Nonopioid Drugs in the Treatment of Cancer Pain

Janette Vardy and Meera Agar

ABSTRACT

Janette Vardy, Sydney Medical School, University of Sydney, Sydney, and Concord Cancer Centre, Concord; Meera Agar, Braeside Hospital, Hammond Care, Prairiewood, and South West Sydney Clinical School, University of New South Wales, Liverpool, New South Wales, Australia.

Published online ahead of print at www.jco.org on May 5, 2014.

Authors' disclosures of potential conflicts of interest and author contributions are found at the end of this article.

Corresponding author: Janette Vardy, MD, Concord Cancer Centre, Concord Repatriation General Hospital, Hospital Rd, Concord, New South Wales, 2137, Australia; e-mail: janette.vardy@sydney.edu.au.

© 2014 by American Society of Clinical Oncology

0732-183X/14/3216w-1677w/\$20.00 DOI: 10.1200/JCO.2013.52.8356 The WHO analgesic ladder for the treatment of cancer pain provides a three-step sequential approach for analgesic administration based on pain severity that has global applicability. Nonopioids were recommended for mild pain, with the addition of mild opioids for moderate pain and strong opioids for severe pain. Here, we review the evidence for the use of nonopioid analgesic agents in patients with cancer and describe the mode of action of the main drug classes. Evidence supports the use of anti-inflammatory drugs such as acetaminophen/paracetamol and nonsteroidal anti-inflammatory drugs (NSAIDs) for mild cancer pain. Adding an NSAID to an opioid for stronger cancer pain is efficacious, but the risk of long-term adverse effects has not been quantified. There is limited evidence to support using acetaminophen with stronger opioids. Corticosteroids have a specific role in spinal cord compression and brain metastases, where improved analgesia is a secondary benefit. There is limited evidence for adding corticosteroids to stronger opioids when pain control is the primary objective. Systematic reviews suggest a role for antidepressant and anticonvulsant medications for neuropathic pain, but there are methodologic issues with the available studies. Bisphosphonates improve pain in patients with bony metastases in some tumor types. Denosumab may delay worsening of pain compared with bisphosphonates. Larger studies of longer duration are required to address outstanding questions concerning the use of nonopioid analgesia for stronger cancer pain.

J Clin Oncol 32:1677-1690. © 2014 by American Society of Clinical Oncology

INTRODUCTION

Up to 90% of patients with cancer experience pain at some stage of their cancer journey, with a third rating the intensity of their pain as moderate to severe, ¹⁻³ and up to half being undertreated. ^{1,4,5} The WHO analgesic ladder, which provides guidelines for the treatment of cancer pain, was published in 1986 and updated in 1996.6 The guidelines recommend a sequential three-step approach for analgesic administration based on pain severity, with nonopioids for mild pain, weak opioids for moderate pain, and strong opioids for severe pain. In addition to drug selection based on the severity of the pain and individualized for the patient, recommendations include the use of oral medications whenever possible, with fixed scheduled dosing according to the pharmacokinetics of the drug rather than on demand and regular assessment and re-evaluation of the pain. It is recommended that the drugs used in step 1 be continued as opioids are added. The rationale for adding a nonopioid to an opioid is to add a drug with a different mechanism of action with the aim of improving analgesic control and/or reducing opioid requirements and minimizing opioid adverse effects.⁷

When the WHO guidelines were developed to address the issue of undertreated pain, there was

limited evidence to inform them. Rather, they were developed to provide a framework to guide international policy for the treatment of cancer pain with pain relief that was affordable and readily accessible globally. Despite controversies about whether the second step should be omitted and whether nonopioid analgesic agents should be continued once an opioid is required, the WHO analgesic ladder remains the mainstay of management of cancer pain. Individual studies and systematic reviews that have evaluated the WHO guidelines have shown that they can control cancer pain in 45% to 100% of patients.

The most common nonopioid agents used to treat cancer pain include acetaminophen/paracetamol; anti-inflammatory agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids; antineuropathic agents, which include tricyclic antidepressants and anticonvulsants; and bisphosphonates. The mode of action of each drug is outlined in Table 1, and the major studies that have evaluated their use in people with cancer are outlined in Tables 2 to 6.

ACETAMINOPHEN/PARACETAMOL

Acetaminophen (known in some countries as paracetamol) is an inexpensive analgesic that is used globally. Although it was developed over a hundred years

Vardy and Agar

Class of Drug	Pharmacokinetics	Analgesic Mode of Action	Common Toxicities	Medication Interactions	Major Precautions
Acetaminophen	Rapid and complete absorption from GI tract Hepatic conjugation with glucuronide and sulphate metabolites Peak plasma concentration in 30-60 minutes Half-life approximately 2 hours	Exact mechanism remains unclear; inhibits production of lipooxygenase and cyclooxygenase — decrease prostaglandin and interleukin-1 in hypothalamus; release of endogenous opicids that inhibit descending pain pathways ¹² Preclinical models suggest role for endocannabinoid system ¹⁴	In overdose: hepatotoxicity, acute renal tubular necrosis Rare: idiosyncratic fatal hepatotoxicity	Potential to increase international normalized ratio in patients on warfarin ¹³ Risk of increased metabolism with anticonvulsants, carbamazepine, barbiturates Potential interaction with tyrosine kinase inhibitors (sorafenib, dasatinib, imatinib), leading to inhibition of acetaminophen glucuronidation ¹⁵	Use with care in patients with hepatotoxicity
NSAIDs	Complete bioavailability; binds to albumin; minimal first-pass hepatic metabolism Half-life approximately 2-2.5 hours Marked individual variation	Inhibit cyclooxygenase → decrease conversion of arachidonic acid to prostaglandin, thromboxane, and prostacyclin synthesis Possibly also non-prostaglandin- mediated mechanisms	Dyspepsia, GI bleeding, cardiovascular, nephrotoxicity, hypertension, transaminitis ^{14,16}	Risk of drug interactions with antiplatelet and anticoagulant agents, antihypertensives, corticosteroids	Recent peptic ulcer disease, prior NSAID gastroduodenopathy, bleeding diathesis, renal disease, major cardiovascular disease
Conticosteroids	Dexamethasone: After parenteral administration, plasma levels peak within 5 minutes Minimally protein bound Hepatic metabolism is slow, and excretion is mainly in the urine Half-life approximately 3-5 hours Prednisolone and prednisone: Highly protein bound Peak concentration 1-2 hours after oral dose Rapid conversion from prednisone into prednisolone in the liver	Exact mechanism remains unclear, but potential effects at all steps of nociception (transduction, transmission, modulation, and pain perception) ¹⁷ Mediate their anti-inflammatory effect by inhibition of collagenase and proinflammatory cytokines or stimulating lipocortin production ¹⁸ Reduce vascular permeability ¹⁷ Inhibit prostaglandin synthesis ¹⁷	Immunosuppression Sodium and water retention, hypertension Increased appetite, emotional lability, depression, insomnia, psychosis Hyperglycemia Myopathy Cushingoid appearance Impaired wound healing, skin thinning, osteoporosis, avascular necrosis of femoral head Cataracts Dyspepsia, peptic ulceration, fatty liver Adrenal insufficiency on abrupt cessation after longer duration use!7.19	NSAIDs Anticoagulants	Concurrent NSAID use Diabetes Active peptic ulcer disease
Tricyclic antidepressants, eg, amitriptyline, imipramine (tertiary amines), nortriptyline (secondary amine)	Genetic polymorphisms in metabolic pathways result in large pharmacokinetic variability	Inhibit presynaptic update of serotonin and noradrenalin enhancing pain inhibitory pathways; block voltage-dependent sodium channels ²⁰ (continue	of Antimuscarinic side effects (eg, dry mouth, lin constitution, urinary retention, blurred vision) Postural hypotension nels ²⁰ Gait disturbance Sedation Confusion Sudden cardiac death ²² (continued on following page)	Anticholinergics Psychoactive medications Class IC antiarrhythmics and selective serotronin reuptake inhibitors metabolized by P4502D6 can lead to toxic concentrations of tricyclic antidepressants ²²	Cardiac conduction blocks Arrhythmia epilepsy ²¹

