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Balanced k-Means and Min-Cut Clustering
Xiaojun Chang, Feiping Nie, Zhigang Ma, and Yi Yang

Abstract—Clustering is an effective technique in data mining to generate groups that are the matter of interest. Among various
clustering approaches, the family of k-means algorithms and min-cut algorithms gain most popularity due to their simplicity and
efficacy. The classical k-means algorithm partitions a number of data points into several subsets by iteratively updating the clustering
centers and the associated data points. By contrast, a weighted undirected graph is constructed in min-cut algorithms which partition
the vertices of the graph into two sets. However, existing clustering algorithms tend to cluster minority of data points into a subset,
which shall be avoided when the target dataset is balanced. To achieve more accurate clustering for balanced dataset, we propose to
leverage exclusive lasso on k-means and min-cut to regulate the balance degree of the clustering results. By optimizing our objective
functions that build atop the exclusive lasso, we can make the clustering result as much balanced as possible. Extensive experiments
on several large-scale datasets validate the advantage of the proposed algorithms compared to the state-of-the-art clustering
algorithms.

Index Terms—Balanced k-Means, Min-Cut Clustering

✦

1 INTRODUCTION

CLUSTERING is a fundamental research topic in data mining
and is widely used for many applications in the field of

artificial intelligence, statistics and social sciences [1] [2] [3] [4]
[5] [6]. The objective of clustering is to partition the original data
points into a number of groups so that the data points within
the same cluster are close to each other while those in different
clusters are far away from each other [7] [8] [9] [10].

Among various approaches for clustering,K-means and min-
cut are two most popular choices in reality because of their
simplicity and effectiveness [11]. The general procedure of tra-
ditional K-means (TKM) is to randomly initializec clustering
centers, assign each data point to its nearest cluster and compute a
new clustering center iteratively. Some researchers claimthat the
curse of dimensionality may deteriorate the performance ofTKM
[12]. A straightforward solution of this problem is to project the
original dataset to a low-dimensional subspace by dimensionality
reduction, for example, PCA, before performing TKM. Discrim-
inative analysis has been shown effective in enhancing clustering
performance [12] [13] [14]. Motivated by this fact, discriminative
k-means (DKM) [15] is proposed to incorporate discriminative
analysis and clustering into a single framework to formalize the
clustering as a trace maximization problem.

By contrast, the min-cut clustering is realized by constructing
a weighted undirected graph and then partitioning its vertices into
two sets so that the total weight of the set of edges with endpoints
in different sets is minimized [16] [17]. Among several graph clus-
tering methods, min-cut tends to provide more balanced clusters as
compared to other graph clustering criterion. As the within-cluster
similarity in min-cut method is explicitly maximized, solving the
min-cut clustering problem is nontrivial. The main difficulty lies
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in the constraint on the solution. Thus, to make this problem
tractable, researchers proposed to relax the constraint.

Althoughk-means and min-cut have achieved promising per-
formance in many applications, they have certain limit.Given
that the distribution of the data points is balanced, one would
expect the clustering result to reflect such balance. That being
said, a clustering algorithm shall avoid partitioning a minority of
data points into a cluster. Nonetheless, both K-means and min-
cut, as well as some other similar clustering algorithms, donot
guarantee balanced clustering result. In many real world data
mining applications, the data from each cluster are about the same.
For example, the male and female populations in the same age
range cannot be very different. Therefore, for those data which are
equally distributed, it is more reasonable to explicitly guarantee
the clustering results balanced.

Motivated by the limit ofk-means and min-cut for handling
balanced data, we propose to design a balanced clustering algo-
rithm. Specifically, the exclusive lasso proposed by Zhouet al.
[18] has been exploited in our approach to fulfill such purpose.
The exclusive lasso was originally used for feature selection
across multiple tasks. It models the scenario when variables in
the same group compete with each other. With exclusive lasso,
if one feature in a group is given a large weight, it tends to
assign small or even zero weights to the other features in thesame
group. Suppose that the exclusive lasso is applied on a bunchof
data points across multiple categories. In a similar manner, we
introduce a competition among different categories for thesame
data point. If more data points are clustered into one category,
other categories would get fewer data points. The exclusivelass,
thus in a sense, measures the balance degree of the clustering
result. The smaller value the exclusive lasso obtains, the more
balanced the clustering result is. With such insight, we formulate
our clustering approach based on minimizing the exclusive lasso.
In this paper, we particularly incorporate the exclusive lasso into
k-means clustering and min-cut clustering, aiming to promote
these two mainstream clustering approaches with stronger ability
of attaining balanced clusters.

