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Abstract

Spectral clustering is a key research topic in the field
of machine learning and data mining. Most of the exist-
ing spectral clustering algorithms are built upon Gaus-
sian Laplacian matrices, which are sensitive to param-
eters. We propose a novel parameter-free, distance-
consistent Locally Linear Embedding (LLE). The pro-
posed distance-consistent LLE promises that edges be-
tween closer data points have greater weight. Further-
more, we propose a novel improved spectral clustering
via embedded label propagation. Our algorithm is built
upon two advancements of the state of the art: 1) label
propagation, which propagates a node’s labels to neigh-
boring nodes according to their proximity; and 2) mani-
fold learning, which has been widely used in its capacity
to leverage the manifold structure of data points. First
we perform standard spectral clustering on original data
and assign each cluster tok-nearest data points. Next,
we propagate labels through dense, unlabeled data re-
gions. Extensive experiments with various datasets vali-
date the superiority of the proposed algorithm compared
to current state-of-the-art spectral algorithms.

Introduction
Data clustering is a fundamental research topic that
is widely used for many applications in the fields of
artificial intelligence, statistics and the social sciences
(Jain, Murty, and Flynn 1999)(Jain and Dubes 1988a)(Girolami 2002)(Ye, Zhao, and Liu 2007a).
The purpose of clustering is to partition the original data
points into various groups so that data points within the
same cluster are dense while those in different clusters are
far apart (Jain and Dubes 1988b)(Filippone et al. 2008a)
(Chang et al. 2015).

Among various implementations of clustering, k-means is
one of the most popular in reality because of its simplicity
and effectiveness (Wu et al. 2012). The general procedure of
traditional k-means (TKM) is to randomly initializec clus-
tering centers, assign each data point to its nearest cluster
and compute a new clustering center. Current researchers
claim the curse of dimensionality may deteriorate the per-
formance of TKM (Ding and Li 2007). A straight-forward
solution to this problem is to project original datasets to
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a low-dimensional subspace by dimensionality reduction,
i.e., PCA, before performing TKM. Discriminative analy-
sis has proven effective in enhancing clustering performance
(Ding and Li 2007) (la Torre, Fernando, and Kanade 2006)
(Ye, Zhao, and Liu 2007b). Thus, discriminative k-means
(DKM) (Ye, Zhao, and Wu 2007) is proposed as a way to
incorporate discriminative analysis and clustering into asin-
gle framework to formalize clustering as a trace maximiza-
tion problem. However, TKM and DKM fail to take low-
dimensional manifold structure of data into consideration.

On a further note, spectral clustering
(SC) (Yu and Shi 2003) (Filippone et al. 2008b)
(Shi and Malik 2000) has gradually attracted in-
creasing research attention for its capacity to mine
intrinsic data geometric structures, which facili-
tates partitioning data with more complicated struc-
tures (Belkin and Niyogi 2003) (Yang et al. 2011)
(Nie et al. 2009) (Wu and Schlkopf 2006)
(Yang et al. 2010). The basic idea of SC is to find a
cluster assignment of data points by adopting a spectrum of
the similarity matrix that leverages the nonlinear and low-
dimensional manifold structure of original data. Inspiredby
the benefits of spectral clustering, different variants of the
SC method have been proposed to demonstrate its effective-
ness. For example, local learning-based clustering (LLC)
(Wu and Schlkopf 2006) utilizes a kernel regression model
for label prediction based on the assumption that the class
label of a data point can be determined by its neighbors.
Similarly, self-tuning SC (Zelnik-Manor and Perona 2004)
is able to tune parameters automatically in an unsupervised
scenario. Normalized cuts are capable of balancing the
volume of clusters for the usage of data density information
(Shi and Malik 2000).

Label propagation has been shown effective
in propagating labels through the dataset along
high density areas defined by unlabeled data in
(Zhu and Ghahramani 2002) (Wang and Zhang 2008). Cen-
tral to label propagation is the following cluster assumption
(Chapelle, Weston, and Schlkopf 2002): (1) nearby data
points are likely to belong to the same cluster; and (2) data
points on the same structures are likely to have the same
label. Motivated by the benefits inherent to label propa-
gation, we intend to introduce label propagation into the
field of spectral clustering(Kang, Jin, and Sukthankar 2006)



Figure 1: Framework of the proposed algorithm

(Cao, Luo, and Huang 2008) (Cheng, Liu, and Yang 2009).

