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Applicability of nonresonant artificial diamagnetics
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Artificial diamagnetics are prominent for achieving extraordinarily strong diamagnetism in a wide frequency
range. However, as far as the magnetic fields outside the artificial medium are concerned, bulk conductors show
a very similar pattern. The question arises whether the complicated internal structure of artificial diamagnetics
can, to this end, be replaced by a simpler object. We show that for an electrically small body, internal structuring
is likely to make the effective diamagnetic response weaker than that of a simple conducting object.

DOI: 10.1103/PhysRevB.90.104413 PACS number(s): 41.20.−q, 42.25.Bs, 42.25.Ja, 42.70.Qs

I. INTRODUCTION

The idea of creating artificial diamagnetics is more than a
century old. It goes back to the work of Weber [1], who realized
that a closed metallic loop exhibits diamagnetic properties.
However, the magnitude of the magnetic polarizability of
a simple closed loop is very limited. A way to overcome
this difficulty is described, for example, by Schelkunoff and
Friis [2]: A lumped capacitor is inserted into the loop, making a
resonant system, where the diamagnetic properties are greatly
enhanced in the vicinity of the resonance frequency. This
preliminary design was improved by Hardy and Whitehead [3],
using a distributed capacitance, and was later made popular by
Pendry [4] in planar technology. From that point, artificial
diamagnetics made of resonant rings became one of the
core topics in metamaterials, and various designs have been
systematically studied [5].

Although the resonant behavior allows for very low po-
larizability, the price to pay is the narrow frequency band
in which the effect exists. Furthermore, implementation at
either very low or very high frequencies is limited by the
available capacitances. Nonresonant diamagnetics thus still
remain attractive. Recently, this problem has been revisited by
Lapine et al. [6] and also by Belov et al. [7]. In the first case [6],
it was shown that a dense hexagonal lattice of closed loops with
realistic parameters can deliver effective bulk permeability as
low as 0.05. However, this design is necessarily anisotropic,
which may pose an obstacle for certain applications. This issue
has been avoided [7] by using a system of closely packed
metallic cubes, which is a design similar to that of Wood [8],
yet not involving a superconductor. The system of packed
cubes offered bulk permeability values of 0.15 in experimental
samples [7].

However, while the designs mentioned above are useful for
obtaining a diamagnetic response in the bulk, it turns out that,
as far as their influence on the surrounding magnetic fields is
concerned, they do not offer an ideal solution. As we show
in this paper, a much simpler object (an unstructured good
conductor) actually provides a stronger diamagnetic response.
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II. QUALITATIVE CONSIDERATION

A diamagnetic object or medium creates a magnetic field
trying to counter the magnetic field applied externally. This
behavior is commonly represented by a negative magnetic
polarizability or a relative permeability μr < 1. Two different
mechanisms can be responsible for such behavior. Classi-
cal atomic diamagnetism originates from the response of
bound electrons. This is a weak phenomenon with relative
permeability very close to unity (μr � 0.9996 for common
substances). However, the permeability is almost independent
of frequency from dc up to the terahertz range. The other
kind of diamagnetism is connected with a bulk response of
conducting bodies excited by time-varying magnetic fields,
which induce circulating currents that can be written as
circulation of magnetization [9], being thus equivalent to it. In
this case, the current induction is guided by Faraday’s law and
is thus dependent on frequency. Such diamagnetism vanishes
at dc, with the exception of a perfect electric conductor or
a superconductor. Imagine a conducting electrically small
body excited by a time harmonic magnetic field B of angular
frequency ω (time convention ejωt ). The tensor of dipolar
magnetic polarizability ᾱ of the body is usually defined by
m = ᾱ · B, where m is the induced magnetic dipole moment.
In the case of a good conductor, the components of ᾱ can be
written as [9,10]

αij ≈ −jωAij

Rj + jωLj

, (1)

where Aij > 0 are constants related to the cross sections
of the body and Rj > 0, Lj > 0 are the resistances and
self-inductances along the current loops. From Eq. (1), it is
evident that in realistic conductors (Rj �= 0) the polarizability
vanishes for ω → 0. On the other hand, at frequencies where
ωLj/Rj � 1, such a body is diamagnetic (αii < 0) with a
weak frequency dependence.

