bone; inhibits RANKL-mediated osteoclastogenesis → less bone resorption<sup>23</sup></td>
<td>Acute-phase reactions Fatigue Headache Nausea Skin rash Hypocalcemia Osteonecrosis of jaw</td>
<td>May interact with immunosuppressive drugs, leading to higher risk of infection Hypocalcaemia</td>
<td></td>
</tr>
<tr>
<td>Lignocaine</td>
<td>Parenteral class Ib local anesthetic agent Lignocaine is 90% metabolized by cytochrome P450, and metabolites are all renally excreted Half-life 1.5-2 hours</td>
<td>Blocks voltage-gated sodium channels</td>
<td>Restlessness, tremor, convulsions Drowsiness Respiratory failure Dyphoria Euphoria Muscle twitching Ventricular tachycardia and fibrillation</td>
<td>Cimetidine β-Blockers Phenytoin Cardiac failure Heart block Arrhythmia Hypokalemia Hypertension Hepatic failure Renal failure</td>
<td></td>
</tr>
<tr>
<td>Ketamine</td>
<td>Dissociative anesthetic agent Rapid absorption and wide distribution, including in the brain 20%-50% bound to plasma proteins; extensive hepatic metabolism, with one active metabolite (norketamine)</td>
<td>Interacts with N-methyl-D-aspartate receptors, interrupts cholinergic transmission, and inhibits noradrenaline and 5-hydroxytryptamine uptake<sup>24</sup></td>
<td>Hypertension and tachycardia Emergent phenomena and psychomimetic effects (hallucinations, disconnection, dissociation, vivid dream), sedation, drowsiness Raised intracranial and intraocular pressure Delirium Impaired bladder function<sup>24</sup></td>
<td>Psychoactive medications (potentiate neurologic toxicity) Medications with hypertensive effect Raised intracranial or intraocular pressure Conditions where significant hypertension would be hazardous (e.g., cerebrovascular disease) Psychiatric illness Delirium Uncontrolled seizures<sup>24</sup></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; RANKL, receptor-activated nuclear factor κB ligand.
 ago, its mode of action for pain relief has not been fully elucidated. It is sometimes classified as an NSAID, but its mechanism of action is not the same. Acetaminophen is well tolerated with a good safety profile at therapeutic doses. In overdose, hepatotoxicity and acute renal tubular necrosis can occur. Patients may be at higher risk of hepatotoxicity after starvation, fasting, or chronic alcohol abuse, but hepatic toxicity is rare in doses less than 8 g daily, even in patients with chronic liver disease. Serious hypersensitivity reactions to acetaminophen are extremely rare (Table 2).

Acetaminophen for Acute Pain

Systemic reviews and meta-analyses have shown that acetaminophen is more effective than placebo for acute postoperative pain. The optimal dose of acetaminophen remains uncertain. A Cochrane review of 51 studies including 5,762 postoperative participants and using an end point of 50% total pain relief found that a single dose of acetaminophen was significantly more effective than placebo, with a number needed to treat of 3.5 patients (95% CI, 2.7 to 4.8 patients) for 500 mg of acetaminophen, 4.6 patients (95% CI, 3.9 to 5.3 patients) for 600 to 650 mg, and 3.6 patients (95% CI, 3.4 to 4.0 patients) for 975 to 1,000 mg. There was no difference in adverse effects in the acetaminophen arms compared with placebo. Another Cochrane review comprising 20 studies and 2,641 patients evaluated oxycodone with and without acetaminophen for acute postoperative pain; the number needed to treat for oxycodone 15 mg was 4.6 patients (95% CI, 2.9 to 11 patients) compared with 2.7 patients (95% CI, 2.4 to 3.1 patients) for oxycodone 10 mg and acetaminophen 650 mg.

Acetaminophen for Patients With Cancer

There is good evidence that acetaminophen is effective for treating mild cancer pain. There is limited evidence for adding acetaminophen to an opioid, and practice varies globally; patients in Europe and Australasia generally remain on acetaminophen once opioids are required, but in North America, acetaminophen is generally discontinued once strong opioids are initiated. A systematic review evaluating acetaminophen in addition to opioids in five small randomized controlled trials (RCTs) involving 200 patients with cancer found no benefit to adding acetaminophen in four of the five studies. The positive study used a cross-over design. Patients reported a modest improvement in pain and overall well-being while on acetaminophen (1 g every 4 hours five times a day), with a nonsignificant preference for analgesic control during the period they were on acetaminophen. A recent RCT evaluated the efficacy of oxycodone (5 mg)/acetaminophen (325 mg) compared with placebo every 6 hours for 3 days for pain caused by bone metastases in 246 patients already on opioids. Although the oxycodone/acetaminophen group had improved pain relief, less breakthrough pain, and reduced need for rescue pain relief, the study design does not allow the relative contribution of each agent in the combination to be determined.

