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Network inference approaches are now widely used in biological applica-
tions to probe regulatory relationships between molecular components such
as genes or proteins. Many methods have been proposed for this setting, but
the connections and differences between their statistical formulations have
received less attention. In this paper, we show how a broad class of statisti-
cal network inference methods, including a number of existing approaches,
can be described in terms of variable selection for the linear model. This
reveals some subtle but important differences between the methods, includ-
ing the treatment of time intervals in discretely observed data. In developing
a general formulation, we also explore the relationship between single-cell
stochastic dynamics and network inference on averages over cells. This clar-
ifies the link between biochemical networks as they operate at the cellular
level and network inference as carried out on data that are averages over pop-
ulations of cells. We present empirical results, comparing thirty-two network
inference methods that are instances of the general formulation we describe,
using two published dynamical models. Our investigation sheds light on the
applicability and limitations of network inference and provides guidance for
practitioners and suggestions for experimental design.

1. Introduction. Networks of molecular components such as genes, proteins
and metabolites play a prominent role in molecular biology. A graph G = (V, E)
can be used to describe a biological network, with the vertices V identified with
molecular components and the edges E with regulatory relationships between
them. For example, in a gene regulatory network [Babu et al. (2004); Davidson
(2001)], nodes represent genes and edges transcriptional regulation, while in a pro-
tein signaling network [Yarden and Sliwkowski (2001)], nodes represent proteins
and edges may represent the enzymatic influence of the parent on the biochemical
state of the child, for example, via phosphorylation. In many biological contexts,
including disease states, the edge structure of the network may itself be uncertain
(e.g., due to genetic or epigenetic alterations). Then, an important biological goal
is to characterize the edge structure (often referred to as the “topology” of the
network) in a context-specific manner, that is, using data acquired in the biologi-
cal context of interest (e.g., a type of cancer, or a developmental state). Advances
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in high-throughput data acquisition have led to much interest in such data-driven
characterization of biological networks. Statistical approaches play an increasingly
important role in these “network inference” efforts. From a statistical perspective,
the goal can be viewed as making inference regarding the edge structure E in light
of biochemical data y. Since aspects of biological dynamics may not be identifi-
able at steady-state, time-varying data is usually preferred, and this is the setting
we focus on here. In many applications the data y arise from “global perturbation”
of the cellular system, for example, by varying culture conditions or stimuli. The
extent to which networks can be characterized using global perturbations remains
poorly understood, since it is likely that such data expose only a subspace of the
phase space associated with cellular dynamics.

The importance of network inference in diverse biological applications, from
basic biology to diseases such as cancer, has spurred vigorous activity in this area.
Many specific methods have been proposed, in the statistical literature as well as
in bioinformatics and bioengineering, with some popular approaches reviewed in
Bansal, Belcastro and Ambesi-Impiombato (2007); Bonneau (2008); Hecker et al.
(2009); Lee and Tzou (2009); Markowetz and Spang (2007). Graphical models
play a prominent role in this literature, as does variable selection. A distinction
is often made between statistical and “mechanistic” approaches [Ideker and Lauf-
fenburger (2003)]. The former is usually used to refer to models that are built on
conventional regression formulations and variants thereof, while the latter usually
refers to models that are explicitly rooted in chemical kinetics, for example, sys-
tems of coupled ordinary differential equations (ODEs). This distinction is some-
what artificial, since it is possible in principle to carry out formal statistical net-
work inference based on mechanistic models (e.g., systems of ODEs), although
this remains challenging [Xu et al. (2010)].

Many network inference schemes are based on formulations that are closely
related in terms of the underlying statistical model. For example, vector autore-
gressive (VAR) models [including Granger causality-related approaches as spe-
cial cases; Bolstad, Van Veen and Nowak (2011); Meinshausen and Biihlmann
(2006); Morrissey et al. (2010); Opgen-Rhein and Strimmer (2007); Zou and
Feng (2009)], linear dynamic Bayesian networks [DBNs; Kim, Imoto and Miyano
(2003)] and certain ODE-based approaches [Bansal and di Bernardo (2007); Li
and Chen (2010); Nam, Yoon and Kim (2007)] are intimately related, being based
on linear regression, but with potentially differing approaches to variable selec-
tion. In recent years, several empirical comparisons of competing network infer-
ence schemes have emerged, including Altay and Emmert-Streib (2010); Bansal,
Belcastro and Ambesi-Impiombato (2007); Hache, Lehrach and Herwig (2009);
Smith, Jarvis and Hartemink (2002); Werhli, Grzegorczyk and Husmeier (2006).
Assessment methodology has received attention, including attempts to automate
the generation of large scale biological network models for automatic benchmark-
ing of performance [Marbach et al. (2009); Van den Bulcke et al. (2006)]. In partic-
ular, the Dialogue for Reverse Engineering Assessments and Methods (DREAM)
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challenges [Prill et al. (2010)] have provided an opportunity for objective empirical
assessment of competing approaches. At the same time, developments in synthetic
biology have led to the availability of gold standard data from hand-crafted biolog-
ical systems, such that the underlying network is known by design [Camacho and
Collins (2009); Cantone et al. (2009); Minty, Varedi and Nina (2009)]. However,
relatively little attention has been paid to the (sometimes contrasting) assumptions
of the statistical formulations underlying these network inference schemes.

Inferential limitations due to estimator bias and nonidentifiability remain in-
completely understood. It is clear that chemical reaction networks (CRNs; these
are graphs that give detailed descriptions of individual reactions comprising the
overall system) underlying biological networks are not in general identifiable
[Craciun and Pantea (2008)]. Indeed, there exist topologically distinct CRNs which
produce identical dynamics under mass-action kinetics. Moreover, even when the
true network structure is known, reaction rates themselves may be nonidentifiable.
However, mainstream descriptions of biological networks, for example, gene reg-
ulatory or protein signaling networks, are coarser than CRNs. Such networks are
useful because they are closely tied to validation experiments in which interven-
tions (e.g., RNA interference or inhibitors) target network vertices. For example,
inference of an edge in a gene regulatory network corresponds to the qualitative
prediction that intervention on the parent will influence the child (via transcription
factor activity). It remains unclear to what extent such biological network structure
can be usefully identified from various kinds of data. On the other hand, Wilkinson
(2006); Wilkinson (2009) discusses a number of general issues relating to stochas-
tic modeling for systems biology, but does not discuss network inference per se
in detail. This paper complements existing empirical work by focusing on statis-
tical issues associated with linear models commonly used in network inference
applications.