The major contributions of this paper can be summarized as
follows:

http://arxiv.org/abs/1411.6235v1
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1) We leverage the exclusive lasso to introduce a competi-
tion among different categories for the same data point,
thus enhancing the balance of the clustering result.

2) The exclusive lasso is particularly tailored fork-means
and min-cut. Thus, these two mostly used clustering
approaches are able to achieve more balanced clustering
result.

3) The proposed algorithms are non-smooth and difficult to
optimize. We propose a new iterative solution to solve the
problems.

The rest of this paper is organized as follows. After revisiting
the related work onk-means, min-cut and the exclusive lasso in
Section 2, we detail the proposed balancedk-means and min-
cut algorithms in Section 3. Extensive experiments are given in
Section 4 and Section 5 concludes this paper.

2 RELATED WORK

In this section, we briefly review the research onk-means, min-cut
and the exclusive lasso.

2.1 The Classical K-means

As one of the most efficient clustering algorithms,k-means
clustering has been widely applied to real-world applications. The
centroids of clusters are utilized to characterize the data. The
objective ofk-means is to minimize the sum of the squared errors
defined by:

Jk =
K∑

k=1

∑

i∈Ck

‖xi −mk‖
2, (1)

whereX = (x1, . . . , xn) denotes the data matrix andmk =∑
i∈Ck

xi/nk is the centroid of a clusterCk of nk data points.
Previous work [19] has shown thatH-orthogonal non-negative

matrix factorization (NMF) is equivalent to relaxedk-means
clustering. Thus,k-means clustering can be reformulated using
the clustering indicator as follows:

min
F,G

‖X −HFT ‖2F

s.t. Gik ∈ {0, 1},
K∑

k=1

Hik = 1, ∀i = 1, 2, . . . , n
(2)

whereX ∈ R
d×n is the input data matrix withn data represented

by d-dimensional features;F ∈ R
d×K is the clustering indicator

matrix;H ∈ R
n×K is the clustering assignment matrix and each

row of H satisfies the 1-of-K coding scheme (if a data point
xi is assigned to thek-th cluster thenHik = 1 andHik = 0
otherwise). In this paper, given a matrixX = {xij}, its i-th row,
j-th column are denoted asxi, xj , respectively.

In the literature, the classicalK-means and its variants have
been applied to many data mining applications. For example,
Mehrdadet al. [19] propose a harmonyK-means (HKM) algo-
rithm based on harmony search optimization method and applied
it to document clustering. HKM can be proved by means of finite
Markov chain theory to converge to the global optimum. Zhanget
al. [20] propose a new neighborhood density method for selecting
initial cluster centers forK-means clustering. Deepaket al. [21]
employ quantization schemes to retain the outcome of clustering
operations. Although these methods get good performance, they
have not considered how to achieve balanced clustering result

when the given data points are evenly distributed. By contrast,
we aim to develop a balancedk-means clustering algorithm that
well addresses this issue.

2.2 Min-Cut

The principle of min-cut is rooted in graph theory. It needs agraph
based on a weight matrixW ∈ R

n×n built from n data points
{x1, . . . , xn}. The min-cut graph clustering objective function
can be generalized as:

J =
∑

1≤p<q≤K

s(Cp, Cq) + s(Cp, Cq) =
K∑

k=1

s(Ck, Ck) (3)

whereK is the number of clusters,Ck is thek-th cluster (sub-
graph in graph G),Ck is the complement of a subsetCk in graph
G, and for any setA andB

s(A,B) =
∑

i∈A

∑

j∈B

Wij , (4)

di =
∑

j

Wij . (5)

We denoteqk (k = 1, . . . ,K) as the cluster indicators where
the i-th element ofqk is set to 1 if thei-th data pointxi belongs
to thek-th cluster, and 0 otherwise. For example, if the data points
within each cluster are adjacent,

qk = (0, . . . , 0,

nk︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T . (6)

After simple mathematical deduction, we can find that

s(Ck, Ck) =
∑

i∈Ck

∑

j∈Ck

Wij = qTk (D −W )qk

∑

i∈Ck

di = qTk Dqk

s(Ck, Ck) = qTk Wqk, (7)

whereD is a diagonal matrix with thei-th diagonal element as
di. The objective function of min-cut method can therefore be
reformulated as:

