Genomic Epidemiology of NDM-1-Encoding Plasmids in Latin American Clinical Isolates Reveals Insights into the Evolution of Multidrug Resistance

Ricaurte Alejandro Marquez-Ortiz1,2, Leanne Haggerty2,7, Narda Olarte3, Carolina Duarte4, Ulises Garza-Ramos5, Jesús Silva-Sanchez5, Betsy E. Castro1, Eby M. Sim2, Mauricio Beltran4, María V. Moncada1, Alberto Valderrama3, Jaime E. Castellanos5, Ian G. Charles2,8, Natasha Vanegas1,2, Javier Escobar-Perez1,*, and Nicola K. Petty2,*

1Bacterial Molecular Genetics Laboratory, Universidad El Bosque, Bogotá, D.C., Colombia
2The ithree Institute, University of Technology Sydney, New South Wales, Australia
3El Tunal Hospital E.S.E, Bogotá, Colombia
4Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
5Instituto Nacional de Salud Pública (INSP), CISEI, Cuernavaca, Morelos, México
6Grupo de Patogénesis Infecciosa, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
7Present address: European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
8Present address: Institute of Food Research, Norwich Research Park, Norwich, United Kingdom

*Corresponding authors: E-mails: labgenmolecular@unbosque.edu.co; nicola.petty@uts.edu.au.

Accepted: June 21, 2017

Data deposition: The annotated, complete NDM-1-encoding plasmids sequenced in this study are available in the DDBJ/EMBL/GenBank public databases under the GenBank accession numbers KX832927 (p16Pre36-NDM), KX832926 (p16Pre36-2), CP017672 (pRB151-NDM), KX832928 (p06-1619-NDM), and KX832929 (p06-1619-2). The trimmed and filtered MiSeq sequencing reads for all genomes sequenced in this study have been deposited in the Sequence Read Archive under Bioproject accession number PRJNA342046 with sample accession numbers for each strain listed in supplementary data set 1, Supplementary Material online.

Abstract

Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-β-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene \(\text{bla}_{\text{NDM-1}} \), originated in \(\text{Acinetobacter} \) spp., the role of \(\text{Enterobacteriaceae} \) in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of \(\text{bla}_{\text{NDM-1}} \)-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (\(\text{Providencia rettgeri} \), \(\text{Klebsiella pneumoniae} \), and \(\text{Acinetobacter baumannii} \)) as well as six representative NDM-1-positive \(\text{Escherichia coli} \) transconjugants. Additionally, the plasmids from three representative \(\text{P. rettgeri} \) isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from \(\text{K. pneumoniae} \) and \(\text{A. baumannii} \) in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in \(\text{P. rettgeri} \) from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive \(\text{P. rettgeri} \) from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in \(\text{P. rettgeri} \) and plasmids from \(\text{A. baumannii} \) and \(\text{K. pneumoniae} \). Overall, our findings suggest a Russian doll model for the dissemination of \(\text{bla}_{\text{NDM-1}} \) in Latin America, with \(\text{P. rettgeri} \) playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.

Key words: metallo-beta-lactamase, genomics, antibiotic resistance, \(\text{Providencia rettgeri} \), mobile genetic elements, bacterial evolution.
Introduction

In the first global report on antimicrobial resistance issued by the World Health Organization very high resistance rates were found in the bacteria that are the main causes of community and health care associated infections, including Enterobacteriaceae and Acinetobacter baumannii (World Health Organization 2014). For instance, the prevalence of Enterobacteriaceae resistant to broad-spectrum β-lactam type antibiotics often used as “last-line-of-defence” agents, such as carbapenems, are persistently increasing across the world (Rhomburg and Jones 2009; Prabaker and Weinstein 2011; van Duijn et al. 2011; CDC 2013). Infections caused by carbapenem-resistant bacteria increase health care costs by requiring hospitalization of patients and increase the risk of mortality (Lemos et al. 2014; World Health Organization 2014). It is therefore important to gain greater insight into how resistance spreads, recognizing in doing so that resistance can spread either vertically, through distribution of clones of established “successful” resistant bacterial species, or horizontally, through dispersal of mobile genetic elements (e.g., transposons, plasmids, and prophages) carrying genes for antimicrobial resistance (Woodford et al. 2011). The horizontal transfer of antibiotic resistance genes between bacteria can contribute rapid expansion in the suite of resistance mechanisms present in a bacterial strain.

One mechanism for resistance that can be acquired from the mobile gene pool is the capability for drug modification, an example of which is the group of metallo-β-lactamases. These enzymes have great impact on public health due to their broad substrate range, and are increasing in frequency in clinically important Gram-negative bacteria (Palzkill 2013). A new member of this group of enzymes was identified in 2008 in a patient treated in New Delhi, India (Yong et al. 2008), and named New Delhi Metallo-β-lactamase (NDM). Although the NDM gene is believed to have originated in Enterobacteriaceae spp. NDM-plasmid, reported in 2012 (Hu et al. 2012). The pNDM-BJ01-like plasmids are highly conserved, with >99% nucleotide identity extending over at least 85% of the 47-kb pNDM-BJ01 length; they do not belong to any reported incompatibility (Inc) group (Hu et al. 2012); they have a Type IV Secretion System (T4SS); and they have a region of replication and transfer genes separated by a variable region containing a Tn125 composite transposon (Hu et al. 2012). It is within Tn125 that blaNDM is located, along with other genes conserved in the order 5′-blaNDM-blaKPC-trpF-tad-dct-groES-groEL-iscR027-apac-3′, flanked upstream and downstream by ISAba125, though the Tn125 structure has been found to be truncated in some strains. Among non-Acinetobacter bacteria—with the exception of Enterobacter aerogenes (Chen et al. 2015) where blaNDM1 was found in a pNDM-BJ01-like plasmid—blaNDM is carried in a great variety of plasmids belonging to diverse Inc groups (FIL, FIB, A/C2, HIIA, HIIB, L/M, N, N2, X3, R, T as well as unclassified plasmids) (Johnson and Woodford 2013; Khong et al. 2016). Despite the diversity of NDM-encoding plasmids in non-Acinetobacter, the immediate genetic context of the blaNDM gene remains the same in all known cases to date, in that it is always found within Tn125 or its remnants (Poirel et al. 2011; Partridge and Iredell 2012; Wailan, Paterson, et al. 2016). However, Tn125 is often surrounded by other transposons (Tn) or insertion sequence (IS) elements, including ISKpn14, IS26, IS5, ISCR1 or Tn3-like elements, which are frequently found in Enterobacteriaceae and may be involved in the further dissemination of blaNDM through a combination of transposition and homologous recombination (Toleman et al. 2012; Khong et al. 2016; Wailan, Sidjabat, et al. 2016). Although the blaNDM gene is believed to have originated in an Acinetobacter spp. as the result of the fusion of an aminoglycoside resistance gene with a pre-existing metallo-β-lactamase (Toleman et al. 2012) and later transferred to Enterobacteriaceae, aside from the Tn125 remnants and the case of the Enterobacter aerogenes harboring a pNDM-BJ01-like plasmid, little is known about this transmission from Acinetobacter spp. to Enterobacteriaceae, nor about how the diverse blaNDM positive plasmids in Enterobacteriaceae evolved.

