

Accepted Manuscript

Formulating and managing viable SLAs in Cloud Computing from a
small to medium service provider’s viewpoint: A state-of-the-art
review

Walayat Hussain , Farookh Khadeer Hussain , Omar Hussain ,
Ernesto Damiani , Elizabeth Chang

PII: S0306-4379(17)30269-7
DOI: 10.1016/j.is.2017.08.007
Reference: IS 1244

To appear in: Information Systems

Received date: 27 April 2017
Accepted date: 11 August 2017

Please cite this article as: Walayat Hussain , Farookh Khadeer Hussain , Omar Hussain ,
Ernesto Damiani , Elizabeth Chang , Formulating and managing viable SLAs in Cloud Computing
from a small to medium service provider’s viewpoint: A state-of-the-art review, Information Systems
(2017), doi: 10.1016/j.is.2017.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.is.2017.08.007
http://dx.doi.org/10.1016/j.is.2017.08.007

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

 Presents a state of the art review on SLA management from service

provider side in Cloud Computing.

 Presents a critical evaluation of the existing work and identifies the

research gaps to be addressed for provider-side Cloud service

management. A thorough literature review in the existing area is

presented.

 Presents an overview of our proposed framework OPV-SLA framework to

address the identified issues and validates the results on a cloud dataset.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Formulating and managing viable SLAs in Cloud Computing from a small to

medium service provider’s viewpoint: A state-of-the-art review

WALAYAT HUSSAIN, School of Systems, Management and Leadership, Faculty of Engineering and Information Technology, University

of Technology Sydney, NSW, Australia

FAROOKH KHADEER HUSSAIN, Centre for Artificial Intelligence, School of Software, Faculty of Engineering and Information

Technology, University of Technology Sydney, NSW, Australia
OMAR HUSSAIN, School of Business, University of New South Wales, Canberra, Australia

ERNESTO DAMIANI, Department of Computer Science, University of Milan, Via Bramante 65, 26013 Crema, Italy

ELIZABETH CHANG, School of Business, University of New South Wales, Canberra, Australia

Abstract

In today‟s competitive world, service providers need to be customer-focused and proactive in their marketing strategies to

create consumer awareness of their services. Cloud computing provides an open and ubiquitous computing feature in which a

large random number of consumers can interact with providers and request services. In such an environment, there is a need

for intelligent and efficient methods that increase confidence in the successful achievement of business requirements. One

such method is the Service Level Agreement (SLA), which is comprised of service objectives, business terms, service relations,

obligations and the possible action to be taken in the case of SLA violation. Most of the emphasis in the literature has, until

now, been on the formation of meaningful SLAs by service consumers, through which their requirements will be met.

However, in an increasingly competitive market based on the cloud environment, service providers too need a framework that

will form a viable SLA, predict possible SLA violations before they occur, and generate early warning alarms that flag a

potential lack of resources. This is because when a provider and a consumer commit to an SLA, the service provider is bound

to reserve the agreed amount of resources for the entire period of that agreement – whether the consumer uses them or not. It

is therefore very important for cloud providers to accurately predict the likely resource usage for a particular consumer and to

formulate an appropriate SLA before finalizing an agreement. This problem is more important for a small to medium cloud

service provider which has limited resources that must be utilized in the best possible way to generate maximum revenue. A

viable SLA in cloud computing is one that intelligently helps the service provider to determine the amount of resources to

offer to a requesting consumer, and there are number of studies on SLA management in the literature. The aim of this paper

is two-fold. First, it presents a comprehensive overview of existing state-of-the-art SLA management approaches in cloud

computing, and their features and shortcomings in creating viable SLAs from the service provider‟s viewpoint. From a

thorough analysis, we observe that the lack of a viable SLA management framework renders a service provider unable to

make wise decisions in forming an SLA, which could lead to service violations and violation penalties. To fill this gap, our

second contribution is the proposal of the Optimized Personalized Viable SLA (OPV-SLA) framework which assists a service

provider to form a viable SLA and start managing SLA violation before an SLA is formed and executed. The framework also

assists a service provider to make an optimal decision in service formation and allocate the appropriate amount of marginal

resources. We demonstrate the applicability of our framework in forming viable SLAs through experiments. From the

evaluative results, we observe that our framework helps a service provider to form viable SLAs and later to manage them to

effectively minimize possible service violation and penalties.

Key Words: Cloud computing, SLA monitoring, SLA management, trusted relationship, service level objectives, viable SLA

life cycle.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 INTRODUCTION 1.

There are a number of definitions of cloud computing. According to the National Institute of

Standards and Technology [1], “Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”. Cloud computing is an emerging and popular

new technology in parallel computing, due to the accessibility of resources to the user irrespective of

their location, timing or platform [2]. According to Gartner Research, it is expected that US $677

billion will be spent on cloud computing from 2013 to 2016, including $310 billion on cloud

advertising. Business cases collected by the Open group (www.opengroup.org) show that the cloud

computing “per-per-use” cost model decreases investment in resource planning and reduces upfront

expense. Indeed, cloud users feel liberated from the burden of managing IT resources and free of the

fear of running out of them.

As cloud services are accessed remotely, however, cloud users are disappointed when a cloud-based

computation does not scale as they expect [3]. Cloud service providers can be of two types. The first

type is a large-scale enterprise level service provider such as Amazon or Azure, and the second is a

small to medium (SME) service provider. Large-scale enterprise level service providers have

abundant resources at their disposal but SME service providers do not, hence they need to manage

their resources well to generate maximum revenue. Service providers manage their resources by

using a Service Level Agreement (SLA), which is a contract between a service provider and a service

user that defines the level of service expected from the former and the commitment of the latter. A

typical SLA describes the relationship and roles of interacting parties, the agreed standards of

service delivery (often called Service Level Objectives or SLOs), and the obligations and penalties

imposed on violating parties [4]. In case of non-commitment to the formed expectations, SLAs

describe the penalties that will be imposed on both signatories to the SLA. The seminal paper [5]

describes the three means by which the analysis of non-commitment to SLAs is carried out: by an

unbiased, mutually agreed third party; by trusted SLA management on the provider side; and by

trusted SLA management on the consumer side. Irrespective of the approach used, most techniques

for the detection of possible SLA violation initiate their detection process after the SLA has been

established. For efficient SLA violation management, especially from the viewpoint of an SME

service provider, we argue that the SLA management process should start at the time of SLA

negotiation, not when the SLA is established. This is common practice in many business domains,

such as finance, where only those service contracts (the counterparts of SLAs) which are likely to

lead to a positive outcome are permitted to proceed. They are continuously monitored, even at the

pre-establishment stage, and preventive actions are taken to ensure their successful outcome [6].

This concept is much rarer in IT contracts, where SLAs tend to involve limited negotiation by both

parties. However, when being considered from the perspective of an SME cloud service provider, SLA

management needs careful planning not only at the execution stage but also at the formation stage

to protect cloud providers from:

(a) committing their limited marginal resources to service users who may not use them, as a result

of which the provider will not receive a financial return. Marginal resources are those extra

resources that are kept in reserve by the users and used in the case of an increase in business

demands;

(b) defaulting on their obligations when many users ask to have their SLOs met at the same time.

While these problems may not affect a high scale cloud service provider such as Amazon or Azure,

they have serious implications for an SME cloud service provider who has limited resources with

which to generate and maximize its revenue. In this paper, we formalize this problem and present a

survey of SLA management approaches in cloud computing from an SME cloud service provider‟s

perspective, discussing the advantages and shortcomings of each approach. We then propose the

Optimized Personalized Viable SLA (OPV-SLA) framework which helps SME providers to make

optimal decisions in service formation and management.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The rest of the paper is organized as follows. Section 2 describes a viable SLA life cycle from the

provider‟s perspective. Section 3 presents a classification of SLA management approaches along with

their features, issues and operational methods. In Sections 4 to 6, we present our survey of SLA

management approaches. Section 7 offers a critical evaluation of the existing literature and

highlights the research gaps that need to be investigated further to form and manage viable SLAs

from an SME provider‟s perspective. Section 8 presents a brief overview of our proposed OPV-SLA

framework, which addresses the identified research gaps. In Section 9, we evaluate the OPV-SLA

framework. Section 10 concludes the paper and discusses future directions for research.

 SLA LIFECYCLE FOR SLA MANAGEMENT FROM THE SME CLOUD SERVICE PERSPECTIVE 2.

The management of SLAs is an intricate process comprising many different activities that broadly

form the SLA lifecycle. A basic SLA life cycle described in [7] consists of three phases, namely the

creation phase, the operation phase and the removal phase. In the creation phase, the consumer

subscribing to the services formally signs the contract with a provider. The provider grants access to

the services and reserves resources as required. The second phase is the operation phase in which

the consumer can access the read-only SLA but can also change certain parameters which may affect

the charge for services. The third phase is the removal phase in which the consumer‟s configuration

is removed following the completion of the services, and all reserved resources are released.

Although the proposed SLA life cycle covers the three main functions of SLA management, it omits

many factors, such as negotiation in the formation of the SLA, penalty enforcement, etc. A more

thorough SLA life cycle is described in [8] which also comprises three phases: creation, operation and

removal. In the creation phase, consumers first search for a suitable service provider that offers all

the services they require. Consumer and provider define an SLA that contains service definitions,

service objectives, SLA parameters and violation penalties. Once the SLA is agreed upon, the

operation phase begins, in which real-time performance is monitored against agreed benchmarks.

The SLA is terminated in the removal phase on completion of the service or in the event of violation;

in the latter case, penalties are enforced. Building on this notion, [9] defines cloud SLA management

as being composed of two phases, namely pre-interaction and post-interaction, as shown in Figure 1.

Pre-interaction is the time phase from T-1 to T-m and includes all steps taken prior to establishing

the SLA. The SLA is established at time T, when the post-interaction phase starts. The post-

interaction phase from time T+1 to T+n includes all the steps taken after the SLA has been

established, such as service monitoring, violation prediction and penalty enforcement for the

management of the SLA.

Most studies in the literature focus on SLA management to detect possible violations in the post-

interaction time phase once the SLA has been established, i.e. from time T in Figure 1. To take a

proactive approach rather than a reactive one, as mentioned in Section 1, the process of SLA

management should start even before the SLA is established, i.e. from time T-m. This extended

timeframe enables the service provider to observe the past commitment and/or behavior of a cloud

consumer and subsequently design by negotiation a viable SLA which has a high chance of success.

Figure 1: Pre-interaction and post-interaction time phases in SLA

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A limited number of works in the literature, for example [10], have considered this problem from the

provider‟s perspective prior to the establishment of an SLA, and have proposed a mechanism for the

cloud provider to adaptively control SLA negotiation by taking the provider‟s resource status into

consideration. Other researchers [11-16] have proposed different SLA negotiation models such as

strategic SLA negotiation, automated SLA negotiation, multi-attribute negotiation, Markovian

Arrival Process and Sandpiper, all of which assist cloud stakeholders to form SLAs [17]. However,

none of these approaches consider the reliability of cloud users in committing to the SLAs formed

during the negotiation phase, hence a stakeholder‟s decision can only be based on the ability of the

cloud service provider to commit to the requested resources, which does not guarantee the reciprocal

adherence of service users to the terms of the SLAs. As mentioned in Section 1, although these

problems may not affect high scale cloud service providers, they have serious implications for SME

cloud service providers who have limited marginal resources which they are required to manage

properly to generate and maximize revenue. This requires an additional series of steps in the SLA

lifecycle to be carried out in conjunction with those mentioned above and shown in Figure 2.