NSAIDs

NSAIDs are a heterogeneous group of drugs that inhibit cyclooxygenase (COX), leading to a reduction of the conversion of arachidonic acid to thromboxane A2 and prostaglandin synthesis (Table 1). There are two main forms of COX—COX-1 (including a variant known as COX-3) and COX-2. Although COX-1 is present in most tissues, COX-2 is mainly expressed in inflamed tissue. Most NSAIDs are nonselective inhibitors of COX-1 and COX-2, but newer agents such as celecoxib have much greater affinity for the COX-2 isoform. The selective COX-2 inhibitors are substantially more expensive than the older nonselective agents.

Adverse Effects

The toxicity profile for NSAIDs includes GI and cardiovascular effects, hepatotoxicity, and nephrotoxicity, including renal failure caused by renal vasoconstriction, hypertension, and electrolyte disturbances. The risk of toxicity is increased with higher doses of NSAIDs and in those with comorbidities and the elderly. Patients with a history of GI bleeding, an NSAID-related ulcer, *Helicobacter pylori* infection, renal or hepatic impairment, or chronic heart failure are at increased risk of serious toxicity. Concomitant use of an NSAID with an antiplatelet or anticoagulant agents, antihypertensives, glucocorticoids, or diuretics has an additive risk of hemorrhage or renal hypoperfusion. Prior treatment of *H pylori* or concomitant use of a gastroprotectant agent (eg, a proton pump inhibitor) may reduce GI toxicity in those at higher risk. Selective COX-2 inhibitors cause less GI toxicity than nonselective COX-1 and COX-2 inhibitors, but several large studies have shown an increase in cardiovascular toxicity, including myocardial infarction and stroke, with the selective COX-2 inhibitor rofecoxib. This is thought to be a result of a prothrombotic effect. Some selective COX-2 inhibitors were withdrawn from the market in 2004 and 2005 because of this toxicity. Celecoxib is one of the main drugs in this class still in common usage.

NSAIDs in Patients With Cancer

The maximum recommended single dose of an NSAID has been found to be equivalent in analgesic potency to approximately 5 to 10 mg of parenteral morphine. A meta-analysis of 25 studies in 1,545 patients with cancer found benefit in all eight studies comparing a single dose of an NSAID with placebo. No significant difference in analgesic efficacy was found in studies comparing an NSAID with an NSAID and a weak opioid, but studies were difficult to compare because of heterogeneity (Table 3).

A Cochrane review found seven studies that compared an NSAID (excluding acetaminophen) with placebo for cancer pain. All studies reported improved efficacy for the NSAID, with no difference in adverse effects, but all were single-dose studies. Thirteen studies compared different NSAIDs, but there was no convincing evidence of benefit for one NSAID over another. Of the 10 studies that compared an NSAID with an opioid, four found the NSAID to be more effective, whereas two studies showed they were less beneficial. Meta-analyses of four of the studies found a lack of significant difference in pain relief but more adverse events in the opioid groups (odds ratio, 0.38; 95% CI, 0.15 to 0.97).