NDM-positive Enterobacteriaceae, particularly Providencia spp. play an increasingly important role in multidrug resistant infections and dissemination of blaNDM around the world, as evidenced by the rapidly accumulating reports of isolation of this bacteria harboring this gene (Carvalho-Assef et al. 2013; Matasje et al. 2014; Pollett et al. 2014; Tada et al. 2014; Carmo Junior et al. 2015; Managerio et al. 2015; Nachimuthu et al. 2015; Wailan, Paterson, et al. 2016). Previously, we reported the first South American blaNDM-type outbreak, which occurred in Colombia in Klebsiella pneumonia, as well as an NDM-1-positive Providencia rettgeri outbreak in Mexico, both
of which occurred in 2011–2012, without any link to the Indian subcontinent (Barrios et al. 2013; Escobar Perez et al. 2013). Shortly thereafter, we commenced a surveillance study across Colombia, and found the majority of NDM-positive bacteria isolated were \textit{P. rettgeri}. Here we describe the use of whole genome sequencing (WGS) to investigate the dissemination dynamics of \textit{bla}_{NDM-1}-positive plasmids among \textit{Enterobacteriaceae} and \textit{A. baumannii} clinical isolates from this surveillance study, as well as from the previous outbreaks in Mexico and Colombia. Our results demonstrate interesting genetic links between NDM-1-positive \textit{P. rettgeri} from distant geographic locations, and between their plasmids and those present in \textit{K. pneumoniae} and \textit{Acinetobacter} spp. isolates, providing insights into the central role of \textit{P. rettgeri} in antibiotic resistance dissemination in Latin America.

Materials and Methods

Isolate Collection and Culture Conditions

Twenty-one NDM-1-positive clinical isolates were included in this study (supplementary data set 1, Supplementary Material online, strains used in this study and statistics of assemblies): \textit{P. rettgeri} (14), \textit{K. pneumoniae} (6), and \textit{A. baumannii} (1). Of these, 12 (11 \textit{P. rettgeri} and one \textit{A. baumannii}) were isolated from samples obtained in a surveillance study for carbapenem-resistant bacteria that was conducted over a period of 20 months, from September 2012 to April 2014, in three different hospitals in Colombia (Bogota, Cali, and Bucaramanga) (supplementary data set 1, Supplementary Material online). The other nine clinical isolates were obtained from two, previously described clinical outbreaks generated by \textit{bla}_{NDM-1} positive \textit{K. pneumoniae} and \textit{P. rettgeri}, respectively, reported in Colombia and Mexico (Barrios et al. 2013; Escobar Perez et al. 2013). Clinical and epidemiological features of the all \textit{bla}_{NDM-1} positive isolates are listed in supplementary data set 1, Supplementary Material online. \textit{Escherichia coli} transconjugants were obtained from six representative samples using as donor the \textit{bla}_{NDM-1} positive clinical isolate and as recipient the sodium azide-resistant \textit{E. coli} J53 strain. Equal amounts of a four hours Luria–Bertani (LB) (Oxoid Limited) broth culture of both donor and recipient, were mixed and 100 μl were placed onto a LB agar plate, then conjugation was allowed for 16 h at 37°C. Subsequently, the NDM-1-positive sodium azide-resistant \textit{E. coli} transconjugants were selected using LB agar plates supplemented with ceftazidime (30 μg/ml) and sodium azide (100 μg/ml) (Sigma–Aldrich Co. LLC.). The \textit{E. coli} species (\textit{uidA} gene) and the \textit{bla}_{NDM-1} gene were verified in the transconjugants by PCR. Possible donor strain contamination in the transconjugants was ruled out by PCR using specific primers to the genes \textit{khe} for \textit{K. pneumoniae}, \textit{gyrB} for \textit{A. baumannii}, and \textit{dnaA} for \textit{P. rettgeri} (see supplementary table 51, Supplementary Material online). Otherwise indicated, all NDM-1-positive bacteria were routinely grown in brain heart infusion agar or broth supplemented with ceftazidime (30 μg/ml) as a selective pressure for guarantee of plasmid permanence.

Whole Genome Sequencing

Total DNA was extracted from 21 \textit{bla}_{NDM-1} positive clinical isolates and six transconjugants (supplementary data set 1, Supplementary Material online) using the PureLink® Genomic DNA mini kit from ThermoFisher. Multiplexed total DNA libraries were prepared using the Nextera XT Library Preparation Kit and 300-bp paired end sequencing was performed on the Illumina MiSeq platform using the MiSeq v3 600-cycle reagent kit. Sequencing reads were trimmed and filtered using cutadapt v1.1.7 (Martin 2011) to remove adapters, and PRINSEQ-lite v0.20.4 (Schmieder and Edwards 2011) to remove any low quality reads with average read quality less than Q20, low quality trailing ends with base quality less than Q20 and short reads <87 bp. Reads were then de novo assembled using SPAdes v3.5.0 (Bankevich et al. 2012) with default settings and the assemblies were improved to high-quality draft genome standard (Chain et al. 2009) by scaffolding using SSPACE v2.0 (Boetzer et al. 2011), gap filling using GapFiller v1.10 (Boetzer and Pirovano 2012) and removal of contigs shorter than 300 bp. Details of the sequencing data, assemblies and accession numbers for each of these genomes are listed in supplementary data set 1, Supplementary Material online. The \textit{bla}_{NDM-1} gene variant was verified by comparing the genome assemblies against the reported sequence (accession NC_015872) using BLASTn (Altschul et al. 1990). Assembly for each strain was searched for matches to any known \textit{bla}_{NDM-1}-positive plasmids, by BLASTn (Altschul et al. 1990) against an extensive database compiled from all fully sequenced \textit{bla}_{NDM-1}-carrying plasmids deposited in the NCBI nucleotide repository (a total of 141 complete plasmids as at 18 May 2017; supplementary data set 2, Supplementary Material online).

Phylogenetic Analysis of \textit{Providencia rettgeri} Clinical Isolates

Since a MLST scheme for the phylogenetic characterization of \textit{P. rettgeri} isolates does not exist, was built a phylogenetic tree based on the core-genome SNPs determined from the assembled contigs of the 14 \textit{P. rettgeri} genomes sequenced in this study, plus the draft genome of \textit{P. rettgeri} Dmel1 (NZ_AJS800000000.1), the most complete published \textit{P. rettgeri} genome available at the time, as an out-group control. To build the phylogenetic tree, partially assembled genomes were annotated using Prokka v1.11 (Seemann 2014) and an alignment of concatenated core genes (genes present in all genomes with ≥90% of nucleotide identity) was created with Roary (Page et al. 2015) using PRANK (Loytynoja 2014). Poorly aligned positions and divergent regions were eliminated using Gblocks (Talavera and Castresana 2007).
Finally, the phylogenetic tree was created using RAxML version 8.2.9 (Stamatakis 2014) running 1,000 bootstrap replicates under the generalized time reversible model (GTRCAT). Finally, the consensus tree was plotted using Dendroscope 8.2.9 (Stamatakis 2014) running 1,000 bootstrap replicates. Branch lengths are expressed in units of changes/nucleotide position (scale bar).