1. Resource/service request received from consumer: The consumer requests service and/or

resource requirements in a formal manner. Parameters accompanying the request include type,

quantity, duration and importance.

2. Determination of resource allocation criteria: When a provider receives a request from a

consumer, the provider, unbeknownst to the consumer, uses intelligent algorithms to

determine the trust value of the requesting consumer as well as the time for which the

resources are requested. These criteria play a crucial role in determining whether partial or

full resources should be allocated to the consumer during negotiation.

3. Analysis of request based on the resource allocation criteria determination: In this step, the

provider compares the criteria established for the consumer against its defined threshold

values.

4. Decision made by provider to accept, reject or negotiate: Depending on the determination of

criteria, the provider may decide to:

a. accept the request as is;

b. provisionally accept the request but negotiate to formalize the amount of resources to be

offered; or

c. reject the service request, particularly if the resource allocation criteria indicate that the

consumer is likely to violate the service agreement.

5. Formulation of SLA: Following the negotiation and re-negotiation steps, both parties come to a

mutual agreement and an SLA is formed.

6. Threshold formation: Once the interaction with the provider and user has commenced, the

service provider forms a customized threshold to warn of early possible service violations

based on the agreed thresholds in the SLA,

7. Runtime Quality of Service (QoS) monitoring and QoS prediction: In this step, the QoS

parameters for future intervals are predicted and monitored against the runtime QoS

parameters. If there is a variation between the predicted QoS parameters and the observed

QoS parameters, the risk management module is invoked to immediately take the necessary

actions for SLA management.

8. Risk of SLA violation: Identifying the risk of possible SLA violation, estimating the severity of

a risk, and calculating ways to mitigate such a risk.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The above-mentioned steps in the SLA lifecycle are explained in Table 1, which outlines and

classifies the steps involved in each phase of SLA management from an SME provider‟s perspective.

As large-scale cloud service providers such as Amazon and Azure have abundant resources at their

disposal, the above series of steps for consumer vetting while SLA formation as mentioned in Table 1

have no relevance for them, thus they start from step five of Table 1, that is, form SLAs. However,

this series of steps is extremely important from the viewpoint of an SME cloud service provider with

limited resources in avoiding SLA violations. The term “SLA violation” refers to any failure to fulfill

the service contract [17, 18]. As defined by [5], there are three types of SLA violation: “All or nothing

provisioning” in which transactions are successful only when all SLOs are satisfied, “partial

provisioning” in which transactions are successful when certain compulsory SLOs are satisfied, and

“weighted partial provisioning” in which transactions are successful as a result of delivering those

SLOs whose weight is greater than the threshold defined in the SLA.

Figure 2: Viable SLA life cycle from an SME provider’s perspective

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Phases of SLA management from an SME provider’s perspective

Pre-interaction phase Post-interaction phase

1. Expression and classification of

consumer‟s requirements in a formal

manner:

 Service/resource requirement

 Duration of service/resource

 Prioritization of components

 Amount of resource/service required

2. Determination of resource allocation

criteria by provider.

3. Provider determines to accept / reject /

negotiate consumer‟s request.

4. Provider determines the capacity of

resource/service offered to consumer.

5. Form SLAs.

6. Provider determines the threshold

value for resource usage.

7. Real-time monitoring of consumer‟s

behavior.

8. Comparison between real-time

performance and expected

performance.

9. Generation of an early warning to

alert cloud provider to avoid possible

service violation.

10. Identify, estimate and manage the risk

of possible SLA violation by generating

recommendation.

11. Update trust value of consumer on

completion of the SLA agreement for

formation of future SLAs.

The literature on SLA management proposes various approaches to detect possible SLA violations of

these three types, which we discuss in the next section and critically evaluate from the perspective of

SME cloud service providers.

 CLASSIFICATION OF SLA MANAGEMENT APPROACHES TO DETECT POSSIBLE SLA VIOLATION 3.

The management of SLAs involves many activities, of which monitoring is an essential element as it

is a prerequisite for contract governance. Monitoring the difference between the agreed SLOs and

the value delivered during runtime performance will lead to the detection of possible service

violations. The literature presents various approaches for detecting possible SLA violations [19-22],

however the subject of analysis in these approaches varies, thereby also varying their classification

of SLA management analysis. For example, some approaches focus on the consumer for detecting

possible SLA violation [20, 23], while others focus on the provider [22, 24]. Yet others, such as [25-

27], consider the problem of SLA management as an optimization problem in which consumer

satisfaction is increased by ensuring the provisioning of promised QoS and increasing the revenue of

the provider. The authors in [28] categorize SLA violation management into two classes - SLA

management for cloud and SLA management for cloud-hosted big data analytic applications. They

mainly focus on monitoring the single layer while optimizing services by considering QoS parameters.

Our focus for SLA management in this paper is on the perspective of forming viable SLAs first and

later managing them, and we therefore categorize the existing approaches according to the following

three classes: Self-manageable Case Based Reasoning (CBR) approach, Trust model-based approach,
and Proactive SLA management approach, as shown in Figure 3. These classifications are based on

the functionality, working attributes and methodology employed to manage SLAs. After analyzing

the existing approaches for SLA management from these categories, we identify the requirements for

SLA management from the perspective of small and medium cloud providers.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 3: Classification of SLA management approaches in cloud computing

Below, we examine these classes in more detail:

1. Self-manageable Case Based Reasoning (CBR) approaches

CBR approaches are techniques that use self-manageable case-based reasoning to manage SLAs

when a variation between the agreed behavior and runtime behavior is detected [21, 24, 29-34].

These approaches use previous knowledge to find solutions for managing future SLA violations.

Some of these approaches use a hierarchical self-healing approach [31] which detects violations

and manages the SLA in a hierarchical way. The hierarchical system tries to prevent violations

by reacting autonomously before notifying the end user. Approaches in this class are discussed

in Section 4.

2. Trust model-based approaches

This class incorporates techniques that use trust or reputation to manage SLAs. Reputation, or

trustworthiness, is a key element in SLA management as it assists in the selection of a reliable

service provider [14] [35]. The literature proposes techniques with which a consumer can score

the reliability of a provider [14, 36-38] using approaches like the IP-based method [39], adaptive

credibility model [40] and trust management model [36]. Approaches in this class are discussed

in Section 5.

3. Proactive SLA management approaches

These approaches to SLA management are techniques whereby the likelihood of SLA violation is

predicted before violations occur, and the service provider is alerted to take all necessary actions

to avoid such violations. Authors in this category use a variety of SLA monitoring approaches

[15, 16, 23, 41-43] to predict likely SLO violations and to issue early warning to a cloud provider

for remedial action. Approaches in this class are discussed in Section 6.

Using these classes, we present a comprehensive survey of the approaches for SLA management in

relation to making viable SLAs. We discuss SLA management from the point of view of different

stakeholders and present related concepts in an articulated manner that help to identify the

individuality of the various approaches along with their features and shortcomings. In Sections 4-6,

we discuss the techniques presented in the literature according to each type of approach for SLA

management.

 SELF-MANAGEABLE CASE-BASED REASONING APPROACH 4.

The case-based reasoning (CBR) approach is a problem solving method in which new problems are

solved based on the solution of previous similar problems [44]. This method has been widely used for

decision making in a variety of dynamically changing complex and unstructured problems [45].

However, there are certain drawbacks to the CBR approach, such as adaptation, processing time and

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

storage. The CBR approach produces reasonable solutions but it does not provide the optimal

solution [46]. The CBR approach has been used in SLA management to identify the likelihood of SLA

violation, and authors have used previous solutions to take early remedial action. Many techniques

in the literature utilize this approach to quantify the degree of fulfillment of SLOs for SLA

management. Some of these techniques are detailed below, and a summary of the various techniques

is presented in Table 2.

 LoM2HiS framework 4.1

Mapping low-level hardware resource metrics to high-level SLA parameters (LoM2HiS) is proposed

in [24]. Mapping is either simple or complex, based on a pre-defined rule stored in a mapped metrics

repository. In simple one-to-one mapping, low-level resource metrics are mapped directly to fulfill

SLOs, with no further processing. In complex mapping, predefined rules are used to map resource

metrics to SLOs. These rules define the thresholds for runtime SLA management and determine

SLA violation. A run-time monitor accesses the repository and uses mapped metrics values to check

service status. The values are compared against the corresponding thresholds; if a violation is

detected, the enactor component is alerted to take preventive action. Although the system is capable

of detecting SLA violation using this approach, there is no mechanism to show how an error can be

rectified when a violation occurs. The authors define very few rules for converting low-level metrics

to SLA parameters, and in the case of a violation it is a challenge for the system to find which low-

level metrics need to be checked to address the violation.

 Detecting SLA Violation infrastructure (DeSVi) 4.2

An automatic SLA violation detection infrastructure called Detecting SLA Violation infrastructure

(DeSVi) is proposed in [21]. DeSVi manages and predicts SLA violations using resource management.

The architecture is made up of three components: an automatic virtual machine deployer that is

responsible for arranging all the required resources for a requested service and organizing its

deployment on a virtual machine; an application deployer that is responsible for executing the

requested resource; and the LoM2HiS framework to plot hardware-level metrics against SLA

parameters. LoM2HiS performs SLA monitoring, which is comprised of the following modules: a run-

time monitor, services, an agreed SLA repository, mapped metrics, a host monitor and infrastructure

resources. The run-time monitoring module communicates with the consumer and the service

provider. Monitoring starts when both parties agree on the SLA and the service provider establishes

a mapping rule for LoM2HiS. The consumer requests services from the run-time monitoring module,

which loads the corresponding SLAs from the SLA repository module. A monitoring agent is used to

collect observables, compute the resource metrics and send them to the run-time monitoring module,

which maps the low-level metrics and stores the results of the mapping in a repository module. The

run-time monitoring module uses these mapped values to monitor service status and plot the degree

of fulfillment of SLOs. In the case of SLA violation, the run-time monitoring module notifies a

knowledge component to obtain an early remedy. Although LoM2HiS helps to detect a possible

service violation, the system is unable to give a recommendation for its correction.

 Hierarchical layered approach (LAYSI) 4.3

A hierarchical layered approach (LAYSI) to SLA management is proposed in [29]. The authors

propose a bottom-up approach to the escalation of violations. There are two main components

responsible for SLA violation escalation: the Knowledge Base and the SLA Manager. The knowledge

base compares the violation threshold, which is generated according to a utility function, with the

current system status and triggers a reactive action when it detects a violation threat. The reactive

action is based on case-based reasoning and tries to solve the problem using past experiences. The

system is multi-layered: when a particular layer is unable to suggest a reaction, the SLA manager is

responsible for escalating SLA violation threats to the upper layers. The SLA manager receives

violation notifications from the lower layer and accesses the current layer‟s knowledge base for an

appropriate counter action. If no action is found, the upper layer is notified. Sometimes the violation

escalation continues to the top layer, which informs the user by triggering the need for renegotiation

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

or ending the service. The layered architecture assists in the better correction of errors; however

further detail is needed that describes how each layer rectifies an error once a violation has occurred.