Use of an NSAID With an Opioid

Eight studies compared an NSAID versus an NSAID combined with an opioid; four of these studies found that the NSAID/opioid combination gave marginally better pain relief. Meta-analysis of six of the studies showed no significant difference in adverse events. The studies used a mixture of weak and strong opioids, making comparison problematic. Both the Cochrane review and a more recent systematic review incorporating additional studies showed a benefit to adding an
Table 2. Illustrative Studies of Acetaminophen (alone or in combination with opioids) in Patients With Cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Cancer Type</th>
<th>No. of Patients</th>
<th>Study Design</th>
<th>Interventions</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axelsson and Borup,27</td>
<td>Cancer</td>
<td>42</td>
<td>Randomized double-blind, cross-over</td>
<td>Acetaminophen (1 g four times a day)/opioid vs placebo/opioid</td>
<td>No difference in NRS (0-10) NA</td>
</tr>
<tr>
<td>Stockler et al,28</td>
<td>Cancer</td>
<td>34</td>
<td>Randomized double-blind, cross-over</td>
<td>Acetaminophen1gIV four times a day/opioid vs placebo/opioid</td>
<td>Benefit for acetaminophen; mean difference in verbal numeric score (0-10) of 0.4 (P = 0.03)</td>
</tr>
<tr>
<td>Tasmacioglu et al,29</td>
<td>Cancer</td>
<td>43</td>
<td>Randomized, double-blind, parallel</td>
<td>Acetaminophen 1g IV four times a day/opioid vs placebo/opioid</td>
<td>No difference in pain control No difference</td>
</tr>
<tr>
<td>Cubero and delGiglio,30</td>
<td>Cancer</td>
<td>50</td>
<td>Randomized, double-blind</td>
<td>Acetaminophen 750 mg four times a day/opioid vs placebo/opioid</td>
<td>No difference in pain control; (NRS 0-10) 0.16</td>
</tr>
<tr>
<td>Israel et al,31</td>
<td>Cancer</td>
<td>31</td>
<td>Randomized, double-blind, cross-over</td>
<td>Acetaminophen 1 g four times a day/opioid vs placebo</td>
<td>No difference in pain control (NRS 0-10) 0.16</td>
</tr>
<tr>
<td>Sima et al,32</td>
<td>Cancer</td>
<td>246</td>
<td>Randomized, double-blind, parallel</td>
<td>Oxycodone/acetaminophen (5/325 mg) four times a day/opioid vs placebo</td>
<td>Pain intensity difference for oxycodone/acetaminophen vs placebo 1.5 ± 0.3, respectively, on day 3 (P < 0.001)</td>
</tr>
</tbody>
</table>

Abbreviations: IV, intravenous; NA, not applicable; NRS, numerical rating scale; PCA, patient-controlled analgesia.
Table 3. Illustrative Studies of Nonsteroidal Anti-Inflammatory Drugs (alone or in combination with opioids) in Patients With Cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>No. of Patients</th>
<th>No. of Patients Analyzed</th>
<th>Study Design</th>
<th>Treatment</th>
<th>Pain Outcome/Efficacy</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrer Brechner et al.</td>
<td>1984</td>
<td>30</td>
<td>28</td>
<td>All</td>
<td>Randomized double-blind, 3-part cross-over</td>
<td>Ibuprofen (600 mg)/methadone (2.5 or 5 mg) v. methadone/placebo</td>
<td>Improved pain intensity and pain relief with addition of ibuprofen</td>
</tr>
<tr>
<td>Lomen et al.</td>
<td>1986</td>
<td>26</td>
<td>22</td>
<td>Bone pain</td>
<td>Randomized, double-blind, cross-over</td>
<td>Flurbiprofen/opioids v. placebo/opioids</td>
<td>No statistically significant difference</td>
</tr>
<tr>
<td>Stambaugh</td>
<td>1988</td>
<td>160</td>
<td>160</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Ketoprofen (100 or 300 mg) v. aspirin/codeine (650 mg/60 mg) or placebo</td>
<td>All active arms had improved pain intensity and superior pain relief compared with placebo</td>
</tr>
<tr>
<td>Staquet</td>
<td>1989</td>
<td>126</td>
<td>118</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Ketorolac tromethamine 20, 30, or 90 mg v. placebo</td>
<td>Single dose: Ketorolac at each dose superior to placebo; only minor adverse effects, but 10/15 in ketorolac groups</td>
</tr>
<tr>
<td>Carlson et al.</td>
<td>1990</td>
<td>75</td>
<td>70</td>
<td>All</td>
<td>Randomized, double-blind, parallel; placebo group randomly assigned to active drug</td>
<td>Ketorolac tromethamine 10 mg Single dose, then 7 mg twice daily v. acetaminophen/codeine (600 mg/60 mg)</td>
<td>Single-dose ketorolac and acetaminophen/codeine superior to placebo; no difference between active arms</td>
</tr>
<tr>
<td>Johnson and Miller</td>
<td>1994</td>
<td>26</td>
<td>26</td>
<td>Bone pain</td>
<td>Randomized, double-blind, multi-center</td>
<td>CMT (1,500 mg)/opioid v. placebo/opioid</td>
<td>No statistically significant difference</td>
</tr>
</tbody>
</table>

Abbreviation: CMT, choline magnesium trisalicylate.
NSAID to a WHO step 3 opioid for cancer pain. Five of the seven studies found the addition of the NSAID to be efficacious,38 with three reporting improved pain with the addition of dipyrrone58 or ibuprofen17,58e and two finding a decrease in opioid consumption with the addition of ketorolac53 or diclofenac.59 Six of the seven studies reported no significant differences in adverse effects between the groups, with one study finding more gastric discomfort in the NSAID plus opioid arm and more constipation in the opioid alone arm.53 There were no marked differences between the different NSAID drugs in efficacy, although individual responses to NSAIDs and their toxicity are highly variable.