Class of Drug	Pharmacokinetics	Analgesic Mode of Action	Common Toxicities	Medication Interactions	Major Precautions
Gabapentin, pregabalin	Gabapentin circulates mainly unbound; renal excretion unchanged; dose may need reduction in renal impairment Pregabalin is rapidly absorbed after oral administration, with 90% oral bicavailability independent of dose; renal excretion unchanged; dose may need reduction in renal impairment	Block a ₂ § subunit of voltage- dependent calcium channels ²¹	Somnolence Dizziness Peripheral edema Nausea Ataxia Vertigo Asthenia Dry mouth	Psychoactive medications may potentiate side effects	Suicidal ideation
Carbamazepine	Slow oral absorption Peak concentration 4-24 hours Steady-state depends on autoinduction by carbamazapine and heteroinduction by other enzyme-inducing medication and ranges between 1 and 2 weeks Conjugated metabolites excreted in the urine	Blocks voltage-dependent sodium channels ²⁰	Dermatologic reactions Hypersensitivity Seizures Renal and hepatic dysfunction Aplastic anemia and agranulocytosis Anticholinegic effects Suicidal ideation Confusion	Interactions between CYP3A4 inducers or inhibitors and carbamazepine Monoamine oxidase inhibitors	Bone marrow depression Systemic lupus erythematosus Hepatic porphyria Hepatic failure Atrioventricular block
Bisphosphonates	Poor oral absorption Renal excretion (approximately 70%), remainder taken up by bone Half-life elimination 21-35 hours	Inhibit osteoclast bone resorption by attaching to hydroxyapatite binding sites; decrease osteoclast activity by decreasing osteoclast progenitor cells and increasing osteoclast apoptosis	Acute-phase reactions Coular inflammation Renal toxicity Electrolyte disturbance Hypocalcemia Osteonecrosis of jaw	Aminoglycosides and phosphate supplements may increase risk of hypocalcemia NSAIDs increase risk of gastric ulceration	Creatinine clearance < 30 mL/min
Denosumab	Administered subcutaneously Not renally excreted Half-life elimination approximately 28 days	Fully human monoclonal antibody that binds RANKL, which regulates migration of tumor cells into bone; inhibits RANKL-mediated osteoclastogenesis → less bone resorption ²³	Acute-phase reactions Fatigue Headache Nausea Skin rash Hypocalcemia Osteonecrosis of jaw	May interact with immunosuppressive drugs, leading to higher risk of infection	Hypocalcaemia
Lignocaine	Parenteral class lb local anesthetic agent Lignocaine is 90% metabolized by cytokine P450, and metabolites are all renally excreted Half-life 1.5-2 hours	Blocks voltage-gated sodium channels	Restlessness, tremor, convulsions Drowsiness Respiratory failure Dysphoria Euphoria Muscle twitching Ventricular tachycardia and fibrillation	Cimetidine β-Blockers Phenytoin	Cardiac failure Heart block Arrhythmia Hypokalemia Hypertension Hepatic failure Renal failure
Ketam ine	Dissociative anesthetic agent Rapid absorption and wide distribution, including in the brain 20%–50% bound to plasma proteins; extensive hepatic metabolism, with one active metabolite (norketamine)	Interacts with M-methyl-b - aspartate receptors, interrupts cholinergic transmission, and inhibits noradrenalin and 5-hydroxytryptamine uptake ²⁴	Hypertension and tachycardia Emergent phenomena and psychomimetic effects (hallucinations, disconnection, disassociation, vivid dreams), sedation, drowsiness Raised intracranial and intraocular pressure Delirium Impaired bladder function ²⁴	Psychoactive medications (potentiate neurologic toxicity) Medications with hypertensive effect	Raised intracranial or intraocular pressure Conditions where significant hypertension would be hazardous (eg. cerebrovascular disease) Psychiatric illness Delirium

Abbreviations: NSAIDs, nonsteroidal anti-inflammatory drugs; RANKL, receptor-activated nuclear factor κB ligand.

ago, its mode of action for pain relief has not been fully elucidated. It is sometimes classified as an NSAID, but its mechanism of action is not the same. ²⁵ Acetaminophen is well tolerated with a good safety profile at therapeutic doses. In overdose, hepatotoxicity and acute renal tubular necrosis can occur. Patients may be at higher risk of hepatotoxicity after starvation, fasting, or chronic alcohol abuse, but hepatic toxicity is rare in doses less than 8 g daily, even in patients with chronic liver disease. ^{20,26} Serious hypersensitivity reactions to acetaminophen are extremely rare (Table 2).

Acetaminophen for Acute Pain

Systemic reviews and meta-analyses have shown that acetaminophen is more effective than placebo for acute postoperative pain. $^{33-35}$ The optimal dose of acetaminophen remains uncertain. A Cochrane review of 51 studies including 5,762 postoperative participants and using an end point of 50% total pain relief found that a single dose of acetaminophen was significantly more effective than placebo, with a number needed to treat of 3.5 patients (95% CI, 2.7 to 4.8 patients) for 500 mg of acetaminophen, 4.6 patients (95% CI, 3.9 to 5.5 patients) for 600 to 650 mg, and 3.6 patients (95% CI, 3.4 to 4.0 patients) for 975 to 1,000 mg.³³ There was no difference in adverse effects in the acetaminophen arms compared with placebo.³³ Another Cochrane review comprising 20 studies and 2,641 patients evaluated oxycodone with and without acetaminophen for acute postoperative pain; the number needed to treat for oxycodone 15 mg was 4.6 patients (95% CI, 2.9 to 11 patients) compared with 2.7 patients (95% CI, 2.4 to 3.1 patients) for oxycodone 10 mg and acetaminophen 650 mg.³⁶

Acetaminophen for Patients With Cancer

There is good evidence that acetaminophen is effective for treating mild cancer pain.³⁷ There is limited evidence for adding acetaminophen to an opioid, and practice varies globally; patients in Europe and Australasia generally remain on acetaminophen once opioids are required, but in North America, acetaminophen is generally discontinued once strong opioids are initiated. A systematic review evaluating acetaminophen in addition to opioids in five small randomized controlled trials (RCTs) involving 200 patients with cancer found no benefit to adding acetaminophen in four of the five studies.³⁸ The positive study used a cross-over design.²⁸ Patients reported a modest improvement in pain and overall well-being while on acetaminophen (1 g every 4 hours five times a day), with a nonsignificant preference for analgesic control during the period they were on acetaminophen.²⁸ A recent RCT evaluated the efficacy of oxycodone (5 mg)/acetaminophen (325 mg) compared with placebo every 6 hours for 3 days for pain caused by bone metastases in 246 patients already on opioids.³² Although the oxycodone/acetaminophen group had improved pain relief, less breakthrough pain, and reduced need for rescue pain relief, the study design does not allow the relative contribution of each agent in the combination to be determined.

NSAIDS

NSAIDs are a heterogeneous group of drugs that inhibit cyclooxygenase (COX), leading to a reduction of the conversion of arachidonic acid to thromboxane A₂ and prostaglandin synthesis (Table 1).³⁹ There are two main forms of COX—COX-1 (including a variant known as COX-3) and COX-2. Although COX-1 is present in most

tissues, COX-2 is mainly expressed in inflamed tissue. ^{39,40} Most NSAIDs are nonselective inhibitors of COX-1 and COX-2, but newer agents such as celecoxib have much greater affinity for the COX-2 isoform. ⁴⁰ The selective COX-2 inhibitors are substantially more expensive than the older nonselective agents.

Adverse Effects

The toxicity profile for NSAIDs includes GI and cardiovascular effects, hepatotoxicity, and nephrotoxicity, including renal failure caused by renal vasoconstriction, hypertension, and electrolyte disturbances. 16,41 The risk of toxicity is increased with higher doses of NSAIDs and in those with comorbidities and the elderly. Patients with a history of GI bleeding, an NSAID-related ulcer, Helicobacter pylori infection, renal or hepatic impairment, or chronic heart failure are at increased risk of serious toxicity. Concomitant use of an NSAID with antiplatelet or anticoagulant agents, antihypertensives, glucocorticoids, or diuretics has an additive risk of hemorrhage or renal hypoperfusion. Prior treatment of H pylori or concomitant use of a gastroprotectant agent (eg, a proton pump inhibitor) may reduce GI toxicity in those at higher risk. 42 Selective COX-2 inhibitors cause less GI toxicity than nonselective COX-1 and COX-2 inhibitors, 41 but several large studies have shown an increase in cardiovascular toxicity, including myocardial infarction and stroke, with the selective COX-2 inhibitor rofecoxib. 43,44 This is thought to be a result of a prothrombotic effect. Some selective COX-2 inhibitors were withdrawn from the market in 2004 and 2005 because of this toxicity. 44 Celecoxib is one of the main drugs in this class still in common usage.