Complete Plasmid Sequencing

Total DNA was extracted from three representative *P. rettgeri* isolates (16Pre36, RB151, and 06-1619) using the UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc.). BluePippin (Sage Science) 20-kb size-selected libraries were prepared, then sequenced using one SMRT cell each on the PacBio RS II platform (Pacific Biosciences) using P6-C4 chemistry. Sequencing reads were processed and de novo assembled using the HGAP 3 program of SMRT Analysis v2.3 (Chin et al. 2013) with default parameters. To check the assemblies, the filtered PacBio subreads were mapped to the genome assemblies using BWA-MEM (http://bio-bwa.sourceforge.net/bwa.shtml). The assembly was visually inspected and manually verified using Tablet v1.15.09.01 (Milne et al. 2013). Misassembled terminal repeat overlap sequences, known to be an error of the HGAP assembly of circular molecules (Chin et al. 2013; Hunt et al. 2015), were identified and subsequently trimmed manually. Circularization results were verified using Circulator (Hunt et al. 2015), confirming that the manual assembly correction correlated with the automated method. The complete sequences of five plasmids were confirmed: two plasmids for the strain 16Pre36, one plasmid for strain RB151 and two plasmids for strain 06-1619 (table 1). As the sequence start point of assemblies are arbitrary, the position one of each plasmid was shifted according to the *repA* gene (pRB151-NDM and p16Pre36-2), pPrY2001 (p16Pre36-NDM and p06-1619-2) or pNDM-BJ01 (p06-1619-NDM) to facilitate comparative genomics. The plasmids were annotated using Prokka v1.11 (Seemann 2014) and manual curation of the automated annotation was facilitated using Artemis (Rutherford et al. 2000). Antibiotic resistance genes were identified using ARIBA (https://github.com/sanger-pathogens/ariiba/wiki) and insertion sequence (IS) elements and transposons (Tn) were identified using Isfinder (Siguier et al. 2012) and BLASTn (Altschul et al. 1990). Presence of class 1, 2 or 3 integrons was determined in silico using the primers reported by Marquez et al. (2008).

Table 1

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Size (bp)</th>
<th>Inc Group</th>
<th>Host</th>
<th>Resistance Gene Profile</th>
<th>GenBank Accession No</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNDM-BJ01</td>
<td>47,274</td>
<td>Not assigned</td>
<td>Acinetobacter spp.</td>
<td>bla<sub>NDM</sub>, aph(3’)-Ia, *b</p></td>
<td>NC_019268</td>
<td>Hu et al. (2012)</td>
</tr>
<tr>
<td>p16Pre36-NDM</td>
<td>244,116</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>aadA1, aph(3’)-Ia, bla<sub>NDM</sub>, sul2, sul1, tet(B), dfrA1</td>
<td>KXX832927</td>
<td>This study</td>
</tr>
<tr>
<td>p16Pre36-2</td>
<td>43,191</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>aac(3’)-Ia, bla<sub>TEM-1B</sub></td>
<td>KXX832926</td>
<td>This study</td>
</tr>
<tr>
<td>pRB151-NDM</td>
<td>108,417</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>bla<sub>NDM</sub></td>
<td>CP017672</td>
<td>Marquez-Ortiz et al. (2017)</td>
</tr>
<tr>
<td>p06-1619-NDM</td>
<td>54,712</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>aph(3’)-Ia, bla<sub>NDM</sub></td>
<td>KXX832928</td>
<td>This study</td>
</tr>
<tr>
<td>p06-1619-2</td>
<td>90,666</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>No resistance genes</td>
<td>KXX832929</td>
<td>This study</td>
</tr>
<tr>
<td>pPrY2001</td>
<td>113,295</td>
<td>Not assigned</td>
<td>P. rettgeri</td>
<td>aph(3’)-Ia, armA, aacA4, bla<sub>NDM</sub>, aacA29, aacA2, *b</p></td>
<td>NC_022589</td>
<td>Mataseje et al. (2014)</td>
</tr>
</tbody>
</table>

Note.—Plasmids sequenced in this study are shown in bold letters. The *bla*_{NDM}-positive pPrY2001 plasmid reported previously in a *P. rettgeri* from Canada was also included.
Results
The blaNDM-1 Gene Is in a Conjugative Element in the Colombian and Mexican Isolates

From a surveillance study in Colombia a total of 12 NDM-positive isolates were collected from 12 patients (one NDM-positive strain per patient). Among these 12 isolates, which were mostly from outpatients with wound or urinary tract infections, 11 were \textit{P. rettgeri} (five from Bucaramanga and six from Bogota) and one was \textit{A. baumannii} isolated in Cali (supplementary data set 1, Supplementary Material online). Additionally, six \textit{K. pneumoniae} and three \textit{P. rettgeri} from previously reported (Barrios et al. 2013; Escobar Perez et al. 2013) clinical outbreaks in a neonatal unit in Bogota (Colombia) and an intensive care unit in Monterrey (Mexico), respectively, were also included in this study. The \textit{K. pneumoniae} and \textit{P. rettgeri} from Bogota were isolated in the same hospital (supplementary data set 1, Supplementary Material online). Analyses of PCR products confirmed the \textit{blaNDM-1} variant was present in all isolates. Thus, in total, 21 NDM-1-positive isolates from Colombia and Mexico were available to investigate in this study.

To explore if the \textit{blaNDM-1} gene in the Latin American isolates could be transferred between bacteria, conjugation experiments were performed using six representative NDM-1-positive isolates as donor strains: one representing the \textit{K. pneumoniae} from Bogota, one the \textit{A. baumannii} from Cali, one the \textit{P. rettgeri} from Bogota, two representing the \textit{P. rettgeri} from Bucaramanga and one the \textit{P. rettgeri} from Mexico, with the sodium azide-resistant \textit{Escherichia coli} strain J53 used as the recipient strain. \textit{Escherichia coli} NDM-1-positive transconjugants were obtained from all six of the donor strains (supplementary data set 1, Supplementary Material online). These results indicate that the \textit{blaNDM-1} gene is located in a conjugative element in the Colombian and Mexican isolates, and that it can be transferred to other strains allowing dissemination within and between genera. To determine the relationship among the conjugative \textit{blaNDM-1}-positive genetic structures and among the NDM-1-positive strains circulating in Latin America WGS was performed on the set of 21 Latin American NDM-1-positive clinical isolates as well as the six NDM-1-positive \textit{E. coli} transconjugants (supplementary data set 1, Supplementary Material online).

\textit{Acinetobacter baumannii} 19Aba78 Harbors \textit{blaNDM-1} within a pNDM-BJ01-Like Plasmid

The WGS assembly of \textit{A. baumannii} isolate 19Aba78 from Cali, Colombia, had 100% nucleotide identity over 99% of the pNDM-BJ01 length (fig. 1A and supplementary data set 2, Supplementary Material online), suggesting that \textit{blaNDM-1} is located on a pNDM-BJ01-like plasmid, as has been broadly reported in \textit{Acinetobacter} spp. (Hu et al. 2012;...
Sun et al. 2013; Espinal et al. 2015). The 19Aba78 pNDM-BJ01-like plasmid assembled into seven contigs, so the location of all these contigs together on a single plasmid cannot be confirmed from the current assembly. Of note however, \(\text{bla}_{\text{NDM-1}} \) is located within Tn125 adjacent to plasmid sequences that are identical to pNDM-BJ01, on a single contig in the 19Aba78 assembly (see supplementary fig. S1A, Supplementary Material online), supporting the presence of \(\text{bla}_{\text{NDM-1}} \) on a pNDM-BJ01-like plasmid. Additionally, the \(E. \ coli \) transconjugant C19-78 allowed confirmation of \(\text{bla}_{\text{NDM-1}} \) located on a pNDM-BJ01-like plasmid (fig. 1A and supplementary data set 2, Supplementary Material online). All contigs that mapped to the genome sequence of the recipient strain, \(E. \ coli \) J53 (accession AICK00000000), were removed from the WGS assembly of the transconjugant C19-78, and all remaining contigs were found to map to pNDM-BJ01, confirming the pNDM-BJ01-like plasmid harbored by C19-78 had no insertions or additional sequences (see supplementary fig. S1A, Supplementary Material online).