Most of the acetaminophen and NSAID studies in patients with cancer had small sample sizes and were of short duration, and none included selective COX-2 inhibitors. Longer term efficacy and safety remain unknown, with prevalence and severity of toxicities not quantified in patients with cancer. Studies have not been adequately powered to determine whether NSAIDs or acetaminophen are more beneficial for certain types of cancer pain, although anecdotally, it is suggested that NSAIDs are more effective for pain associated with inflammation.

Corticosteroids

Mode of Action

Inflammation has key roles in the pathophysiology of pain, and animal pain models suggest that corticosteroids can modulate pain perception.18 Proinflammatory cytokines are involved in the development of inflammatory and neuropathic pain, including CNS production from immune-competent glial cells.18 Endogenous neurosteroids in the CNS and peripheral nervous system modulate γ-aminobutyric acid, N-methyl-D-aspartate, and ATP/adenosine bisphosphate (P2X) receptors, all of which play crucial roles in pain regulation.17 Steroid receptors are present in several neural structures, which may allow steroids to modulate neural activity and plasticity.17 Sex steroids may also play a role, with testosterone exerting an analgesic effect and estrogens exerting both hyperalgesic and analgesic effects.17

Adverse Effects

Corticosteroids have multiple effects and lead to a wide range of potential short- and long-term adverse effects.19 These include effects on the stress and immune response, carbohydrate metabolism, protein catabolism, electrolyte regulation, and behavior.19

Agents and Dose

Commonly used corticosteroids are dexamethasone, methylprednisolone, betamethasone, prednisolone, and prednisone.18 Dexamethasone is prescribed most often; it causes less fluid retention than other corticosteroids because it has less mineralocorticoid effect.17,19 Corticosteroids are used with other analgesics in a broad range of clinical scenarios, in particular for management of bone and neuropathic pain.17 Corticosteroids are included at each step of the WHO analgesic ladder, when an anti-inflammatory effect is considered beneficial.17 They also have a role in specific clinical scenarios such as spinal cord compression, brain metastases, and bowel obstruction,58 where improved analgesia is a secondary benefit from the primary indication of reduction of peritumoral edema.19 There is no established dosing, and the studies that have been undertaken comparing dose effectiveness have explored outcomes other than pain.61

Efficacy

Despite corticosteroids being used widely to manage cancer pain, there is limited evidence for their efficacy.17 A recent systematic review demonstrated a paucity of studies and included four RCTs that explored the role of corticosteroids when added to standard pain management.18 One study demonstrated efficacy, and one study did not; the other two studies did not report pain or analgesic use adequately (Table 4).

Neuropathic pain is defined by the International Association for the Study of Pain as pain caused by a lesion or disease of the somatosensory system. It is present in at least 35% to 40% of patients with cancer pain.20 Up to 40% of survivors of cancer also report pain at 5 years after treatment that is often neuropathic in nature.22 Chronic pain that is related to treatment includes pain caused by postsurgical syndromes (eg, mastectomy, thoracotomy, postamputation); chemotherapy-related painful peripheral neuropathy; avascular necrosis of the femoral or humeral head; and radiation-induced plexopathy, myelopathy, or proctitis.

Opioid analgesia is usually insufficient to achieve good control of neuropathic pain, and additional agents are required, mainly antidepressant and anticonvulsant medications.20,21 Neuropathic pain from cancer may not share pathophysiologic mechanisms with chronic nonmalignant causes, but a similar range of drugs is used.21 It is more common to try opioid analgesia alone before adding an adjuvant for neuropathic pain in North America, whereas European practice is to use combination therapy earlier.22

Adverse Effects

The choice of agent is often guided by the importance of potential adverse effects in an individual patient. For example, tricyclic antidepressants should be avoided if the patient is at risk of urinary retention. However, some clinicians choose agents based on characteristics of the pain.21 The agents are used mostly in combination with opioids, and adverse effects, in particular psychoactive adverse effects, can be synergistic.