Network inference methods can be viewed as generating hypotheses about cell
biology. Yet the link between biochemical networks at the cellular level and net-
work inference as applied to bulk or aggregate data (i.e., data that are averages
over large numbers of cells) from assays such as microarrays remains unclear. In
applications to noisy time-varying data there is uncertainty in the predictor vari-
ables of the same order of magnitude as uncertainty in the responses, yet often only
the latter is explicitly accounted for. Moreover, the treatment of time intervals in
discretely observed data remains unclear, with contradictory approaches appearing
in the literature. Most high-throughput assays, including array based technologies
(e.g., gene expression or protein arrays), as well as single-cell approaches (e.g.,
FACS-based) involve destructive sampling, that is, cells are destroyed to obtain
the molecular measurements. The impact of the resulting nonlongitudinality upon
inference does not appear to have been investigated.

The contributions of this paper are threefold. First, we explore the connection
between biological networks at the cellular level and the linear statistical models
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that are widely used for inference. Starting from a description of stochastic dy-
namics at the single-cell level, we describe a general statistical approach rooted in
the linear model. This makes explicit the assumptions that underlie a broad class
of network inference approaches. This also clarifies the relationship between “sta-
tistical” and “mechanistic” approaches to biological networks. Second, we explore
how a number of published network inference approaches can be recovered as spe-
cial cases of the model we arrive at. This sheds light on the differences between
them, including how different assumptions lead to quite different treatments of the
time step. Third, we present an empirical study comparing 32 different approaches
that are special cases of the general model we describe. To do so, we simulate
stochastic dynamics at the single-cell level from known networks, under global
perturbation of two published dynamical models. This enables a clear assessment
of the network inference methods in terms of estimation bias and consistency, since
the true data-generating network is known. Furthermore, the simulation accounts
for both averaging over cells, nonlongitudinality due to destructive sampling and
the fact that only a subspace of the dynamical phase space is explored. Using this
approach, we investigate a number of data regimes, including both even and un-
even sampling, longitudinal and nonlongitudinal data and the large sample, low
noise limit. We find that the net effect of predictor uncertainty, nonlongitudinality
and limited exploration of the dynamical phase space is such that certain network
estimators fail to converge to the data-generating network even in the limits of
large data sets and low noise. However, we point to a simple formulation which
might represent a default choice, delivering promising performance in a number of
regimes.

An implication of our analysis is that uneven time steps may pose inferential
problems, even when using models that apparently handle the sampling intervals
explicitly. We therefore investigate this case by carrying out network inference on
unevenly sampled data using a variety of statistical models. We find that the abil-
ity to reconstruct the data-generating network is much reduced in all cases, with
some approaches faring better than others. Since biological data are often unevenly
resolved in time, this observation has important implications for experimental de-
sign.

The remainder of this paper is organized as follows. We begin in Section 2
with a description of stochastic dynamics in single cells and show how a series
of assumptions allow us to arrive at a statistical framework rooted in the linear
model. Section 3 contains an empirical comparison of several inference schemes,
addressing questions of performance and consistency in a number of regimes. In
Section 4 we discuss our results and point to several specific areas for future work.

2. Methods. The cellular dynamics that underlie network inference are sub-
ject to stochastic effects [Elowitz, Levine and Siggia (2002); Kou, Xie and Liu
(2005); McAdams and Arkin (1997); Paulsson (2005); Swain, Elowitz and Siggia
(2002)]. We therefore begin our description of the data-generating process at the
level of single cells and then discuss the relationship to aggregate data of the kind
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acquired in high-throughput biochemical assays. We then develop a general statis-
tical approach, rooted in the linear model, for data from such a system observed
discretely in time. We discuss inference and show how a number of existing ap-
proaches can be recovered as special cases of the general model we describe. Our
exposition clarifies a number of technical but important distinctions between pub-
lished methodologies, which until now have received little attention.

2.1. Data-generating process.

2.1.1. Stochastic dynamics in single cells. Let X = (X1,..., Xp) € X denote
a state vector describing the abundance of molecular quantities of interest, on a
space X chosen according to physical and statistical considerations. The compo-
nents of the state vector (e.g., mRNA, protein or metabolite levels) are identified
with the vertices of the graph G that describes the biological network of interest.
In this paper the “expression levels” X(¢) of a single cell at time ¢ are modeled as
continuous random variables that we assume satisfy a time-homogenous stochastic
delay differential equation (SDDE)

(1) dX =f(Fx)dt + g(Fx) dB,

where f, g are drift and diffusion functions respectively, Fx(t) = {X(s) : s <t} is
the natural filtration (the history of the state vector X) and B denotes a standard
Brownian motion. A continuous state space X is appropriate as a modeling as-
sumption only if the copy numbers of all molecular components are sufficiently
high. This is thought to be the case for the biological systems considered in this
paper, but in general the stochasticity due to low copy number will need to be
encoded into inference [Paulsson (2005)]. The edge structure E of the biologi-
cal network G is defined by the drift function f, such that (i, j) € £ <= f;(X)
depends on X;.

We further assume that the functions f, g are sufficiently regular and depend
only on recent history Fx ([t — 7, t]). For example, in the context of gene regu-
lation T might be the time required for one cycle of transcription, translation and
binding of a transcription factor to its target site, the characteristic time scale for
gene regulation. This is a finite memory requirement and can be considered a gen-
eralization of the Markov property. Equivalently, this property codifies the mod-
eling assumption that the observed processes are sufficient to explain their own
dynamics, that there are no latent variables. It is common practice to take 7 = 0,
in which case the process defined by equation (1) is Markovian. This stochastic
dynamical system with phase space {(f(Fx),X) : X € X'} forms the basis of the
following exposition.

2.1.2. Aggregate data. A variety of experimental techniques, including, no-
tably, microarrays and related assays, capture average expression levels X) :=
2116\7:1 Xk /N over cells, where X denotes the expression levels in cell k. This pa-
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per does not consider effects due to intercellular signaling, which are typically
assumed to be negligible. Then averaging sacrifices the finite memory property
(a generalization of the fact that the sum of two independent Markov processes is
not itself Markovian). However, it is usually possible to construct a finite memory
approximation of the form

) dXN) =) (Fyw)) dt + g™ (Fxan) dBY)

using a so-called “system size expansion” [Van Kampen (2007)]. Approximations
of this kind derive from a coarsening of the underlying state space, assuming that
the new state vector XV captures every quantity relevant to the dynamics. The
statistical models discussed in this paper rely upon coarsening assumptions in or-
der to control the dimensionality of state space.