 Holistic SLA validation framework 4.4

An holistic SLA validation framework is proposed in [30]. The framework combines three SLA

management techniques: mapping low level resource metrics to a high level SLO (LoM2HiS) model

[24], the hierarchical layer model (LAYSI) [29] and the rule-based SLA aggregation and validation

model [47]. Once both parties have agreed on an SLA, the framework combines LoM2HiS with all

the services that keep track of SLA violation threats. In the event of SLA violation, the framework

follows the LAYSI model by trying to fix the problem at the current layer or by escalating it to an

upper layer where corrective measures can be taken. When the framework detects a violation, it

determines the reason and imposes a penalty on the service provider. Although the method imposes

penalties on violating parties, there is no description of how the problem is rectified once it has

occurred.

 Cloud Application SLA Violation Detection (CASViD) framework 4.5

Cloud Application SLA Violation Detection architecture (CASViD) [31] manages SLAs at the

application level. It comprises the provision of services, setting up services, monitoring services and

detecting SLA violations. To detect violations, CASViD finds an effective measurement interval in

which to identify the resource consumption of each application. Effective measurement is conducted

by sampling time intervals and checking the applications at each interval. If the utility of the

current time interval is greater than the previous interval, the current interval is set as an effective

measurement interval. The process continues until the end of the interval. The monitoring agent in

each node monitors the application and sends information to the SLA management module. The SLA

management module accesses the database and retrieves the SLA with its violation threshold. The

module then compares the current SLA with the predefined threat threshold to analyze future SLA

violation threats. The threat threshold is defined manually by the provider; it indicates future SLA

violations and the system reacts proactively to avoid these violations. Although the measurement

interval helps in better managing an SLA, the system lacks a reaction based on previous records.

 SLA management using Sky framework 4.6

Falasi et al. [32] proposed an architecture capable of managing multilevel maintenance and

monitoring SLAs in a federated cloud environment. Their proposed architecture, based on the Sky

framework, consists of a sky broker, a socialization module and a federation module that together

adaptively implement SLAs to manage changes in a federated cloud environment. A performance

evaluation report for each dependent SLA in a federated cloud is used to ensure that the primary

SLA is preserved and all relevant parties are updated when changes occur. The authors describe an

SLA life cycle which lacks the pre-SLA negotiation stage, monitoring steps or renegotiation after

SLA violation. Moreover, the system does not alarm a service provider in the event of violation to

arrange for necessary actions for early remedy.

 Hierarchical self-healing of SLA (HS-SLA) 4.7

Another hierarchical self-healing SLA management framework is proposed in [33]. Each SLA is

connected to the related layer of the cloud. The service provider in each layer of the cloud has one or

more copies of the SLA. Each upper layer is dependent on a lower layer. Two QoS parameters,

response time and throughput, are considered to measure the efficiency of this system. The SLA is

monitored by the monitoring function available in each SLA. When it detects a possible violation, the

system tries to resolve the issue by switching to other resources in that layer, but if the layer is

unable to resolve the problem, it informs the other SLAs in the upper layer. The system tries to

prevent violation before it affects end users; however, the approach is reactive in SLA management.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Furthermore, due to vendor lock-in and lack of standards in a real scenario, most cloud consumers

face problems when they migrate from one service provider to another.

 Fault-tolerant actor system SLA management framework 4.8

An actor system was proposed by Lu et al [48] to manage the SLA life cycle. The agent creates a

parent and child relationship that helps to escalate an error message upward for its resolution. The

proposed actor system is responsible for managing the entire SLA process. If a violation occurs, a

concerned actor tries to rectify the error. If it is unable to solve the problem, it informs its immediate

supervisor actor in the hierarchy. However, it is not mentioned how SLA management would be

controlled if the single actor system responsible for the whole process were to crash. Moreover, there

is no violation prediction mechanism, and in the event of service violation, the concerned layer

promotes the violation report to the upper layers for remedial action.

 Multi-layer monitoring 4.9

A self-adaptive SLA management mechanism is proposed in [34] which monitors SLAs on the basis

of monitoring time intervals and parameters. The proposed mechanism manages both application

and infrastructure layers and triggers on-the-fly reconfiguration. The management mechanism

comprises six components that are arranged according to the three layers of a typical cloud stack.

The Platform as a Service (PaaS) layer includes a Monitoring Framework Service (MFS) and the

Monitoring Central Index (MCI). The MFS is responsible for monitoring applications and performs

corrective actions in the case of violations. The MCI is a repository that stores parameter values. The

Infrastructure Monitoring Service (IMS), which resides in the Infrastructure as a Service (IaaS)

layer, is responsible for collecting the parameter values and sending them to the MCI. The Software

as a Service (SaaS) layer consists of three components, the Monitoring Service Instance (MSI), the

Monitoring Index Service (MIS) and the Data Collector (DC), which completes the process with an

additional data-like name, value and unit of measure and publishes them in the local repository.

Self-adaptation allows both the data collector and the infrastructure monitoring service to adjust

resources or monitor time intervals. The IaaS monitoring layer is based on low-level information and

related metrics; however, the authors of [36] do not describe those metrics. Self-adaptation depends

on customized policies with the help of experts, but these policy functionalities are integrated with

the monitoring module which does not provide flexibility or a user friendly policy enforcement

mechanism. The approach does not provide scalability.

Table 2: Self-manageable case-based reasoning approach

SLA management

approach

Description of the

approach

Features of the

approach

Issues/limitations of the approach

LoM2HiS framework

[24]

Converts low-level

metrics to high-level

SLA parameters and

compares them with

the threat threshold

to predict likely

service violation.

Capable of detecting

future SLA violation

by comparing SLA

objectives with the

threat threshold

values.

When system detects

SLA violation, it

informs enactor

components to take

early remedial

action.

Automatic SLA

management and

enforcement.

When a violation occurs, the

system does not describe the error

correction method.

Only two rules are discussed for

converting resource metrics to

SLA parameters.

In case of service violation, it is

very difficult to state which low-

level metrics need to be checked to

address the violation.

The criteria for a threat threshold

are not defined and the system is

unable to prevent violation once it

has started to occur.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SLA management

approach

Description of the

approach

Features of the

approach

Issues/limitations of the approach

DesVi

framework [21]

Resource

management by

LoM2HiS, which is

able to monitor and

detect SLA violation.

Effective SLA

management

interval.

Flexible and reliable

management of SLA.

Early detection of

SLA violation using

a threat threshold

value.

Reactive action

using the case-based

reasoning approach.

Only capable of managing a single

cloud data center. There is a lack

of reactive action based on the

best measurement interval.

Limitations of LoM2HiS discussed

above.

No mechanism is described to

select an optimal measurement

interval.

The system is unable to prevent

violation once it has started to

occur.

LAYSI

Approach [29]

SLA management by

LoM2HiS.

Bottom-up approach

for propagation of an

SLA violation threat.

Proactive alarming.

Violation threat of

SLA.

Self-manageable.

Propagation of

violation threat to

layer of concern.

Does not describe how a system

rectifies an error once a violation

has occurred.

Uses the CBR approach, which

has its own limitations.

Lacks description of the basis on

which the threat threshold for

violation detection is defined.

Limitations of LoM2HiS discussed

above.

Approach does not describe how a

system reacts when a violation

occurs.

Holistic SLA validation

approach [30]

Combination of

LoM2HiS, LAYSI

and SLA aggregation

and validation

framework.

Features of

LoM2HiS, LAYSI.

Consistency check

for SLA

penalty enforcement

on violating party.

Limitations of LoM2HiS and

LAYSI approaches discussed

above.

Layered bottom up approach for

violation propagation, but no

mechanism for management by

each layer.

Limitations of CBR approach.

Study focuses only on basic design

and lacks detail on real

implementation; system is unable

to manage violation once it has

started to occur.

CASViD [31]

Detects SLA

violation based on

threat threshold.

Monitors and detects

SLA violation at the

application layer.

Manually defined threat threshold

by a provider.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SLA management

approach

Description of the

approach

Features of the

approach

Issues/limitations of the approach

Manages and

monitors the SLA at

the application

layer.

Determines an

effective

measurement

interval.

Lack of reactive action based on

previous knowledge.

SLA management focuses on post-

interaction phase only.

Sky framework model

[32]

Handles multilevel

SLA management in

a federated cloud

environment.

Management of a

multilevel SLA.

Dynamic SLA

validation and

deployment.

SLA life cycle lacks pre-SLA

management.

No procedure defined for SLA

management once violation has

started to occur.

Lacks negotiation and

renegotiation following SLA

violation.

HS-SLA [33] Manages SLA by

monitoring

violations in a

hierarchical way and

prevents them by

migrating to another

provider or

propagating the

violation to an upper

layer.

Self-healing of SLA

violation, which

includes SLA

monitoring, SLA

violation detection

and all necessary

actions to rectify a

violation.

Follows a layered

hierarchical pattern

for violation

propagation and

prevention.

System reacts once a violation

occurs, but there is no mechanism

to predict violation in advance.

Migrates to other service

providers, which itself has many

issues and is not a wise suggestion

for a consumer.

Does not describe actions to be

taken when violation occurs.

Fault-tolerant actor

system [48]

Actor system

automatically

manages the

complete SLA life

cycle, following a

hierarchical

structure for fault-

tolerant, effective

and efficient SLA

management.

Actor system

accomplishes better

SLA management.

Follows a layered

hierarchical

structure for fault-

tolerant SLA

management

structure and in case

of service violation,

propagates the

violation to an upper

layer for a possible

solution.

No prediction of SLA violation;

remedial action is performed when

a violation occurs.

Complete SLA system depends on

a single actor system, but there is

no explanation of how SLA

management works if problems

arise with the actor system.

Authors do not describe the

necessary action to be taken by

the system to avoid SLA

violations.

Multilayer monitoring

[34]

Aggregates the QoS

from the application

and infrastructure

layer in the platform

layer.

Measures QoS

parameters at

infrastructure and

application levels.

Self-configures the

monitoring time

interval and

monitoring

No information about low-level

metrics.

Policy functionalities are

integrated within the monitoring

module and lack a convenient

policy imposition system.

It is necessary to enhance the

scalability performance of the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SLA management

approach

Description of the

approach

Features of the

approach

Issues/limitations of the approach

parameter.

Runtime

adaptability of

resource

provisioning,

estimation and

decision.

SLA management is

done at each layer.

system using a load balancing

method.

 TRUST MODEL-BASED APPROACH FOR SLA MANAGEMENT 5.