J =
K∑

k=1

qTk (D −W )qk (8)

Min-Cut clustering has been applied in various applications.
Wang et al. [22] propose a flexible and generalized framework
for constrained spectral clustering, interpret the algorithm as
finding the normalized min-cut of a labeled graph, and apply
it to constrained image segmentation. Dynamic graph clustering
algorithm, proposed by [23] can provide strong theoreticalquality
guarantee on clusters. However, none of the existing work onmin-
cut is capable of balanced clustering when necessary, whichshall
be addressed by our newly proposed balanced min-cut algorithm.
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2.3 Exclusive Lasso

Zhouet al.propose the exclusive lasso to model the scenario when
variables in the same group compete with each other. They apply it
to multi-task feature selection and obtain good performance. The
exclusive lasso [18] is defined as follows:

‖β‖e =

√√√√
d∑

j=1

(
m∑

k=1

‖βj
k‖)

2, (9)

where‖β‖e is a regularizer that controls the complexity of the
combination weights.

In [18], the regularizer introduces anl1-norm to combine the
weights for the same category used by different data points and
an l2-norm to combine the weights of different categories. Since
l1-norm tends to achieve a sparse solution, the construction in
the exclusive lasso essentially introduces a competition among
different categories for the same data points.

In our work, the exclusive lasso is used as a balance constraint.
We will prove that the value of exclusive lasso indicates the
balance degree of our clustering algorithms.

3 THE PROPOSED ALGORITHM

In this section, we illustrate the proposed approach in details.

3.1 Balance Constraint

GivenF as a cluster indicator matrix, the exclusive lasso ofF is
written as

‖F‖e =

√√√√
c∑

j=1

(
n∑

i=1

‖fij‖)2. (10)

With simple mathematical deduction, the exclusive lasso can be
rewritten as:

‖F‖e = Tr(FT11TF ). (11)

From this equation, we can observe that the value of exclusive
lasso equals the square-sum of the number of data points in each
class. In the following, we prove that the most balanced clustering
can be achieved by minimizing the exclusive lasso.

Theorem 1. Givenn1 + n2 + · · · + nk = N andni|
k
i=1 ≥ 0,∑k

i=1 n
2
i arrives at its minimum whenni =

N
k

.

Proof. According to the Cauchy inequality,

(n2
1 + n2

2 + · · ·+ n2
k)(b

2
1 + b22 + · · ·+ b2k)

≥(a1b1 + a2b2 + · · ·+ akbk)
2

Let bi|ki=1 = 1, the equality holds whenn1 = n2 = · · · = nk.
Hence, we can easily have the conclusion that whenni = N

k
,∑k

i=1 n
2
i get its minimal value.

According to the above theorem, by minimizing the exclusive
lasso, each cluster will haven

c
data points. The most balanced

clustering result is thus obtained. Hence, we use the the exclusive
lasso as the balance constraint.

3.2 Balanced k-Means

In the setting of clustering, givenn data points{xi}|
n
i=1, we

have a data matrixX = (x1, . . . , xn) ∈ R
d×n. Our goal in

balancedk-means is to partition{xi}|i = 1n into K balanced
clusters among different categories.

Noting that the exclusive lasso is capable of introducing
competition among different categories, we apply the exclusive
lasso to the classicalk-means to obtain balanced clusters. The
proposed objective function of balancedk-means is formulated as
follows:

min
F∈Ind

‖X −HFT ‖2F + γ‖F‖e (12)

By substituting‖F‖e with (9), the objective function can be
rewritten as follows:

min
F∈Ind

‖X −HFT ‖2F + γT r(FT11TF ) (13)

whereF ∈ Ind meansF ∈ R
n×K is an indicator matrix used

for clustering;H ∈ R
d×K is the clustering assignment matrix;γ

is a parameter.
The optimalH andF would minimize the objective function

value. Since it is difficult to compute the optimalH and F
simultaneously, we present an iterative approach to optimize this
algorithm. To be more specific, we can obtain the optimalH by
fixing F by a simple linear equation. Similarly, we can get the
optimalF by fixing H .

For a fixedF , by setting the derivative of (13) w.r.tH to zero,
we obtain

H = XF (FTF )−1 (14)

Then we fixH , we updateF as follows: we update one row of
F each time while fixing the other rows of the prediction matrix
F . Specifically, the updating of one row is realized by finding the
element being 1 that results in the minimum of (13). We iterate the
updating of each row until convergence as shown in Algorithm1.