NSAIDs in Patients With Cancer

The maximum recommended single dose of an NSAID has been found to be equivalent in analgesic potency to approximately 5 to 10 mg of parenteral morphine. ^{45,46} A meta-analysis of 25 studies in 1,545 patients with cancer found benefit in all eight studies comparing a single dose of an NSAID with placebo. ⁴⁶ No significant difference in analgesic efficacy was found in studies comparing an NSAID with an NSAID and a weak opioid, but studies were difficult to compare because of heterogeneity (Table 3).

A Cochrane review found seven studies that compared an NSAID (excluding acetaminophen) with placebo for cancer pain. S4 All studies reported improved efficacy for the NSAID, with no difference in adverse effects, but all were single-dose studies. Thirteen studies compared different NSAIDs, but there was no convincing evidence of benefit for one NSAID over another. Of the 10 studies that compared an NSAID with an opioid, four found the NSAID to be more effective, whereas two studies showed they were less beneficial. Metanalyses of four of the studies found a lack of significant difference in pain relief but more adverse events in the opioid groups (odds ratio, 0.38; 95% CI, 0.15 to 0.97). 45,55-57

Use of an NSAID With an Opioid

Eight studies compared an NSAID versus an NSAID combined with an opioid; four of these studies found that the NSAID/opioid combination gave marginally better pain relief. Meta-analysis of six of the studies showed no significant difference in adverse events. ⁵⁴ The studies used a mixture of weak and strong opioids, making comparison problematic.

Both the Cochrane review⁵⁴ and a more recent systematic review incorporating additional studies³⁸ showed a benefit to adding an

Subject No. of Patients Plant of Patients Character Plant of Patients Character Plant of Patients Face of Patients Character Plant of Patients			Pe	Patient Population			Interventions		ď	Results	
43 40 Excluded primarily All Randomized, double-blind, Acetaminophen 1 g four 7 days in each No difference in NRS (0-10) No control placebologoid v period mean difference in pain near daylogoid v period mean difference in pain NR near developed v period mean difference in pain NR near developed v period mean difference in pain NA and meuropathic period pain pain All Randomized, double-blind, Acetaminophen 1 g IV four 1 day No difference in pain NA placebologoid v placebologoid v period pain near pain NA difference in pain near pain difference in pain near pain nea	Study	No. of Patients	No. of Patients Analyzed		Cancer	Study Design	Study Drug/Comparator	Duration of Study Treatment	Pain Outcome/Efficacy	Toxicity	Comments
34 30 All All Randomized double-blind, Acetaminophen 1 g five 2 days in each missed filedence in pain near placebo/opioid verbal numeric scele (0-10) of 0.4 (P = .03) 50 49 All All Randomized, double-blind, Acetaminophen 1 g four times a day/opioid verbal pain neuropethic parallel cross-over times a day/opioid verbal pain and neuropethic pain neuropethic grown and times a day/opioid verbal pain and neuropethic gross-over times a day/opioid verbal pain neuropethic gross-over double-blind, Acetaminophen 1 g four 5 days in each No difference in pain No difference in pain No difference in pain No difference in pain neuropethic gross-over times a day/opioid verbal pain neuropethic gross-over double-blind, Oxycodone/acetaminophen 3 days in each No difference in pain No difference in pain No difference in pain No difference in pain neuropethic gross-over double-blind, Oxycodone/acetaminophen 3 days in each No difference in pain No differe	Axelsson and Borup, 27		30	All	≡ V	Randomized double-blind, cross-over	Acetaminophen (1 g four times a day)/opioid v placebo/opioid	7 days in each period		NA	Written as letter to editor, so minimal detail; large attrition
43 40 Excluded primarity All Randomized, double-blind, Acetaminophen 1 g IV four 1 day No difference in pain No difference in pain No difference in pain No difference in pain No parallel to rectaminophen 750 mg 7 days in each No difference in pain No pain Randomized, double-blind, Acetaminophen 1 g four times a day/opioid v period control; UNS 0-10) 0.16 pain All Randomized, double-blind, Acetaminophen 1 g four period control; UNS 0-10) 0.16 pain All Randomized, double-blind, Oxycodone/scetaminophen 3 days in each No difference in pain No difference 5 pain intensity difference 6 pain parallel (5/326 mg) four times a pain intensity difference 6 pain parallel (5/326 mg) pain dayopioid v placebor (6/32 pain intensity difference 6/32 pain inte	Stockler et al, ²⁸ 2004	48	30	व	₹	Randomized double-blind, cross-over	Acetaminophen 1 g five times a day/opioid v placebo/opioid	2 days in each period	Benefit for acetaminophen; mean difference in verbal numeric score (0-10) of 0.4 (P = .03)	No difference in adverse effects	Improvement in overall well-being (10-point scale) of 0.7 (P = .05); nonsignificant preference for period on acetaminophen, 47% v 27%, with 27% having no preference; higher dose of acetaminophen
50 49 All Randomized, double-blind, Acetaminophen 750 mg 7 days No difference in pain No parallel rout times a day/opioid control pain Randomized, double-blind, Acetaminophen 1 g four times a day/opioid v plerod control; (NRS 0-10) 0.16 opioid/placebo 246 246 Bone pain All Randomized, double-blind, Oxycodone/acetaminophen 3 days Pain intensity difference 5 pervallel (5/325 mg) four times a cetaminophen v opioid v placebo/	Tasmacioglu et al, ²⁹ 2009	43	40	Excluded primarily neuropathic pain		Randomized, double-blind, parallel	Acetaminophen 1 g IV four times a day/opioid <i>v</i> placebo/opioid	1 day	No difference in pain control	No difference	No difference in morphine consumption; used IV acetaminophen and IV opioid (PCA)
31 22 Excluded primarity All Randomized, double-blind, Acetaminophen 1 g four 5 days in each No difference in pain No neuropathic cross-over times a day/opioid v period control; (NRS 0-10) 0.16 pain 246 Bone pain All Randomized, double-blind, Oxycodone/acetaminophen 3 days Pain intensity difference 5 parallel (5/325 mg) four times a benefit for oxycodone/acetaminophen v opioid respectively, on day 3 respectively, on day 3 (P < .001)	Cubero and del Giglio, ³⁰ 2010		64	ΙΈ	Ψ	Randomized, double-blind, parallel	Acetaminophen 750 mg four times a day/opioid v placebo/opioid	7 days	No difference in pain control	No difference, except increased somnolence in acetaminophen group	Switched from morphine to methadone ± acetaminophen; acetaminophen did not decrease time to achieve stable methadone dose
246 Bone pain All Randomized, double-blind, Oxycodone/acetaminophen 3 days Pain intensity difference 5 p parallel (5/325 mg) four times a benefit for oxycodone/ acetaminophen v placebo/ placebo/ placebo; 1.5 v 0.3, respectively, on day 3 (P < .001)	lsrael et al, ³¹ 2010	<u>6</u>	52	Excluded primarily neuropathic pain	≡ ₹	Randomized, double-blind, cross-over	Acetaminophen 1 g four times a day/opioid <i>v</i> opioid/placebo	5 days in each period	No difference in pain control; (NRS 0-10) 0.16	No difference	No difference in number of breakthrough doses, 0.42 ($P = .07$); no difference in patient preference; patients on at least 200 mg of oral morphine; large attrition
	Sima et al, ³² 2012	246	246	Bone pain	■	Randomized, double-blind, parallel	Oxycodone/acetaminophen (5/325 mg) four times a day/opioid v placebo/ opioid	3 days	Pain intensity difference benefit for oxycodone/ acetaminophen v placebo: 1.5 v 0.3, respectively, on day 3 (P < .001)	5 patients (4%) withdrew from oxycodone/acetaminophen group as a result of adverse events (2 asthenia, 2 dizziness, 1 nausea)	Decreased breakthrough pain in combination group