Establishing and maintaining trust relationships in cloud computing is a great challenge because of

the large number of service providers and consumers. Trust in the provider, trust representation,

and the criteria for trust calculations are only three of the issues that concern consumers. Trust has

a life cycle that includes establishment, maintenance and termination. Fachrunnisa and Hussain [49]

proposed a proactive performance management mechanism for trust maintenance by introducing

third party agents and trust-level metric recalibrations. The third party agent is responsible for SLA

administration and performance management, and compares the actual behavior with the agreed

behavior defined in the SLA. Both parties recalibrate their trust to calculate the final trust level.

Trust can be calculated either in monetary form or in reputation form. Reputation is based on the

reliability of a service provider, and consumers score providers on each successful or unsuccessful

transaction. If consumers give good feedback on every successful transaction, this will result in a

high reputation value for the provider; the converse will be true for unsuccessful transactions. This

scoring method allows false, biased and unreliable feedback to skew the results, which can impact

the reputation of the provider [36]. Wang et al. [39] speculated that transaction validity could be

verified by analyzing the IP addresses of consumers. They proposed an iteration monitoring

mechanism and IP monitoring mechanism to collect and record the IP addresses of service providers

and consumers and make an analysis based on the IP region, the IP record and the transaction

validity. The system cancels multiple feedback from the same IP region, thus differentiating between

the biased feedback and the true consumer feedback. Nevertheless, the study does not describe how

the system will function if multiple consumers from the same region and the same organization

provide genuine feedback. In [50], the authors propose that trust between a provider and a consumer

can be maintained by managing trust from the consumer-side and the provider-side. A trusted third

party monitors communication between consumers and providers; however, it cannot determine the

internal state of either consumer or provider. The provider-side trust model has access to the

internal state of the provider and can take measures to avoid violations. Many techniques in the

literature utilize trust as an approach for SLA management, some of which are detailed below and

summarized in Table 3.

 Adaptive credibility model 5.1

Noor and Sheng [40] proposed an adaptive credibility model offering trust as a service which

differentiates between the credible and biased feedback of consumers by using consumer capability

and majority consensus. It considers unanimous feedback and measures whether a specific score is

close to the majority of the feedback. The proposed framework has two components – a credibility
module and a distributed trust feedback assessment and storage module. The first module is

responsible for distinguishing between true and biased feedback by considering the majority

consensus feedback and the second module stores the feedback assessment in a distributive way. The

proposed framework is comprised of three layers that use service oriented architecture to offer trust

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as a service. The authors attempted to address the issue of differentiating between true and biased

feedback, but the model is only feasible for a service provider that has provided services for a long

time and has enough previous feedback to satisfy the majority consensus. The authors did not

describe how much feedback constitutes a majority consensus, nor how to manage the situation if a

group of consumers deliberately give false feedback and target a specific service provider. The

proposed model is suitable for consumers who have a previous history of service usage and feedback.

The feedback of new consumers who have just started using a service has lower impact, whether or

not these consumers give true feedback. There is no mechanism for bootstrapping new consumers.

 Reliability-based trust management model 5.2

Fan and Perros [36] proposed a trust management model that filters feedback according to two

factors, familiarity and consistency. These factors are calculated from the trust feedback value of the

consumer and the duration of the services used. The two factors are multiplied together to calculate

the trust feedback of consumers. The proposed trust management system is divided into two sections

– provider and consumer. The provider section concerns the connection of a consumer with a

provider domain, and the consumer section concerns the collection of cloud service information. The

framework allows consumer and provider to establish a trusted relationship for service selection and

classification. The authors proposed a trust value range from 1 to 5, and only consumers whose

reliability factor exceeds a pre-defined threshold, determined by service usage history over a set

period, are able to assess providers. The assessment of consumers who have not used services for a

long time is not reliable, although the authors did not specify a timeframe. No bootstrapping

mechanism is defined for consumers who have just subscribed to services or have no previous record,

and no mechanism is defined for threshold formation and consumer comparison. The authors did not

justify their selection of two parameters for decision-making, and there are many unconsidered

parameters that could significantly improve results.

 Trust mining model 5.3

Marudhadevi et al. [51] proposed a trust mining model that calculates the degree of trust based on

the subjective and objective rating of consumers. The model calculates a trust value according to

such attributes as the number of successful and unsuccessful responses, average response time, and

the number of complaints from consumers. The system considers the consumer feedback for each

service. The model helps consumers to select trustworthy cloud services and acts as a decision

system for determining whether to continue with the same provider or to switch to another provider.

The model also assists the service provider to monitor the services offered, which can help to sustain

a trusted association with a consumer. Rough set and Bayesian inference are used to generate the

prediction results. The proposed approach calculates trust at two levels. At the first level, the system

uses existing data about a provider and calculates its trust value. Once a transaction has been

completed, the consumer provides feedback, based on which the second level of trust is calculated

using the Bayesian inference theorem. The consumer decides whether or not to continue based on

the trust value determined at levels one and two. The approach is reactive and calculates a trust

value when a provider violates its commitment; moreover, the authors do not describe how to alert

the service provider to cases of service degradation. There is no procedure for SLA violation and no

penalty enforcement is defined.

 Dynamic trust calculation method using Markov Chains 5.4

Chandrasekar et al. [37] presented an effective SLA management and QoS monitoring technique to

monitor trust in a provider. A provider's service profile should be based on both its present and past

services, thus it is necessary to extract QoS information from previous SLAs. The authors proposed a

dynamic trust calculation method based on Markov Chains. They assigned different weights to QoS

parameters based on their importance and calculated their cost by multiplying the assigned weights

by the difference between the actual value and the expected value. The cost is calculated regularly,

as a result of which the Markov chain may be in one of three states: steady state, unsteady state, or

failure state. The trust value is computed at regular intervals. When a provider reaches maximum

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

trust, any extra trust is banked as a surplus to be used when there is a failure to maintain the

maximum trust value. The authors proposed a 50% trust value for untrusted providers, but they

were unable to describe how the system should handle a provider with poor trust value who starts a

business with new details. Moreover, the authors focussed only on the bandwidth required to

transmit QoS by analysis through the Markov Chain model, without comparing other models.

 SLA-based trust model 5.5

Alhamad, Dillon and Chang [38] proposed an SLA-based trust model to assist cloud consumers to

select the most suitable cloud provider based on trustworthiness value. Their proposed model

comprises the components of the SLA agent, a cloud consumer module, a cloud service directory and

a cloud provider module. Each of these components performs different functions which combine to

form the trust model. The authors proposed a common directory in which all cloud providers register

their details, which helps consumers to find a suitable provider. They defined a set of SLA metrics

for each cloud layer and used them with the trust value to calculate the suitability of the provider;

however, no method for choosing the parameters was described. There are a number of parameters

which, if considered, could help a consumer to choose an appropriate service provider more

effectively. The study lacks a description of the process of forming an SLA agreement and

negotiation, which is very important for a cloud consumer. Additionally, the paper proposes a

concept without describing the criteria and methodology, and lacks a method of evaluation and

implementation for calculating a trust value.

 Cloud service registry and discovery model 5.6

Trust, privacy and security are three factors that hinder adaptation in cloud computing. Muchahari

and Sinha [2] proposed a trust management architecture called the cloud service registry and
discovery (CSRD) model which acts as a monitoring agent between the consumer and the provider.

The framework is comprised of three modules: a registry module, trust calculating module, and

dynamic trust monitoring module. The registry module registers service providers and service

consumers, and lists them based on their trust values. The trust calculating module calculates the

trust value of a provider by considering the feedback of credible consumers and credible cloud service

providers. The feedback depends on the QoS parameters and SLA. Consumer credibility is the

product of the total number of services consumed and their duration. Provider credibility is

calculated based on service duration and the total number of services offered. The feedback of all

consumers and providers that have a credibility value higher than the mean of the total calculated

credibility value is considered to be reliable feedback, although the mean credibility value can be

biased and the feedback of new consumers or providers is not considered at all. The approach

calculates trust dynamically using standard deviation of duration, which is considered to be

inversely proportional to trust. The proposed approach is suitable for systems that have existing

records of consumers and providers, but in a real scenario, there are many factors that can influence

the feedback of others for one provider. The criteria for credibility are not defined. The approach is

based on a conceptual framework and has no validation or implementation.

 Trust and risk assessment model 5.7

Hammadi and Hussain [35] proposed a risk and reputation assessment framework for third party

cloud service providers that uses two inputs to help cloud consumers in the decision making process

for the continuation or recomposition of services, namely, the trust of the provider and the risk of

service level degradation. The proposed framework has three layers. A third party defines the time

for QoS assessment and then divides the period into pre- and post-interaction phases. The selection

of a provider is dependent on user recommendations. Credible users receive a reputation request

from a third party and reply with a trust value based on the provider‟s previous record stored in the

information repository. However, the authors do not describe how to calculate the credibility of

consumers and how to deal with biased feedback and genuine consumer feedback. The authors

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

proposed a fuzzy logic approach in which three inputs are considered: a credibility value, a time

delay value, and a recommendation opinion. The third-party SLA monitoring component aggregates

all the reputation values from all recommending users and calculates the final reputation value of

the service provider. It also accesses the run-time SLA parameter and compares it with the threshold

to identify the probability of failure. However, the literature does not describe the threshold

parameters and the issues that might arise during migration to other cloud providers.

Table 3: Trust model-based approach

SLA management

approach

Description of the

approach

Features of the approach Issues/limitations of the

approach

Adaptive credibility

model [40]

Model offers trust as a

service by considering

consumer‟s capability

and majority consensus

to distinguish between

true and biased

feedback.

Offers trust as a service

which helps service

provider to distinguish

between true and biased

feedback.

Proposed model offers

distributed feedback

management to avoid the

hurdles of a centralized

system.

Feedback of an

experienced consumer has

higher value than

feedback of other

consumers.

The number of consumers

that combine to form a

majority is not described. If a

certain number of consumers

target a single provider, the

system cannot handle

problems.

The authors consider only two

factors for measuring

reliability of feedback.

Proposed framework is

suitable for existing

consumers, but there is no

mechanism to bootstrap new

consumers.

Reliability-based

trust management

model [36]

Trust management

framework considers

the familiarity and

consistency of

consumers and

differentiates between

true and biased

feedback.

Differentiates between

true consumer feedback

and biased consumer

feedback.

System assists new

consumers to select an

appropriate service

provider.

Timeframe for determining

the recent past and distant

past is not defined.

No mechanism defined for

bootstrapping new consumers.

The comparison threshold is

not defined.

Trust mining model

[51]

Model assists cloud

consumers to choose a

reliable service provider

during the negotiation

phase. This approach

uses Rough set and

Bayesian inference to

calculate trust.

Calculates trust at two

levels, before an

agreement is signed and

during a transaction.

Approach guarantees the

services the consumer

expects and allows the

provider to monitor

performance.

Framework suggests

whether a consumer

should keep using services

or switch to another

provider.

Reactive SLA management

approach.

No mechanism to show how a

provider can mitigate

violation.

Approach does not describe

violation penalties and the

procedure for their

enforcement.

Switching from one provider

to another has many issues,

such as data integrity and its

compatibility.

Markov Chain

model [37]

Trust in the service

provider can be

determined by

Effective monitoring

technique using state

monitoring and derived

Providers with low reputation

can start business with

different details and will be

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SLA management

approach

Description of the

approach

Features of the approach Issues/limitations of the

approach

 employing a state

monitoring approach

and establishing

dynamic trust using the

Markov Chain Model

monitoring techniques.