Algorithm 1 Algorithm to solve the objective function of balanced
k-means
Input: Data matrixX ∈ R

d×n

Output: Indicator matrixF ∈ R
n×K

1: Initialize the indicator matrixF randomly.
2: repeat
3: Fixing F , computeH according toH = XF (FTF )−1

4: Fixing H , updateF as follows:
Update each row ofF while fixing the remaining rows.

5: until CONVERGENCE

Return: Indicator matrixF .

Computational Analysis: The computation complexity
of Algorithm 1 is O(K). Since the indicator matrixF is
sparse, this inverse operation is very efficient. When sufficient
computational resources are available and parallel computing is
implemented, this algorithm can be solved with desired efficiency.

Convergence Analysis: The following theorem guaran-
tees the convergence of Algorithm 1.

Theorem 2. Algorithm 1 decreases the objective value of Eq.(13)
in each iteration.
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Proof. In each iterationt of Algorithm 1, according to Step 3, we
know that:

Ht+1 = min
F

‖X −HFT
t ‖2F + γT r(FT

t 11TFt) (15)

Thus, we have:

‖X −Ht+1F
T
t ‖2F + γT r(FT

t 11TFt)

≤‖X −HtF
T
t ‖2F + γT r(FT

t 11TFt)
(16)

According to step 4, we obtain:

‖X −HtF
T
t+1‖

2
F + γT r(Ft+111

TFt+1)

≤‖X −HtF
T
t ‖2F + γT r(Ft11

TFt)
(17)

Adding Eq. (16) and Eq. (17), we arrive at:

‖X −Ht+1F
T
t+1‖

2
F + γT r(Ft+111

TFt+1)

≤‖X −HtF
T
t ‖2F + γT r(Ft11

TFt)
(18)

which proves that the algorithm decreases the objective function
value in each iteration.

According to Theorem 2, we can see that the value of the
objective function (13) decrease at each iteration of Algorithm 1.
In addition, it is clear that (13) is lower bounded by 0. Therefore,
Algorithm 1 is guaranteed to converge.

3.3 Balanced Min-Cut

We similarly aim to clustern data pointsX = {x1, . . . , xn} ∈
R
d×n intoK clusters. To begin with, we use the Gaussian function

to construct a weight matrixA. The weightAij is defined as:

Aij =





exp(−
‖xi−xj‖

2

δ2
), xi and xj are k

nearest neighbors.
0, otherwise

(19)

whereδ is utilized to control the spread of neighbors. Given the
weight matrixA and the cluster indicator matrixF , the objective
function of min-cut graph clustering is formulated as follows:

min
F∈Ind

1TA1− Tr(FTAF ), (20)

which is equivalent to the following objective function:

max
F∈Ind

Tr(FTAF ) (21)

We further incorporate the exclusive lasso into min-cut andget
the following objective function:

max
F∈Ind

Tr(FTAF )− γ‖F‖e (22)

In the same manner, we substitute‖F‖e with (9) and rewrite
the objective function as follows:

max
F∈Ind

Tr(FTAF )− γT r(FT11TF ) (23)

With a simple mathematical deduction, the objective function
is rewritten as:

max
F∈Ind

Tr
(
FT (ρI +A− γ11T )F

)
, (24)

whereρ is a large enough constant to makeρI + A − γ11T

positive-definite. DefiningB = (ρI + A − γ11T )F , we update

Algorithm 2 Algorithm to solve the objective function of balanced
min-cut
Input: Data matrixX
Output: Indicator matrixF

1: Compute the weight matrixA using Eq (19).
2: repeat
3: ComputeB according toB = (ρI +A− γ11T )F
4: UpdateF by solvingmaxF∈Ind Tr(F

TB)
5: until CONVERGENCE

Return: Indicator matrixF

F by solvingmaxF∈Ind Tr(F
TB). F is iteratively updated until

convergence as shown in Algorithm 2.
Compuational Analysis: The computation complexity

of Algorithm 2 isO(n).
Convergence Analysis: The following theorem guaran-

tees the convergence of Algorithm 2.

Theorem 3. Algorithm 2 increases the objective function value of
Eq. (24) in each iteration.