		Patient	Patient Population			Interventions	suc	R	Results	
	No. of	No. of Patients	É	ŀ		9	Duration of Study			
Study	Patients	Analyzed	La La	Cancer Type	Study Design	Study Drug/Comparator	lreatment	Pain Outcome/Efficacy	LOXICITY	Comments
Ferrer Brechner et al, ⁴⁷	30	28	≡	All	Randomized double-blind, 3-part cross-over	Ibuprofen (600 mg)/methadone (2.5 or 5 mg) v methadone/	1 day in each period	Improved pain intensity and pain relief with	No difference	Single dose each day
Lomen et al, ⁴⁸	26	22	Bone pain	n Breast	Randomized, double-blind,	Flurbiprofen/opioids v placebo/	21 days in each	No statistically	No difference	Trend to improvement on
1986					cross-over	opioids	period	significant difference		flurbiprofen
Stambaugh, ⁴⁹ 1988	160	160	■	All	Randomized, double-blind, parallel	Ketoprofen (100 or 300 mg) v aspirin/codeine (650 ma/60	Single dose, follow-up 6 hours	All active arms had improved pain	No difference	No difference in efficacy between active arms:
						mg) or placebo		intensity and		less rescue medication
								superior pain reliet compared with placebo		requirement in ketoprofen groups
Staquet, ⁵⁰ 1989	126	118	All	All	Randomized, double-blind,	Ş.	Single dose	Ketorolac at each dose	Only minor adverse effects,	No difference in efficacy
					parallel	intramuscular 20, 30, or 90		superior to placebo	but 10/15 in ketorolac	between ketorolac
										withdrawn because of
										use of rescue analgesics
										within 6-hour period:
										55% in placebo group v
										23% in ketorolac groups
Carlson et al, ⁵¹	75	70	₩	All	Randomized, double-blind,	Ketorolac tromethamine 10 mg Single dose, then 7	Single dose, then 7	Single-dose ketorolac	More adverse effects in	Multidose small benefit to
1990					parallel; placebo group	v acetaminophen/codeine	days of one of the	and acetaminophen/	ketorolac group (62% v	acetaminophen/codeine
					randomly assigned to	(600 mg/60 mg) v placebo	active drugs four	codeine superior to	48%)	
					active urug		umes dany	placebo, no difference between		
9	ů,	ů,		<	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TA 40	4	two active drugs		
Miller ⁵²	0 7	0 7	DOING DAILL ALLY	, Ally	3-part cross-over		o days iii eacii pellod	significant difference		with CMT: pain
1994								0		significantly better 1
										hour after CMT
Mercadante et	20	47	Any	Any	Open parallel	Ketorolac (20 mg three times a Until death	Until death	No difference in	Increased gastric	Slower opioid escalation in
al ⁵⁵ 2002						day)/opioid v opioid		analgesic efficacy in	discomfort on ketorolac;	ketorolac group
									opioid only group	

NSAID to a WHO step 3 opioid for cancer pain. Five of the seven studies found the addition of the NSAID to be efficacious, ³⁸ with three reporting improved pain with the addition of dipyrone ⁵⁸ or ibuprofen ^{47,58a} and two finding a decrease in opioid consumption with the addition of ketorolac ⁵³ or diclofenac. ⁵⁹ Six of the seven studies reported no significant differences in adverse effects between the groups, with one study finding more gastric discomfort in the NSAID plus opioid arm and more constipation in the opioid alone arm. ⁵³ There were no marked differences between the different NSAID drugs in efficacy, although individual responses to NSAIDs and their toxicity are highly variable.

Most of the acetaminophen and NSAID studies in patients with cancer had small sample sizes and were of short duration, and none included selective COX-2 inhibitors. Longer term efficacy and safety remain unknown, with prevalence and severity of toxicities not quantified in patients with cancer. Studies have not been adequately powered to determine whether NSAIDs or acetaminophen are more beneficial for certain types of cancer pain, although anecdotally, it is suggested that NSAIDs are more effective for pain associated with inflammation.

CORTICOSTEROIDS

Mode of Action

Inflammation has key roles in the pathophysiology of pain, and animal pain models suggest that corticosteroids can modulate pain perception. Proinflammatory cytokines are involved in the development of inflammatory and neuropathic pain, including CNS production from immune-competent glial cells. Bendogenous neurosteroids in the CNS and peripheral nervous system modulate γ -aminobutyric acid, N-methyl-D-aspartate, and ATP/adenosine bisphosphate (P2X) receptors, all of which play crucial roles in pain regulation. Steroid receptors are present in several neural structures, which may allow steroids to modulate neural activity and plasticity. Sex steroids may also play a role, with testosterone exerting an analgesic effect and estrogens exerting both hyperalgesic and analgesic effects.

Adverse Effects

Corticosteroids have multiple effects and lead to a wide range of potential short- and long-term adverse effects. ¹⁹ These include effects on the stress and immune response, carbohydrate metabolism, protein catabolism, electrolyte regulation, and behavior. ¹⁹

Agents and Dose

Commonly used corticosteroids are dexamethasone, methyl-prednisolone, betamethasone, prednisolone, and prednisone. ¹⁸ Dexamethasone is prescribed most often; it causes less fluid retention than other corticosteroids because it has less mineralocorticoid effect. ^{17,19} Corticosteroids are used with other analgesics in a broad range of clinical scenarios, in particular for management of bone and neuropathic pain. ¹⁷ Corticosteroids are included at each step of the WHO analgesic ladder, when an anti-inflammatory effect is considered beneficial. ¹⁷ They also have a role in specific clinical scenarios such as spinal cord compression, brain metastases, and bowel obstruction, ⁶⁰ where improved analgesia is a secondary benefit from the primary indication of reduction of peritumoral edema. ¹⁹ There is no established dosing, and the studies that have been undertaken comparing dose effectiveness have explored outcomes other than pain. ⁶¹

Efficacy

Despite corticosteroids being used widely to manage cancer pain, there is limited evidence for their efficacy. ¹⁷ A recent systematic review demonstrated a paucity of studies and included four RCTs that explored the role of corticosteroids when added to standard pain management. ¹⁸ One study demonstrated efficacy, and one study did not; the other two studies did not report pain or analgesic use adequately ¹⁸ (Table 4).

ANTIDEPRESSANTS AND ANTICONVULSANTS

Neuropathic pain is defined by the International Association for the Study of Pain as pain caused by a lesion or disease of the somatosensory system. It is present in at least 35% to 40% of patients with cancer pain. ²⁰ Up to 40% of survivors of cancer also report pain at 5 years after treatment that is often neuropathic in nature. ²² Chronic pain that is related to treatment includes pain caused by postsurgical syndromes (eg, mastectomy, thoracotomy, postamputation); chemotherapy-related painful peripheral neuropathy; avascular necrosis of the femoral or humeral head; and radiation-induced plexopathy, myelopathy, or proctitis.

Opioid analgesia is usually insufficient to achieve good control of neuropathic pain, and additional agents are required, mainly antidepressant and anticonvulsant medications. ^{20,21} Neuropathic pain from cancer may not share pathophysiologic mechanisms with chronic nonmalignant causes, but a similar range of drugs is used. ²¹ It is more common to try opioid analgesia alone before adding an adjuvant for neuropathic pain in North America, whereas European practice is to use combination therapy earlier. ²²

Adverse Effects

The choice of agent is often guided by the importance of potential adverse effects in an individual patient. For example, tricyclic antidepressants should be avoided if the patient is at risk of urinary retention. However, some clinicians choose agents based on characteristics of the pain.²¹ The agents are used mostly in combination with opioids, and adverse effects, in particular psychoactive adverse effects, can be synergistic.