Dynamic trust

calculations based on

deviation from the actual

value.

Trust is represented by

numeric value, which is

added or subtracted

according to performance

behavior.

able to obtain 50% trust

value.

Approach was tested using

only Markov Chain without

comparison with other

methods.

No method is proposed to

handle situation if a system

detects deviation from agreed

and monitored QoS .

SLA-based trust

model [38]

SLA-based trust model

helps cloud consumers

to select reliable cloud

provider based on

trustworthiness values.

Trust model helps

consumer to select reliable

cloud provider.

Framework determines

the responsible party in

case of service violation

and determines violation

penalties. Credibility

metrics define the

trustworthiness of the

provider.

Framework lacks the process

of negotiation and SLA

formation.

Management of the service

directory is not defined.

Cannot differentiate between

true and biased feedback to

calculate provider‟s trust

value.

CSRD model [2] Framework calculates

the trust value of each

provider based on

credible feedback from

consumers and

providers. It keeps

track of the dynamic

trust value with respect

to time and

transactions.

CSRD and dynamic trust

overcomes security,

privacy and trust

problems for the

adaptation of the cloud.

Trust of provider and

consumer is calculated

and updated dynamically.

Model does not support third

party providers, which are

generally needed in many

real-time applications.

Considering provider‟s

feedback for another provider

has many issues.

Approach is applicable for

existing providers and

consumers.

Credibility criteria are not

defined.

Approach operates on an

abstract level without

implementation and

evaluation.

Trust and risk

assessment [35]

Selects reliable cloud

providers based on

their reputation value

and monitors runtime

performance as defined

in the SLA.

Framework enables a

consumer to select an

appropriate cloud service

provider.

Framework provides real

time assessment for SLA

monitoring.

QoS assessment in both

pre-interaction and post-

No methodology defined for

calculating credibility of

consumer.

No distinction between true

and biased feedback.

Parameters of the threshold

are not defined.

Issue of vendor lock-in when

migrating to other cloud

providers.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

SLA management

approach

Description of the

approach

Features of the approach Issues/limitations of the

approach

interaction time phases.

 PROACTIVE SLA MANAGEMENT APPROACHES 6.

A significant amount of research has been conducted on proactive and reactive SLA management in

cloud computing [32, 37, 50]. In proactive SLA management, the system detects a possible SLA

violation before it occurs and performs all necessary action to avoid actual violation. In reactive SLA

management, the system monitors the SLA at runtime only. Predicting a possible SLA violation

requires proactive SLA management to identify any discrepancies between parties and apply all

necessary actions to achieve a possible remedy before the parties are affected. Proactive

management approaches can be self-monitoring, self-healing, use a case-based reasoning approach,

predict a violation based on QoS parameters, or use mathematical approaches. Several proactive

SLA management approaches are described in the following sub-section and a summary is presented

in Table 4.

 SLA violation prediction by QoS prediction 6.1

An SLA, as discussed earlier, is composed of one of more than one SLO. Each SLO may consist of one

or many QoS measurements. For example, throughput is one SLO defined in an SLA which is

dependent on multiple components, each of which has a QoS throughput measurement. The

prediction of QoS parameters plays a key role in avoiding SLA violation in the SLA management

framework. A provider that predicts a difference between the agreed and actual QoS parameters

takes all necessary actions to manage an SLA. Below are a number of approaches that use QoS

prediction to manage SLAs in cloud.

6.1.1 QoS prediction by CloudPred

A neighborhood-based collaborative approach was proposed in [52]. The authors presented the idea

of sharing local cloud component usage with all users to calculate global usage. Using QoS data from

a nearest neighbor and applying both user-based and item-based collaborative filtering approaches,

they were able to predict the QoS for a particular user. First, they collected QoS data using the

concept of user-collaboration, in which all users send their previous web service QoS data to a

central repository. Users with similar QoS data are then grouped using Pearson‟s Correlation

Coefficient. The significance weighting of the top N users reduces the influence of less similar users.

Once similar users have been identified, the QoS values are predicted, using user-based and item-

based collaborative filtering methods. The approach is based on the assumption that consumers have

used the same QoS parameters for the same services in the past, but in reality, this may not be so.

Moreover, the study did not cover the criteria for monitoring and prediction intervals, both of which

are very important in the decision-making process.

6.1.2 QoS monitoring as a service (QoS-MONaaS)

Offering QoS monitoring as a service to cloud consumers was proposed in [42, 53]. The proposed

model monitors the performance of cloud providers using a stream processing framework for quick

and timely responses. The framework operates on an SRT-15 platform [54] that has a two-tier

architecture: a business logic tier and a data tier. The business logic tier is composed of two modules,

QoS monitoring and QoS checking. The QoS monitoring module controls the monitoring process,

manages the database scheme, and parses and adds a timestamp for the digital signature. The QoS

checking module is responsible for executing the monitoring algorithm, which oversees all QoS

parameters, and for notifying the QoS manager in the event of violation, so that the pool of QoS

detectors, which uses a monitoring algorithm to parse the input with reference to defined ontologies,

can be managed. The authors make no mention of how the prediction algorithm predicts the QoS

parameters, and the prediction intervals are not defined. In addition, the authors do not describe the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

actions performed by the consumer or the provider. The approach works only if a cloud consumer and

cloud provider are using the SRT-15 platform.

 Workflow SLA Violation Detective Control Model (WSVDC) 6.2

The Workflow SLA Violation Detective Control Model (WSVDC) is proposed in [55]. The authors

consider a utility function that measures the level of satisfaction and give control charts for each

SLA. Performance is measured against four QoS parameters: response time, cost, reputation and

reliability. The Western Electric rule is used to manage service behavior and detect service violation.

In Statistical Process Control, the Western Electric Rules are decision rules for detecting "out-of-

control" or non-random conditions on control charts. Observables that lie outside control limits

(typically at ±3 standard deviations) attract the attention of the monitor to the service as they may

predict future violations. The approach does not describe how the control charts and control rules are

formed, nor how an optimal monitoring mechanism is guaranteed. The study only considers four

SLA variables, whereas in reality there are many other attributes which cannot be ignored.

Moreover, the study does not describe the reputation and reliability calculation mechanism.

 RaaS-based Early Warning Framework 6.3

A Risk Assessment as a Service-based early warning framework was proposed in [23]. The

framework detects future violations of SLAs based on SLO parameters or performance metrics. The

authors‟ approach assists consumers to control deviations in performance and helps them to avoid

violations before they occur. The framework comprises a number of modules. The early warning

system monitors the difference between actual performance and predicts performance over a period

of time. Depending on the difference between performance and the potential risk to the user, the

system may suggest migrating the service. Autoregressive integrated moving average (ARIMA) and

exponential smoothing methods are used to forecast the quality of cloud services. The QoS SLA

violation detector determines the deviation between the QoS expected curve (QEC) and the QoS

observed curve (QoC). To predict future violations, the previous QEC value is sampled into a

different time interval, based on the assumption that future behavior can be predicted by observing

a previous pattern of behavior. The risk propensity of all users is determined by three attitudes, i.e.

risk averse, risk neutral and risk taking. Recommendations to discontinue a service are dependent

on the output of the fuzzy inference system. The decision-making module checks the direction of a

deviation between the observed QoS value and the expected QoS. An output value of 1 shows that

the service is acceptable to the user, whereas a value of 0 shows that it is not. Although the approach

covers both pre- and post-interaction phases, it lacks a mechanism for SLA negotiation and the

formation of viable SLAs that guarantee the QoS parameters and appropriate actions for the

avoidance and mitigation of violations. Migration to another service provider raises issues such as

vendor lock-in and data compatibility.

 SLA violation prevention by cross-layer adaptation 6.4

Schmieders et al. [56] proposed a cross-layer adaptation to manage SLA and prevent SLA violation

of service-based applications. Service management is performed by a Service Level Agreement

Monitor (SALMon) which compares the retrieved QoS with the expected QoS value in service-based

applications. If a violation is detected, the SALMon sends a notification to the Specification and

Assumption-based Detection (SPADE) module. This notification contains the assumption for the

violation and the violating value. SPADE checks the requirements. If the requirements are not

satisfied, the service-based application adapts to avoid delays. If the requirements are fulfilled, the

Adaptation Strategy Engine (ASE) module is activated. Within the ASE module, each agent gathers

information and negotiates the decision to adapt with the others. When the system detects a

violation, a related Process Agent is activated to choose an adaptation strategy. These adaptations

include service replacement, SLA re-negotiation or service infrastructure adaptation. The adaptation

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

strategies are very limited and there is no guarantee that a suitable service replacement adaptation

will be found every time.

 Machine learning regression technique 6.5

Runtime SLA violation prediction, based on a regression model using existing data, was proposed in

[57]. This approach predicts a likely violation before an actual violation takes place based on

previous QoS data for each SLO. Prediction can be conducted at multiple checkpoints. At each

checkpoint, there may be one of three types of information:

 fact data: data which are known at the checkpoint. These data are used as the input for

determining unknown data.

 unknown data: data which are not known at the time of prediction. It is necessary to know all

related data to achieve accurate prediction results.

 estimate data: estimate data are all those data which are not available at the time of prediction

but which can be estimated. The checkpoint predictor module uses the fact data to approximate a

numerical value for each SLO using a machine learning technique, such as regression.

Approximation can be carried out on existing, known QoS and instance data. The prediction is

then represented as a graphical user interface and the prediction manager manages the entire

life cycle of prediction, i.e. its initialization, maintenance and termination. All predictions are

stored in the database for future analysis.

The authors in [59] defined checkpoints for describing where the prediction should be carried out,

based on an assumption which is triggered by their proposed component „hook‟ and „checkpoint

predictor‟. However, these checkpoints do not have a factual basis, and any approach for the

prediction of SLA violation should make predictions early enough for a provider or consumer to take

action to avoid actual violations. Prediction only works when data are available, and the authors

used only a machine learning method for prediction and did not describe the dataset. There are other

prediction methods which give optimal results. The approach did not describe the action to take if

the system predicts a violation or when an actual violation occurs. Rather, the authors proposed a

conceptual framework without any evaluation or implementation of their approach.

 Prediction of violation by Workload Analyzer 6.6

Ciciani et al. [43] proposed the Workload Analyzer for the Cloud TM project which is able to

anticipate future workload fluctuations, and hence predict SLA violations by monitoring resource

data. The Workload Analyzer manages and classifies consumption data at both the infrastructure

and platform layer. It combines the data from all nodes of the Cloud TM platform, then filters and

correlates them. Once the data is gathered, it makes a complete workload outline of all applications,

describing the current and future need for hardware and software resources. It uses various

statistical functionalities to predict the future tendency of workload variations and generates a user

alert to potential violations of their SLA. There is no mechanism when the violation is prediction

then what remedial actions need to be taken to avoid actual violation. The proposed approach work

only when a provider and a consumer are using cloud-TM project.