Using the mild regularity conditions upon cellular stochasticity g, the laws
of large numbers give that in the large sample limit the sample average X*° :=
limy s 0o XM = E(X) equals the expected state of a single cell (almost surely).
We note that the relationship between the single-cell dynamics as it appears in
equation (1) and this deterministic limit may be complicated, since in general
E({(Fx)) # f(Frx)). However, for linear f, say, for simplicity, f = f(X) =
we have

1 N
dX™) = dek ~ 2 (P di + g(Fxe) dB)
k=1

= — > AXtdr + — Fxr) dBF
N]; kZ:lg( Xk)

1 N
Al =YX} dt + R

k=1

3)

=AXM dr + RWY) = f(Fgw)) dt + RN,

where RWY) := ¥, g(Fxx)dB*/N — 0 almost surely as N — oo, and so
dX*®/dt = f(Fx). In other words, the average over large numbers of cells shares
the same drift function as the single cell, so that inference based on averaged
data applies directly to single-cell dynamics. Otherwise this may not hold, that
is, dX*°/dt = dE(X)/dt = E(f(Fx)) # f(Frx)) = f(Fxoc). This has implica-
tions when using nonlinear forms, such as Michaelis-Menten or Hill kinetics, to
describe the behavior of a large sample average; these nonlinear functions are de-
rived from single-cell biochemistry and may not apply equally to the large sample
average X*°. The error entailed by commuting drift and expectation may be as-
sessed using the multivariate Feynman-Kac formula for X*° = E(X) [@ksendal
(1998)].

In practice, the observation process may be complex and indirect, for exam-
ple, measurements of gene expression may be relative to a “housekeeping” gene,
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assumed to maintain constant expression over the course of the experiment. More-
over, the details of the error structure will depend crucially on the technology used
to obtain the data. To limit scope, this article assumes the averaged expression
levels X°°(¢) are observed at discrete times t =¢; (0 < j < n) with additive zero-
mean measurement error as Y(¢;) = X*°(¢;) + w;, where the w; are independent,
identically distributed uncorrelated Gaussian random variables.

2.2. Discrete time models. Network inference is usually carried out using
coarse-grained models [equation (2)] that are simpler and more amenable to in-
ference than the process described by equation (1). Here, informed by the forego-
ing treatment of cellular dynamics, we develop a simple network inference model
for data observed discretely in time. We clarify the assumptions of the statistical
model, and show how several published approaches can be recovered as special
cases.

2.2.1. Approximate discrete time likelihood. Network inference entails statis-
tical comparison of networks G € G, where G denotes the space of candidate net-
works. The space G may be large (naively, there are 2 *? possible networks on P
vertices), although biological knowledge may provide constraints. Network com-
parisons require computation of a model selection score for each network, that is,
considered, which in turn entails use of the likelihood (e.g., maximization of infor-
mation criteria, or integration over the likelihood in the Bayesian setting). There-
fore, exploration over large model spaces is often only feasible given a closed-form
expression for the likelihood (or preferably for the model score itself).

However, the likelihood for a SDDE model [equation (2)] is not generally avail-
able in closed form. There has been recent research into computationally efficient
approximate likelihoods for fully observed, noiseless diffusions [Hurn, Jeisman
and Lindsay (2007)], but it remains the case that the most efficient (though least ac-
curate) closed-form approximate likelihood is based on the Euler-Maruyama dis-
cretization scheme for stochastic differential equations (SDEs), which in the more
general SDDE case may be written as (henceforth dropping the superscript N)

“ X(1j) = X(tj-1) + A jE(Fx(1j-1) + 8(Fx(tj-1))ABj,

where AB; ~ N (0, A;I) and A; =t; —t;_y is the sampling time interval. Incor-
porating measurement error into this so-called Riemann-It6 likelihood [Dargatz
(2010)] requires an integral over the hidden states X which would destroy the
closed-form approximation. Therefore, the observed, nonlongitudinal data y are
directly substituted for the latent states X, yielding the (triply) approximate likeli-
hood

LO) =[] NGE): @), 2(;)),
j=1
(5 wu(tj) =ytj—1) + Af(Fy(tj-1)),
() = Ajg(Fy(tj—1)g(Fytj-1)) .
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Here N (e; 1, ¥) denotes a Normal density with mean w and covariance X. Im-
plicit here is that the functions f, g depend on Fy only through time lags which
coincide with the measurement times #; ;.

Thus, £ may be obtained from a state-space approximation to the original
SDDE model [equation (2)]. Despite reported weaknesses with the Riemann-It6
likelihood [Dargatz (2010); Hurn, Jeisman and Lindsay (2007)] and the poorly
characterized error incurred by plugging in nonlongitudinal observations, this form
of approximate likelihood is widely used to facilitate network inference [equa-
tions (5) and (6) correspond to a Gaussian DBN for the observations y, generalized
to allow dependence on history]. This is due both to the possibility of parameter
orthogonality, allowing inference to be performed for each network node sepa-
rately, and the possibility of conjugacy, leading to a closed-form marginal likeli-
hood 7 (y|G).

2.2.2. Linear dynamics. Kinetic models have been described for many cellu-
lar processes [Cantone et al. (2009); Schoeberl et al. (2002); Swat, Kel and Herzel
(2004); Wilkinson (2009)]. However, statistical inference for these often nonlin-
ear models may be challenging [Bonneau (2008); Wilkinson (2006); Wilkinson
(2009); Xu et al. (2010)]. Moreover, there is no guarantee that conclusions drawn
from cellular averages will apply to single cells, because, as noted above, the de-
terministic behavior seen in averages may not coincide with the single-cell drift.
However, linear dynamics satisfy E(f(Fx)) = f(Fgx)) exactly, so that conclusions
drawn from verages apply directly to single cells. For notational simplicity con-
sider the Markovian T = 0 regime. A Taylor approximation of the cellular drift f
about the origin gives

(6) f(X) ~ £(0) + Df|x=0X,

where Df is the Jacobian matrix of f. The constant term can be omitted (f(0) = 0),
since absent any regulators there is no change in expression. Then, the Jacobian
Df captures the dynamics approximately under a linear model. Furthermore, the
absence of an edge in the network G implies a zero entry in the Jacobian, that is,
(i, j) ¢ E = (Df);; = 0. Obtaining the Jacobean at x = 0 therefore does not im-
ply complete knowledge of the edge structure E. We note that the general SDDE
case is similar but with additional differentiation required for the additional de-
pendencies of f. Henceforth, we write equations for the simpler Markovian model,
although they hold more generally.