Proof. In the Steps 3 and 4 of Algorithm 2, we denote the updated
B andF by B̂ and F̂ , respectively. Since the updatedB andF
are the optimal solutions of the problemmaxF∈Ind Tr(F

TB),
we have:

Tr(F̂T (ρI +A− γ11T )F ) ≥ Tr(FT (ρI +A− γ11T )F ),
(25)

which proves that the algorithm increase the objective function
value in each iteration.

According to Theorem 3, we can observe that the value of
objective function (24) increases at each iteration of Algorithm 2.
Therefore, Algorithm 2 is proved to converge.

4 EXPERIMENT

In this section, extensive experiments are conducted to evaluate the
proposed clustering methods. We give two sets of experiments.
The first one is to compare the proposed balancedK-means
clustering toK-means based clustering algorithms, including the
classicalK-means (KM) clustering, DisCluster (DC), DisKmeans
(DKM) clustering [15], AKM [19] and HKM [19]. The second
one is to compare the proposed balanced min-cut clustering to the
classical min-cut clustering, MinMax Cut clustering, Ratio Cut
clustering and Normalized Cut clustering algorithms.

4.1 Datasets

A variety of datasets are used in our experiments which are
described as follows.

1) MNIST Handwritten Digit Dataset: The MNIST hand-
written digit dataset [24] is a large-scale dataset of
handwritten digits. It is widely used as a test bed in
data mining. The dataset contains 60,000 training images
and 10,000 testing images. We merge all the training and
testing images in the experiments. The pixel values are
used as feature representation.

2) USPS handwritten digit dataset: We additionally use the
USPS dataset to validate the performance on handwritten
digit recognition. The dataset consists of 9298 gray-scale
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TABLE 1
A BRIEF SUMMARY OF THE EXPERIMENTAL DATASETS.

Dataset Size Dimension of Features Class Number
MNIST Handwritten digit dataset 70,000 1024 10
USPS Handwritten Digit Data Set 9298 256 10

YaleB Face Data Set 2414 1024 38
ORL Face Data Set 400 1024 40

JAFFE Facial Expression Data Set 213 676 10
HumanEVA Motion Data Set 10000 168 10

Coil20 Object Data Set 1440 1024 20
CMU-PIE face dataset 41,368 1024 68
UMIST face dataset 564 1024 20

TABLE 2
Performance comparison (Clustering Accuracy ± STANDARD DEVIATION) of clustering accuracy using k-means, DisCluster, DisKmeans, AKM,

HKM and Balanced k-means on nine benchmark datasets. From the experimental result, we can observe that the proposed algorithm consistently
outperforms the other comparison algorithms.

k-means DisCluster DisKmeans AKM HKM Balancedk-means

MNIST 52.6± 3.3 53.7± 2.4 54.2± 3.4 52.2 ± 3.3 55.4± 3.1 57.3± 2.4

USPS 65.8± 2.5 67.4± 2.8 70.4± 2.6 66.3 ± 2.9 71.5± 2.3 73.4± 2.8

YaleB 16.3± 1.1 35.2± 2.3 39.7± 2.5 16.8 ± 0.8 41.3± 3.2 43.5± 1.8

ORL 37.2± 1.6 41.2± 2.1 43.9± 1.8 37.4 ± 1.5 44.4± 2.7 47.2± 2.2

JAFFE 58.8± 2.2 59.4± 2.7 59.9± 2.5 59.0 ± 2.8 60.5± 1.9 61.2± 1.8

HumanEVA 43.2± 3.2 44.2± 3.1 45.1± 2.3 43.8 ± 3.4 46.3± 2.6 47.7± 2.5

Coil20 68.4± 2.8 65.3± 2.6 61.3± 2.3 67.9 ± 2.7 70.3± 2.4 73.1± 2.3

CMU-PIE 19.5± 0.8 49.8± 2.7 55.5± 2.9 21.2 ± 1.1 56.1± 2.2 57.8± 2.4

UMIST 39.5± 2.1 41.3± 2.6 43.2± 2.4 39.1 ± 1.8 44.1± 2.6 46.4± 2.5

handwritten digit images. We resize the images to16×16
and use pixel values as the features.

3) YaleB face dataset: The YaleB dataset [25] contains
2414 near frontal images from 38 persons under different
illuminations. Each image is resized to32 × 32 and the
pixel value is used as feature representation.

4) ORL face dataset: The ORL dataset [26] consists of 40
different subjects with 10 images each. We also resize
each image to32 × 32 and use pixel values to represent
the images.