Two other NDM-1-positive strains of \(\text{Acinetobacter} \) spp., isolated from other Colombian cities (Neiva and Pasto, 520 km away from each other, and 320 and 390 km away from Cali, respectively) were recently reported (Rojas et al. 2016). The \(\text{bla}_{\text{NDM-1}} \)-positive plasmids from these strains, p6200-47kb and p6411-9kb were also found to be pNDM-BJ01-like, each with 99% nucleotide identity over 100% of the pNDM-BJ01 length (fig. 1A and supplementary data set 2, Supplementary Material online). In contrast to the similarity between the \(\text{bla}_{\text{NDM-1}} \)-positive plasmids found in the three Colombian NDM-1-positive strains of \(\text{Acinetobacter} \) spp., the strains themselves were of different, unrelated sequence type (ST). The Neiva \(A. \ baumannii \) (harboring p6200-47kb) was ST322 and the Pasto \(A. \ nosocomialis \) (harboring p6411-9kb) was ST464 (Rojas et al. 2016), but the Cali \(A. \ baumannii \) isolate 19Aba78 belongs to ST239, as determined by the Pasteur MLST scheme for \(A. \ baumannii \) (Diancourt et al. 2010). These observations of the 19Aba78 isolate and the \(E. \ coli \) transconjugant C19-78 thus contribute further evidence of dissemination of closely related pNDM-BJ01-like plasmids among unrelated \(\text{Acinetobacter} \) spp. isolates, as has been reported in Asia and Latin America (Hu et al. 2012; Sun et al. 2013; Waterman et al. 2013; Zhang et al. 2013; Wang et al. 2014; Brovedan et al. 2015; Espinal et al. 2015; Feng et al. 2015; Jones et al. 2015; Li et al. 2015; Rojas et al. 2016), and also its capability to transfer to \(\text{Enterobacteriaceae} \).

The \(\text{bla}_{\text{NDM-1}} \)-Positive Plasmids Circulating in \(K. \ pneumoniae \) from Colombia Are Closely Related IncA/C2 Plasmids

Analysis of the WGS assemblies for the six \(K. \ pneumoniae \) isolates showed they all have sequences with high similarity to p6234-178kb (>99% nucleotide identity over >98% of the p6234-178kb length, fig. 1B and supplementary data set 2, Supplementary Material online), an IncA/C2 plasmid harboring \(\text{bla}_{\text{NDM-1}} \) from a recently reported \(K. \ pneumoniae \) isolated in Neiva (Rojas et al. 2016), which is 300 km away from Bogota in Colombia. It therefore seems likely that the \(\text{bla}_{\text{NDM-1}} \) gene is located on a closely related conjugative plasmid in all seven of these Colombian \(K. \ pneumoniae \) strains. Despite the plasmid similarities, the \(K. \ pneumoniae \) strains from Bogota (16Kpn1, 16Kpn2, 16Kpn3, 16Kpn5, 16Kpn7 and 16Kpn10) are all ST1043 (Escobar Perez et al. 2013), and not related to the ST392 of the \(K. \ pneumoniae \) isolate from Neiva (Rojas et al. 2016). The sequences that mapped to p6234-178kb, assembled into several contigs for each of the six Bogota \(K. \ pneumoniae \) strains (supplementary data set 1, Supplementary Material online), so the order of the contigs and their genomic location could not be determined. However, the WGS assembly of the NDM-1-positive \(E. \ coli \) transconjugant C16-1, obtained using \(K. \ pneumoniae \) strain 16Kpn1 as the donor, also showed 99% nucleotide identity over 98% of the length of p6234-178kb (fig. 1B and supplementary data set 2, Supplementary Material online), reinforcing the evidence that \(\text{bla}_{\text{NDM-1}} \) is likely to be located on such a related conjugative plasmid in the Bogota outbreak. To rule out the possibility that any related sequences were located in the recipient strain, all contigs that mapped to the chromosome of \(E. \ coli \) J53 were removed from the genome assembly of the transconjugant C16-1, and all remaining contigs were found to map to p6234-178kb, with no additional sequences relative to p6234-178kb (see supplementary fig. 1B), and only one confirmed difference due to the absence of an ISS075 element. Thus, this data demonstrates that highly related NDM-1-positive IncA/C2 conjugative plasmids are circulating among \(K. \ pneumoniae \) with different genetic backgrounds (ST392 and ST1043) in two distant cities in Colombia.

Providencia rettgeri from Colombia and Mexico Harbor \(\text{bla}_{\text{NDM-1}} \) in Different Not Reported Plasmids

Comparison of the WGS assemblies of the Colombian \(P. \ rettgeri \) isolates against the database of complete \(\text{bla}_{\text{NDM-1}} \)-positive plasmid sequences (supplementary data set 2, Supplementary Material online), revealed that there were no matches over the full length of any known plasmid. The most closely related plasmid was the Inc group unclassified pPy2001, from a Canadian \(P. \ rettgeri \) strain (Mataseje et al. 2014), with >99% nucleotide identity over 69–77% of the length of pPy2001 (supplementary data set 2 and fig. S2, Supplementary Material online). By way of exception, 16Pre47 (isolated in Bogota) and RB152 (isolated in Bucaramanga) had significant nucleotide identity over only 22% and 15% of the length of pPy2001, respectively (supplementary data set 2, Supplementary Material online). All four NDM-1-positive \(E. \ coli \) transconjugants derived from \(P. \ rettgeri \) donors, regardless of the relationship of the respective donor strain with the pPy2001 plasmid, had sequences that...
matched to only a small section of pPrY2001 (<15% of the pPrY2001 length covered with >99% nucleotide identity). The main region of identity to pPrY2001 for all four transconjugants, as well as for 16Pre47 and RB152, was limited to the Tn125 remnant (see supplementary fig. S2, Supplementary Material online).

The **P. rettgeri** isolates from Colombia also had significant sequence matches with the IncA/C2 plasmid p6234-178kb (supplementary data set 2, Supplementary Material online), and in general to all the IncA/C2 NDM-positive plasmids, with >99% nucleotide identity over ~50% of the length of IncA/C2 plasmids (supplementary data set 2, Supplementary Material online). However, the key characteristics of IncA/C2 plasmids were not found in the **P. rettgeri** genome assemblies, as neither the repA gene, which is highly conserved among IncA/C2 plasmids, nor any marker for known incompatibility groups (except 16Pre46 with an IncN match), could be identified (see supplementary fig. S3, Supplementary Material online).

Furthermore, the corresponding representative **E. coli** transconjugant(s) of **P. rettgeri** isolates from Bogota and Bucaramanga differed in their sequence coverage of IncA/C2 plasmids. **Providencia rettgeri** isolates from Bogota had >99% nucleotide identity over ~65% of the length of p6234-178kb (except 16Pre45 with identity to only 28% of the length), as did the corresponding representative **E. coli** transconjugant C16-36, suggesting the **bla**_{NDM-1}-positive plasmids circulating in Bogota in **P. rettgeri** and in **K. pneumoniae** may be related. By contrast, although the **P. rettgeri** isolates from Bucaramanga had >99% nucleotide identity over ~60% of the length of p6234-178kb (except RB152 with only 26% coverage), the corresponding representative **E. coli** NDM-1-positive transconjugants CRB151 and CRB152 mapped just to 9% of p6234-178kb (supplementary data set 2, Supplementary Material online), the 9% associated with just the Tn125 remnant. Thus, the high relatedness to the IncA/C2 plasmids observed in the donor strains but not the transconjugants, suggests that the Bucaramanga **P. rettgeri** isolates probably have the **bla**_{NDM-1} gene located in a plasmid that is unrelated to p6234-178kb, as well as a **bla**_{NDM-1} negative structure that is related to the **bla**_{NDM-1} positive plasmid circulating among **P. rettgeri** and **K. pneumoniae** in Bogota.