One may ask whether the restriction to linear drift functions allows the com-
putational difficulties associated with inference for continuous time models to be
avoided, since in the Markovian (t = 0) case both the SDE [equation (1)] and lim-
iting ordinary differential equation (ODE) have exact closed form solutions. In the
ODE case, for example, X(#) = exp(At)Xo and under Gaussian measurement error
the likelihood has a closed form as products of terms N (y(z i); exp(At;)Xo, M),
where the parameters 6 = (A, Xp, M) include the model parameters A, initial state
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vector X and the measurement error covariance M. Unfortunately, evaluation of
the matrix exponential is computationally demanding and inference for the entries
of A must be performed jointly since, in general, exp(A) does not factorize use-
fully. It therefore remains the case that inference for continuous time models is
computationally burdensome, even when the models are linear.

2.2.3. The dynamical system as a regression model. The Jacobian Df with
entries (Df); ; = df; /0xj|x—0 is now the focus of inference. We can identify the
Jacobian with the unknown parameters in a linear regression problem by modeling
the expression of gene p using

dXp (1) Xi(t) -+ Xp(to) (Df)p.a
@) : ~ : : .

dX p(ty) Xi(ty—1) -+ Xp(tp—1)d L(Df)pp
where the gradients d X ,(¢;) are approximated by finite differences, in this case
(Xp(tj) — Xp(tj—1))/Aj. Our notation for finite differences should not be con-
fused with the differentials of stochastic calculus. More generally, for processes
with memory, the matrix may be augmented with columns corresponding to lagged
state vectors and the vector (Df), , augmented with the corresponding derivatives
of the drift function f with respect to these lagged states. To avoid confusion, we
write A for Df when discussing parameters, since the drift f is unknown. Similarly,
design matrices will be denoted by B to suppress the dependence on the random
variables X. So equation (7) may be written compactly as

®) dX, %BA/I“.

Inference for the parameters A, , may be performed independently for each vari-
able p. While equation (8) is fundamental for inference, one can equivalently con-
sider the dynamically intuitive expression

9) dX(tj) ~ AB}?,.

An interesting issue arises from the dual interpretation of the regression model
as a dynamical system [equation (9)], because there are natural restrictions on A
to avoid the solution tending to infinity. For instance, if the sampling interval A is
constant, then we require R(A) < O for each eigenvalue X of A + AL The inference
schemes which we discuss do not account for this, because the condition forces a
nontrivial coupling between rows A, o, jeopardizing parameter orthogonality.

Finally, the generative model is specified by substituting noisy, nonlongitudinal
observables Y for latent variables X into equation (9) and stating the dependence of
the approximation error on the sampling interval A ;. Under uncorrelated Gaussian
measurement error we arrive at a model

(10) dY(tj) ~ N(AB ., h(A)D(a},...,0})),

J.®’

’

where h : RT — R is a variance function that must be specified and D(v) repre-
sents the diagonal matrix induced by the vector v.
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There are a number of ways in which this regression is nonstandard. For exam-
ple, the substitution of (nonlongitudinal) observations for latent variables is clearly
unsatisfactory because the linear regression framework does not explicitly allow
for uncertainty in the predictor variables B. It is unclear whether this introduces
bias or leads to an overestimate of the significance of results. Moreover, it is un-
clear how to choose the variance function #, since the Euler-Maruyama approx-
imation [equation (4)] is only valid for small sampling intervals A, but in this
regime the responses dY(7;) are dominated by measurement error, such that the
data may carry little information. These issues are investigated in Sections 3 and 4
below.

2.3. A unifying framework. Equation (10) describes a class of models with
specific instances characterized by choice of design matrix B and variance func-
tion h. Since any such model corresponds to the linear regression equation (7), the
task of determining the edge structure of the network, or, equivalently, the location
of nonzero entries in the Jacobian A, can be cast as a variable selection problem.

A number of specific network inference schemes can now be recovered by fix-
ing the design matrix and variance function and coupling the resulting model with
a variable selection technique. A selection of published network inference schemes
that can be viewed in this way is presented in Table 1. One might see these schemes
classed as VAR models [Bolstad, Van Veen and Nowak (2011); Morrissey et al.
(2010); Opgen-Rhein and Strimmer (2007); Zou and Feng (2009)], DBNs [Hill,
Lu and Molina (2011); Kim, Imoto and Miyano (2003)] or ODE-based approaches
[Bansal and di Bernardo (2007); Li and Chen (2010); Nam, Yoon and Kim (2007)],
although as we have demonstrated this classification disguises their shared foun-
dation in the linear model.

As shown in Table 1, the variance functions /4, and therefore sampling intervals
A, are not treated in a consistent way in the literature. In the special case of even
sampling times A; = A, a model is characterized only by its design matrix. If the
standard design matrix is used, then the entire family of models

(1)) — Y(tj-1)

(11) X ~ N(AY(tj_1). h(A)D(0}, ..., 0p))
reduces to a linear VAR (1) model
(12) Y(t)) ~ N(AY(t;-1), D(5?, ..., 53)),

where A = AA + I and 63 = Azh(A)ag. More generally, the VAR(g) model is
prevalent in the literature (see Table 1), yet it does not explicitly handle uneven
sampling intervals. This is a potentially important issue since uneven sampling is
commonplace in global perturbation experiments, with high frequency sampling
used to capture short term cellular response and low frequency sampling to cap-
ture the approach to equilibrium. We discuss the importance of modeling using
a variance function, and whether a natural choice for such a function exists in
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TABLE 1
A nonexhaustive list of network inference schemes rooted in the linear model. The examples from
literature demonstrate the statistical features indicated, but may differ in some aspects of
implementation. The symbol & denotes the VAR(q) model which lacks a variance function