5) JAFFE Japanese Female Facial Expression dataset: The
JAFFE dataset [27] consists of 213 images of different
facial expressions from 10 different Japanese female
models. The images are resized to26 × 26 and repre-
sented by pixel values.

6) HumanEVA Motion dataset: The HumanEVA dataset is
used to evaluate the performance of our algorithm in
terms of 3D motion annotation1. This dataset contains
five types of motions. Based on the 16 joint coordinates in
3D space, 1590 geometric pose descriptors are extracted
using the method proposed in [28] to represent 3D motion
data.

7) Coil20 Object dataset: We use the Coil20 dataset [29] for
object recognition. This dataset includes 1440 gray-scale
images with 20 different objects. In our experiment, we
resize each image to32× 32 and use pixel values as the
features.

8) CMU-PIE dataset: The CMU-PIE face dataset consists
of 41,368 images of 68 people. Each person was imaged

1. http://vision.cs.brown.edu/humaneva/

under 13 different poses, 43 different illumination condi-
tions, and with 4 different expressions. We also use the
pixel values as the feature representations.

9) UMIST face dataset: The UMIST face dataset consists of
564 images of 20 individuals with mixed race, gender and
appearance. Each individual is shown in a range of poses
from profile to frontal views. The pixel value is used as
the feature representation.

Table 1 gives a brief summary of all the experimental datasets.

4.2 Parameter Setting

There are three parameters in our algorithms. The first one isthe
number of nearest neighbors and the second one is the parameter
δ in Eq. (19). Following , we set the number of nearest neighbors
to 5 in the experiments. The self-tune clustering method is utilized
to determine the parameterδ. For the regularization parameterγ
in Eq. (13) and Eq. (24), we tune them by a ”grid-search” strategy
from {10−6, 10−4, 10−2, 100, 102, 104, 106}. We similarly tune
the regularization parameters of all the comparison algorithms
from the aforementioned range. The best results of all the compar-
ison algorithms are reported.

4.3 Evaluation Metrics

Following related work, we adopt clustering accuracy (ACC)and
normalized mutual information (NMI) as our evaluation metrics
in our experiments.

Let qi represent the clustering label result from a clustering
algorithm andpi represent the corresponding ground truth label of
arbitrary data pointxi. ThenACC is defined as follows:
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TABLE 3
Performance comparison (NMI ± STANDARD DEVIATION) of clustering accuracy using k-means, DisCluster, DisKmeans, AKM, HKM and

Balanced k-means on nine benchmark datasets. From the experimental result, we can observe that the proposed algorithm consistently
outperforms the other comparison algorithms.

k-means DisCluster DisKmeans AKM HKM Balancedk-means

MNIST 61.7± 2.5 62.5± 2.8 63.1± 2.6 61.9 ± 2.1 64.3± 3.1 66.1± 2.9

USPS 60.8± 2.3 61.4± 2.5 61.9± 2.1 61.0 ± 2.6 62.5± 2.2 63.7± 2.5

YaleB 19.5± 1.8 30.1± 2.1 31.3± 2.5 19.8 ± 2.2 43.8± 3.2 46.5± 2.3

ORL 68.7± 1.8 69.2± 2.5 69.9± 1.8 68.9 ± 1.7 71.1± 2.3 73.2± 2.4

JAFFE 63.2± 2.5 64.1± 2.2 64.8± 2.8 62.8 ± 2.5 66.2± 1.9 68.4± 2.2

HumanEVA 75.3± 2.5 76.1± 2.1 77.3± 2.4 75.1 ± 2.8 78.2± 2.4 79.5± 2.1

Coil20 59.3± 2.3 60.5± 2.3 61.2± 2.8 59.8 ± 2.7 63.2± 2.9 65.1± 2.7

CMU-PIE 24.2± 2.3 25.2± 2.8 25.8± 2.5 24.7 ± 1.6 57.8± 2.4 59.3± 2.6

UMIST 63.7± 2.4 64.4± 2.8 65.3± 2.5 64.1 ± 2.1 66.8± 2.4 68.1± 2.3

TABLE 4
Performance comparison (Clustering Accuracy ± STANDARD DEVIATION) of clustering accuracy using the classical Min-Cut clustering, MinMax

Cut clustering, Ratio Cut clustering, Normalized Cut clustering and Balanced Min-Cut clustering on nine benchmark datasets. From the
experimental result, we can observe that the proposed algorithm consistently outperforms the other comparison algorithms.