Our proposed spectral clustering algorithm therefore
combines the strengths of spectral clustering and label prop-
agation. The main process of our algorithm is shown in Fig.
1. We first perform standard spectral clustering on our orig-
inal dataset and obtainc clusters. Then, we selectk data
points that are respectively close to each cluster center and
form label matrixY . By way of manifold learning, we prop-
agate labels through dense unlabeled data regions. We call
the proposed method improved Spectral Clustering via em-
bedded Label Propagation (SCLP).

The main contributions of this paper can be summarized
as follows:

1. To the best of our knowledge, this is the first time spec-
tral clustering and embedded label propagation have been
incorporated into a single framework. We propagate the
labels obtained by spectral clustering to other unlabeled
data points.

2. We integrate the advantage of manifold learning, which
is capable of leveraging manifold structure among data
points, into the proposed framework.

3. A novel distance-consistent Locally Linear Embedding
is proposed herein as well. Unlike a traditional Guassian
graph approach, the proposed graph is parameter-free.

4. Extensive experiments on seven real-world datasets
demonstrate that the proposed spectral clustering frame-
work (SCLP) outperforms state-of-the-art clustering algo-
rithms.

After revisiting related work on Locally Linear Embed-
ding and spectral clustering in Section 2, we detail our SCLP
algorithm in Section 3. Extensive experiments are given in
Section 4 and Section 5 concludes this paper.

Related Work
Locally Linear Embedding
Locally Linear Embedding (LLE) (Roweis and Saul 2000)
aims to identify low-dimensional global coordinates that
lie on, or very near to, a manifold embedded in a high-
dimensional space. The purpose is to combine the data
points with minimal discrepancy after completing a differ-
ent linear dimensionality reduction at each point.

The main procedure of LLE can be summarized in three
steps: (1) build a neighborhood for each data point; (2) find
the weights in order to linearly approximate the data in said
neighborhood; and (3) find the low-dimensional coordinates
best reconstructed by those weights.

By way of example, given a dataset matrixX =
{x1, x2, . . . , xn}, the main steps of LLE are as follows:

1. For each data pointxi, find itsk nearest neighbors.

2. Compute the weight matrixA by minimizing the residual
sum of squares to reconstruct eachxi from its neighbours
as such:

min
A

n∑

i=1

‖xi −
k∑

j=1

xjaij‖22, (1)

whereaij = 0 if xj is not one ofxi’s k-nearest neigh-
bours, and for each data pointxi,

∑
j aij = 1.

3. Obtain the coordinatesS by minimizing the following re-
construction error using the weights:

argmin
S

n∑

i=1

‖si −
k∑

j=1

yjaij‖22,

whereyj is the cluster indicator vector for the datumxj ,∑
i Sij = 0 for eachj andSTS = I.

Spectral Clustering
Consider a datasetX = {x1, x2, . . . , xn} ∈ R

d×n, where
d is the dimension of the data point andn is the total num-
ber of data points. The objective of clustering is to partition
X into c clustersCi|ci=1

so as to keep data points within
the same cluster close to one another, while data points
from different clusters remain apart. Let us denoteY =
[y1, y2, . . . , yn]

T ∈ R
n×c as the cluster indicator matrix,

whereyi is the cluster indicator vector for the datumxi. The
j-th element ofyi is 1 if xi belongs to thej-th cluster and 0
otherwise. Following the work in (Ye, Zhao, and Wu 2007),

we denote the scaled cluster indicator matrixF as fol-
lows:

F = [F1, F2, . . . , Fn]
T = Y (Y TY )−1/2, (2)

whereFi is the scaled cluster indicator ofxi. Thej-th col-
umn ofF is defined as follows by (Ye, Zhao, and Wu 2007):

fj =


0, . . . , 0,︸ ︷︷ ︸

∑j−1

i=1
ni

1
√
nj

, . . . ,
1

√
nj

,

︸ ︷︷ ︸
nj

0, . . . , 0︸ ︷︷ ︸∑
c
i=j+1

nk


 , (3)



and indicates which data points are partitioned into thej-
th clusterCj . Meanwhile,nj is the number of data points in
clusterCj .

According to (Dhillon, Guan, and Kulis 2004), the over-
all function of spectral clustering can be defined as follows:

min
F

Tr(FTLF )

s.t.F = Y (Y TY )−1/2,
(4)

whereTr(·) denotes the trace operator andL is a graph
Laplacian matrix computed in accordance with local data
structure. Among different strategies, a common way to
compute the weight matrix is thus:

aij =





exp(− ‖xi−xj‖

2

δ2 ), if xi and xj are k nearest
neighbours.