Variance

Design function
matrix B h(A) x Variable selection Example
Standard A2 Ridge regression Bansal and di Bernardo (2007) “TSNIB”
Standard with %) Group LASSO Bolstad, Van Veen and Nowak (2011)

lagged predictors
Quadratic %] Conjugate Bayesian Hill, Lu and Molina (2011)

with network prior

Standard 1] Information criteria Kim, Imoto and Miyano (2003)
Nonlinear (Hill) 1 AIC with backstepping Li and Chen (2010)

basis functions
Standard 1 Conditional independence Lietal. (2011) “DELDBN”

tests
Standard %) Semi-conjugate Bayesian Morrissey et al. (2010)
Standard A2 SVD and pseudoinverse Nam, Yoon and Kim (2007) “LEARNe”
Standard %] Multi-stage analytic Opgen-Rhein and Strimmer (2007)
shrinkage approach

Standard and 1%} Granger causality Zou and Feng (2009)

nonlinear with

lagged predictors

Section 4 below. In addition, we explored whether inference may be improved
through the use of either nonlinear basis functions or lagged predictors to capture
respectively nonlinearity and memory in the underlying drift function is unclear.
Section 3 presents an empirical investigation of these issues.

2.4. Inference. An appealing feature of the discrete time model is that param-
eters corresponding to different variables are orthogonal in the Fisher sense:

P
(13) LO)=]]L(Ap.e.0p).
p=1

As a consequence, network inference over G may be factorized into P independent
variable selection problems. For definiteness we focus on just two approaches to
variable selection, the Bayesian marginal likelihood and AIC, but note that many
other approaches are available, including those listed in Table 1, and can be applied
here in analogy to what follows. Below we assume the response vector dy ph_l/ 2
and the columns of the design matrix B2 ~!/? are standardized to have zero mean
and unit variance, but for clarity subsume this into unaltered notation.
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2.4.1. Bayesian variable selection. For simplicity, the variance function is ini-
tially taken to be constant (& = 1). We set up a Bayesian linear model condi-
tional on a network G using Zellner’s g-prior [Zellner (1986)], that is, with priors
Ape |ol% ~ N (0, ng (B;Bp)_l) and TL’(O‘I%) x 1/03 where B, is the design matrix
B with nonpredictors removed according to G. We note that while the g-prior is a
common choice, alternatives may offer some advantages [Deltell (2011); Friedman
et al. (2000)].

Let m,, be the number of predictors for variable p in the network G. Integrating
the likelihood [induced by equation (10)] against the prior for (A , alz,) produces
the following closed-form marginal likelihood:

14 G ! mp/zd’d " \ay, d
I () B T Gy LR

where cfyp =B,(B,B,)"'B/,dy,. These formulae extend to arbitrary variance
functions A by substituting B — Bh'/2, dy — dyh!'/?. Network inference may
now be carried out by Bayesian model averaging, using the posterior probability
of a directed edge from variable i to variable j:

n(ylG)n(G)

15 P® lates j) = I{(i, j) € E(G)}.
(15) (i regulates j) %:ZGWMG/)?T(G/) {(, ) € E(G)}

In experiments below, we take a network prior which, for each variable p, is uni-
form over the number of predictors m, up to a maximum permissible in-degree

dinax, that is, 7(G) oc [, (nfp)_lﬂ{m » < dmax}, but note that richer subjective net-
work priors are available in the literature [Mukherjee and Speed (2008)]. Finally,
a network estimator G is obtained by thresholding posterior edge probabilities:
(i,j)eE (é) < P(i regulates j) > &. For small maximum in-degree dpy,x, exact
inference by enumeration of variable subsets may be possible. Otherwise, Markov
chain Monte Carlo (MCMC) methods can be used to explore an effectively smaller
model space [Ellis and Wong (2008); Friedman and Koller (2003)]. In the experi-
ments below we use exact inference by enumeration.

2.4.2. Variable selection by corrected AIC. Again, consider a constant vari-
ance function (h = 1); rescaling as described above recovers the general case.
The usual maximum likelihood estimates A pe = (B/po)_lB/pdyp and 6*3 =
% > idyp(t;) — cfy »( j))2 induce closed forms C P(%p_ " for the maximized factors
of the likelihood function, where C), is a constant not depending on the choice of
predictors. Corrected AIC scores [Burnham and Anderson (2002)] for each vari-
able p are then

2mp(my + 1)

(16) AIC:(p. G) =nlog(6;) + 2m, + .
n—my—1
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Again we consider all models with maximum permissible in-degree dpyax. Lowest
scoring models are chosen for each variable in turn, inducing a network estima-
tor G.

3. Results. In this section we present empirical results investigating the per-
formance of a number of network inference schemes that are special cases of the
general formulation described by equation (10). Objective assessment of network
inference is challenging [Prill et al. (2010)], since for most biological applications
the true data-generating network is unknown. We therefore exploit two published
dynamical models of biological processes, namely, Cantone et al. (2009) and Swat,
Kel and Herzel (2004), described in detail in the Supplemental Information [SI;
Oates and Mukherjee (2011)]. The first is a synthetic gene regulatory network built
in the yeast Saccharomyces cerevisiae. These five gene network and associated
delay differential equations (DDEs) have received attention in computational biol-
ogy [Camacho and Collins (2009); Minty, Varedi and Nina (2009)], and have been
shown to agree with gold-standard data [at least under an E(f(Fx)) ~ f(Frx)) as-
sumption]. Cantone et al. consider two experimental conditions: “switch-on” and
“switch-off.” In this paper “switch-on” parameter values were used to generate
data. The Swat model is a gene-protein network governing the G/S transition in
mammalian cells. The model has a nine-dimensional state vector and, unlike Can-
tone, is Markovian. We note that this model has not been directly verified in the
manner of Cantone but is based on a theoretical understanding of cell cycle dynam-
ics. There is undoubtedly bias from this essentially arbitrary choice of dynamical
systems, but a comprehensive sampling of the (vast) space of possible networks
and dynamics is beyond the scope of this paper.