Agents and Dose

There is a complex interplay between etiology, pathophysiology, and symptoms of neuropathic pain, and different pathophysiologic mechanisms can be responsible for similar symptoms.⁶⁶ Therefore, if one agent is not effective, it is reasonable to try another agent that may mediate benefit through a different component of the involved pain pathways. When partial response is seen with one agent, some clinicians consider combination therapy with an agent from another class, but there are few data to indicate additional benefit from combination therapy or to guide the choice of combination.²¹ These medications are started usually at a low dose and titrated to a dose where effect is seen with acceptable toxicity. For example, tricyclic antidepressants are started at 10 to 25 mg at bedtime and gradually increased every 3 to 7 days in 10- to 25-mg increments, up to doses of 150 mg.²¹ Gabapentin has an effective dose range of 100 to 3,600 mg but is commenced in low doses of 100 to 300 mg at night.²¹ Pregabalin doses range from 25 to 600 mg, commencing with 25 to 75 mg at night. 21 Available data suggest that adjuvants improve pain control within 4 to 8 days when

Vardy and Agar

		Patient Population	ulation		Interventions	Interventions	ons		Results	
Study	No. of Patients	No. of Patients Type of Analyzed Pain	Type of Pain	Cancer	Study Design	Study Drug/Comparator	Duration of Study Treatment	Pain Outcome/Efficacy	Toxicity	Comments
Bruera et al, ⁶² 1985	40	31	₩	₩	Randomized, double-blind, cross-over	ndomized, double-blind, Methylprednisolone 16 mg cross-over twice a day/placebo	5 days in each period, 3-day washout	Significant difference	Cushingoid features; anxiety; 3 patients discontinued treatment in methylprednisone arm	Reduced analgesic consumption also reported
Bruera et al, ⁶³ 2004	51	43	₩	₩	Randomized double-blind, parallel	Dexamethasone 10 mg twice a day/placebo	7 days	No effect on pain or analgesic consumption	Ankle edema; restlessness; 3 patients discontinued dexamethasone	Too low level of pain at baseline may have affected results
Della Cuna et al, ⁶⁴ 1989	403	198 completed, 142 died	■	■A	Randomized double-blind, parallel	Methyprednisolone 125 mg intravenous daily/placebo	ω «⊕eκ» «⊕eκ»	Significant difference	Vomiting: hypocalcemia; anemia; hyperglycemia; lo patients discontinued methylprednisolone (stomach pain, GI bleeding, hypotension, hyperglycemia, hypoalbuminemia)	
Popiela et al, ⁶⁵ 1989	173	87 completed, 57 died	N A	All	Randomized, double-blind, parallel	Randomized, double-blind, Methylprednisolone 125 mg parallel intravenous daily/placebo	8 weeks	No significant difference	GI (11%); cardiovascular (8%); 16 patients discontinued methylprednisolone	

added to opioids for cancer pain. ²⁰ The doses used in the randomized studies are listed in Table 5.

Efficacy

There have been two recent reviews (one systematic) exploring the role of pharmacologic therapy of neuropathic cancer pain and another systematic review of the role of antiepileptic or antidepressants added to opioids for cancer pain. ^{20,21,67} These reviews support a beneficial effect for antidepressants and anticonvulsants in the treatment of both mixed-type and neuropathic cancer pain, but there are methodologic issues with the included studies. ^{20,21} These include poorly defined primary outcome measures and varying doses of concomitant opioids. ⁶⁷ In several studies, CIs for outcomes in the intervention arm overlapped with those of the control arm, indicating a lack of significant difference, and it was not possible to make direct comparisons (number needed to treat, number needed to harm) because comparator arms include other active therapies as well as placebo. ⁶⁷ The effect size seen was much less than that in patients with noncancer neuropathic pain. ²⁰

There are limited data on treatment that is effective for neuropathic pain related to cancer treatment. A recent RCT explored the use of duloxetine 60 mg, an antidepressant from the selective serotonin and noradrenaline reuptake inhibitor class, for chemotherapyinduced painful peripheral neuropathy; it showed a mean decrease in average pain on an 11-point numeric rating scale of 1.06 (95% CI, 0.72 to 1.4) in the duloxetine group versus 0.34 (95% CI, 0.01 to 0.66; P = .003) in the placebo group after 5 weeks of treatment.⁶⁹

BISPHOSPHONATES

Bone metastases, a common source of pain, are caused by upregulated osteoclastic activity, leading to increased bone resorption. Bisphosphonates are selective inhibitors of osteoclastic bone resorption. There are two classes of bisphosphonates—the older simple bisphosphonates, such as etidronate and clodronate, and the more potent inhibitors of bone resorption, the nitrogen-containing bisphosphonates, which include pamidronate and zoledronate. Several meta-analyses have shown a decrease in skeletal-related events with bisphosphonates, and the evidence is strongest for breast cancer,74 prostate cancer, 75 and multiple myeloma. 76 A Cochrane review reported a reduction in skeletal-related events of 15% (risk ratio, 0.85; 95% CI, 0.77 to 0.94; P = .001) in nine studies including 2,806 patients with breast cancer with bone metastases that compared a bisphosphonate with either placebo or no bisphosphonate.⁷⁴ A significant improvement in bone pain was found after receiving a bisphosphonate in six of 11 studies that evaluated pain. A meta-analysis of eight studies comparing a bisphosphonate with placebo found minimal differences in adverse events between the two groups, but there was an increase in nausea and acute-phase reactions in the bisphosphonate arms.⁷⁵ The risk of osteonecrosis of the jaw is estimated to be between 0.7% and 12% and is more likely to occur in patients with metastatic disease and with poor oral hygiene or after dental surgery⁷⁴ (Table 5).

DENOSUMAB

Denosumab is a fully human monoclonal antibody against the cyto-kine receptor-activated nuclear κB ligand (RANKL), which is in-

volved in tumor cell migration and is a mediator of osteoclast differentiation and activation.²³ Six RCTs in patients with bone metastases found a benefit for denosumab over zoledronic acid, pamidronate, or ibandronate in incidence (risk ratio, 0.84; 95% CI, 0.80 to 0.88) and time to skeletal-related events, but no difference in overall survival, 77 although subgroup analysis in one study suggested that patients with multiple myeloma may have increased mortality with denosumab.⁷⁸ Total adverse events were similar, except for increased hypocalcemia and less nephrotoxicity with denosumab. One of the studies, in which pain was a secondary outcome, randomly assigned 2,046 women with breast cancer with bone metastases to denosumab or zoledronic acid. The study reported no meaningful difference in improvement in pain severity or time to improvement of pain between the groups, but there was less worsening of pain severity and less functional impairment secondary to pain and fewer patients required progression to strong opioid analgesics in the denosumab arms⁷³ (Table 5).

These studies suggest that bisphosphonates are beneficial as an adjunct for pain control from bony metastases for some tumor types. Denosumab is more convenient than bisphosphonates but substantially more expensive.

LIGNOCAINE (LIDOCAINE)

Local anesthetics inhibit pain predominantly by blocking sodium channels and have shown efficacy in chronic nonmalignant neuropathic pain. Topical lignocaine has shown benefit in allodynia from postherpetic neuralgia. There are some uncontrolled and controlled studies of continuous subcutaneous infusion of lignocaine in cancer pain (Table 6). However, these studies all have methodologic limitations, and the role of lignocaine needs to be substantiated in randomized placebo-controlled studies.

KETAMINE

The dissociative anesthetic ketamine has been used widely in the management of chronic cancer pain, usually in the setting of pain that is not controlled by opioids or opioids plus adjuvant analgesics. ²⁴ Its use had been mainly extrapolated from surgical settings, and evidence for benefit has come mainly from case series and uncontrolled studies in people with cancer (Table 6). However, in a recent RCT, there was no difference compared with placebo, pain type (neuropathic ν nociceptive) was not a predictor of response, and those receiving ketamine were more likely to experience adverse effects. ²⁴ This study was not powered to specifically compare differences in effect between neuropathic and nociceptive pain.

CANNABINOIDS

Some cultural groups have used cannabinoids for medicinal purposes for thousands of year. There is a lack of evidence for their efficacy for cancer pain, particularly compared with other agents, ⁸² but trials are ongoing.