Based on the above discussion, we pose a hypothesis:
For an electrically small passive body of a particular shape

and volume, away from the resonance, the most negative
magnetic polarizability (the strongest diamagnetism) is ob-
served when the body is entirely filled by a good conductor.
Any internal structuring of the body leads to a less negative
polarizability (weaker diamagnetism).
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This hypothesis is based on the observation that Aij of
Eq. (1) are defined by the effective cross sections of the body
and thus refer to the overall dimensions of the body (at least
for canonical shapes, such as sphere, ellipsoid, cylinder, and
loop [9,10]). Therefore, these coefficients are only slightly
affected by an internal structuring of the body. In contrast,
magnetic energy and dissipation (Lj , Rj ) always grow in the
regions of confined currents (enhanced fields) which appear as
a result of internal structuring.

III. A CANONICAL EXAMPLE

In the following sections, the hypothesis presented above
is illustrated with the help of a canonical example: a sphere
exposed to a homogeneous magnetic field. We provide a
comparison between an unstructured sphere, consisting of a
bulk metal (Sec. III A), and a sphere filled with an artificial
diamagnetic (Sec. III B).

A. A sphere of a homogeneous medium

Consider a sphere of radius a filled with an isotropic
medium with material parameters ε1, μ1, σ1, immersed in a
background isotropic medium with parameters ε2, μ2, σ2. In
order to find a suitable magnetic excitation, we assume the
lowest order solution of the vector wave equation, transversal
to the z direction [11], which can be written as (using spherical

coordinates)

Eext = −jH0
3Z2

2
j1(k2r) sin θ ϕ0,

Hext = H0

[
r0

3

k2r
j1(k2r) cos θ

+ θ0
3

2k2r
[j1(k2r) − k2r j0(k2r)] sin θ

]
, (2)

where Z2 = ωμ2/k2 is the wave impedance of the background
medium, k2 is the corresponding wave number, H0 is the
magnetic field at the origin, and jn(x) is the spherical Bessel
function [12] of order n. It is straightforward to show that
for k2r � 1 the exciting field (2) can be rewritten as (using
cylindrical coordinates)

Eext ≈ −jH0
Z2k2ρ

2
ϕ0,

Hext ≈ H0z0,

(3)

which represents a homogeneous z-directed magnetic excita-
tion. Since the excitation itself is a solution of the vector wave
equation in spherical coordinates, then the functional form of
the field (2) will be unperturbed by the presence of the sphere.
Thus, the field in the presence of the sphere can be assumed in
the form

E = −jC1
3Z1 sin θ

2
j1(k1r) ϕ0

H = C1

[
r0

3 cos θ

k1r
j1(k1r) + θ0

3 sin θ

2k1r
[j1(k1r) − k1r j0(k1r)]

]
∣∣∣∣∣∣∣∣
r < a,

E = Eext − jC2
3Z2 sin θ

2
h

(2)
1 (k2r) ϕ0

H = Hext + C2

[
r0

3 cos θ

k2r
h

(2)
1 (k2r) + θ0

3 sin θ

2k2r

[
h

(2)
1 (k2r) − k2r h

(2)
0 (k2r)

]]
∣∣∣∣∣∣∣∣
r > a,

(4)

where Z1 = ωμ1/k1 is the wave impedance of the sphere;
in order to find the solution regular for r = 0,∞, we have
used spherical Bessel functions for r < a and spherical
Hankel functions of the second kind [12], h(2)

n (x), for r > a.
The unknown constants C1, C2 can be determined from the
boundary conditions at r = a, i.e., from the continuity of the
tangential electric and magnetic fields.