3.1. Experimental procedure.

3.1.1. Simulation. We consider global perturbation data by initializing the dy-
namical systems from out of equilibrium conditions. This is a common setting for
network inference approaches, but the limitations of inference from such data re-
main incompletely understood. For each dynamical system f, trajectories X* of
single-cell expression levels were obtained as solutions to the SDDE equation (1)
with drift f and uncorrelated diffusion g(X) = ocenD(X) (representing multiplica-
tive cellular noise). Trajectories were obtained by numerically solving SDDEs with
heterogeneous initial conditions using the Euler-Maruyama discretization scheme
[equation (4)]. MATLAB R2010a code for all simulation experiments is available
in the SI. To mimic destructive sampling and consequent nonlongitudinality, solu-
tions were regenerated at each time point. We are interested in data that are aver-
ages over a large number N of single-cell trajectories. However, the computational
cost of solving N x n SDDEs to produce each data set is prohibitive. Therefore,
only a smaller number N* << N of cells were simulated and a larger sample N
then obtained by bootstrapping, that is, resampling from the N* trajectories with
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FI1G. 1. Two published dynamical systems models of cellular processes were used to generate data
sets. Single-cell trajectories were generated from an SDDE model [equation (1)] and averaged under
measurement noise and nonlongitudinality due to destructive sampling. (a) Data generated from (a
model due to) Cantone et al. (2009), describing a synthetic network built in yeast. (b) Data generated
from Swat, Kel and Herzel (2004), a theory-driven model of the G1 /S transition in mammalian cells.

replacement. In practice, N* should be taken sufficiently large such that a negli-
gible change in experimental outcome results from further increase in N*. Initial
conditions for single-cell trajectories varied with standard deviation o¢e)y. Finally,
uncorrelated Gaussian noise of magnitude omeas Was added to simulate a measure-
ment process with additive error. In the experiments presented below, N = 10,000,

=30 and n = 20 time points are taken within the dynamically interesting range
(0-280 minutes for Cantone and 0—100 minutes for Swat). Measurement error and
cellular noise are set to give signal-to-noise ratios (X)/omeas =~ 10, (X)/0ocenn = 10
[here (X) represents the average expression levels of the variables X over all gen-
erated trajectories]. Figure 1 shows typical data sets for the two dynamical sys-
tems.
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3.1.2. Inference schemes. The following inference schemes were assessed:

Variable selection { Bayesian, AIC, }
Design matrix { Standard, Quadratic }
Lagged predictors { No, Yes }
Variance function 2(A) o« A™¢ a={0,1,2,2}

For the design matrix “quadratic” refers to the augmentation of the predictor set
by the pairwise products of predictors, the simplest nonlinear basis functions. For
the variance function the symbol & is used to denote the VAR(g) model, which
formally lacks a variance function. “Lagged predictors = Yes” indicates augmen-
tation of the predictor set with lagged observations (a lag of ~ 28 mins is used
for Cantone and ~ 10 mins for Swat). There are heuristic justifications for each
of the candidate variance functions. For example, the function with & = 2 appears
for small A; when an exact Euler approximation and additive measurement error
are assumed [Bansal and di Bernardo (2007)], whereas o = 1 is reminiscent of the
Euler-Maruyama discretization equation (4).

3.1.3. Empirical assessment. The performance of each inference scheme is
quantified by the area under the receiver operating characteristic (ROC) curve
(AUR), averaged over 20 data sets [Fawcett (2005)]. This metric, equivalent to the
probability that a randomly chosen true edge is preferred by the inference scheme
to a randomly chosen false edge, summarizes, across a range of thresholds, the
ability to select edges in the true data-generating graph. Results presented below
use a computationally favorable in-degree restriction dpyax = 2. In order to check
robustness to dpyax, all experiments were repeated using dmax = 3, with no substan-
tial changes in observed outcome (SFigure 6).

3.2. Empirical results.

3.2.1. Even sampling interval. Figure 2(a) displays box-plots over AUR
scores for the Cantone dynamical system under even sampling intervals. Note
that under even sampling, for an otherwise identical scheme, changing variance
function does not affect the model, leading to identical AUR scores for schemes
which differ only in variance function. (An exception to this is the VAR model,
since the parameters A carry a subtly different meaning, which under a Bayesian
formulation leads to a translation of the prior distribution and in the information
criteria case changes the definition of the predictor set.)

Despite the presence of nonlinearities and memory in the cellular drift f, neither
the use of quadratic basis functions nor the inclusion of lagged predictors appear to
improve performance in terms of AUR. In order to verify that quadratic predictors
are sufficiently nonlinear and that lagged predictors are sufficiently delayed, we
repeated the investigation using both cubic predictors and using a delay twice as
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long. Results (SFigures 3 and 4) demonstrate that no improvement to the AUR
scores is achieved in this way.

Corresponding results for the Swat model are shown in Figure 2. Here we find
that none of the methods perform well.

We also performed inference using biochemical data from the experimental sys-
tem reported in Cantone et al. (2009) (specifically the “switch-on” data set therein).
AUR scores obtained using this data (SFigure 5) were in close agreement with
those obtained using synthetic data [Figure 2(a)], suggesting that the results of the
simulations are relevant to real world studies.

3.2.2. Uneven sampling intervals. Many biological time-course experiments
are carried out with uneven sampling intervals. We therefore repeated the analysis
above with sampling times of 0, 1, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90, 105, 120,
140, 160, 180, 210, 240 and 280 minutes. Figure 2(b) displays the AUR scores
so obtained. We find that all the methods perform worse in the uneven sampling
regime, with no method performing significantly better than random. Correspond-
ing results for the Swat model are shown in SFigure 7. Again, here we find that
none of the methods perform well.

3.2.3. Consistency. Figure 3 displays AUR scores for Cantone for a large
number of evenly sampled time points (n = 100), and the limiting case of zero
measurement noise and zero cellular heterogeneity (omeas = 0, ocerl = 0, even
sampling intervals). Consistency (in the sense of asymptotic convergence of the
network estimate to the data-generating network) may be unattainable due to the
nonidentifiability resulting from limited exploration of the dynamical phase space.
This lack of subjectivity means that in many cases inference cannot possibly re-
veal the full data-generating graph, although, as we have seen, network inference
can nonetheless be informative. From Figure 3 we see that the Bayesian schemes
using linear predictors approach AUR equal to unity, and in this sense show em-
pirical consistency with respect to network inference. However, some of the other
methods do not converge to the correct graph even in this limit.

4. Discussion. The analyses presented here were aimed at better understand-
ing statistical network inference for biological applications. We showed how a
broad class of approaches, including VAR models, linear DBNs and certain ODE-
based approaches, are related to stochastic dynamics at the cellular level. We dis-
cuss a number of these aspects below and close with some views on future per-
spectives for network inference, including recommendations for practitioners.