			Patient Population			Interve	Interventions	E	Results	
Study	No. of Patients	No. of Patients Analyzed	Type of Pain	Cancer Type	Study Design	Study Drug/Comparator	Duration of Study Treatment	Pain Outcome/ Efficacy	Toxicity	Comments
Antidepressants Ventafridda V: Psychopharmacology (Berl) 95 Suppl:S44- 49. 1988	45	31	Mixed and neuropathic	All	Randomized, double-blind, parallel	Trazodone 75-225 mg/ amitriptyline 25-100 mg	2 weeks	No difference	Not reported	Nonvalidated primary end point
Kalso E: Pain 64:293- 302, 1996	20	15	Neuropathic	Post-treatment of breast cancer	Randomized double-blind, cross-over	Amitriptyline 25-100 mg/placebo	4 weeks each with 2- week washout (10 weeks)	Significant difference		No predefined primary end
Tasmuth T: Eur J Pain 6:17-24, 2002	15	<u>რ</u>	Neuropathic pain	Breast cancer	Randomized double-blind, cross-over	Venlafaxine 18.75 mg/ placebo	n each period ig a dose weekly with washout (10	Significant difference		No predefined primary end point
Kautio AL: J Pain Symptom Manage 35:31-39, 2008	42	33	Neuropathic	Receiving vinca alkaloids, platinum, or taxane chemotherapy	Randomized, double-blind, parallel	Amitriptyline 25-50 mg/placebo	8 weeks	No difference in appearance of neuropathic symptoms		Explored
Anticonvulsants Keskinbora K: J Pain Symptom Manage 34:183-189, 2007	75	63	Mixed and neuropathic All	All	Randomized, open-label, parallel	Opioid plus gabapentin (1,287 mg per day) v opioid alone	13 days	Significant difference	Dizziness, sedation	
Caraceni A: J Clin Oncol 22:2909-917, 2004	121	68	Mixed	All	Randomized double-blind, parallel	Opioid plus gabapentin (1,395 mg per day) v opioid alone	10 days	Significant difference	Sedation, dizziness, constipation, nausea and vomiting	
Vilholm OJ: Eur J Neurol 15:851- 857 2008	27	25	Postmastectomy pain syndrome	Breast cancer	Randomized double-blind, cross-over	Levetiracetam 1,500 mg twice dailv/nlaceho	4 weeks in each period No difference with 1-week	No difference)	
Mishra S. Am J Hosp Palliat Care 29:177- 82, 2012	120	120	Neuropathic	≡∀	Randomized double-blind, parallel	Pregabalin 75-300 mg/ gabapentin 300-600 mg/amitriptyline 50-100 mg/placebo	4 weeks	All groups had improvement, with no difference between arouns.	Somnolence, dizziness, dry mouth, nausea, constipation; no difference	
Rao et al, ⁶⁸ 2007	115	89	Chemotherapy-induced All neuropathy	All	Randomized, double-blind, cross-over	Gabapentin (2,700 mg)/placebo	6 weeks in each period with 2-week washout (14 weeks)	No difference	Mild adverse effects and similar in each	No intent-to-treat analysis
Rao RD: Cancer 112: 2802-808, 2008	125	80	Chemotherapy-induced All neuropathy	All	Randomized, double-blind, parallel	Lamotrigine 300 mg/ placebo	10 weeks	No difference	Mild adverse effects and similar in each	No intent-to-treat analysis
Yajnik S: J Pain Symptom Manage 7:209-213, 1992	75		Mixed	All	Randomized, double-blind, C parallel (continued on following page)	Opioid plus phenytoin (100 mg) v opioid alone	28 days	Significant difference	3 patients had adverse effects	

			Patient Population			Interv	Interventions	Ä	Results	
Study	No. of Patients	No. of Patients Analyzed	Type of Pain	Cancer Type	Study Design	Study Drug/Comparator	Duration of Study Treatment	Pain Outcome/ Efficacy	Toxicity	Comments
Smith et al, ⁶⁹ 2013	231	141	Chemotherapy-induced pain after taxane or oxaliplatin treatment	Predominantly breast and Randomized double-blind,	Randomized double-blind, cross-over	Duloxetine 60 mg v placebo	5 weeks	Reduction in average pain at 5 weeks	Fatigue (7%), insomnia (5%), nausea (5%)	Cross-over study but first 5- week period results reported before cross-over
Bisphosphonates Lipton et al, ⁷⁰ 2000	754	751	Bone metastases	Breast cancer	Randomized, double-blind, parallel	Pamidronate (90 mg intravenously)/placebo	Up to 24 months	Pain and analgesic scores significantly better in pamidronate group	Similar rates of adverse reactions between arms; slight increase in hypocalcemia in pamidronate	Pa
Body et al, ⁷¹ 2004	564	264	Bone metastases	Breast cancer	Randomized, double-blind, Ibandronate (50 mg parallel orall/placebo	lbandronate (50 mg orall/placebo	Up to 96 weeks	Pain and analgesic use significantly better; pain improved within 8-12 weeks of commencing	Increased hypocalcaemia hypocalcaemia in ibandronate groups (9.4 v 5.1%) and upper GI symptoms	Pain was secondary end point; two studies combined
Saad and Eastham, ⁷² 2010	422		Bone metastases	Castration-resistant prostate cancer	Randomized, double-blind, parallel	Zoledronic acid (4 mg) every 3 weeks/placebo	Up to 24 months	ibandronate Pain significantly better in zoledronate group		Pain was secondary end point
Cleeland, ⁷³ 2013	2,046			Bone metastases in breast cancer	Randomized, double-blind, parallel	Denosumab (120 mg subcutaneously monthly//zoledronic acid 4 mg intravenously monthly	18 months	Less worsening of pain, trend to delayed time to pain worsening and less progression to strong opioids with denosumab; no difference in pain improvement	Increased hypocalcemia in denosumab, less nephrotoxicity	Pain was secondary end point

Vardy and Agar

		Patient Population	ion		Interventions		Res	Results
Study	No. of Patients	Type of Pain	Cancer Type	Study Design	Study Drug/Comparator	Duration of Study Treatment	Pain Outcome/Efficacy	Toxicity
Ketamine Hardy, ²⁴ 2012	185	Refractory cancer pain despite treatment with opioids and standard adjuvant therapy at predefined dose levels	All	Randomized, double-blind parallel	Randomized, double-blind No change in baseline opioid or co-analgesic 5 days parallel dose was allowed in the 48 hours before study commencement; subcutaneous infusion of ketamine or placebo (normal saline) at three dose levels (100, 300, or 500 mg) in a 5-day schedule with predefined dose titration schedule based on pain score/toxicity	5 days	No significant difference; Twice the rate of adverse No. needed to treat, events worse than 25 patients baseline, and more severe grade of adverse events in ketamine group; No. needed to harm, 6 patients	Twice the rate of adverevents worse than baseline, and more severe grade of adverse events in ketamine group; No needed to harm, 6 patients
Lignocaine Sharma et al, ⁸¹ 2009	20	Opioid-refractory cancer	All	Randomized, double-blind,	Randomized, double-blind, Lidocaine and placebo infusion, separated		Improved pain	
Bruera et al, ⁸⁰ 1992	7	pain Neuropathic pain	Advanced malignancy	cross-over / Randomized, double-blind,	cross-over by 2 weeks Advanced malignancy Randomized, double-blind, Lidocaine 5 mg/kg IV over 30 minutes v		No difference	
Ellemann et al, ⁷⁹ 1989	10	Cutaneous allodynia	₹	Randomized double-blind, cross-over	Randomized double-blind, Lidocaine 5 mg/kg in 200 mL of 5% glucose Influsion over 30 minutes, No significant difference Drowsiness (n = 1); no cross-over IV over 30 minutes v 200 mL of normal pain scores up to 1 saline IV over 30 minutes week	Infusion over 30 minutes, pain scores up to 1 week	No significant difference	Drowsiness (n = 1); n electrocardiograph abnormalities

LIMITATIONS OF CURRENT DATA

The evidence for use of nonopioid analgesia in cancer pain remains limited. With the exception of the bisphosphonate/denosumab trials, most studies have small sample sizes, frequently have methodologic limitations, and lack long-term follow-up, so that data on the effects of chronic use of most of the agents remain limited.

RECOMMENDATIONS FOR FUTURE RESEARCH

Some of the outstanding questions include the following: whether acetaminophen should be used concurrently with an opioid and, if so, in what dose; whether NSAIDs and corticosteroids can be safely continued long term in patients with cancer and the safety and efficacy of the selective COX-2 inhibitors still on the market; and which nonopi-

oid analgesics are best for specific types of pain and in which combinations. Pharmacogenomics and phase IV studies may have a role to play in answering these questions.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The author(s) indicated no potential conflicts of interest.