Interestingly, the Mexican **P. rettgeri** isolates (06-1617, 06-1619 and 06-1623) and the corresponding representative **E. coli** transconjugant (C06-1623) showed a high level of similarity to the **Acinetobacter** spp. pNDM-BJ01-like plasmids (>99% of nucleotide identity over 74–80% of the length of pNDM-BJ01; fig. 1A and supplementary data set 2, Supplementary Material online). This suggests that a pNDM-BJ01-like plasmid harboring **bla**_{NDM-1} is circulating among the **P. rettgeri** from Mexico, but with a truncated Tn125 and downstream deletion, relative to pNDM-BJ01 (fig. 1A). Additionally, the **P. rettgeri** isolates showed close relatedness to the pPrY2001 plasmid (>99% of nucleotide identity over 64–76% of the length of pPrY2001); however, the C06-1623 E. coli transconjugant did not. It mapped to only 11% of pPrY2001, which corresponded to the Tn125 remnant (see supplementary fig. S2, Supplementary Material online), suggesting that there is another **bla**_{NDM-1} negative genetic structure in the Mexican **P. rettgeri** that is related to pPrY2001. No known Inc group was identified in any of the genomes for the **P. rettgeri** isolates from Mexico (except 06-1623, with a match to the IncT group), as is also the case for pNDM-BJ01 (see supplementary fig. S3, Supplementary Material online), further supporting the evidence that **bla**_{NDM-1} is located on a pNDM-BJ01-like plasmid in these strains.

Phylogenetic Concordance with the Geographic Origin of **P. rettgeri

To investigate the genetic relationship in the **P. rettgeri**, the major NDM-1-positive pathogen identified in the Colombian clinical surveillance (supplementary data set 1, Supplementary Material online), we used the WGS assemblies to build a phylogenetic tree based on the core genome SNPs among the 14 NDM-1-positive **P. rettgeri** isolates included in this study, and found that all but one of the isolates clustered according to the city of origin (fig. 2). The exceptional isolate, 16Pre45, clustered together with the strains from Bucaramanga, even though it was isolated in Bogota. Despite the genetic relationship, no epidemiological link with the Bucaramanga region was identified for the patient harboring 16Pre45 (supplementary data set 1, Supplementary Material online). These results suggest that **bla**_{NDM-1} dissemination in **P. rettgeri** in Colombia and Mexico is following a clonal behavior according to the geographic origin.

General Features of the Complete **bla_{NDM-1}**-Positive Plasmids from Latin American **P. rettgeri**

The complete sequences of plasmids from one representative isolate for each of the three **P. rettgeri** clusters (16Pre36 from

1731
Bogotá, RB151 from Bucaramanga and 06-1619 from Monterrey), were obtained by PacBio sequencing. The number of plasmids in each strain varied: 16Pre36 had two plasmids (p16Pre36-NDM and p16Pre36-2), RB151 had one plasmid (pRB151-NDM) and 06-1619 had two plasmids (p06-1619-2 and p06-1619-NDM) (table 1). Among these representatives, P. rettgeri isolates, the blaNDM-1 gene was located on unrelated plasmids (fig. 3). None of the plasmids belonged to any reported incompatibility group using Carattoli et al. (2014) schemes (see supplementary fig. S3, Supplementary Material online), however, annotation of the plasmids pRB151-NDM and p06-1619-NDM, showed they have two and one repA genes, respectively (fig. 2), which are closely related to each other (>85% nucleotide identity over the full repA sequence). The putative plasmid replication proteins encoded by these repA genes each had a significant match to the IncFII RepA protein family in Pfam (Finn et al. 2016). However, these three repA genes showed a poor relation (<51% nucleotide identity over the full repA sequence) to the reported IncFII repA genes (Carattoli et al. 2014), and plasmids pRB151-NDM and p06-1619-NDM are not related to any reported IncFII plasmid (not shown). In p06-1619-NDM the repA gene is located inside a putative mobile element, which possibly brought repA from another plasmid (fig. 3).

Plasmid p16Pre36-NDM was found to encode two different putative conjugative transfer-associated regions (fig. 3). One (described here as Tra-Pre), has so far only been reported in the blaNDM-1-positive plasmid pHY2001; the other, is a common transfer-associated region of IncAC2 plasmids described as Tra1 by Fernandez-Alarcon et al. (2011), which is frequently found in widely disseminated plasmids in a broad host range (Sekizuka et al. 2011; Doublet et al. 2012; Diene et al. 2013; Tijet et al. 2015; Wang et al. 2015; Wasyl et al. 2016), including the IncA/C2 p6234-178kb-like blaNDM-1-positive plasmids in the Colombian K. pneumoniae strains (supplementary data set 1, Supplementary Material online). At 244,116 bp, p16Pre36-NDM is the largest and most variable of the blaNDM-1-positive plasmids sequenced in this study, and among the largest blaNDM-1-positive plasmids ever reported (supplementary data set 2, Supplementary Material online). It has two resistance regions each containing a toxin–antitoxin system and a class 1 integrase (Liebert et al. 1999) and have been reported to associate with resistance to quaternary ammonium compounds, aminoglycosides, sulphonamides and trimethoprim. This plasmid also carries the additional resistance genes aph(3')-Ia, sul2 and tet(B). One of the resistance regions contains a Tn125 remnant (with its blaNDM-1 gene intact) inside a shuffled Tn21 element, with the two Tn21 inverted repeats flanking the Tn125 remnant (fig. 4). This shuffled Tn21 element has its typical components IS1353, IS1326, the mer operon and a class 1 integron (Liebert et al. 1999), but they are rearranged and the mer operon is separated from the rest of the Tn21 by the Tn125 remnant (fig. 4). Tn21-like elements are implicated in the global dissemination of antibiotic resistance genes among Enterobacteriaceae and Pseudomonas (Liebert et al. 1999) and have been reported to generate mosaic structures (Yurieva et al. 1997; Noguchi et al. 2000; Partridge et al. 2001; Valverde et al. 2006). Moreover, the ΔTn125 (having just one copy of the IS5aba125 element) surrounding blaNDM-1 in p16Pre36-NDM has suffered a rearrangement that has not been previously reported: the genes
tat-dct-groES-groEL-ISC21-Pac that are found upstream of the blaNDM-1 in p16Pre36-NDM, have always been previously reported downstream (fig. 4). These odd rearrangements of the ΔTn125 and the Tn21 in p16Pre36-NDM were confirmed by mapping of the PacBio reads to the assembled plasmid (no regions of low read coverage or quality were found that could suggest an assembly issue); by investigation of the MiSeq assembly (the same rearrangement was identified on a single contig, see supplementary fig. S4A, Supplementary Material online); and by using PCR to confirm the location of the ΔTn21 (see supplementary fig. S4B, Supplementary Material online). The entire ΔTn21 region in p16Pre36-NDM is flanked upstream and downstream by copies of IS26 (fig. 4), thus it is possible that this entire region of DNA may be mobilized as a composite transposon. IS26 intramolecular replicative transposition has been previously identified as the source of reorganization of plasmids carrying multidrug-resistant determinants as could have happened here (He et al. 2015).