 Resource management by heuristic policies 6.7

Cardellini et al. [58] proposed heuristic policies for Application Service Management to produce an

optimal solution. The approach automatically manages resources at the application level while

considering both QoS objectives and resource utilization. The authors proposed proactive and

reactive heuristic policies that use a prediction algorithm based on the recursive least square

algorithm to predict the workload for future time slots and evaluated their approach using only a

stochastic workload model The policy is capable of detecting SLA violations but is unable to prevent

them.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 4: Proactive SLA management approach

SLA management

approach

Description of the

approach

Features of the

approach

Issues/limitations of the approach

CloudPred [52]
User-based and item-

based collaborative

filtering methods are

applied to predict

future QoS value and

avoid service

violation.

Time-aware

personalized QoS

prediction for different

consumers.

Predicts QoS value

based on previous

experience.

The basis for selecting monitoring

and prediction intervals is not

defined.

The approach evaluates consumers

using the same QoS parameters

for the same services, however in

real time this may vary.

QoS-MONaaS [52]
The framework offers

monitoring as a

service to all cloud

consumers to monitor

QoS parameters and

detect service

violation.

The QoS monitoring

service allows

consumers to monitor

runtime services and

predict violation in

advance.

The framework has a

feature of complex

event processing and

content-based routing.

The approach only works when

both provider and consumer are

using the SRT-15 platform.

Prediction intervals are not

defined.

No process is defined once the

system detects QoS violation.

WSVDC [55]

The approach uses

the SLA utility

function and control

charts to identify the

difference in workflow

composition and to

improve the quality of

cloud services and

performance.

Proactively detects

SLA violation based on

runtime monitoring

parameters.

Helps an enterprise to

detect faults in its

system and adjusts

workflow in the case of

changing providers.

Improves workflow

reliability.

The formation of control charts

and control rules is not defined.

Does not guarantee an optimal

monitoring mechanism.

No procedure defined for

reliability and reputation

calculation.

The study only considers four SLA

variables but there may be other

important variables which need to

be examined. A detective model

which considers multiple criteria

is needed.

RaaS [23] ARIMA and

exponential

smoothing are used to

predict QoS, the

result of which helps

the consumer to

decide whether to

continue with the

same provider or

migrate to another

service provider.

Generation of an early

warning to alert

consumer to likely

service violation.

The approach uses FIS

by considering the risk

attitude of the

consumer and

suggesting service

continuation or

migration.

Migration from one provider to

another provider raises such

issues as vendor lock-in and data

compatibility.

Approach lacks a methodology for

suggesting appropriate actions

once consumer detects violation.

The pre-interaction phase lacks a

negotiation process for QoS

parameters and the formation of a

viable SLA.

Cross-layer

adaptation [56]

Discusses the

proposed assumption

in the context of

service-based

Cross layer adoption

and prevention of SLA

violation.

Both consumer and

There is no guarantee a suitable

service replacement will be found.

The adaptation strategies are very

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

applications to check

whether real-time

data correlates with

their proposed

assumption. If there

is a difference

between the agreed

and predicted SLA,

the approach chooses

an appropriate

adaptation strategy to

avoid violation.

provider benefit from

service-based

application.

The adaptation

strategies minimize

the impact of service

violation.

limited.

The approach does not describe

the process to follow when a

violation has occurred.

Migrating to other service

providers has many issues.

Machine learning

regression [57]

Runtime prediction of

SLA violation for

composite services

using existing QoS

data.

Predicts SLA

violation based on the

prediction

checkpoints.

Predicts SLA violation

of composite services.

Checkpoints describe

the execution of

composite services and

define the input of the

prediction.

Consumer is alerted in

the event of likely

violation.

The selection of checkpoints for

prediction is not justified.

Prediction only works if data is

available.

The dataset is not defined.

No procedure for avoiding actual

violation when the system detects

likely violation.

Workload analyzer

[43]

Workload analyzer

predicts future

workload and demand

for resources.

Statistical data are

gathered from

different nodes to

develop workload

profile.

Anticipates future

workload fluctuations

for SLA violation

prediction.

Generates an alarm

when violation is

detected.

This approach works when

consumer and provider are using a

cloud-TM platform.

No suggestion for appropriate

remedial action when violation is

detected.

Resource

management by

heuristic policies [58]

Manages resources on

runtime using

proactive and reactive

heuristic policies to

help the cloud

provider to manage

its resources to avoid

violation.

Assists application

service provider to

manage resources.

Improved workload

prediction model.

No procedure defined for SLA

management once violation has

occurred.

There are no criteria for

monitoring intervals.

 CRITICAL EVALUATION OF EXISTING SLA MANAGEMENT APPROACHES FOR FORMING VIABLE 7.

SLAS FROM AN SME SERVICE PROVIDER‟S VIEWPOINT

In this section, we present a comparative analysis of SLA management approaches to forming viable

SLAs from the viewpoint of the SME service provider, in order to proactively manage possible SLA

violations. We compare the approaches according to the basic parameters required for SLA

management. They are the focus of the SLA management process (whether in the pre- or post-

interaction phase), their ability to predict future QoS to detect possible SLA violations, their

approach to determining a process when a possible SLA violation is detected, and recommendations

for possible action. The comparisons are presented in Table 5.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Critical evaluation of existing SLA management approaches

Source SLA management Process Predict

SLA / SLO

/QoS

Procedure

defined when

violation threat

detected

SLA violation

recommendation

Pre-interaction Post-

interaction

Emeakaroha et al. [24]

✖ ✔ ✔ ✖ ✖

Emeakaroha et al.[21] ✖ ✔ ✔ ✖ ✖

Brandic et al. [29] ✖ ✔ ✔ ✔ ✖

Haq et al. [30] ✖ ✔ ✔ ✔ ✖

Emeakaroha et al. [31] ✖ ✔ ✔ ✔ ✖

Mosallanejad et al. [33] ✖ ✔ ✖ ✔ ✖

Katsaros et al. [34] ✖ ✔ ✖ ✖ ✖

Al Falasi et al. [32] ✖ ✔ ✖ ✖ ✖

Chandrasekar et al. [37] ✖ ✔ ✔ ✖ ✖

Alhamad et al. [38] ✖ ✔ ✖ ✖ ✖

Wang et al. [39] ✖ ✔ ✖ ✖ ✖

Hammadi and Hussain [35] ✖ ✔ ✖ ✖ ✖

Muchahari and Sinha [2] ✖ ✔ ✖ ✖ ✖

Cicotti et al. [52] ✖ ✔ ✔ ✖ ✖

Romano et al. [42] ✖ ✔ ✔ ✖ ✖

Sun et al. [55] ✖ ✔ ✔ ✖ ✖

Hussain et al. [23] ✔ ✔ ✔ ✔ ✔

Leitner et al. [57] ✖ ✔ ✔ ✖ ✖

Ciciani et al. [43] ✖ ✔ ✔ ✖ ✖

Cardellini et al. [58] ✖ ✔ ✔ ✖ ✖

Son et al. [10] ✔ ✖ ✖ ✖ ✖

Silaghi et al. [11] ✔ ✖ ✖ ✖ ✖

Badidi [14] ✔ ✖ ✖ ✖ ✖

Pacheco-Sanchez et al. [15] ✔ ✖ ✔ ✖ ✖

Wood et al. [16] ✖ ✔ ✖ ✔ ✖

Schmieders et al. [56] ✖ ✔ ✔ ✔ ✖

Noor and Sheng [40] ✖ ✔ ✖ ✖ ✖

Fan and Perros[36] ✔ ✖ ✖ ✖ ✖

Our comparative study of the literature demonstrates that there are a variety of approaches for SLA

management, including mutually agreed third party, management at the provider or consumer side,

and hierarchical self-monitoring and management of SLAs. In almost every approach, SLA

management is conducted periodically. In the case of discrepancies, violations are recorded and

relevant parties are informed. Works in the literature consider different methods of violation

prediction, such as formula-based mapping between SLOs and resource metrics, defining threat

thresholds, or applying different mathematical approaches, such as prediction, exponential

smoothing, ARIMA, Markov Chain theory and Recursive Least Squares (RLS) to avoid possible

violation of an SLA. However, the majority of approaches perform SLA management in the post-

interaction time phase when both parties have formed the SLA. Although existing approaches try to

avoid SLA violation and maintain a trusted relationship between both parties, they could be

improved by first forming a viable SLA based on an intelligent determination of likely violations by

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the consumer before entering into an agreement. For an SME service provider, an SLA that reflects

the consumer‟s requirements would not only assist with resource provisioning but would also help

guide the provider in their decision to accept a customer. As evident from the literature [19, 59] the

choice in selecting a consumer depends upon the cost/benefit ratio of the service provider. The service

provider assesses a consumer based on certain parameters and decides to either accept or reject a

new consumer request. To maximize their profit, an SME cloud provider desires to commit resources

to consumers who will fully utilize them, therefore it is necessary to commence SLA management

from the pre-interaction time phase. Once a provider is able to form a viable SLA, the discrepancies

between parties are easily identified and are fixed by proactively managing each SLO, before either

party is affected. In conclusion, we found the following shortcomings in the literature for efficient

SLA management from the perspective of SME cloud service providers:

 Most SLA management approaches fail to guide a service provider in their decisions about service

formation with a consumer. Providers thus form SLAs with users who may have flawed intent

that will result in them failing to achieve the financial revenue they expect to generate in a given

time period. In other words, most of the existing literature presents SLA management when the

SLA is executed; none of the methods describe SLA management by considering the consumer‟s

previous transaction history.

 The bulk of the literature focuses on SLA management from the consumer‟s perspective when an

SLA is executed between a consumer and a provider. Some approaches, such as [10], help the

cloud provider to adaptively control SLA negotiation parameters such as price, performance and

timeslots, but they do not specify how these factors can be used by the provider to decide on

marginal resources when SLAs are formed according to workload trends.

 Nothing in the literature determines the maximum amount of marginal resources to be offered to

a consumer relative to information about the consumer's past performance, which is required to

form a viable SLA.

 From a provider‟s perspective, the literature is unable to describe a complete SLA management

framework that starts by forming a viable SLA (offering the optimal amount of marginal

resources), monitoring the runtime behavior of the consumer, predicting the likely resource

usage, and identifying and managing the risk of SLA violation.

 OPTIMIZED PERSONALIZED VIABLE SLA (OPV-SLA) FRAMEWORK 8.