AUTHOR CONTRIBUTIONS

Conception and design: All authors Collection and assembly of data: All authors Data analysis and interpretation: All authors Manuscript writing: All authors Final approval of manuscript: All authors

REFERENCES

- 1. Breivik H, Cherny N, Collett B, et al: Cancerrelated pain: A pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol 20: 1420-1433. 2009
- **2.** Goudas LC, Bloch R, Gialeli-Goudas M, et al: The epidemiology of cancer pain. Cancer Invest 23:182-190. 2005
- 3. van den Beuken-van Everdingen MH, de Rijke JM, Kessels AG, et al: Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann Oncol 18:1437-1449, 2007
- 4. Apolone G, Bertetto O, Caraceni A, et al: Pain in cancer: An outcome research project to evaluate the epidemiology, the quality and the effects of pain treatment in cancer patients. Health Qual Life Outcomes 4:7, 2006
- **5.** Deandrea S, Montanari M, Moja L, et al: Prevalence of undertreatment in cancer pain: A review of published literature. Ann Oncol 19:1985-1901 2008
- **6.** WHO: World Health Organization Cancer Pain Relief, With a Guide to Opioid Availability (ed 2). Geneva, Switzerland, World Health Organization, 1996
- Camu F, Vanlersberghe C: Pharmacology of systemic analgesics. Best Pract Res Clin Anaesthesiol 16:475-488. 2002
- 8. Mercadante S: Emerging drugs for cancerrelated pain. Support Care Cancer 19:1887-1893, 2011
- **9.** Azevedo São Leão Ferreira K, Kimura M, Jacobsen Teixeira M: The WHO analgesic ladder for cancer pain control, twenty years of use: How much pain relief does one get from using it? Support Care Cancer 14:1086-1093, 2006
- **10.** Ventafridda V, Tamburini M, Caraceni A, et al: A validation study of the WHO method for cancer pain relief. Cancer 59:850-856, 1987
- 11. Zech DF, Grond S, Lynch J, et al: Validation of World Health Organization Guidelines for cancer pain relief: A 10-year prospective study. Pain 63:65-76, 1995.
- 12. Rodriguez RF, Castillo JM, Del Pilar Castillo M, et al: Codeine/acetaminophen and hydrocodone/acetaminophen combination tablets for the management of chronic cancer pain in adults: A 23-day, prospective, double-blind, randomized, parallel-group study. Clin Ther 29:581-587, 2007

- **13.** Zhang Q, Bal-dit-Sollier C, Drouet L, et al: Interaction between acetaminophen and warfarin in adults receiving long-term oral anticoagulants: A randomized controlled trial. Eur J Clin Pharmacol 67:309-314, 2011
- **14.** Paunescu H, Coman OA, Coman L, et al: Cannabinoid system and cyclooxygenases inhibitors. J Med Life 4:11-20, 2011
- **15.** Liu Y, Ramírez J, Ratain MJ: Inhibition of paracetamol glucuronidation by tyrosine kinase inhibitors. Br J Clin Pharmacol 71:917-920, 2011
- **16.** Carson JL, Willett LR: Toxicity of nonsteroidal anti-inflammatory drugs: An overview of the epidemiological evidence. Drugs 46:243-248, 1993 (suppl 1)
- 17. Leppert W, Buss T: The role of corticosteroids in the treatment of pain in cancer patients. Curr Pain Headache Rep 16:307-313, 2012
- **18.** Paulsen Ø, Aass N, Kaasa S, et al: Do corticosteroids provide analgesic effects in cancer patients? A systematic literature review. J Pain Symptom Manage 46:96-105, 2013
- 19. Shih A: Role of corticosteroids in palliative care. J Pain Palliat Care Pharmacother 21:69-76, 2007
- **20.** Bennett MI: Effectiveness of antiepileptic or antidepressant drugs when added to opioids for cancer pain: Systematic review. Palliat Med 25:553-559, 2011.
- 21. Vadalouca A, Raptis E, Moka E, et al: Pharmacological treatment of neuropathic cancer pain: A comprehensive review of the current literature. Pain Pract 212:219-251. 2012
- 22. Fallon MT: Neuropathic pain in cancer. Br J Anaesth 111:105-111. 2013
- 23. Jones DH, Nakashima T, Sanchez OH, et al: Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440:692-696, 2006
- **24.** Hardy J, Quinn S, Fazekas B, et al: Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J Clin Oncol 30:3611-3617, 2012
- **25.** Doyle D, Hanks GWC, MacDonald N: Oxford Textbook of Palliative Medicine (ed 2). New York, NY, Oxford University Press, 1998
- **26.** Lee WM: Drug-induced hepatotoxicity. N Engl J Med 349:474-485, 2003
- **27.** Axelsson B, Borup S: Is there an additive analgesic effect of paracetamol at step 3? A double-

- blind randomized controlled study. Palliat Med 17: 724-725, 2003
- 28. Stockler M, Vardy J, Pillai A, et al: Acetaminophen (paracetamol) improves pain and well-being in people with advanced cancer already receiving a strong opioid regimen: A randomized, double-blind, placebo-controlled cross-over trial. J Clin Oncol 22: 3389-3394, 2004
- **29.** Tasmacioglu B, Aydinli I, Keskinbora K, et al: Effect of intravenous administration of paracetamol on morphine consumption in cancer pain control. Support Care Cancer 17:1475-1481, 2009
- **30.** Cubero DI, del Giglio A: Early switching from morphine to methadone is not improved by acetaminophen in the analgesia of oncologic patients: A prospective, randomized, double-blind, placebocontrolled study. Support Care Cancer 18:235-242, 2010
- **31.** Israel FJ, Parker G, Charles M, et al: Lack of benefit from paracetamol (acetaminophen) for palliative cancer patients requiring high-dose strong opioids: A randomized, double-blind, placebocontrolled, crossover trial. J Pain Symptom Manage 39:548-554, 2010
- **32.** Sima L, Fang WX, Wu XM, et al: Efficacy of oxycodone/paracetamol for patients with bone-cancer pain: A multicenter, randomized, double-blinded, placebo-controlled trial. J Clin Pharm Ther 37:27-31, 2012
- **33.** Toms L, McQuay HJ, Derry S, et al: Single dose oral paracetamol (acetaminophen) for postoperative pain in adults. Cochrane Database Syst Rev 4:CD004602, 2008
- **34.** McQuay HJ, Edwards JE, Moore RA: Evaluating analgesia: The challenges. Am J Ther 9:179-187, 2002
- **35.** McQuay HJ, Moore RA: Dose-response in direct comparisons of different doses of aspirin, ibuprofen and paracetamol (acetaminophen) in analgesic studies. Br J Clin Pharmacol 63:271-278, 2007
- **36.** Gaskell H, Derry S, Moore RA, et al: Single dose oral oxycodone and oxycodone plus paracetamol (acetaminophen) for acute postoperative pain in adults. Cochrane Database Syst Rev 3:CD002763,
- **37.** Caraceni A, Hanks G, Kaasa S, et al: Use of opioid analgesics in the treatment of cancer pain: Evidence-based recommendations from the EAPC. Lancet Oncol 13:e58-e68, 2012