0, otherwise

(5)

whereNk (xj) denotesk nearest neighbors ofxj andδ
is utilized to control the spread of neighbors. The Laplacian
graphL is then computed byL = D −W , whereD is a di-
agonal matrix with its diagonal elements asDii =

∑
j Aij .

By replacingL in Eq. (4) by the normalized Laplacian
matrixLn,

Ln = D
−1/2

LD
−1/2

= I −D
−1/2

AD
−1/2 (6)

the objective function becomes the well-known SC al-
gorithm normalized cut (Shi and Malik 2000). In the same
manner, if we replaceL in Eq. (4) with Ll, which is a
Laplacian matrix obtain(Yang et al. 2010)ed by local learn-
ing (Wu and Schlkopf 2006), the objective function is then
modified to Local Learning Clustering (LLC).

The Proposed Framework
In this section, we illustrate the detailed framework of our
algorithm.

We aim to cluster the dataset intoc clusters. SupposeX ∈
R

d×n indicates the dataset;d is the dimension of data points
andn is the total number of data points.

Distance-Consistent Similarity Learning
Following the work in (Karasuyama and Mamitsuka 2013),
we propose leveraging manifold regularization built upon
the Laplacian graph for label propagation. To begin, we first
present a novel distance-consistent Local Linear Embedding
(LLE).

Intuitively, we expect close data points to have similar la-
bels. We create a graph in which all data points are con-
sidered nodes. Ifxi (xj) is in k-Nearest-Neighbor ofxj

(xi), then the two nodes are connected. The edge between
them is weighted so that the closer the nodes are in Eu-
clidean distance, the larger the weightaij . Because we have∑

j aij = 1, the objective function of LLE in Eq. (1) can be
safely rewritten as follows:

min
A

n∑

i=1

‖[xi, . . . , xi]aij −
k∑

j=1

xijaij‖22, (7)

By way of simple mathematical deduction, we can rewrite
the above objective function in this manner:

min
A

n∑

i=1

‖[xi − xi1 , . . . , xi − xik ]ai‖22 (8)

⇒ min
A

n∑

i=1

Tr(aTi [xi−xi1 , . . . , xi−xik ]
T [xi−xi1 , . . . , xi−xik ]ai)

(9)
For simplicity’s sake, we assign all the non-diagonal ele-

ments of[xi−xi1 , . . . , xi−xik ]
T [xi−xi1 , . . . , xi−xik ] to

zero. The above objective function is equivalent to the fol-
lowing:

min
A

n∑

i=1

k∑

j=1

‖xi − xij ‖22a2ij (10)

s.t.
k∑

j=1

aij = 1, aij ≥ 0

From the above function, we can observe that the pro-
posed distance-consistent LLE suggests that the edge be-
tween closer nodes has a greater weight.

The Lagrangian function of problem of Eq. (10) can be
written as

k∑

j=1

‖xi − xij‖22a2ij − γ(

k∑

j=1

aij − 1), (11)

whereγ is a Lagrange multiplier. By setting the derivative
of Eq. (11)w.r.t. aij to zero, we have

aij =
γ

2‖xi − xij‖22
. (12)

By substituting the resultantaij in Eq. (12) into the con-
straint

∑k
j=1

aij = 1, we arrive at

γ =
1

∑k
j=1

1

2‖xi−xij
‖2
2

. (13)

By integrating Eq. (12) and Eq. (13), we obtain the final
solution foraij .

By denotingD as a diagonal matrix with its diagonaldi =∑
j aij , the graph Laplacian can be calculated as

L = D −A. (14)

Refined Spectral Clustering
After initially clustering the dataset intoc clusters through
traditional spectral clustering, we selectk data points per
cluster, which are nearest to each clustering center, and
mark them as labeled data points. The remaining points are
marked as unlabeled data points. Note that we assume these
k data points are grouped into the proper clusters. Hence,
we obtain the label matrixY ∈ R

n×c and diagonal selection
matrixU ∈ R

n×n, whereYi,j = 1 if Xi is labeled, andXi

belongs to thej-th cluster.Yi,j = 0 otherwise.Uii = ∞ if



Xi is labeled andUii = 0 otherwise. In the experiment, we
use1010 to approximate∞. We propose propagating labels
of labeled data points to unlabeled data points.