4.1. Time intervals. We found that uneven sampling intervals posed problems,
even for methods that explicitly accounted for the sampling interval. Further in-
sight may be gained from a “propagation of uncertainty” analysis of the approx-
imations indicated in Section 2.2. Assuming the true large sample process obeys
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F1G. 3. Investigation of empirical consistency of network estimators, using the Cantone et al.
(2009) model with even sampling intervals. Area under ROC curves are shown in the large data
set, zero cellular heterogeneity and zero measurement noise limits.

dX®/dt = F(X*°), we have that under an observation process with independent
additive Gaussian measurement error Y(¢) ~ N (X*(¢), M) an expansion for the
variance V(dY — F(Y)) over a time interval A is given by

(17) MA~2+ IA' + DF)MIA™ + DF) + - .-

(see SI for details). Recall that the model family in equation (10) approximates this
variance by h(A)D(alz, e a%), where h(A) = A™%. From this perspective it is
clear that each variance function we considered captures only partial variation due
to A. It is therefore not surprising that performance suffers in the uneven sampling
regime, which requires the variance function to apply equally to large A as to
small A. Moreover, a natural choice of variance function driven by equation (17)
is not possible, since this would require knowledge of the unknown process F.
The implication for experimental design is that, absent specific reasons for uneven
sampling, it may be preferable to collect data at regular intervals.

Figure 4 displays an approximation to the true variance function for the Can-
tone model (see SI). Observe that for small sampling intervals A the true curva-
ture is best captured by a functional approximation of the form A(A) o< A™* with
o = 1,2, whereas for intervals larger than 10 mins (which are more common in
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F1G. 4. Variance functions used in literature provide partial approximation to the “true” functional
form for Cantone et al. (2009). For small time steps a power law A™% provides a good approximation,
but for larger time steps a constant variance function may be more appropriate. In practice, the
precise form of hie will be unknown.

practice) the flat approximation 4 (A) o 1 correctly captures the asymptotic behav-
ior. In applications where high frequency sampling is infeasible, the flat variance
function might be a sensible choice. To understand whether difficulties related to
sampling intervals disappear in the large sample limit, we repeated the empirical
consistency analysis under uneven sampling (SFigures 11 and 12). Interestingly,
we found that none of the methods appeared to be empirically consistent, and that
the choice of variance function is influential. However, unevenly sampled data are
common in biology and it may be the case that in some settings, the existence
of multiple time scales (e.g., signaling, transcription, accumulating epigenetic al-
terations) mean that unevenly sampled data are nonetheless useful. Our findings
suggest that care should be taken in the uneven sampling regime.

4.2. Interventional data. 'The Cantone data are favorable in the sense that gene
profiles show interesting time-varying behavior under global perturbation, explor-
ing a large proportion of the dynamical phase space. However, such behavior is de-
pendent on the specific dynamical system and is not displayed by the Swat model,
which has a much larger phase space, being a nine-dimensional dynamical system.
This may help explain the poor performance of all the methods on this latter model
using global perturbation data and perhaps reinforces the intuitive notion that dy-
namics that are favorable (in this informal sense) facilitate network inference. In
some cases, perturbation data are available in which individual variables are inhib-
ited (e.g., by RNA interference, gene knockouts or inhibitor treatments). Such data
have the potential to explore much more of the dynamical phase space, including
regions which cannot be accessed without direct inhibition of specific molecular
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components. This is an important consideration because the statistical estimators
described in Section 2.4 take the form

A

(13) A = (DE(Fx))xeR

where the average is over the region R € X in state space visited during the exper-
iments. Clearly, if the region (f(Fr), R) is only a small subspace of phase space,
then the estimate equation (18) will be poor compared to one based on the entire
phase space A¥ = (DE(FX))xex-

To investigate the added value of interventional treatments for network infer-
ence, we repeated both the Cantone and Swat analyses with an ensemble of data
sets obtained by inhibiting each variable in turn; this gave 5 and 9 data sets for Can-
tone and Swat respectively. While no improvement to the Cantone AUR scores was
observed (SFigure 15), there was improved performance for Swat (SFigure 16).
This suggests that global perturbations are insufficient to explore the Swat dynam-
ical phase space, and supports the intuitive notion that intervention experiments
may be essential for inference regarding larger dynamical systems. Nevertheless,
AUR scores remain far from unity. This may be because the Swat drift function
contains complex interaction terms which single interventions alone fail to eluci-
date. An important problem in experimental design will be to estimate how much
(possibly combinatorial) intervention is required to achieve a certain level of net-
work inference performance.

We considered precise artificial intervention of single components in silico.
However, biological interventions may be imprecise and imperfect. For exam-
ple, RNA interference achieves only incomplete silencing of the target and small
molecule inhibitors may have off-target effects. Moreover, at present such inter-
ventions are not instantaneous nor truly exogenous. This means that in many cases
the system itself may be changed by the intervention, rendering resulting predic-
tions inaccurate for the native system of interest. There remains a need for novel
statistical methodology capable of analyzing time-course data under biological in-
terventions. Existing literature in causal inference [Pearl (2009)] and related work
in graphical models [Eaton and Murphy (2007)] are relevant, but in biological ap-
plications it may also be important to consider the mechanism of action of specific
interventions.

4.3. Nonlinear models. We focused on linear statistical models. Clearly, linear
models are inadequate in many cases. For example, Rogers, Khanin and Girolami
(2007) demonstrate the benefit of a nonlinear model based on Michaelis-Menten
chemical kinetics for inference of transcription factor activity. However, network
inference based on nonlinear ODEs remains challenging [Xu et al. (2010)]. Alter-
natively, Aijo and Lihdesmiki (2009) consider the use of a nonparametric Gaus-
sian process (GP) interaction term in the regression, which is naturally more flex-
ible than linear regression using finitely many basis functions. This may help to
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overcome the linearity restriction, but introduces additional degrees of freedom,
including the GP covariance function and associated hyperparameters. While a
thorough comparison of such approaches was beyond the scope of this article, the
potential utility of nonparametric interaction terms is worthy of investigation. In
this study we observed that neither the use of predictor products nor lagged pre-
dictors led to improved performance; this may reflect nontrivial coupling between
cellular dynamics and the observed data.