Agents and Dose

There is a complex interplay between etiology, pathophysiology, and symptoms of neuropathic pain, and different pathophysiologic mechanisms can be responsible for similar symptoms.86 Therefore, if one agent is not effective, it is reasonable to try another agent that may mediate benefit through a different component of the involved pain pathways. When partial response is seen with one agent, some clinicians consider combination therapy with an agent from another class, but there are few data to indicate additional benefit from combination therapy or to guide the choice of combination.21 These medications are started usually at a low dose and titrated to a dose where effect is seen with acceptable toxicity. For example, tricyclic antidepressants are started at 10 to 25 mg at bedtime and gradually increased every 3 to 7 days in 10- to 25-mg increments, up to doses of 150 mg.21 Gabapentin has an effective dose range of 100 to 3,600 mg but is commenced in low doses of 100 to 300 mg at night.21 Pregabalin doses range from 25 to 600 mg, commencing with 25 to 75 mg at night.21 Available data suggest that adjuvants improve pain control within 4 to 8 days when
<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>No. of Patients Analyzed</th>
<th>Type of Pain</th>
<th>Cancer Type</th>
<th>Study Design</th>
<th>Study Drug Comparator</th>
<th>Duration of Study Treatment</th>
<th>Pain Outcome/Efficacy</th>
<th>Toxicity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruera et al.</td>
<td>40</td>
<td>31</td>
<td>All</td>
<td>All</td>
<td>Randomized, double-blind, cross-over</td>
<td>Methylprednisolone 16 mg twice a day/placebo</td>
<td>5 days in each period, 3-day washout</td>
<td>Significant difference</td>
<td>Cushingoid features; anxiety; 3 patients discontinued treatment in methylprednisone arm</td>
<td>Reduced analgesic consumption also reported</td>
</tr>
<tr>
<td>Bruera et al.</td>
<td>51</td>
<td>43</td>
<td>All</td>
<td>All</td>
<td>Randomized double-blind, parallel</td>
<td>Dexamethasone 10 mg twice a day/placebo</td>
<td>7 days</td>
<td>No effect on pain or analgesic consumption</td>
<td>Ankle edema; restlessness; 3 patients discontinued dexamethasone</td>
<td>Too low level of pain at baseline may have affected results</td>
</tr>
<tr>
<td>Della Cuna et al.</td>
<td>403</td>
<td>190 completed, 142 died</td>
<td>All</td>
<td>All</td>
<td>Randomized double-blind, parallel</td>
<td>Methylprednisolone 125 mg intravenous daily/placebo</td>
<td>8 weeks</td>
<td>Significant difference</td>
<td>Vomiting; hypokalemia; anemia; hyperglycemia; 10 patients discontinued methylprednisolone (stomach pain, GI bleeding, hypotension, hyperglycemia, hypocalcemia, hypomagnesemia)</td>
<td></td>
</tr>
<tr>
<td>Popiela et al.</td>
<td>173</td>
<td>87 completed, 57 died</td>
<td>All</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Methylprednisolone 125 mg intravenous daily/placebo</td>
<td>8 weeks</td>
<td>No significant difference</td>
<td>GI (11%); cardiovascular (8%); 16 patients discontinued methylprednisolone</td>
<td></td>
</tr>
</tbody>
</table>
added to opioids for cancer pain.20 The doses used in the randomized studies are listed in Table 5.

Efficacy

There have been two recent reviews (one systematic) exploring the role of pharmacologic therapy of neuropathic cancer pain and another systematic review of the role of antiepileptic or antidepressants added to opioids for cancer pain.20,21,67 These reviews support a beneficial effect for antiepileptics and antidepressants in the treatment of both mixed-type and neuropathic cancer pain, but there are methodologic issues with the included studies.20,21 These include poorly defined primary outcome measures and varying doses of concomitant opioids.67 In several studies, CIs for outcomes in the intervention arm overlapped with those of the control arm, indicating a lack of significant difference, and it was not possible to make direct comparisons (number needed to treat, number needed to harm) because comparator arms include other active therapies as well as placebo.67 The effect size seen was much less than that in patients with noncancer neuropathic pain.20

There are limited data on treatment that is effective for neuropathic pain related to cancer treatment. A recent RCT explored the use of duloxetine 60 mg, an antidepressant from the selective serotonin and noradrenaline reuptake inhibitor class, for chemotherapy-induced painful peripheral neuropathy; it showed a mean decrease in average pain on an 11-point numeric rating scale of 1.06 (95% CI, 0.72 to 1.4) in the duloxetine group versus 0.34 (95% CI, 0.01 to 0.66; \(P = .003 \)) in the placebo group after 5 weeks of treatment.69