Moreover, we denote a predicted label matrixF ∈ R
n×c

for the data points inX . According to (Nie et al. 2010),
F should satisfy the smoothness on both the obtained la-

bel matrixY and the manifold structure. Hence,F can be
obtained as follows (Zhu 2006):

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y )), (15)

whereTr(·) denotes the trace operator. The purpose of
this definition is to keep the predicted labelsF consistent
with the ground truth labelsY .

We further incorporate a regularization term into the ob-
jective function to correlate the features with the predicted
labels. Consequently, the objective function arrives at

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y ))

+ α‖XTW − F‖2F + β‖W‖2F
(16)

where‖ · ‖F denotes the Frobenius norm of a matrx.
Since the least square loss function is very sensitive to

outliers, we employl2,1-norm on the regularization term to
handle this issue. Hence, we can rewrite the objective func-
tion as follows:

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y ))

+ α‖XTW − F‖2F + β‖W‖2,1
(17)

It is worth noting that the proposed framework can be
readily applied to out-of-sample clustering. By calculating
XTW , we obtain the label predictor matrix for outside sam-
ples.

Optimization
The proposed function involves thel2,1-norm, which is dif-
ficult to solve in a closed form. We propose to solve this
problem in the following steps. By setting the derivative of
Eq. (17)w.r.t.W to zero, we have

W = α(αXXT + βD)−1XF, (18)

whereI is an identity matrix andD is a diagonal matrix
which is defined as:

D =




1

2‖w1‖2

. . .
1

2‖wd‖2


 . (19)

LettingH represent(αXXT + βD)−1, the objective be-
comes

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y ))

+ α‖αXTHXF − F‖2F + β‖αHXF‖2F
(20)

By denotingP asP = αXTHX − I, the objective be-
comes

min
F

Tr(FTLF ) + Tr((F − Y )TU(F − Y ))

+ α‖PF‖2F + β‖αHXF‖2F .
(21)

By setting the derivative of Eq. (21)w.r.t. F to zero, we
have

F = (L+ U + αPP + α2βXTHHX)−1UY (22)

Based on the above mathematical deduction, we propose
an efficient iterative algorithm to optimize the objective
function Eq. (17), which is summarized in Algorithm 1.

Algorithm 1: Optimization Algorithm for SCLP

Data: DataX ∈ R
d×n

The number of clustersc
Parametersα andβ

Result: The cluster indicator matrix F
1 Construct the Laplacian matrixL according to Eq. (14) ;
2 Compute the selecting matrixU ∈ R

n×n ;
3 Cluster dataX into c clusters through Spectral

Clustering ;
4 Pick outnL data points that are close to each cluster

center and constructY ;
5 repeat
6 ComputeD according to

D =




1

2‖w1‖2

. . .
1

2‖wd‖2


 .

7 ComputeH according toH = (αXXT + βD)−1 ;
8 ComputeP according toP = αXTHX − I ;
9 ComputeF according to

F = (L+U +αPP +α2βXTHHX)−1(U ∗ Y ) ;
10 until Convergence;
11 Return F

Experiments
In this section, we conduct extensive experiments to validate
the proposed SCLP’s performance and compare it with re-
lated state-of-the-art spectral clustering algorithms, follow-
ing a study of parameter sensitivity.

Dataset Description
We use seven trademark datasets to validate the per-
formance of the proposed algorithm. The USPS
dataset has 9298 gray-scale handwritten digital im-
ages with an image size of 256 scanned from en-
velopers with the U.S. Postal Service. The Yale-B
dataset (Georghiades, Belhumeur, and Kriegman 2001)



Table 1: DATASET DETAILS
Dataset Matrix Size Dataset Size Class #

LUNG 3312 203 4

PALM 256 2000 100

MSRA50 1024 1799 12

FRGC 1296 5658 275

AR 768 840 120

YaleB 1024 2414 38

USPS 256 9298 10

consists of 2414 near frontal images from 38 per-
sons under different illuminations. The AR dataset
(Martinez and Benavente 1998) has 840 images with a
dimension of 768. The FRGC dataset (Phillips et al. 2005)
was collected at the University of Notre Dame and contains
50,000 images. All the images were taken across 13 differ-
ent poses, under 43 different illumination conditions and
with four different expressions per person. The MSRA50
dataset (He et al. 2004) consists of 1799 images and 12
classes. The PALM dataset consists 700 right-hand images,
seven samples per person across 100 users, taken via digital
camera. The images are resized to the same dimension of
100 × 100. The human lung carcinomas (LUNG) dataset
(Singh et al. 2002) contains 203 samples and 3312 genes.