Min-Cut Ratio Cut Normalized Cut MinMax Cut Balanced Min-Cut

MNIST 56.4± 2.8 57.8± 2.2 58.4 ± 3.2 59.2± 2.4 61.4± 2.0

USPS 72.3± 2.3 73.6± 2.5 73.9 ± 2.2 75.8± 2.1 77.5± 2.7

YaleB 37.9± 2.8 38.2± 2.4 38.6 ± 2.1 42.2± 2.6 46.1± 2.3

ORL 45.8± 1.9 46.9± 2.4 47.6 ± 2.3 48.8± 1.7 50.1± 2.7

JAFFE 60.4± 2.6 61.1± 2.3 62.5 ± 2.8 62.8± 2.1 64.3± 2.4

HumanEVA 47.2± 2.9 48.3± 2.5 48.8 ± 2.7 49.5± 3.3 50.9± 2.8

Coil20 70.3± 2.4 71.8± 2.2 77.6 ± 2.8 78.3± 2.3 81.6± 1.9

CMU-PIE 56.2± 1.3 57.4± 2.9 58.3 ± 2.6 59.1± 1.8 61.3± 2.8

UMIST 59.6± 2.5 60.1± 2.2 60.8 ± 2.1 62.9± 1.4 64.6± 2.3

TABLE 5
Performance comparison (Clustering Accuracy ± STANDARD DEVIATION) of clustering accuracy using the classical Min-Cut clustering, MinMax

Cut clustering, Ratio Cut clustering, Normalized Cut clustering and Balanced Min-Cut clustering on nine benchmark datasets. From the
experimental result, we can observe that the proposed algorithm consistently outperforms the other comparison algorithms.

Min-Cut Ratio Cut Normalized Cut MinMax Cut Balanced Min-Cut

MNIST 65.3± 2.9 66.8± 2.6 67.4 ± 3.2 68.1± 2.5 69.4± 2.3

USPS 66.5± 2.3 67.9± 2.5 68.4 ± 2.9 69.8± 2.7 71.2± 2.2

YaleB 43.6± 1.8 45.2± 2.6 46.4 ± 2.1 47.2± 1.9 49.1± 2.4

ORL 78.1± 1.9 79.5± 2.6 80.3 ± 2.2 80.9± 1.8 83.2± 2.6

JAFFE 67.8± 2.5 69.1± 2.3 69.9 ± 2.8 70.3± 2.4 73.5± 1.7

HumanEVA 77.4± 3.5 78.6± 2.8 79.2 ± 2.4 80.4± 3.1 82.5± 2.1

Coil20 59.8± 2.9 61.4± 2.3 62.7 ± 2.5 63.6± 2.8 66.2± 2.6

CMU-PIE 55.5± 2.1 61.4± 2.6 62.3 ± 2.7 62.8± 2.3 63.1± 2.8

UMIST 82.7± 2.8 90.1± 2.1 91.2 ± 2.7 92.5± 2.3 94.8± 2.9

ACC =

∑n
i=1 δ(pi,map(qi))

n
, (26)

whereδ(x, y) = 1 if x = y andδ(x, y) = 0 otherwise.map(qi)
is the best mapping function that permutes clustering labels to
match the ground truth labels using the Kuhn-Munkres algorithm.
A larger ACC indicates a better clustering performance.

For any two arbitrary variableP andQ, NMI is defined as
follows [30]:

NMI =
I(P,Q)√
H(P )H(Q)

, (27)

whereI(P,Q) computes the mutual information betweenP and
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Fig. 1. Parameter sensitivity of Balanced k-means. (a) MNIST (b) USPS (c) YaleB (d) ORL (e) JAFFE (f) HumanEVA (g) Coil20 (h) CMU-PIE (i)
UMIST. From the results, we can observe that the parameter has a significant impact on the performance.

Q, and H(P ) and H(Q) are the entropies ofP and Q. Let
tl represent the number of data in the clusterCl(1 ≤ l ≤ c)
generated by a clustering algorithm andt̃h represent the number
of data points from theh-th ground truth class. NMI metric is then
computed as follows [30]:

NMI =

∑c
l=1

∑c
h=1 tl,hlog(

n×tl,h

tl t̃h
)

√
(
∑c

l=1 tl log
tl
n
)(
∑c

h=1 t̃h log
t̃h
n
)
, (28)

where tl,h is the number of data samples that lies in the inter-
section betweenCl andhth ground truth class. Similarly, a larger
NMI indicates a better clustering performance.