Considering the shortcomings in the literature, we propose a novel optimized personalized viable

SLA management framework (OPV-SLA) as shown in Figure 4. The proposed framework assists the

service provider to form personalized and viable SLAs with the various consumers requesting

resources [60]. This enables the process of possible SLA violation detection to start at the SLA

negotiation phase and not after an SLA has been formed, as happens in most of the approaches in

the literature. As shown in Figure 4, OPV-SLA performs computations over two different time

phases, namely the pre-interaction time phase and post-interaction time phase [61]. The

computations in the pre-interaction time phase, shown in Figure 4, are carried out by two modules:

the Identity Manager Module (IMM) and Viable SLA module (VSLAM), whereas in the post-

interaction time phase, these computations are run by four modules: the threshold formation module

(TFM), the runtime QoS monitoring module (RQoSMM), the QoS prediction module (QoSPM) and

the risk management module (RMM). A brief explanation of each phase in the pre- and post-

interaction start time phases is discussed below.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 4: Framework for formulating viable SLAs [61, 62]

 Pre-interaction time phase 8.1

When a consumer requests resources or services, the service provider first validates the user using

the Identity Management Module (IMM), with one of two possible outcomes: either the consumer is

new or the consumer has a previous record of using services from the provider, as presented in

Figure 5. Depending upon the category, the consumer is validated and the request is forwarded to

the Viable SLA Module (VSLAM). As shown in Figure 6, VSLAM performs computations, based on

which the decision is made to accept or reject the consumer‟s request. If the request is to be accepted,

the amount of resources to be offered is determined. VSLAM comprises two sub-modules, namely the

Consumer‟s request assessment module (CRAM) and the resource allocation determination module

(RADM), which assist in making this decision. A brief explanation of each phase is given below.

8.1.1 Consumer‟s request assessment module (CRAM)

CRAM utilizes the trust value of a requesting consumer to determine whether or not to allocate

resources. If the IMM determines that the consumer has a previous record, the concept of

transaction trend (Ttrend) is utilized. Ttrend is the number of successful transactions or the successful

commitment by the requesting consumer to the formed SLAs divided by the total number of

transactions it has performed. For existing consumers, CRAM considers the consumer‟s previous

profile and calculates their Ttrend value. For a new consumer who does not have a previous profile,

CRAM determines the top-K nearest neighbors that are similar to the requesting consumer‟s profile,

and based on their Ttrend, calculates the likely Ttrend value of the requesting consumer. The requesting

consumer‟s Ttrend value is compared with the defined threshold value, which is the success ratio

defined by a provider to classify a consumer as reliable or not. Based on the comparative result, the

CRAM either accepts a request or it does not. If the request is accepted, the next decision making

factor is to determine how much resource to offer to the consumer. This is done by the RADM

module, which is explained in the next sub-section.

8.1.2 Resource allocation determination module (RADM)

A cloud provider offers static and marginal resources and, due to the dynamic nature of cloud, it is

very important for providers to decide wisely how much of its marginal resources it wants to offer to

a consumer in light of their trustworthiness value and the time they are requesting. In our

framework, the provider is assisted in this decision-making by the RADM. RADM takes the

reliability of the consumer (Ttrend value), the contract duration and the risk propensity of the service

provider as inputs and, using a multi-layered Fuzzy Inference System (FIS), decides the resource

amount to offer the consumer. Based on the output from RADM, the provider informs the consumer

how much resource it will offer. The consumer accepts, rejects or renegotiates the offer depending

upon its circumstances, and when both parties have agreed, a formal SLA is signed and the provider

is bound to reserve the committed resources for that consumer.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

As a result of this series of steps, the SLA that is formed is a viable SLA in which the provider

already knows the expected behavior of the requesting consumer through its transaction trend. Once

the SLA has been formed, the management process shifts to the post-interaction time phase.

 Post-interaction time phase 8.2

The second phase in the management process of OPV-SLA is the post-interaction time phase which

we term the provider-based Risk Management Framework for SLA violation abatement (RMF-SLA).
The RMF-SLA framework enables SME cloud providers to manage the risk of SLA violations to

avoid penalties. The proposed framework performs SLA monitoring in the post-interaction time

phase, and detects and manages the risk of possible SLA violation by suggesting an appropriate

action that the cloud provider should take. The run-time behaviour of consumers is constantly

compared with the SLAs formed in the previous phase, based on which an early warning is

generated in the event of possible SLA violation. This phase comprises the following five sub-

modules, as shown in Figure 7: Threshold Formation Module (TFM), Runtime QoS Monitoring

Module (RQoSMM), QoS Prediction Module (QoSPM), Risk Identification Module (RIM) and Risk

Management Module (RMM). A brief explanation of each of these modules is given below.

Figure 5: Modules in pre-interaction time phase

8.2.1 Threshold formation module (TFM)

This module is responsible for defining a threshold value for a provider upon which an early warning

will be generated in the event of a violation occurring. In our framework, we defined two thresholds:

the agreed threshold (Ta) and the safe threshold (Ts). Ta is the threshold that a provider and

consumer have agreed in respect of each SLO and is defined in the SLA. Ts is a threat threshold that

a provider forms for its own security. To explain the notion of Ts and Ta with an example, let us

assume a provider and consumer agree on the provider giving 20TB of storage space to the consumer

from 6 PM to 8 PM on 20/08/2016. The availability of the 20TB of storage space is the Ta value,

agreed by both parties, which is also defined in the SLA. However, for service management and

possible SLA violation abatement, a provider defines its customized threshold for the storage, say

22TB, from 6 PM to 8 PM on 20/08/2016, which is a Ts value for the provider. When the runtime

availability of the memory space falls below Ts (22TB from 6 PM to 8 PM on 20/08/2016) the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

framework alerts the service provider and activates the risk management module to manage any

risk of the provider violating the formed viable SLA.

8.2.2 Runtime QoS monitoring module (RQoSMM) and QoS prediction module (QoSPM)

RQoSMM is responsible for monitoring the runtime QoS parameters of each agreed SLO. Once the

QoS parameters at the current point of time are observed, they are sent to the QoS prediction

module (QoSPM) where they are used to recalibrate the QoS of SLOs in the near future. The QoSPM

module of RMF-SLA is responsible for predicting the resource usage of consumers in terms of QoS

parameters over the SLA time period to detect possible violations. The consumer‟s likely resource

usage is predicted using the resource history and an optimal prediction algorithm. In our previous

work [63], we observed that an optimal prediction result is obtained by considering small time

intervals and using the Autoregressive Integrated Moving Average (ARIMA) method. The accuracy

of a prediction result is enhanced by considering the value of the SLOs in the previous time intervals

from the RQoSMM, thereby constantly updating it.

.
Figure 6: Sequence of steps in VSLA module of OPV-SLA [62]

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8.2.3 Risk identification module (RIM)

The risk identification module (RIM) is responsible for comparing the value from QoSPM with the Ts

value on a regular basis. If the value of the QoSPM reaches or exceeds the Ts value, it activates the

risk management module (RMM) to manage the possible risk of SLA violation.

8.2.4 Risk management module (RMM)

This module is comprised of two sub modules: the risk estimation module (REM) and the risk

mitigation module (RMtM). REM is activated with RIM to determine the possible occurrence of SLA

violation and estimates the risk. Decisions on risk estimation depend on the risk attitude of the

provider, the reputation of the consumer, and the transaction trend curve of future intervals. The

risk attitude of a provider is the provider‟s capacity to deal with risk. A provider with a risk

propensity of risk averse is more reluctant to take a risk than a provider with an attitude that is risk

neutral or risk taking. The reputation of a consumer is its reliability or trust value, namely Ttrend

value, which is determined by CRAM in the pre-interaction phase. The third input is the predicted

resource usage by the consumer, determined by the QoSPM in the post-interaction phase. The

processed output of these input variables is determined by RMtM which gives the estimated risk of

possible violation as either high risk, medium risk or low risk. Depending on the level of risk

determined, the provider chooses an appropriate action to manage and mitigate possible violation of

the formed SLA. When the risk of possible SLA violation is assessed as high, the module sends an

alarm to the service provider for immediate action. When the risk is estimated as medium or low, the

service provider decides whether to take delayed action or no action, depending on the input values.

The provider arranges sufficient resources within a certain time period. When the risk is estimated

as low, it has no significant effect on the provider. The provider accepts the risk and does not take

any action.

Figure 7: RMF-SLA framework and its modules

By using the proposed framework, a service provider is first able to form viable SLAs and then

manage them in the best way. In the next section, we present the results of the validation of our

approach in the pre-interaction start time phase and demonstrate the applicability of OPV-SLA in

forming viable SLAs from the viewpoint of small to medium cloud service providers.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 VALIDATION AND APPLICABILITY OF OPV-SLA IN VIABLE SLA FORMATION AND MANAGEMENT 9.

We validate the OPV-SLA framework in the pre- and post-interaction time phases. The objective of

OPV-SLA in the pre-interaction time phase is to assist the service provider to form viable SLAs, and

in the post-interaction time phase it is to manage or prevent SLA violations. We use two datasets to

form a viable SLA. The first is the QoS dataset used by Zhang et al. [64], which comprises 142 users

using 4532 web services for 64 time intervals, and the second dataset is from Amazon Elastic

Compute Cloud (EC2) IaaS cloud services – EC2 US East, collected from cloudclimate [65] through

the Paessler Router Traffic Grapher (PRTG) monitoring service [66]. In our experiments, we

consider two Quality of Service (QoS) parameters, namely the throughput and response time in

which SLAs are formed in the pre-interaction phase, and one QoS parameter, namely CPU usage,

when managing SLAs in the post-interaction phase. The captured datasets are stored in Microsoft

Visual Studio 2010 with Microsoft SQL Server Management Studio 2008 for the databases, and

MATLAB is used to program the computations in the pre-interaction start time phases to form

viable SLAs. Our objective in using these computations is to demonstrate how a provider can form

viable SLAs by utilizing the previous record of a consumer's commitment to the formed SLAs, and

can start the process of SLA management before the SLAs are formed, as opposed to approaches in

which this is done after the formation of SLAs.

We assume that there are three possible consumers with the consumer IDs 122, 254 and 111 that

are requesting services from a service provider. The implementation process in the OPV-SLA takes

the following steps in the pre-interaction start time phase to form viable SLAs:

Step 1: When IMM receives a request with all the details of a consumer, it authenticates the

consumer as either a returning customer or a new customer, as shown in Figure 4. To demonstrate

the working of our framework, let us suppose the first consumer with consumer ID 122 is new,

whereas the second and third consumers with consumer IDs 254 and ID 111 respectively have an

existing record with the provider. The requests and all detail of the consumers as shown in Figure 4

are passed to VSLAM for a decision on the consumer‟s request and to decide the amount of marginal

resources to be offered.

Step 2: The VSLAM, as shown in Figure 5, determines the Ttrend value for all consumers. Ttrend is the

consumer‟s previous profile and is an important factor in determining possible future SLA violations

[67, 68]. As consumer 122 is a new customer, the module selects its top-K nearest neighbors

according to Pearson Correlation Coefficient (PCC) value to determine the Ttrend value. The top-K

nearest neighbors with their Ttrend are presented in Table 6.