Experiment Setup

We compare the proposed SCLP with traditional k-
means (TKM) (Wu et al. 2012), discriminative k-means
(DKM) (Ye, Zhao, and Wu 2007), Local Learning Clus-
tering (LLC) (Wu and Schlkopf 2006), Non-negative
Normalized Cut (NNC) (Shi and Malik 2000), Spectral
Clustering (SC), LLC (Wu and Schlkopf 2006), CLGR
(Wang, Zhang, and Li 2009) and Spectral Embedding
Clustering (SEC) (Nie et al. 2009).

The size of neighborhoodk is set to 5 for all spectral clus-
tering algorithms. For the parameter,δ, in NNC, we perform
a self-tuning algorithm (Zelnik-Manor and Perona 2004) to
determine the best parameter. For parameters in DKM,
LLC, CLGR and SEC, we tune them in the range of
{10−6, 10−4, 10−2, 100, 102, 104, 106} and report the best
results. Note that the results of all clustering algorithmsvary
based on initialization. To reduce the influence of statistical
variation, we repeat each clustering 50 times with random
initialization and report the results according to the bestob-
jective function values. For SCLP, we select 2 data points
per cluster nearest to the clustering center.

Evaluation Metrics

Following related clustering studies, we utilize clustering ac-
curacy (ACC) and normalized mutual information (NMI) as
our experiments’ evaluation metrics.

Let qi represent the clustering label result from a cluster-
ing algorithm;pi represent the corresponding ground truth

label of arbitrary data pointxi. From there,ACC is defined
as follows:

ACC =

∑n
i=1

δ(pi,map(qi))

n
, (23)

whereδ(x, y) = 1 if x = y andδ(x, y) = 0 otherwise.
map(qi) is the best mapping function that permutes cluster-
ing labels to match the ground truth labels using the Kuhn-
Munkres algorithm. A larger ACC indicates a better cluster-
ing performance.

For any two arbitrary variablesP andQ, NMI is defined
as follows (Strehl and Ghosh 2003)

NMI =
I(P,Q)√
H(P )H(Q)

, (24)

whereI(P,Q) computes mutual information betweenP
andQ, andH(P ) andH(Q) are the entropies ofP and
Q. Let tl represent the number of data points in the clus-
terCl(1 ≤ l ≤ c) generated by a clustering algorithm andt̃h
represent the number of data points from theh-th ground
truth class. The NMI metric is then computed as follows
(Strehl and Ghosh 2003)

NMI =

∑c
l=1

∑c
h=1

tl,hlog(
n×tl,h
?tl t̃h

)
√
(
∑c

l=1
tl log

tl
n )(

∑c
h=1

t̃h log
t̃h
n )

, (25)

wheretl,h is the number of data samples that lies in the in-
tersection betweenCl andhth ground truth class. Similarly,
a larger NMI indicates a better clustering performance.

Experimental Results
We show the clustering results of different algorithms in
terms of ACC and NMI over seven benchmark datasets in
Tables 2 and 3. Based on the results of our experiment, we
can make the following observations:

1. When comparing the k-means based algorithms (i.e.,
TKM and DKM), DKM generally outperforms TKM be-
cause discriminative dimension reduction is integrated
into a single framework. Thus each cluster is more iden-
tifiable and facilitates clustering performance. We can
therefore safely conclude that discriminative information
is beneficial for clustering.

2. SC outperforms LLC on the YaleB and USPS datasets,
while LLC outperforms SC on all those remaining. That
is, CLGR achieves better performance on all datasets than
both algorithms combined.

3. SEC obtains the second-best performance over the seven
datasets, which indicates that linearity regularization can
also facilitate clustering performance. Similar to our algo-
rithm, SEC is capable of dealing with out-of-sample data.

4. The proposed algorithm SCLP generally outperforms
the compared clustering algorithms on the seven
benchmark datasets, which demonstrates that manifold
regularization-based label propagation is beneficial for
spectral clustering.



Table 2: Performance Comparison(ACC %) of KM, DKM, NNC, SC, LLC, CLGR, SEC and SCLP. The proposed algorithm,
SCLP, generally outperforms the compared algorithms, which indicates that manifold regularization-based label propagation is
beneficial for spectral clustering.