Consider an electrically small sphere (k2a � 1) of ε1 =
ε0, μ1 = μ0, σ1 � 1 in a vacuum. In this case, it is valid to
ask what is the magnetic moment produced by the sphere.
The magnetic moment results from the induced conduction
currents Jϕ = σ1Eϕ and can be calculated as

m = 1

2

∫
V

(r × J)dV = z0 · 3ja2

δ2

·C1V
3k1a cos(k1a) − [3 − (k1a)2] sin(k1a)

(k1a)5
, (5)

where V = 4πa3/3 is the volume of the sphere and δ =√
2/(ωμ1σ1) is the skin depth. It can be checked that for σ1 →

∞ the magnetic moment (5) becomes m ≈ −z0 · 3V H0/2,
which is the well-known result for a perfectly conducting
sphere [13].

Consider another scenario with the sphere filled by a
nonconducting diamagnetic medium, ε1 = ε0, μ1 < μ0, σ1 =
0. The magnetic moment in this case results from the
magnetization and can be calculated as

m =
∫

V

M dV =
(

μ1

μ0
− 1

) ∫
V

H dV

= z0 · 3

(
μ1

μ0
− 1

)
sin(k1a) − k1a cos(k1a)

(k1a)3 C1V, (6)

which for the relevant case of an electrically small sphere
(k2a � 1, k1a � 1) can be approximated as

m ≈ z0 ·
(

μ1

μ0
− 1

)
3μ2

μ1 + 2μ2
V H0. (7)

With respect to artificial diamagnetism it is now interesting
to ask what should be the equivalent permeability μ

eq
r of
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FIG. 1. (Color online) (a) Equivalent permeability μ
eq
r for a copper (σ = 5.6 × 107 S/m) sphere for several values of radius a. (b) Effective

permeability of a metamaterial made of close copper loops with different radii r0 and the same relative geometry and lattice. The radii of the
rings are such that there are 10 unit cells per radius of the corresponding sphere in panel (a).

a diamagnetic sphere such that it would produce the same
magnetic moment (5) as the conducting sphere. This is
straightforward to calculate by solving relation (7) for μ1,
and the result is depicted in Fig. 1(a) for a copper sphere.

Several important observations can be made from Fig. 1(a).
First, the system is not scalable due to the presence of dissi-
pation. Second, diamagnetism is only available at frequencies
where the skin depth is considerably smaller than the radius of
the sphere a. Third, for frequencies sufficiently high to over-
come dissipation, a good conductor simulates an ideal diamag-
netic with μr → 0. In fact, this limiting case is evident from
Eqs. (5) and (7), which shows that a perfectly electrically con-
ducting (PEC) sphere corresponds to a sphere filled by μ1 = 0.

It is now instructive to discuss this equivalence also
from another perspective. Let us calculate the magnetization
current [9] JM = ∇ × M in the ideal diamagnetic case (μ1 →
0). Straightforward derivation leads to

JM ≈ −3

2
δ (r − a) H0 sin θ ϕ0

IM ≈ −3aH0,

(8)

where IM denotes the total magnetization current and δ (r)
denotes the Dirac delta function. The distribution (8) also
means that in this case the magnetization as well as the
magnetic field are practically homogeneous inside the sphere.

On the other hand, the current density inside the highly
conducting sphere (σ1 → ∞) can also be calculated in a
straightforward manner as J = σ1E, which leads to

J ≈ −3

2

(
jk1a

e−jk1(a−r)

r

)
H0 sin θ ϕ0,

I ≈ −3aH0,

(9)

where I denotes the total current as in Eq. (8). In contrast to
Eq. (8), the current represented by Eq. (9) leads to a strongly
inhomogeneous magnetic field inside the sphere (a strong
skin effect). However, when comparing Eqs. (8) and (9) it
is important to realize that for σ1 → ∞ the bracketed term in
Eq. (9) corresponds to the Dirac delta function, which means
that the current distribution in an ideal diamagnetic sphere is
equal to the surface current in the case of a PEC sphere.