Compared with p16Pre36-NDM the pRB151-NDM (from Bucaramanga, Colombia) is a less complex plasmid, with a size of 108,417 bp. This is a novel plasmid backbone, unrelated to any previously reported (without any significant match against the NCBI nucleotide database), that encodes a putative conjugative transfer machinery, plasmid replication and partition proteins, a restriction-modification system and a putative fimbrial operon (fig. 3). It possesses only one resistance and virulence region, and that contains the blaNDM-1 gene as the plasmid’s only antibiotic resistance determinant (table 1). The variable region has a ΔTn125 harboring the blaNDM-1 with a typical structure except that the two flanking IS72125 are both truncated (fig. 4). Downstream of the ΔTn125 in the resistance region is a novel transposon, registered as Tn6369 in the Tn Number Registry (Roberts et al. 2008), whilst upstream there is another putative mobile element (or its remains) encoding two putative transposon resolvases and a ParED toxin–antitoxin system that is also present in the p06-1619-NDM plasmid, plus an upstream ΔISYal1 (fig. 4).
The p06-1619-NDM plasmid (from Mexico) has a size of 54,712 bp, and belongs to the conserved pNDM-BJ01-like family of plasmids (from Acinetobacter spp.), with the same backbone (99% nucleotide identity over 74% of the pNDM-BJ01 length, fig. 5A). However, it has a putative mobile genetic element (MGE) flanked by identical copies of a novel transposon with intact transposition genes, registered as Tn6368, that has inserted downstream of the blaNDM-1 gene. The insertion of this MGE, has truncated the Tn125 after the tat gene upstream (fig. 4), as well as deleted the genes parB and virB5 and truncated virB4 downstream, so truncating the T4SS locus (fig. 5A). These genes are implicated in the mating pair formation and DNA partitioning process (Christie et al. 2005; Schumacher and Funnell 2005; Kusiak et al. 2011). Their loss in this plasmid may not affect its conjugation capability given that in this study we were able to obtain an E. coli transconjugant from a Mexican P. rettgeri strain harboring the p06-1619-NDM plasmid (fig. 1A and supplementary fig. S1E, Supplementary Material online); although, it is also possible that the other plasmid in this strain, p06-1619-2, which contains the putative P. rettgeri conjugation machinery (Tra-Pre), could act as a helper for the conjugation process, as has been reported for other antibiotic resistance plasmids (Dery et al. 1997; Bennett 2008; Al-Marzoq et al. 2015). As well as the deletions described here, insertion of the putative novel mobile element has given the plasmid two toxin–antitoxin systems (parED and relEB), repA and the IS elements IS5 and IS26 (fig. 5A).

Pairwise comparisons show there is no relationship between the three different P. rettgeri blaNDM-1-Positive plasmids circulating in Colombia and Mexico, apart from the Tn125 remains and the presence of multiple copies of the IS26 element (fig. 3). Only the p16Pre36-NDM plasmid shows some relationship with p6234-178kb-like plasmids found in Colombian K. pneumoniae strains (supplementary data set 2, Supplementary Material online, and fig. 5B). Both p16Pre36-NDM and p6234-178kb share the same Tra1 region, although the Tn125 (harboring blaNDM-1) is located within a different genetic context (figs. 4 and 5B). These similarities explain the genetic relationship found among the blaNDM-1-positive IncaC2 plasmids and the P. rettgeri from Bogota (supplementary data set 2, Supplementary Material online). However, p6234-178kb does not have the Tra-Pre region found in p16Pre36-NDM, and has a more complex antibiotic resistance gene profile (table 1) due to the presence
of an additional class 1 integron containing most of those genes.

Surprisingly, despite no previously reported epidemiological connection, a genetic link between P. rettgeri strains from Colombia, Mexico and Canada was found through analysis of the plasmids the strains harbor. We found the putative P. rettgeri conjugation machinery (Tra-Pre) and some additional regions, first identified in pPrY2001 from the Canadian P. rettgeri strain 09ACRGNY2001, were also present in the blaNDM-negative p06-1619-2 plasmid from Mexico and in the blaNDM-positive p16Pre36-NDM plasmid from Bogota, Colombia (fig. 5B).

Genomic Epidemiology of the blaNDM-1-Positive Plasmids Circulating in Colombia and Mexico

To gain a better understanding of the dissemination dynamics of blaNDM-1—positive plasmids in Latin America, the MiSeq sequencing reads for all isolates included in the study were mapped against the fully sequenced blaNDM-1-positive plasmids from the representative Colombian and Mexican strains, as well as the related blaNDM-1-positive plasmids pNDM-BJ01, pPrY2001 and the blaNDM-negative p06-1619-2 (fig. 6).

The reads from four out of six P. rettgeri strains from Bogotá were found to map well over the entire sequence of p16Pre36-NDM (fig. 6), so are likely have blaNDM-1 in a plasmid closely related to p16Pre36-NDM. Of the remaining two P. rettgeri strains from Bogota, one, 16Pre47, lacked the Tra-Pre locus and the mapped reads covered only one section of the p16Pre36-NDM sequence, suggesting that 16Pre47 carries a much smaller variant of that plasmid; the other, 16Pre45, is positive for the Tra-Pre region, but has no reads mapping to several other regions of p16Pre36-NDM, so it is possible that it has a pPrY-like plasmid or an unrelated plasmid harboring the blaNDM-1 gene. Additionally, the reads for the E. coli transconjugant strain C16-36, generated from 16Pre36, did not map to the whole of the donor plasmid sequence, covering only a 138,178 bp section of p16Pre36-NDM, from position 67,813–206,190 bp (fig. 6 and supplementary fig. 6).
S1C, Supplementary Material online). This 138-kb region encodes the Tra1 region and ΔTn125 harboring the blaNDM-1 and has a 2,928-bp direct repeat sequence at each end (99% nucleotide identity to each other), which encodes ISVsa3 (known as an ISCR2-like element). The mapping profile (fig. 6) showed no C16-36 reads mapped to the Tra-Pre region common to pPrY2001 and its related plasmids (fig. 5B). Using primers specific to the Tra-Pre region a PCR product was generated for the donor strain 16Pre36 but not the transconjugant C16-36 (data not shown), confirming the absence of the Tra-Pre region in the transconjugant was due to transfer of only part of the donor plasmid and not a problem with the WGS data. Taken together, these data indicate that p16Pre36-NDM contains a smaller, self-mobilizing transposable element, 138 kb in size, that can be transferred via conjugation to a new host, possibly via the self-encoded Tra1 conjugative apparatus, common to IncA/C2 plasmids.

The sequencing reads from all five P. rettgeri isolates from Bucaramanga and the corresponding representative transconjugants CRB151 and CRB152, mapped to almost the entire pRB151-NDM sequence, suggesting that they harbor blaNDM-1 in a plasmid closely related to pRB151-NDM (fig. 6). Plasmid pRB151-NDM does not encode the Tra-Pre and Tra1 regions and the strain RB151 does not have additional plasmids, yet four out of five of the related P. rettgeri isolates from Bucaramanga (including RB151) had sequences that mapped to the pPrY2001-like and IncA/C2 Tra1 regions (fig. 6). Investigation of the complete RB151 genome sequence (Marquez-Ortiz et al. 2017) revealed the presence of a genomic island with a high degree of similarity to p16Pre36-NDM, including the Tra-Pre and Tra1 regions, which is chromosomally inserted in strain RB151, flanked by 14.6-kb direct repeats (99% nucleotide identity) (see supplementary fig. S5A, Supplementary Material online). This chromosomal insertion was confirmed by PCR using specific primers (see supplementary fig. S5B, Supplementary Material online).

The read mapping data also showed that all three of the P. rettgeri Mexican isolates have both p06-1619-NDM and p06-1619-2 plasmids, and the reads from the representative transconjugant C06-1623 showed good coverage over the entire length of p06-1619-NDM, confirming the presence of blaNDM-1 on this plasmid.