BISPHOSPHONATES

Bone metastases, a common source of pain, are caused by upregulated osteoclastic activity, leading to increased bone resorption. Bisphosphonates are selective inhibitors of osteoclastic bone resorption. There are two classes of bisphosphonates—the older simple bisphosphonates, such as etidronate and clodronate, and the more potent inhibitors of bone resorption, the nitrogen-containing bisphosphonates, which include pamidronate and zoledronate. Several meta-analyses have shown a decrease in skeletal-related events with bisphosphonates, and the evidence is strongest for breast cancer,74 prostate cancer,75 and multiple myeloma.76 A Cochrane review reported a reduction in skeletal-related events of 15% (risk ratio, 0.85; 95% CI, 0.77 to 0.94; \(P = .001 \)) in nine studies including 2,806 patients with breast cancer with bone metastases that compared a bisphosphonate with either placebo or no bisphosphonate.74 A significant improvement in bone pain was found after receiving a bisphosphonate in six of 11 studies that evaluated pain. A meta-analysis of eight studies comparing a bisphosphonate with placebo found minimal differences in adverse events between the two groups, but there was an increase in nausea and acute-phase reactions in the bisphosphonate arms.75 The risk of osteonecrosis of the jaw is estimated to be between 0.7% and 12% and is more likely to occur in patients with metastatic disease and with poor oral hygiene or after dental surgery74 (Table 5).

DENOSUMAB

Denosumab is a fully human monoclonal antibody against the cytokine receptor-activated nuclear k\(\beta\) ligand (RANKL), which is involved in tumor cell migration and is a mediator of osteoclast differentiation and activation.73 Six RCTs in patients with bone metastases found a benefit for denosumab over zoledronic acid, pamidronate, or ibandronate in incidence (risk ratio, 0.84; 95% CI, 0.80 to 0.88) and time to skeletal-related events, but no difference in overall survival,77 although subgroup analysis in one study suggested that patients with multiple myeloma may have increased mortality with denosumab.78 Total adverse events were similar, except for increased hypocalcemia and less nephrotoxicity with denosumab. One of the studies, in which pain was a secondary outcome, randomly assigned 2,046 women with breast cancer with bone metastases to denosumab or zoledronic acid. The study reported no meaningful difference in improvement in pain severity or time to improvement of pain between the groups, but there was less worsening of pain severity and less functional impairment secondary to pain and fewer patients required progression to strong opioid analgesics in the denosumab arms73 (Table 5).

These studies suggest that bisphosphonates are beneficial as an adjunct for pain control from bony metastases for some tumor types. Denosumab is more convenient than bisphosphonates but substantially more expensive.

LIGNOCAIN (LIDOCAINE)

Local anesthetics inhibit pain predominantly by blocking sodium channels and have shown efficacy in chronic nonmalignant neuropathic pain.21 Topical lignocaine has shown benefit in allogdynia from postherpetic neuralgia.22 There are some uncontrolled and controlled studies of continuous subcutaneous infusion of lignocaine in cancer pain79-81 (Table 6). However, these studies all have methodologic limitations, and the role of lignocaine needs to be substantiated in randomized placebo-controlled studies.

KETAMINE

The dissociative anesthetic ketamine has been used widely in the management of chronic cancer pain, usually in the setting of pain that is not controlled by opioids or opioids plus adjuvant analgesics.24 Its use had been mainly extrapolated from surgical settings, and evidence for benefit has come mainly from case series and uncontrolled studies in people with cancer (Table 6). However, in a recent RCT, there was no difference compared with placebo, pain type (neuropathic v nociceptive) was not a predictor of response, and those receiving ketamine were more likely to experience adverse effects.24 This study was not powered to specifically compare differences in effect between neuropathic and nociceptive pain.

