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Cerebral malaria (CM) is characterized by a dysregulated immune response that results in endothelial membrane destabilization
and increased microparticle (MP) production. Citicoline (CTC) is a membrane stabilizer used for the treatment of neurological
disorders. We evaluated the efficacy of CTC as adjunct therapy to aid recovery from experimental CM. We show that CTC re-
duces MP production in vitro; in combination with artesunate in vivo, confers partial protection against CM; and prolongs
survival.

The incidence of cerebral malaria (CM) is highly dependent on
the immune status of the population and the frequency of

Plasmodium falciparum transmission. This debilitating syndrome
is characterized by coma, seizures, and respiratory distress. In chil-
dren, the coma usually develops rapidly after a seizure, whereas in
adults its development is slower and takes 2 to 3 days (1).

During infection, the sequestration of mature-stage-parasitized
erythrocytes, platelets, and leukocytes within cerebral microvessels,
coupled with cytokine overproduction, leads to hypoxia (2), endo-
thelial activation, and blood-brain barrier disruption (3). During the
acute phase of pediatric CM, several pathophysiological mechanisms
are involved, including CD8� T cell activation, (4) and the comple-
ment cascade (5), although disruption of the endothelium seems to
be a supported mechanism of cerebral dysfunction.

Evidence of a destabilized endothelium is the increased release
of endothelial-cell-derived microparticles (MP). In CM patients,
high titers of MP are detected in the blood coinciding with a rise in
the tumor necrosis factor (TNF) level, which returns to the base-
line postinfection (p.i.) (6). These elevated levels do not occur in
uncomplicated malaria or severe anemia (7). TNF plays a major
role in this mechanism, as it strongly induces endothelial vesicu-
lation (8).

Current therapies for CM are designed to target the pathogen
rather than the underlying pathogenic mechanisms responsible
for the manifestation of the pathology (9–11). In the last 5 years,
several novel compounds have been tested in animal models or in
humans as adjunct therapy to prevent tissue and brain alterations
during infection, including erythropoietin (EPO) (2, 12), defib-
rotide (13), atorvastatin (14, 15), the exogenous nitric oxide (NO)
donor dipropylenetriamine-NONOate (16), and others (17, 18).
EPO, atorvastatin, and NO have undergone U.S. FDA review and
been approved for other indications. However, most of these
compounds are new and have a long way to go from the benchtop
before being implemented as a line of treatment at the bedside.
Targeting membrane alteration in the same approach as for isch-
emia-reperfusion disorders paves the way for the use of a treat-
ment already used for patients. Citicoline (CTC) is used in the
United States and Europe by adults and children to improve brain
recovery after ischemic stroke and neurological and vascular dis-
orders (19–22). It works efficiently on damage after focal ischemia
(neuronal damage, blood-brain barrier dysfunction, behavioral
dysfunction) and brain edema (for a review, see reference 23) in

mice, but its benefit for humans is still controversial (24). CTC is
a natural compound found in eukaryotic cells that regulates mem-
brane fluidity and is synthesized mainly by the CDP-choline path-
way (23–26).

We evaluated the efficacy of CTC, a membrane-stabilizing
agent, as adjunct therapy to enhance recovery from experimental
CM. In this study, we used both in vitro and in vivo models of CM.
Mouse models using Plasmodium berghei ANKA infection can
mimic CM pathology. P. berghei ANKA-infected mice develop a
lethal syndrome 7 days p.i. with a significant increase in MP in
their plasma at the time of onset of the neurological syndrome
(27, 28).

CTC confers protection against neurological syndrome in
murine CM. All of the mice used in this study were handled under
University of Sydney Animal Ethics Committee approval (approval
number K20/7-2006/3/4434). Mice were infected with P. berghei
ANKA by following protocols in previously published studies
(29). Eight-week-old female CBA mice received intraperitoneal
injections of 1 � 106 infected red blood cells. The cerebral syn-
drome usually occurred during the neurological phase, day 7 to 14
p.i. Mice that surpassed the neurological syndrome died during
the hyperparasitemia phase (day 14 onward) because of severe
anemia. Parasitemia was determined by light microscopy with
thin Diff-Quick-stained smears of blood collected from the tail
vein. Clinical presentation was monitored daily.

Starting on day 4 p.i., mice received intraperitoneal injections
of CTC (n � 28), artesunate (ART) (Sigma) (n � 21), or a com-
bination of CTC and ART (n � 14). CTC was solubilized in phos-
phate-buffered saline (PBS) and administered daily for 3 days.
Two doses (500 and 1,000 mg/kg) were used in separate experi-
ments. The regimens were chosen in accordance with literature on
mouse stroke models. A subeffective dose of ART (40 mg/kg) was
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administered once at day 4 p.i. Control mice received PBS treat-
ment (n � 28).