- **38.** Nabal M, Librada S, Redondo MJ, et al: The role of paracetamol and nonsteroidal anti-inflammatory drugs in addition to WHO Step III opioids in the control of pain in advanced cancer: A systematic review of the literature. Palliat Med 26:305-312. 2012
- **39.** Radbruch L, Elsner F: Emerging analgesics in cancer pain management. Expert Opin Emerg Drugs 10:151-171, 2005
- **40.** Warner TD, Mitchell JA: Cyclooxygenases: New forms, new inhibitors, and lessons from the clinic. FASEB J 18:790-804, 2004
- **41.** Rostom A, Muir K, Dubé C, et al: Gastrointestinal safety of cyclooxygenase-2 inhibitors: A Cochrane Collaboration systematic review. Clin Gastroenterol Hepatol 5:818-828, 2007
- **42.** Lanza FL, Chan FK, Quigley EM: Guidelines for prevention of NSAID-related ulcer complications. Am J Gastroenterol 104:728-738, 2009
- **43.** Madigan D, Sigelman DW, Mayer JW, et al: Under-reporting of cardiovascular events in the rofecoxib Alzheimer disease studies. Am Heart J 164:186-193, 2012
- **44.** Baron JA, Sandler RS, Bresalier RS, et al: Cardiovascular events associated with rofecoxib: Final analysis of the APPROVe trial. Lancet 372: 1756-1764, 2008
- **45.** Sunshine A, Olson NZ: Analgesic efficacy of ketoprofen in postpartum, general surgery, and chronic cancer pain. J Clin Pharmacol 28:S47-S54, 1988
- **46.** Eisenberg E, Berkey CS, Carr DB, et al: Efficacy and safety of nonsteroidal antiinflammatory drugs for cancer pain: A meta-analysis. J Clin Oncol 12:2756-2765. 1994
- **47.** Ferrer-Brechner T, Ganz P: Combination therapy with ibuprofen and methadone for chronic cancer pain. Am J Med 77:78-83, 1984
- **48.** Lomen PL, Samal BA, Lamborn KR, et al: Flurbiprofen for the treatment of bone pain in patients with metastatic breast cancer. Am J Med 80:83-87, 1986
- **49.** Stambaugh J, Drew J: A double-blind parallel evaluation of the efficacy and safety of a single dose of ketoprofen in cancer pain. J Clin Pharmacol 28:S34-S49, 1988
- **50.** Staquet MJ: A double-blind study with placebo control of intramuscular ketorolac tromethamine in the treatment of cancer pain. J Clin Pharmacol 29:1031-1036, 1989
- **51.** Carlson RW, Borrison RA, Sher HB, et al: A multiinstitutional evaluation of the analgesic efficacy and safety of ketorolac tromethamine, acetaminophen plus codeine, and placebo in cancer pain. Pharmacotherapy 10:211-216, 1990
- **52.** Johnson JR, Miller AJ: The efficacy of choline magnesium trisalicylate (CMT) in the management of metastatic bone pain: A pilot study. Palliat Med 8:129-135, 1994
- **53.** Mercadante S, Fulfaro F, Casuccio A: A randomised controlled study on the use of anti-inflammatory drugs in patients with cancer pain on morphine therapy: Effects on dose-escalation and a pharmacoeconomic analysis. Eur J Cancer 38:1358-1363, 2002

- **54.** McNicol E, Strassels SA, Goudas L, et al: NSAIDS or paracetamol, alone or combined with opioids, for cancer pain. Cochrane Database Syst Rev 1:CD005180, 2005
- **55.** Stambaugh J: Analgesic efficacy, safety and acceptability of zomepirac sodium in comparison to morphine sulfate in the treatment of pain secondary to malignancy. Curr Ther Res 31:922-929, 1982
- **56.** Tonachella R, Curcio C, Grossi E: Diclofenac sodium in cancer pain: A double-blind within-patients comparison with pentazocine. Curr Ther Res 37:1130-1133, 1985
- **57.** Staquet M, Renaud A: Double-blind, randomized trial of piroxicam and codeine in cancer pain. Curr Ther Res 53:435-439, 1993
- **58.** Duarte Souza JF, Lajolo PP, Pinczowski H, et al: Adjunct dipyrone in association with oral morphine for cancer-related pain: The sooner the better. Support Care Cancer 15:1319-1323, 2007
- **58a.** Weingart WA, Sorkness CA, Earhart RH: Analgesia with oral narcotics and added ibuprofen in cancer patients. Clin Pharm 4:53-58, 1985
- **59.** Bjorkman R, Ullman A, Hedner J: Morphine-sparing effect of diclofenac in cancer pain. Eur J Clin Pharmacol 44:1-5, 1993
- **60.** Feuer DJ, Broadley KE: Corticosteroids for the resolution of malignant bowel obstruction in advanced gynaecological and gastrointestinal cancer. Cochrane Database Syst Rev 2:CD001219, 2000
- **61.** Vecht CJ, Hovestadt A, Verbiest HB, et al: Dose-effect relationship of dexamethasone on Karnofsky performance in metastatic brain tumors: A randomized study of doses of 4, 8, and 16 mg per day. Neurology 44:675-680, 1994
- **62.** Bruera E, Roca E, Cedaro L, et al: Action of oral methylprednisolone in terminal cancer patients: A prospective randomized double-blind study. Cancer Treat Rep 69:751-754, 1985
- **63.** Bruera E, Moyano JR, Sala R, et al: Dexamethasone in addition to metoclopramide for chronic nausea in patients with advanced cancer: A randomized controlled trial. J Pain Symptom Manage 28: 381-388. 2004
- **64.** Della Cuna GR, Pellegrini A, Piazzi M: Effect of methylprednisolone sodium succinate on quality of life in preterminal cancer patients: A placebocontrolled, multicenter study—The Methylprednisolone Preterminal Cancer Study Group. Eur J Cancer Clin Oncol 25:1817-1821, 1989
- **65.** Popiela T, Lucchi R, Giongo F: Methylprednisolone as palliative therapy for female terminal cancer patients: The Methylprednisolone Female Preterminal Cancer Study Group. Eur J Cancer Clin Oncol 25:1823-1829, 1989
- **66.** Beydoun A, Backonja M: Mechanistic stratification of antineuralgic agents. J Pain Symptom Manage 25:S18-S30, 2003
- **67.** Jongen JL, Huijsman ML, Jessurun J, et al: The evidence for pharmacologic treatment of neuropathic cancer pain: Beneficial and adverse effects. J Pain Symptom Manage 46:581-590, 2013
- **68.** Rao RD, Michalak JC, Sloan JA, et al: Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: A phase 3 random-

- ized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer 110:2110-2118, 2007
- **69.** Smith EM, Pang H, Cirrincione C, et al: Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 309:1359-1367, 2013
- **70.** Lipton A, Theriault RL, Hortobagyi GN, et al: Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: Long term follow-up of two randomized, placebocontrolled trials. Cancer 88:1082-1090, 2000
- **71.** Body JJ, Diel IJ, Bell R, et al: Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 111:306-312. 2004
- **72.** Saad F, Eastham J: Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urology 76:1175-1181, 2010
- **73.** Cleeland CS, Body JJ, Stopeck A, et al: Pain outcomes in patients with advanced breast cancer and bone metastases: Results from a randomized, double-blind study of denosumab and zoledronic acid. Cancer 119:832-838, 2013
- **74.** Wong MH, Stockler MR, Pavlakis N: Bisphosphonates and other bone agents for breast cancer. Cochrane Database Syst Rev 2:CD003474, 2012
- **75.** Yuen KK, Shelley M, Sze WM, et al: Bisphosphonates for advanced prostate cancer. Cochrane Database Syst Rev 4:CD006250, 2006
- **76.** Mhaskar R, Redzepovic J, Wheatley K, et al: Bisphosphonates in multiple myeloma: A network meta-analysis. Cochrane Database Syst Rev 5:CD003188, 2012
- 77. Peddi P, Lopez-Olivo MA, Pratt GF, et al: Denosumab in patients with cancer and skeletal metastases: A systematic review and metaanalysis. Cancer Treat Rev 39:97-104, 2013
- **78.** Henry DH, Costa L, Goldwasser F, et al: Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 29:1125-1132, 2011
- **79.** Ellemann K, Sjögren P, Banning AM, et al: Trial of intravenous lidocaine on painful neuropathy in cancer patients. Clin J Pain 5:291-294, 1989
- **80.** Bruera E, Ripamonti C, Brenneis C, et al: A randomized double-blind crossover trial of intravenous lidocaine in the treatment of neuropathic cancer pain. J Pain Symptom Manage 7:138-140, 1992
- **81.** Sharma S, Rajagopal MR, Palat G, et al: A phase II pilot study to evaluate use of intravenous lidocaine for opioid-refractory pain in cancer patients. J Pain Symptom Manage 37:85-93, 2009
- **82.** Bowles DW, O'Bryant CL, Camidge DR, et al: The intersection between cannabis and cancer in the United States. Crit Rev Oncol Hematol 83:1-10, 2012