CANNABINOID

Some cultural groups have used cannabinoids for medicinal purposes for thousands of years. There is a lack of evidence for their efficacy for cancer pain, particularly compared with other agents,82 but trials are ongoing.
Table 5. Illustrative Studies of Antidepressants, Antiarrhythmic Drugs, Bisphosphonates, and Denosumab for Analgesia in Patients With Cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients Analyzed</th>
<th>Type of Pain</th>
<th>Cancer Type</th>
<th>Study Design</th>
<th>Interventions</th>
<th>Duration of Study Treatment</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventafridda V: Psychopharmacology (Berl) 95 Suppl:S44-49, 1988</td>
<td>45 31</td>
<td>Mixed and neuropathic</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Trazodone 75-225 mg/day, amitriptyline 250 mg/day</td>
<td>2 weeks</td>
<td>No difference</td>
<td>Not reported</td>
</tr>
<tr>
<td>Kalso E: Pain 64:293-302, 1996</td>
<td>20 15</td>
<td>Neuropathic</td>
<td>Post-treatment of breast cancer</td>
<td>Randomized double-blind, cross-over</td>
<td>Amitriptyline 25-100 mg/placebo</td>
<td>4 weeks each with 2-week washout (10 weeks)</td>
<td>Significant difference</td>
<td>No predefined primary endpoint</td>
</tr>
<tr>
<td>Tasmuth T: Eur J Pain 26:17-24, 2002</td>
<td>15 13</td>
<td>Neuropathic pain</td>
<td>Breast cancer</td>
<td>Randomized double-blind, cross-over</td>
<td>Venlafaxine 18.75 mg/placebo</td>
<td>4 weeks in each period, including a dose titration weekly with 2-week washout (10 weeks)</td>
<td>Significant difference</td>
<td>No predefined primary endpoint</td>
</tr>
<tr>
<td>Kautio AL: J Pain Symptom Manage 35:31-39, 2008</td>
<td>42 33</td>
<td>Neuropathic</td>
<td>Receiving vinca alkaloids, platinum, or taxane chemotherapy</td>
<td>Randomized, double-blind, parallel</td>
<td>Amitriptyline 25-50 mg/placebo</td>
<td>8 weeks</td>
<td>No difference in appearance of neuropathic symptoms</td>
<td>Explored prevention</td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keskinbora K: J Pain Symptom Manage 34:183-189, 2007</td>
<td>75 63</td>
<td>Mixed and neuropathic</td>
<td>All</td>
<td>Randomized, open-label, parallel</td>
<td>Opioid plus gabapentin (1,287 mg per day) vs opioid alone</td>
<td>13 days</td>
<td>Significant difference</td>
<td>Dizziness, sedation</td>
</tr>
<tr>
<td>Caraceni A: J Clin Oncol 22:2009-717, 2004</td>
<td>121 89</td>
<td>Mixed</td>
<td>All</td>
<td>Randomized double-blind, parallel</td>
<td>Opioid plus gabapentin (1,395 mg per day) vs opioid alone</td>
<td>10 days</td>
<td>Significant difference</td>
<td>Sedation, dizziness, constipation, nausea and vomiting</td>
</tr>
<tr>
<td>Vilholm OJ: Eur J Pain 15:851-857, 2008</td>
<td>27 25</td>
<td>Postmastectomy pain syndrome</td>
<td>Breast cancer</td>
<td>Randomized double-blind, cross-over</td>
<td>Levetiracetam 1,500 mg twice daily/placebo</td>
<td>4 weeks in each period, including a dose titration weekly with 1-week washout (9 weeks)</td>
<td>No difference</td>
<td></td>
</tr>
<tr>
<td>Mishra S: Am J Hosp Palliat Care 29:177-182, 2012</td>
<td>120 120</td>
<td>Neuropathic</td>
<td>All</td>
<td>Randomized double-blind, parallel</td>
<td>Pregabalin 75-300 mg, gabapentin 300-600 mg, tramadol 100 mg/day/placebo</td>
<td>4 weeks</td>
<td>All groups had improvement, with no difference between groups</td>
<td>Somnolence, dizziness, dry mouth, nausea, constipation; no difference between groups</td>
</tr>
<tr>
<td>Rao et al, 2007</td>
<td>115 68</td>
<td>Chemotherapy-induced neuropathy</td>
<td>All</td>
<td>Randomized, double-blind, cross-over</td>
<td>Gabapentin 2,700 mg/placebo</td>
<td>6 weeks in each period, with 2-week washout (14 weeks)</td>
<td>No difference</td>
<td>Mild adverse effects and similar in each group</td>
</tr>
<tr>
<td>Rao RD: Cancer 112: 2802-808, 2008</td>
<td>125 80</td>
<td>Chemotherapy-induced neuropathy</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Lamotrigine 300 mg/placebo</td>
<td>10 weeks</td>
<td>No difference</td>
<td>Mild adverse effects and similar in each group</td>
</tr>
<tr>
<td>Yajnik S: J Pain Symptom Manage 7:209-213, 1992</td>
<td>75</td>
<td>Mixed</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>Opioid plus phenytoin (100 mg) vs opioid alone</td>
<td>28 days</td>
<td>Significant difference</td>
<td>3 patients had adverse effects</td>
</tr>
</tbody>
</table>