Brain, lung, liver, and spleen tissue samples were collected
from mice that exhibited clinical signs of CM or were moribund.
The tissue was prepared for thin paraffin sectioning. The hema-
toxylin-eosin-stained sections analyzed had no histopathological
features associated with CM to widespread hemorrhage, a high
degree of edema and leukocyte and parasitized red blood cell ad-
herence to the endothelium throughout the brain, plugging of
microvessels, and some necrosis of microvessels (30). In this
study, histopathology was mainly used to confirm CM.

At day 7, the parasitemia of the two groups treated with ART
differed significantly from that of the control group (5.96, 2.6, and
2.35% in controls, ART, and ART plus CTC, respectively, [P �
0.0051 and P � 0.0001]) (Fig. 1). However, no significant differ-
ence in parasitemia between controls and the CTC-alone group
was found (P � 0.4081). After day 7, no significant difference in
parasitemia between the ART and ART-plus-CTC groups was
found either, suggesting that CTC by itself has no impact on the
parasite.

Control mice developed clinical CM between days 6 and 10 p.i.
When CTC was administered at 1,000 mg/kg, the onset of clinical
CM was delayed by at least 24 h. Thus, when mice were checked at
day 7, treatment with CTC alone had enhanced survival from 20.6
to 82.1% but all of the mice died before day 14. After day 14,

survival increased from 0% (controls and CTC) or 23.8% (ART
alone) to 64.2% in the combined ART-plus-CTC group. Combi-
nation of CTC and ART prolonged survival by more than 6 days.
When used at 500 mg/kg, the trend of the CTC effect was similar to
that observed at the 1,000-mg/ml treatment but statistical tests fell
under the threshold of significance. Statistics were performed with
GraphPad Prism software. Survival curves were compared by us-
ing the Kaplan-Meier (log rank) test; P � 0.05 was considered
significant. Parasitemia in the control and other groups was com-
pared by using the Mann-Whitney t test.

CTC decreases the production of MP by TNF-stimulated
HBEC. MP production by human brain endothelial cells (HBEC)
was studied in vitro (Fig. 2). Immortalized HBEC (D3 line) (31)

FIG 2 Effect of CTC on MP production by D3 HBEC. HBEC were stimulated
with 100 ng/ml of TNF. The MP in the supernatant were counted in a flow
cytometer after annexin V-FITC labeling. (A) Incubation with CTC 2 h prior
to TNF stimulation. (B) Incubation with CTC concomitantly with TNF stim-
ulation. (C) Incubation with CTC 6 h after TNF stimulation.

FIG 1 CTC as adjunct therapy for mice with CM. Shown are the parasitemia
levels (A) and percentages of survival (B) of infected mice following treatment with
CTC alone (n � 28; open squares), ART (n � 21; closed triangles), a combination
of CTC and ART (n � 14; open triangles), or PBS (n � 28; closed squares).
Parasitemia was calculated from Diff-Quick-stained blood smears, and data are
presented as means � standard deviations. pRBC, parasitized red blood cells.
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were grown to confluence in EBM-2 medium (Lonza CC-3156) in
24-well plates at 37°C. MP production was induced by incubation
with TNF (100 ng/ml) overnight. CTC was added 2 h prior to,
concomitantly with, or 6 h after stimulation with TNF (doses, 0.1,
1, 10, 30, and 100 �M). Culture supernatants were collected, and
MP were labeled with annexin V-fluorescein isothiocyanate
(FITC), a known marker of MP, prior to flow cytometric analysis.

Negative controls for the experiment were obtained from rest-
ing cells. Positive controls were obtained from cells stimulated
with TNF (100 ng/ml) for 18 h, which induced a 2-fold increase in
MP vesiculation compared to that of resting cells. CTC at 0.1 �M
showed no apparent inhibition of MP production. However,
when added 2 h prior to TNF stimulation, CTC (1 to 10 �M)
reduced the formation of MP to the baseline level. When added 6
h after TNF stimulation, CTC (1 to 10 �M) induced a 70% reduc-
tion in MP production compared to that of the positive control
(P � 0.05 and P � 0.01, respectively). Again, at the lowest dose,
CTC had no significant effect.

In conclusion, data obtained in vivo clearly demonstrate that
CTC can confer partial protection against experimental CM. This
improvement of survival also fits in with a decrease in MP pro-
duction when HBEC are treated with CTC in vitro. These data
support a role for CTC in reducing MP production by stabilizing
the microvascular endothelium, similar to what is seen in other
vascular pathologies (32–35). CTC therapy can be proposed for
clinical studies of human patients to improve recovery from CM,
as it is already used as a food supplement for malnourished chil-
dren and has low toxicity.
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