Thus, the conjugative transfer-associated region Tra-Pre was observed to be present in 12 out of 14 NDM-1-positive P. rettgeri isolates (fig. 6), from Colombia (Bogota and Bucaramanga) and Mexico. In addition to the first report in the Canadian P. rettgeri blaNDM-1-positive plasmid pPy2001, this Tra-Pre region is also found in the partially sequenced genome of a NDM-positive P. rettgeri isolated in Israel, strain H1736 (Olaitan et al. 2015) (see supplementary fig. S2, Supplementary Material online). However, the partial assembly of the Israeli isolate prevented determination of whether or not the blaNDM-1 gene is located in the same plasmid as the Tra-Pre region. Together, these results validate a genetic link among epidemiologically unrelated isolates of NDM-1-positive P. rettgeri.

Discussion

In this study, we used WGS data to provide a high-resolution picture of blaNDM-1 dissemination in Latin America, which led us to interesting findings about the dissemination route of this gene between Enterobacteriaceae and Acinetobacter species. Acinetobacter spp. harboring blaNDM-1 in pNDM-BJ01-like plasmids are frequently detected all over the world (Feng et al. 2015; Fu et al. 2015); these (or NDM-positive isolates with blaNDM-1) genetic surroundings suggesting the presence of pNDM-BJ01-like plasmids have even been found in Latin America (Waterman et al. 2013; Pasteran et al. 2014; Brovedan et al. 2015; Quinones et al. 2015; Montana et al. 2016; Rojas et al. 2016). Here, we report an A. baumannii clone isolated in Colombia that also harbors blaNDM-1 in a pNDM-BJ01-like plasmid. This finding supports observations of such a blaNDM-1-harboring plasmid present in Acinetobacter spp. of different genetic backgrounds. However, although the majority of plasmids harboring blaNDM-1 in Acinetobacter spp. are pNDM-BJ01-like plasmids, and although there is some evidence to suggest that Acinetobacter spp. passed blaNDM-1 on to the Enterobacteriaceae (Toleman et al. 2012), pNDM-BJ01-like plasmids do not seem to have good fitness in non-Acinetobacter bacteria, or at least in Enterobacteriaceae. To date, only one non-Acinetobacter harboring a pNDM-BJ01-like plasmid has been reported (Feng et al. 2015), whereas a plethora of Enterobacteriaceae hosting diverse, completely unrelated blaNDM-positive plasmids have been found (supplementary data set 2, Supplementary Material online). The mechanisms of blaNDM gene transmission from Acinetobacter spp. to Enterobacteriaceae are not yet understood.

In this study, we identified a second Enterobacteriaceae family member harboring a pNDM-BJ01-like plasmid (p06-1619-NDM), a P. rettgeri isolated in an outbreak in Mexico (Barrios et al. 2013). However, the p06-1619-NDM plasmid has suffered a major modification in the variable region, with the insertion of a previously unreported mobile element introducing two toxin–antitoxin systems (flanked by two novel Tn6368 transposons). It seems plausible that the toxin–antitoxin systems have generated a strong dependence on that plasmid as has been previously reported (Kamruggaman et al. 2017), thereby avoiding transposition of blaNDM-1 to another more compatible plasmid and its subsequent elimination. Adding to the advantages conferred by the two addictive systems is the high selective pressure of the environment—an Intensive Care Unit—from which the Mexican P. rettgeri strains were isolated. As the other plasmid hosted by these isolates (p06-1619-2) does not have any resistance genes (table 1), selective pressure could force permanent residence of the pNDM-BJ01-like plasmid due to the conferred
resistance to aminoglycosides and beta-lactams, including carbapenems.

Providencia species are frequently found in environmental settings, but are also opportunistic human pathogens, mainly as the causative agents of urinary tract infections (Wie 2015). They are not among the most significant or prevalent human threats, but recently they have been attracting interest due to increasing reports of P. rettgeri NDM-positive isolates found around the world (Barrios et al. 2013; Carvalho-Assef et al. 2013; Matase et al. 2014; Pollett et al. 2014; Tada et al. 2014; Camo Junior et al. 2015; Managero et al. 2015; Nachimuthu et al. 2015; Wailan, Paterson, et al. 2016). Here, we also found P. rettgeri to be the most frequent bacteria harboring the blaNDM-1 gene in three hospitals at distant locations from each other in Colombia. Most of the cases correspond to outpatients, suggesting that NDM-1-positive P. rettgeri strains are present in the community in Colombia. In spite of the increase in NDM-positive P. rettgeri cases, only two completely sequenced blaNDM-1-positive plasmids are in the NCBI nucleotide database for P. rettgeri, both of which were isolated in Canada (supplementary data set 2, Supplementary Material online). Here, we report three additional unrelated complete plasmids hosted by P. rettgeri (two from Colombia and one from Mexico), providing more information to help elucidate blaNDM-1 dissemination in the Enterobacteriaceae.

Interestingly, despite the geographic distances between the sites of isolation of NDM-1-positive P. rettgeri strains and despite the very different structures of their blaNDM-1-positive plasmids, we found a common feature—a putative conjugative transfer region named here as Tra-Pre—that appears to be stable among P. rettgeri from different regions. Supporting this hypothesis of a common, stable feature for blaNDM-1-positive P. rettgeri, is the fact that this Tra-Pre region is also found in the partially sequenced genome of the NDM-1-positive P. rettgeri H1736, reported in Israel in 2011 (Olaitan et al. 2015).

The Tra-Pre-family plasmids harboring blaNDM-1 that are hosted by P. rettgeri (pPhY2001 and p16Pre36-NDM) are unrelated to the pNDM-BJ01-like plasmids from Acinetobacter species. Nevertheless, it is possible the blaNDM-1-positive Tra-Pre-encoding plasmids emerged in P. rettgeri through transposition of blaNDM-1 from a pNDM-BJ01-like plasmid (prior to its loss) to a more stable plasmid, as suggested by the coexistence of a blaNDM-1-negative plasmid containing the Tra-Pre region (p06-1619-2) and a pNDM-BJ01-like plasmid in the P. rettgeri from Mexico. This proposed mechanism is further supported by the presence of the Tra-Pre region in almost all P. rettgeri isolates in this study (12 out of 14), even isolates in which blaNDM-1 is found on an unrelated plasmid, for example in the P. rettgeri isolates from Bucaramanga, Colombia. The simultaneous detection in the Bucaramanga P. rettgeri isolates of a new plasmid harboring the blaNDM-1, and of a region in the bacterial chromosome encoding both the IncA/C2-related and Tra-Pre regions similar to those found in the blaNDM-1-positive plasmid circulating in Bogotà, indicates how a possible transposition of the blaNDM-1 region to a new, different backbone may have occurred in this strain. Thus, our study supports the role of gene module transposition in the spread of blaNDM-1 among P. rettgeri clinical isolates, a role that has been identified as relevant to the evolution of blaNDM-1-positive plasmids (Khong et al. 2016).