B. A sphere of an artificial medium made of conducting loops

Now we compare the results for the conducting sphere,
presented in Fig. 1(a), with those for a sphere made of an
artificial diamagnetic metamaterial—an anisotropic lattice of
closed conducting loops [6]. We consider rings of mean radius
r0, made of a metallic wire (with the same conductivity σ ) of
circular cross section with radius rw. The rings are arranged in
a lattice with periods b1r0 along the axis of the loops and b2r0 in
the plane of the loops. Dimensionless parameters bi and w =
rw/r0, serve for ease of notation. The effective permeability of
such a metamaterial can be calculated as [6]

μr = 1 −
[
b1b

2
2

γπ2

(
Le + μ0r0�

μ0r0
− 1

ζ

J0(ζ )

J1(ζ )

)
+ 1

3

]−1

,

(10)

where ζ = (1 − j)r0w/δ, and Ji are the ith order cylin-
drical Bessel functions [12]. The total inductance includes
the external contribution to the self-inductance of the
ring Le = μ0r0 (ln(8/w) − 2) and the mutual inductance in
the array, reflected by the dimensionless parameter � =∑

n�=n′ Lnn′
/

(μ0r0), which, as well as the geometrical coef-
ficient γ , depends on the lattice geometry [14].

To be consistent with effective medium approximation,
in comparing a piece of diamagnetic metamaterial with the
metallic sphere, we require bir0 � a. For a practical example,
we choose a lattice constant ten times smaller than the radius
of the sphere; note that the spherical shape, anisotropy of the
lattice, and sufficiently large amount of loops are expected to
rule out any significant mesoscopic boundary effects [15] here.

As we know [6], a strong diamagnetism requires that bi is as
small as possible, while w is as large as possible for the given
lattice parameters. Based on the available data (see Figs. 3 and
4 in Ref. [6]), we select a shifted hexagonal lattice and set
w = 0.01, b1 = 0.02, b2 = 2.02, as a compromise between
sufficiently low permeability and technological constraints
(indeed, a further decrease in these parameters does not lower
the μ values perceptibly). Figure 1(b) shows the effective
bulk permeability of the ring metamaterial with the above
parameters for loops with r0 = a/(10b2) for the same set of a

as in Fig. 1(a).
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FIG. 2. (Color online) Magnetic levitation figure of merit for the two cases with the same parameters as in Fig. 1: (a) for a copper spherical
shell of thickness 3δ and (b) for a metamaterial made of closed copper loops; the loops are either completely metallic loops (solid lines) or,
where possible (when rw > 3δ), hollow toroidal shells with wall thickness of 3δ (dashed lines).

The curves look qualitatively similar to those of a conduct-
ing sphere, but the frequency scale in this plot (having the same
normalization) is quite different, indicating that the transition
to diamagnetism in this metamaterial occurs at a much higher
frequency. Also, we note that, in contrast to the equivalent
permeability calculated for the conducting sphere, the effective
permeability of the lattice of rings does not reach zero.

In this step we could also make a comparison between
a bulk conducting sphere and the cubic system reported in
Ref. [7]. However, a similar result can be expected, since the
smallest effective permeability requires the separation between
the cubes to vanish, which eventually converges to a bulk
metallic body. Introducing a separation between the cubes will
then lead to worse performance.

IV. MAGNETIC LEVITATION

To illustrate a practical consequence of the above ar-
guments, we consider an example relevant for one of the
potential applications of artificial diamagnetics: magnetic
levitation, which enjoys fresh attention in the context of
metamaterials [16,17].

When an electrically small diamagnetic object of polar-
izability α is placed into an inhomogeneous magnetic field,
a force F = α∇‖B‖2 tries to expel the object from the
field [11]. Magnetic levitation occurs when this magnetic
force counterbalances the force of gravity. For an electrically
small object made of a structured metal, the magnitude of the
magnetic force is proportional to |α| and the magnitude of the
gravitational force is proportional to the volume of the metal, so
levitation is most efficient when the ratio of the magnetic force
to the gravitational force, μ0 |α|/ (f V ), is maximized; here,
V is the volume to which the polarizability corresponds and
f = Vmetal/V is the volume fraction of metal in that volume.
This quantity will hereafter be used as a figure of merit (FOM)
of the diamagnetic properties. Referring to the last section,
where the permeability equivalent to the polarizability was
derived [see Eq. (7) and the related discussion], it is easy to
see that we can further write FOM = |μeq

r − 1|/f .
As shown in the previous section, the lattice of rings [6]

can offer permeability very close to zero and at the same time

it can contain significantly less metal (f = 2π2w2r2
0 /(b1b2),

provided that the rings are filled with metal) than a complete
conducting body. It could thus represent a valid competitor to
a conducting body with respect to magnetic levitation.