4.4. Single-cell data. In the future it may become possible to measure single-
cell expression levels X* nondestructively (e.g., by live cell imaging), producing
truly longitudinal data sets. It is interesting to consider how such data may im-
pact upon the performance of regression-based network inference. Under indepen-
dent additive Gaussian measurement error Y (¢) ~ N (X*(z), M) an expansion for
the single-cell variance V(dY — f) over a time interval A, in analogy with equa-
tion (17), is given by

(19) MA2+(AA" '+ DF)MIA™ + DF) + A~ 'gg' + - --

(see SI). Thus, a (single) longitudinal single-cell data set contains less information
about the drift f than aggregate data [equation (17)] due to cellular stochasticity g.
However, multiple longitudinal data sets may jointly contain more information
than a single aggregate data set. To empirically test the utility of such data, we
carried out network inference using 10 such longitudinal single-cell data sets on
both the Cantone and Swat models, observed at even intervals with the same mag-
nitude of measurement error as aggregate data. Results (SFigures 13 and14) show
a small improvement to the mean AUR scores, but reduction by a factor of about
two in the variance of these scores (compared with the corresponding nonlongitu-
dinal data), implying that the network estimators may be converging to an incorrect
network. Bias may occur when the cellular drift f is not well approximated by a
linear function, as is the case for the Swat model. Consider the idealized scenario
where f = f(X) is Markovian and it is possible to observe longitudinal, single-cell
expression levels. Under these apparently favorable circumstances even estimators
obtained after a thorough exploration of state space may not offer good approxi-
mations, that is, A* % Df|x—9. As a toy example consider the cellular drift

(27)~ L sin(2 X3) >
Q) 'sin@Rr X))’

which is not well approximated by a linear function over the state space X =
[0, 1]°. In this case averaging leads to cancellation

. B 0 cos(2m X»)
A" = (DI(X))xex = <<COS(27TX1) 0 )>Xe[0,1]2

0 1
07&<1 0) |x_0

(20) £:00,1° >R, f(X) = (

2D
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so that no interactions are inferred. Under such circumstances network inference
is no longer possible using the naive linear regression approach. This suggests
that network inference rooted in nonlinear models may be needed to fully exploit
longitudinal single-cell data in the future. A related line of work addresses het-
erogeneity of the drift function in time by coupling DBNs with change point pro-
cesses [Grzegorczyk and Husmeier (2011); Kolar, Song and Xing (2009); Lebre et
al. (2010)]. A promising direction would be piecewise linear regression modeling
for network inference applications, where the heterogeneity appears in the spatial
domain.

4.5. High-dimensions and missing variables. We focused on the simplest pos-
sible case of fully observed, low-dimensional systems. There is a rich literature in
high-dimensional variable selection and related graphical models [Meinshausen
and Biihlmann (2006); Hans, Dobra and West (2007); Friedman, Hastie and Tib-
shirani (2008)] which applies equally to the regression models described here. The
issues raised in this paper remain relevant in the high-dimensional setting. How-
ever, in practice, even high-dimensional observations are likely to be incomplete,
since it is not currently possible to measure all relevant chemical species. There-
fore, inferred relationships between variables may be indirect. This may be accept-
able for the purpose of predicting the outcome of biochemical interventions (e.g.,
inhibiting gene or protein nodes), but limits stronger causal or mechanistic inter-
pretations. Latent variable approaches are available [Beal et al. (2005)], but model
selection can be challenging and remains an open area of research [Knowles and
Ghahramani (2011)]. We note also that the missing variable issue for biological
networks is arguably more severe than in, say, economics or epidemiology, insofar
as measured variables may represent only a small fraction of the true state vector,
often with little specific insight available into the nature of the missing variables
or their relationship to observations. Further work is required to better understand
these issues in the context of inference for biological networks.

4.6. Future perspectives. We found that a simple linear model could success-
fully infer network structure using globally perturbed time-course data from the
Cantone system. It is encouraging that inference based only on associations be-
tween variables, none of which were explicitly intervened upon, can in some cases
be effective. Interventional designs should further enhance prospects for network
inference. On the other hand, theoretical arguments, and the results we showed
from the Swat system, emphasize that in some cases network structure may not
be identifiable, even at the coarse level required for qualitative biological predic-
tion. On balance, we believe that network inference can be useful in generating
biological hypotheses and guiding further experiment. However, the concerns we
raise motivate a need for caution in statistical analysis and interpretation of results.
At the present time, we do not believe network inference should be treated as a
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routine analysis in bioinformatics applications, but rather as an open research area
that may, in the future, yield standard experimental and statistical protocols.

Some specific recommendations that arise from the results presented here are as
follows:

e A default model. Our results suggest that a reasonable default choice of model
for typical applications uses the standard design matrix with no lagged predic-
tors and a flat variance function, corresponding to the linear model

(22) dY(tj) ~ N(AY(tj_1), D(o,...,08)).

Coupled with the Bayesian variable selection scheme outlined in Sec-
tion 2.4.1, this simple model produced empirically consistent network estima-
tors for Cantone using evenly sampled global perturbation data (Figure 3).

e Diagnostics and validation. It is clear that network inference does not enjoy
general theoretical guarantees and that the ability to successfully elucidate net-
work structure depends on details of the specific system under study. Therefore,
careful empirical validation on a case-by-case basis is essential. This should in-
clude statistical assessment of model fit, robustness and predictive ability and,
where possible, systematic validation using independent interventional data.

o Experimental design. We suggest sampling evenly in time as a default choice.
Interventional designs may be helpful to effectively explore larger dynamical
phase spaces. However, to control the burden of experimentally exploring multi-
ple time points, molecular species, interventions, culture conditions and biolog-
ical samples, adaptive designs that prune experiments based on informativeness
for the specific biological setting may be helpful [Xu et al. (2010)].

In conclusion, linear statistical models for networks are closely related to mod-
els of cellular dynamics and can shed light on patterns of biochemical regulation.
However, biological network inference remains profoundly challenging, and in
some cases may not be possible even in principle. Nevertheless, studies aimed at
elucidating networks from high-throughput data are now commonplace and play
a prominent role in biology. For this reason there remains an urgent need for
both new methodology and theoretical and empirical investigation of existing ap-
proaches. Furthermore, there remain many open questions in experimental design
and analysis of designed experiments in this setting.
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SUPPLEMENTARY MATERIAL

Additional materials (DOI: 10.1214/11-AOAS532SUPP; .zip). This supple-
ment provides the dynamical systems used in this paper and accompanying MAT-
LAB R2010a scripts, derivations and additional figures SFigures 1-16.
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