We found a further interesting genetic link in the relationship between blaNDM-1-positive plasmids present in P. rettgeri (p16Pre36-NDM) and those found in K. pneumoniae (p6234-178kb). The isolates harboring p16Pre36-NDM and p6234-178kb were detected in the same Colombian hospital (supplementary data set 1, Supplementary Material online). Although p16Pre36-NDM and p6234-178kb cannot be classified in the same Inc group, they share a large region, commonly found in the IncA/C2 blaNDM-1-positive and negative plasmids from diverse Enterobacteriaceae. This region was also found to be inserted in the chromosome of the P. rettgeri isolates from Bucaramanga. These results suggest that the complex p16Pre36-NDM plasmid originated in P. rettgeri, through the co-integration of a pPhY2001-like plasmid with an acquired IncA/C2 broad host range plasmid from a different Enterobacteriaceae. This IncA/C2 plasmid may then have been transferred to (or from) a non-Providencia Enterobacteriaceae, such as the K. pneumoniae in this study. Conjugation of p16Pre36-NDM to E. coli J53 resulted in transfer of only part of the plasmid, a putative self-mobilizable ISVsa3 (an ISCR2-like element) composite transposon encoding the blaNDM-1 and Tra1 regions, but not the Tra-Pre region. The mapping data indicates that the clinical isolate 16Pre47 also only contains this ISVsa3 composite transposon, and is missing the remainder of p16Pre36-NDM, suggesting this Tra-Pre-negative strain 16Pre47 may have receive the ISVsa3 composite transposon from other P. rettgeri strain (through partial conjugation) or from a K. pneumoniae. This putative blaNDM-1-positive conjugative transposon may have derived from the p6234.178kb circulating in K. pneumoniae in Colombia prior to the isolation of the P. rettgeri, given their similarity and the presence of a closely related sequence containing ISVsa3 (2,928 bp) in both p6234.178kb and p16Pre36-NDM (figs. 4 and 5). Interestingly, this transposable element was found to be conserved (99% nucleotide identity over the 2,928 bp) in the genomes of a very wide range of bacteria, in a search against the NCBI database, and also ISVsa3-like elements has been recognized as key players in IncA/C plasmids evolution (Tolerman and Walsh 2010). Therefore, the novel blaNDM-1-positive putative conjugative transposon identified in this study could facilitate broad dissemination of blaNDM-1 through transposition, conjugation and integration of the transferred circular intermediate into the host genome or to other plasmids via homologous recombination.

The low levels of similarity in the vicinity of Tn125 (or its remnants) between p16Pre36-NDM and p6234-178kb could
be due to the later isolation of the \textit{P. rettgeri} strain harboring p16Pre36-NDM. Although both the \textit{P. rettgeri} and the \textit{K. pneumoniae} strains were isolated at the same hospital (supplementary data set 1, Supplementary Material online), \textit{P. rettgeri} harboring \textit{p16Pre36-NDM} was isolated more than a year after the \textit{K. pneumoniae} outbreak. The length of time the \textit{P. rettgeri} were present in the hospital under selective pressure, could promote the genetic rearrangements observed in the \textit{p16Pre36-NDM} plasmid. In an earlier isolate of \textit{K. pneumoniae}, the \textit{blaNDM-1} surroundings on the p6234-178-kb plasmid are more closely related to those in \textit{Acinetobacter} species.

Dissemination of the IncA/C2 p6234-178kb plasmid in different cities and in strains of different genetic backgrounds, is consistent with the globally observed trend for IncA/C2 (recently designated as IncC; Harmer et al. 2016) group plasmids, which are known to be associated with spread of multidrug resistance genes to different countries and different bacterial hosts (Fricke et al. 2009; Roy Chowdhury et al. 2011; Carattoli et al. 2012), meaning they post a significant risk to human health, particularly as they are capable of disseminating \textit{blaNDM-1}. The importance of improving existing infection control measures, such as isolation of patients harboring resistant pathogens and hand hygiene, is further substantiated by our findings suggesting that some \textit{blaNDM-1}-positive plasmids are likely to have originated by co-integration of less stable \textit{blaNDM-1}-positive plasmids with more stable and disseminative plasmids in environmental bacteria. A case in point is found in the \textit{P. rettgeri} isolates, in which the \textit{Tn125} (or its remnants) may have transposed from \textit{pNDM-BJ01}-like plasmids to \textit{pPrY2001}-like or IncA/C2-related plasmids that could subsequently be transferred to other bacterial species, including more problematic non-\textit{Providencia Enterobacteriaceae}. An important scenario where all these factors can be found simultaneously is in the mammalian gut where \textit{Enterobacteriaceae} can thrive, aiding the inter-species and inter-genera dissemination of the NDM-1 antibiotic resistance gene among the bacterial community of the gut. Host-specific conditions, such as the inflammatory host response, can also boost horizontal gene transfer and hence microbiota evolution (Stecher et al. 2012), that may have led to the plasmid rearrangements observed here, probably under the selective pressure of the hospital environment. However, direct transfer from \textit{Acinetobacter} spp. to non-\textit{Providencia Enterobacteriaceae} cannot be ruled out, due to conjugation
of pNDM-BJ01-like plasmids from Acinetobacter spp. to non-Providencia Enterobacteriaceae (mainly E. coli) has been demonstrated in this and other studies (Hu et al. 2012; Huang et al. 2015). However, more work needs to be done to better understand the genetic basis of the dissemination of blaNDM-1-positive plasmids in Latin America, by evaluating the stability, fitness cost and conjugation capability of pNDM-BJ01-like and pPrY2001-like plasmids to other Enterobacteriaceae.

In our analysis of NDM-1-positive clinical isolates in Latin America, the high variability of blaNDM-1-positive plasmids present in different species, highlights that blaNDM-1 dissemination has not only followed a predominantly clonal evolution, but rather a Russian doll model (Sheppard et al. 2016). In this Russian doll model, a resistance gene such as blaNDM-1 resides on nested transmissible units and therefore can move through the environment at multiple different levels, that can be both coincident and independent of one another. For example, bacterial cell hosting resistance gene; plasmid within bacterial cell harboring resistance gene; mobile element within plasmid harboring resistance gene; and mobile element within mobile element harboring resistance gene, with the consequence that the resistance gene may move between plasmids within a bacterial cell via multiple mechanisms (Sheppard et al. 2016). In line with this model, different clones have acquired different blaNDM-1-positive plasmids and related strains have disseminated locally, as for example in the NDM-1 outbreaks in Colombia and Mexico (Barrios et al. 2013; Escobar Perez et al. 2013) and also the cases of the P. rettgeri isolated in Bogota and Bucaramanga (Colombia) in the recent surveillance study. These related strains acquired the blaNDM-1 from a variety of plasmids, such as IncA/C2-related or pPrY2001-like plasmids, that in turn received blaNDM-1 from plasmid co-integration or transposition from another plasmid, or from Acinetobacter spp. pNDM-BJ01-like plasmids in an initial dissemination stage. In our Russian doll model, P. rettgeri plays an important role as a reservoir of blaNDM-1 available for transmission into highly disseminative plasmids due to its high recombination capability supported by the high plasmid variability found in this species (fig. 7). In this study, the presence of pNDM-BJ01-like, Tra-Pre-encoding and IncA/C2-related plasmids or genetic structures in P. rettgeri, and their relationship with the plasmids present in K. pneumoniae and Acinetobacter species, illustrates the evolution route of blaNDM-1-positive plasmids in Latin America, where P. rettgeri appears to be crucial for blaNDM-1 transmission from Acinetobacter spp. to Enterobacteriaceae.

Taken together, these findings expose the role of microorganisms such as P. rettgeri, that generally are not the target of public health surveillance systems, in the dissemination and storage of resistance genes, highlighting the importance of more comprehensive studies, which do not merely focus on the most frequently occurring pathogens but also encompass the resistance determinants and their mobilization machinery.

Supplementary Material
Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments
We gratefully acknowledge financial support from the Departamento Administrativo de Ciencia, Tecnología e Innovación, Colciencias (grant number 130871250819 and Fellowship 567-2012 to R.A.M.); Vicerrectoría de Investigaciones, Universidad El Bosque (grant number PCI-2012-330) and University of Technology Sydney. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author Contributions

Literature Cited

Toleman MA, Walsh TR. 2010. ISCR elements are key players in IncAC plasmid evolution. Antimicrob Agents Chemother. 54:3534; author reply 3534.

Associate editor: Bill F. Martin