However, when evaluating the levitation FOM of the
conducting sphere it is important to recall that (see the previous
section) diamagnetism only occurs when the penetration
depth is significantly smaller than the radius of the sphere.
Therefore, diamagnetic properties result from a thin surface
layer, while the inner part of the conductor can safely be
removed. This provides a clear improvement, as the levitation
FOM is inversely proportional to the volume fraction f . To be
conservative, we can take a layer of thickness 3δ, which, for
the conducting sphere, results in

FOM =
∣∣μeq

r − 1
∣∣

1 − (1 − 3δ/a)3 . (11)

The result of Eq. (11) is depicted in Fig. 2(a) for a copper
sphere.

For the metamaterial made of conducting rings, this
approach can also be employed by using hollow toroidal shells
with thickness 3δ. However, as apparent from Fig. 2(b), for a
significant range of the parameters this possibility does not
come into play as the rings would actually have to be thinner
than the skin depth. This fact imposes a saturation of the figure
of merit, since the permeability decreases only weakly upon the
transition to the diamagnetic regime, while the filling fraction
remains the same until the skin depth becomes smaller than
the wire radius (when eventually it starts to increase as shown
by the dashed lines).

This observation leaves open the question whether it is
possible to increase the figure of merit by using a thicker
hollow wire, so that the relation 3δ < rw is valid for a lower
frequency. Indeed, the magnitude of |μr − 1| does not change
much (from ∼0.95 to ∼0.9) when w is increased ten times
and the other parameters are adjusted accordingly, but the
filling fraction will benefit from using the skin effect. The
result (see Fig. 3), however, is such that although the curves
corresponding to the strong skin effect (dashed lines) depart
earlier from the saturation range in thicker rings, they all
coincide with those for thin rings at higher frequencies. Thus,
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FIG. 3. (Color online) The magnetic levitation figure of merit of
a metamaterial made of either complete metal loops (solid lines)
or hollow toroidal shells with wall thickness of 3δ, provided that
rw > 3δ (dashed lines). The three depicted curves are described by
the following sets of parameters: {r0 = 4.545 μm, w = 0.1, b1 = 0.2,
b2 = 2.2}, {r0 = 4.854 μm, w = 0.03, b1 = 0.06, b2 = 2.06}, {r0 =
4.95 μm, w = 0.01, b1 = 0.02, b2 = 2.02}.

the thickness of the rings (within reasonable limits) is irrelevant
for the figure of merit.

We also note that for the same reasons the system of
separated cubes [7] also cannot compete with the conducting
body as it has a weaker diamagnetism and a less advantageous
filling fraction at the same time.

V. CONCLUSIONS

We have provided a comparison between electrically small
bodies filled with either a nonresonant passive artificial
diamagnetic material, or with a bulk conductor, with respect

to their diamagnetic response outside of the body. Our
observation is that filling with the bulk conductor offers a
stronger diamagnetism than filling with the most optimal
nonresonant artificial diamagnetic reported to date.

Further enhancement of the diamagnetic behavior could be
achieved using resonant or active systems, but at the price of
much higher complexity and limited frequency bandwidth.

Our qualitative considerations as well as the presented
examples suggest that any internal structuring of a conductor
makes diamagnetic response in the exterior weaker. This
may limit the merits of artificial diamagnetics for practical
applications where the fields outside the body are concerned,
in particular, for levitation.

At the same time, we emphasize that the structure of the
fields inside an artificial diamagnetic is quite different from
that of a conducting body or shell, and this leaves room for
corresponding applications. We also note that artificial dia-
magnetics provide greater freedom in the initial design as well
as easy tunability and reconfigurability by changing the lattice.

Finally, unlike bulk conductors, artificial diamagnetics
can be combined with artificial dielectrics or even active
inclusions, with an almost independently engineered response,
although the arising mutual interaction between the subsys-
tems may be essential and requires a careful analysis.
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