4.4 Comparison among k-means based methods

In this section, we report the performance comparison usingk-
means, DisCluster, DisKmeans, AKM, HKM and Balancedk-
means in terms of clustering accuracy (ACC) and NMI in Table 2
and Table 3.

From the experimental results, we have the following observa-
tions:

1) When compared to the classicalk-means clustering,
DisCluster and DisKmeans algorithms, DisCluster and
DisKmeans generally have better performance. This may
be because discriminative dimension reduction is inte-
grated into a single framework. Thus, each cluster is
more identifiable, which helps enhance the clustering per-
formance. We can therefore conclude that discriminative
information is beneficial for clustering.

2) HKM achieves the second best performance among the
comparison algorithms, which indicates that most active
points changing their cluster assignments at each iteration
are located on or near the cluster boundaries.

3) The proposed balancedk-means always gets the best
performance on all the datasets. This experimental result
demonstrates that the exclusive lasso is able to pose
balance constraint tok-means clustering. By minimizing
the exclusive lasso, the most balanced clustering result is
obtained.
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Fig. 2. Parameter sensitivity of Balanced Min-Cut w.r.t γ. (a) MNIST (b) USPS (c) YaleB (d) ORL (e) JAFFE (f) HumanEVA (g) Coil20 (h) CMU-PIE (i)
UMIST. From the results, we can observe that the parameter, γ has a significant impact on the performance. To be more specific, better performance
is achieved when γ is in the range of {10−2, 102}.

4.5 Comparison among graph clustering algorithms

To evaluate performance of the proposed balanced min-cut cluster-
ing algorithm, we compare it to the classical Min-Cut clustering,
MinMax Cut clustering [31], Ratio Cut clustering [32], Normal-
ized Cut Clustering [33] and Balanced Min-Cut clustering onthe
nine benchmark datasets.

We have the following observations from the experimental
results:

1) Compared with thek-means based clustering, the graph
clustering algorithms generally achieve better perfor-
mance. This observation indicates that it is beneficial to
utilize the pairwise similarities between all data points
from a weighted graph adjacency matrix that contains
much helpful information for clustering.

2) MinMax Cut Clustering always gets the second best per-
formance, which demonstrates that min-max clustering

principle can result in more balanced partitions than the
other comparison graph clustering methods.

3) The proposed balanced min-cut clustering algorithm con-
sistently outperforms the other graph clustering algo-
rithms. From this result, we can conclude that the exclu-
sive lasso is able to exert balance constraint on min-cut
clustering and thus achieves the most balanced clustering
result.

4.6 Parameter Sensitivity of the Proposed Algorithm

In this section, we study the parameter sensitivity of balancedk-
means and balanced min-cut. Fig 1 shows the accuracy (y-axis)
of balancedk-means for differentγ values (x-axis). From the
experimental result, we can observe thatγ has a significant impact
on the performance of balancedK-means.

We additionally show the parameter sensitivity of balanced
min-cut in Fig. 2. Similarly to the proposed balancedk-means,
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the performance is heavily influenced by the parameterγ. To be
more specific, better performance is usually attained whenγ is in
the range of{10−2, 102}.

The experiments on both algorithms suggest the importance
of designing an auto-tuning method for parameter selection. How-
ever, how to decide the optimal parameter is currently out ofthe
scope in this work. We shall focus on this problem in the future.

5 CONCLUSION

In this paper, we have addressed the issue of balanced clustering
which has not been studied in data mining. The exclusive lasso
has been exploited to exert the balance constraint for introduce
its ability to induce competition among different categories for
the same data point. Particularly, we incorporated the exclusive
lasso intok-means and min-cut clustering algorithms, which shall
facilitate these two mainstream clustering algorithms to better
cope with balanced data points. On the other hand, our objective
functions are non-smooth and difficult to optimize. A new iterative
approach is then designed to solve the problems. We have per-
formed extensive experiments on a copious of datasets to evaluate
performance of the proposed balancedk-means and balanced min-
cut in terms of clustering accuracy and NMI. The experimental
results show that our proposed algorithms always outperform
the other comparison state-of-art clustering algorithms,which
validates that utilizing the exclusive lasso indeed helps achieve
the most balanced clustering.
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