KM DKM NNC SC LLC CLGR SEC SCLP

LUNG 82.8± 1.6 84.1± 1.9 83.2± 1.5 83.4± 2.1 85.2± 1.7 85.7± 1.8 87.8± 1.9 91.6± 1.3

PALM 73.4± 2.3 73.9± 2.1 73.8± 1.9 74.3± 2.4 74.8± 1.8 76.3± 2.0 77.8± 1.8 79.3± 1.6

MSRA50 52.9± 1.4 63.4± 1.0 55.3± 1.3 58.1± 1.9 65.8± 2.3 67.3± 2.1 69.8± 1.8 71.7± 1.7

FRGC 32.0± 1.8 40.3± 2.2 34.6± 2.1 36.1± 1.4 36.6± 1.8 38.9± 1.6 42.4± 1.9 46.1± 1.6

AR 37.4± 2.1 43.8± 1.8 40.5± 2.2 42.6± 1.9 47.8± 1.8 48.2± 2.0 60.1± 1.8 61.9± 1.7

YaleB 13.6± 0.9 37.2± 1.9 36.5± 1.8 35.2± 2.1 32.8± 1.8 37.3± 2.3 46.3± 2.1 48.4± 1.9

USPS 66.5± 3.0 71.2± 2.6 67.8± 2.8 65.3± 3.1 64.6± 2.5 65.8± 2.8 70.6± 2.4 75.1± 2.7

Table 3: Performance Comparison(NMI %) of KM, DKM, NNC, SC, LLC, CLGR, SEC and SCLP. The proposed algorithm,
SCLP, generally outperforms the compared algorithms, which indicates that manifold regularization-based label propagation is
beneficial for spectral clustering.

KM DKM NNC SC LLC CLGR SEC SCLP

LUNG 59.1± 1.8 60.4± 1.6 59.7± 1.4 60.0± 1.7 63.8± 1.9 64.9± 2.1 68.2± 1.5 73.3± 1.5

PALM 81.8± 2.3 83.4± 1.9 82.1± 2.1 85.6± 1.8 87.2± 2.0 87.5± 1.8 89.3± 1.6 91.4± 1.9

MSRA50 61.7± 2.4 63.4± 2.2 62.5± 1.9 62.8± 2.5 69.4± 2.1 68.5± 1.8 70.9± 1.7 73.3± 1.6

FRGC 66.3± 1.8 68.5± 1.4 67.8± 1.7 66.7± 1.5 68.9± 1.9 69.2± 2.1 71.2± 1.8 73.9± 1.4

AR 69.3± 2.5 73.8± 2.1 72.1± 2.4 73.7± 1.9 74.2± 2.1 74.6± 1.7 75.3± 2.2 77.4± 1.8

YaleB 17.3± 1.8 37.2± 2.2 36.5± 2.5 35.2± 1.9 32.8± 2.4 37.3± 1.8 67.6± 1.6 67.1± 2.3

USPS 60.2± 1.2 62.4± 1.7 61.8± 3.5 63.2± 2.8 63.9± 2.4 65.2± 1.8 69.6± 2.4 74.4± 1.9

Parameter Sensitivity
In this section, we study performance variancew.r.t. on the
regularization parametersα andβ.

We use the MSRA50 dataset for these experiments. Fig.
2 shows how clustering performance variesw.r.t. different
combinations ofα andβ. We can see that better performance
occurs whenα andβ are comparable.

Conclusion
In this paper, we have proposed a novel improved spec-
tral clustering algorithm SCLP. Most of the existing spec-
tral clustering algorithms are based on Gaussian matrices
or LLE, each of which are extremely sensitive to parame-
ters. Moreover, the parameters are difficult to tune. We have
therefore presented a novel distance-consistent LLE that is
parameter-free. The distance-consistent LLE can promise
that the edge between closer data points has a greater weight.
Utilizing this distance-consistent LLE, we have proposed an
improved means of spectral clustering via label propagation.
The proposed algorithm takes advantage of label propaga-
tion and manifold learning. With label propagation, we can
propagate the labels obtained through spectral clusteringto
other unlabeled data points. By adopting manifold learning,
we leverage the manifold structure among data points. Note
that our framework can also be readily applied to out-of-
sample data. Finally, we have evaluated the clustering per-
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Figure 2: Performance variancew.r.t.α andβ.

formance of the proposed algorithm over seven datasets.
The experimental results demonstrate that the proposed al-
gorithm consistently outperforms other algorithms to which
it is compared.
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