(continued on following page)
<table>
<thead>
<tr>
<th>Study</th>
<th>interventions</th>
<th>Study Design</th>
<th>No. of Patients</th>
<th>Patient Population</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith et al., 69</td>
<td>Duloxetine 60 mg v placebo</td>
<td>Randomized double-blind, cross-over</td>
<td>231</td>
<td>Chemotherapy-induced pain after taxane or oxaliplatin treatment</td>
<td>Fatigue (7%), insomnia (5%), nausea (5%)</td>
</tr>
<tr>
<td>Lipton et al., 70</td>
<td>Pamidronate (90 mg intravenously)/placebo</td>
<td>Randomized, double-blind, parallel</td>
<td>754</td>
<td>Bone metastases, Breast cancer</td>
<td>Pain and analgesic scores significantly better in pamidronate group</td>
</tr>
<tr>
<td>Body et al., 71</td>
<td>Ibandronate (50 mg oral)/placebo</td>
<td>Randomized, double-blind, parallel</td>
<td>564</td>
<td>Bone metastases, Breast cancer</td>
<td>Pain and analgesic scores significantly better; pain improved within 8-12 weeks of commencing ibandronate</td>
</tr>
<tr>
<td>Study</td>
<td>No. of Patients</td>
<td>Type of Pain</td>
<td>Cancer Type</td>
<td>Study Design</td>
<td>Interventions</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Hardy, 2012</td>
<td>185</td>
<td>Refractory cancer pain</td>
<td>All</td>
<td>Randomized, double-blind, parallel</td>
<td>No change in baseline opioid or co-analgesic treatment; infusion of ketamine or placebo (normal saline) at three dose levels (100, 300, or 500 mg) in a 5-day schedule with predefined dose titration schedule based on pain score/toxicity</td>
</tr>
<tr>
<td>Sharma et al, 2009</td>
<td>50</td>
<td>Opioid-refractory cancer pain</td>
<td>All</td>
<td>Randomized, double-blind, cross-over</td>
<td>Lidocaine and placebo infusion, separated by 2 weeks</td>
</tr>
<tr>
<td>Bruera et al, 1992</td>
<td>11</td>
<td>Neuropathic pain</td>
<td>Advanced malignancy</td>
<td>Randomized, double-blind, cross-over</td>
<td>Lidocaine 5 mg/kg IV over 30 minutes v normal saline over 30 minutes</td>
</tr>
<tr>
<td>Ellemann et al, 1989</td>
<td>10</td>
<td>Cutaneous allodynia</td>
<td>All</td>
<td>Randomized, double-blind, cross-over</td>
<td>Lidocaine 5 mg/kg in 200 mL of 5% glucose IV over 30 minutes v 200 mL of normal saline IV over 30 minutes</td>
</tr>
</tbody>
</table>

Abbreviation: IV, intravenous.
The evidence for use of nonopioid analgesia in cancer pain remains limited. With the exception of the bisphosphonate/denosumab trials, most studies have small sample sizes, frequently have methodologic limitations, and lack long-term follow-up, so that data on the effects of chronic use of most of the agents remain limited.

Some of the outstanding questions include the following: whether acetaminophen should be used concurrently with an opioid and, if so, in what dose; whether NSAIDs and corticosteroids can be safely continued long term in patients with cancer and the safety and efficacy of the selective COX-2 inhibitors still on the market; and which nonopioid analgesics are best for specific types of pain and in which combinations. Pharmacogenomics and phase IV studies may have a role to play in answering these questions.

REFERENCES

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The author(s) indicated no potential conflicts of interest.

AUTHOR CONTRIBUTIONS

Conception and design: All authors
Collection and assembly of data: All authors
Data analysis and interpretation: All authors
Manuscript writing: All authors
Final approval of manuscript: All authors
addition to WHO Step III opioids in the control of pain in cancer pain management. Expert Opin Emerg Drugs 10:151-171, 2005
70. Saad F, Eastham J: Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urolgy 76:1175-1181, 2010