Table 6: Top-K NN with their Ttrend value for consumer - ID 122 (reproduced from [62])

Nearest

neighbors

Consumer #

Level of nearness

according to PCC value

No. of successful

transactions

No. of violated

transactions

Transaction

trend

1 131 0.9999889 6 4 60.00%

2 63 0.9999765 3 3 50.00%

3 11 0.9999503 3 19 13.63%

4 39 0.9999412 7 2 77.78%

5 87 0.9997249 1 20 4.76%

6 05 0.9992545 11 8 57.89%

7 110 0.9992148 11 4 73.33%

8 72 0.9992032 8 3 72.73%

9 15 0.9992014 0 1 0.00%

Let us consider that the provider has set a Ttrend threshold of 40% to even consider forming resource

provision requests from consumers. The Ttrend obtained for consumer 122 from its top-KNN is Ttrend =

45.55%. The Ttrend for consumers 254 and 111 is determined by their past history and presented in

Table 7.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: Transaction trends of consumers ID – 254 and 34 (reproduced from [62])

Consumer

Number

No. of successful

transactions

No. of violated

transactions

Transaction trend ((Ts/Tn)*
100

1 254 6 5 54.55%

2 122 2 6 25. 00%

From Tables 6 and 7, we see that the Ttrend value of consumers 122 and 254 is above the threshold

value, but that the Ttrend value of consumer 111 is below the threshold value, therefore the provider

accepts only the request from consumers 122 and 254. This avoids forming a service-provisioning

request with consumer 111, which may lead to possible SLA violation.

Step 3: In this step, VSLAM determines the amount of resources to offer to the customers whose

requests it accepts, as shown in Figure 5. Upon determining the resource amount, the service

provider and service consumer negotiate further and decide on the specific quantity of resources on

which to form an SLA. To determine the amount of resources to offer, the VLSLAM utilizes fuzzy

inference systems which combine many different variables to reach a decision on resource allocation

and the amount of resources to offer to each requesting customer, as shown in Figure 6. A brief

explanation of the different variables used is as follows:

Suitability value: In our proposal, the provider categorizes customers requesting resources according

to four levels of suitability: none, low, medium and high. These levels are determined by fuzzy

inference rules based on the reliability value of a customer and the duration for which they are

requesting resources. The fuzzy rules are formed such that the provider gives high preference to

requests from reliable customers who reserve resources for a short time period.

Decision on allocation and amount of resources to offer: The suitability value determined for each

customer is combined with the risk propensity or risk appetite value of the service provider to

ascertain whether an SLA should be formed with a consumer, and if so, the level at which its request

should be accepted. The four fuzzy predicates over which the decision to allocate resources to a

consumer are: none, marginal, partial and full. The fuzzy rules are formed to capture the risk

attitude of the provider (risk averse, risk neutral and risk taking) with the suitability value to

ascertain the level of acceptance of the consumer‟s request for resources.

Table 8 shows the results of performing the computations using the above processes, and details the

amount of resources to offer to consumers with 122 and 254. The table presents the Ttrend value for

each customer along with the threshold set by the provider (from Step 2), the determined suitability

value of each consumer (expressed as fuzzy variables over the range of low, medium and high) the

risk attitude of the provider (expressed as fuzzy variables over the range of risk averse, risk neutral

and risk taking) with the recommended decision on the consumer‟s request for service provisioning

along with the level at which to accept the request.

Table 8: Request decision and amount of resources offered (reproduced from[62])

Consumer ID Ttrend Threshold Suitability value Risk propensity Decision on consumer

request

Resource allocate

122 45.55% 40% M=0.1 H=0.5 RN=1.0 RA=0.0 Accept 19.12%

254 54.55% 40% M=0.3 H=0.7 RN=0.6 RA=0.4 Accept 65.68%

111 25.00% 40% --- --- --- --- Reject ---

We see from Table 8 that the request by consumer 111 is rejected because it does not satisfy the

required threshold, and the requests by consumers 122 and 254 are recommended for acceptance

with provisioning at 19.12% and 65.68% of the requested marginal requests respectively. The

provider is thus able to make the optimal decision regarding the consumers‟ requests and the

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

amount of resources to offer them. Negotiation, if needed, can be conducted between the provider and

consumer following this stage. The approaches in the literature do not consider this approach for

SLA management, but by using the OPV-SLA framework, the drawbacks mentioned at the end of

Section 7 regarding the need to form viable SLAs can be addressed.

Once a viable SLA has been formed, the next step in SLA management is to anticipate possible SLA

violations and take appropriate steps to manage them. As discussed earlier, we use the notion of risk

in OPV-SLA to achieve this in the post-interaction time phase and manage the SLO CPU usage. We

consider that, based on the recommendations from VSLAM as shown in Table 8, the provider forms

an SLA and resource provisioning agreement with consumer 254 in the SLO - CPU usage. Let us

consider that the Ta value of 290ms is the defined level of commitment between the provider and the

consumer in this SLO. As explained earlier, Ta is the threshold that a provider and consumer have

agreed for each SLO and defined in the SLA. Our objective by using this value and using the RMF-

SLA framework is to demonstrate how the provider constantly monitors the QoS parameters and

ascertains in advance the likelihood of SLA violation occurring, along with taking appropriate action

for violation management.

Step 4: Once the service resource provisioning between a consumer and provider has started, the

provider defines a safe threshold Ts for SLA management that is stricter than the Ta agreed by both

users at the SLA formation stage, as shown in Figure 6. Let us consider that the defined safe

threshold level determined by the provider in the case of CPU SLO is 260ms. Once the Ta and Ts

values have been defined, the past data point values related to the resource usage of consumer 254

in terms of CPU usage over past SLAs or the available resources on the provider‟s side related to

CPU SLO are captured and sent to the QoSPM module for prediction over the future period.

Step 5: Using the data collected from Amazon EC2 EU, the QoS values of the SLO CPU are

predicted over the next 60 minutes in time intervals of 15 minutes each. Table 9 shows the predicted

values for CPU SLO by the ARIMA method for the period 11:45 AM to 12:45 PM on 3/2/2016.

Table 9: Predicted values for CPU SLO by ARIMA method

Interval Predicted result Ts Ta

3/2/2016 11:45:00 AM - 12:00:00 PM 249.028569ms 260ms 290ms

3/2/2016 12:00:00 PM - 12:15:00 PM 258.0277777ms 260ms 290ms

3/2/2016 12:15:00 PM - 12:30:00 PM 266.8571404ms 260ms 290ms

3/2/2016 12:30:00 PM - 12:45:00 PM 272.818178ms 260ms 290ms

Figure 9 graphically represents the predicted QoS value of CPU along with the agreed threshold and

defined safe threshold. The blue line represents the prediction result using the ARIMA method for

the time interval, the red line represents the Ts value, and the green line represents the Ta value.

The objective in this representation is to ascertain when the CPU QoS value is expected to intersect

or exceed Ts in order to activate the RMM module of RMF-SLA. The process of ascertaining whether

the predicted SLO value at a given point in the future is more or less than the safe threshold is

performed by the RIM module of RMF-SLA. Figure 7 shows that the provider, through RIM, notes

that the predicted QoS value of SLO CPU at the first interval of 11:45:00 AM to 12:00:00 PM is less

than the Ts value, but it starts to increase from 12:00:00PM and exceeds the Ts value for the next

two intervals, 12:15:00 PM and 12:30:00 PM. When the predicted result exceeds the Ts value, the

RMM is activated to predict the possibility of a violation occurring and to manage it accordingly [69].

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 9: Representation of predicted CPU SLO value along with defined Ta and Ts

Step 6: In this step, RMM ascertains the risk of a possible SLA violation occurring by considering

three decision-making variables. The first variable is the risk attitude of the service provider,

classified on the levels of risk averse, risk neutral and risk taking. The second input variable is the

reliability of the consumer, classified on the levels of bronze, silver and gold according to their

commitment to previous SLAs. The premise here is that the more reliable the service consumer is,

the more responsive the service provider will be to managing and avoiding the possible risk of non-

service provisioning to these users. The third decision making variable is the direction of the

predicted trajectory, which is either towards Ta or away from Ta once it crosses Ts. When the

predicted trajectory is defined as „Towards‟, it means that the trajectory has reached the Ts and is

moving towards the Ta. When the predicted trajectory is defined as „Away‟, it means that the

trajectory has exceeded the Ts value and is moving back towards the Ts. These inputs are important

considerations in ascertaining the possibilitiy of SLA violation and are used to manage the risk.

Table 10: Output of RMM showing the action to be taken to avoid possible SLA violation

Consumer ID Ttrend Risk propensity

value of provider

Predicted

trajectory

Decision recommendation

254 5 4.54% RN=1.0 RA=0.0 towards Immediate action = 67% Delayed action = 33%

254 20% RN=1.0 RT=0.0 away Immediate action = 33% Delayed action = 67%

Continuing with the discussion of consumer 254, the output from the fuzzy inference rules after

considering consumer reliability, the service provider‟s risk attitude (from Table 8) and the projected

trajectory of Ts (from Figure 9), is shown in Table 10. The first row of the table shows the RMM

output after defuzzification as 67% towards immediate action and 33% towards delayed action. This

is determined by considering the customer‟s reliability, the service provider‟s risk attitude and the

project trajectory, and utilizing this information to categorize the risk as high risk with a very high

possibility of SLA violation. The recommendation is for the provider to take immediate action to

remove the risk of SLA violation at the earliest possible time. The second row of Table 10 shows the

RMM output if the input details were to be changed as shown. It can be seen from the output that,

depending on the scenario, RMM will recommend the most appropriate action for the provider to

take to avoid possible SLA violation. These two phases of OPV-SLA, when combined, assist the

provider to first form viable SLAs and then to manage them appropriately to prevent SLA violations.

 CONCLUSION AND FUTURE WORK 10.

The rise of cloud computing promises to eliminate the need for managing complex and expensive

computing resources. The elastic nature of cloud computing allows cloud providers to maximize

profits if they can ensure the provision of an optimal level of resources to meet consumer needs. This

is very important if the provider is an SME that has limited resources from which to generate and

maximize its revenue. To achieve a satisfactory outcome, SME cloud providers need to intelligently

determine the likely resource usage of prospective consumers and form a viable SLA that allows

them to meet those needs. In this work, we have described existing SLA management approaches,

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

highlighting their limitations in addressing this problem. We have discussed our proposed Optimized

Personalized Viable SLA (OPV-SLA) framework and demonstrated the working of each of its phases.

In contrast to the approaches in the literature, our proposed approach focuses on the SME cloud

service provider and assists with the formation and management of optimal and viable SLAs with

consumers. In our future work, we will look at applying the framework in a real world SME cloud

provider setting.

REFERENCES

[1] P. Mell and T. Grance, "The NIST definition of cloud computing," National Institute of Standards and
Technology, vol. 53, p. 50, 2009.

[2] M. K. Muchahari and S. K. Sinha, "A new trust management architecture for cloud computing environment," in

Cloud and Services Computing (ISCOS), 2012 International Symposium on, 2012, pp. 136-140.
[3] C. Ardagna, E. Damiani, F. Frati, G. Montalbano, D. Rebeccani, and M. Ughetti, "A Competitive Scalability

Approach for Cloud Architectures," in Cloud Computing (CLOUD), 2014 IEEE 7th International Conference

on, 2014, pp. 610-617.
[4] Z. Liu, M. S. Squillante, and J. L. Wolf, "On maximizing service-level-agreement profits," in Proceedings of

the 3rd ACM conference on Electronic Commerce, 2001, pp. 213-223.

[5] O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D. Cojocarasu, "Managing violations in service level

agreements," in Grid Middleware and Services, ed: Springer, 2008, pp. 349-358.

[6] H. H. Saunders, "We need a larger theory of negotiation: The importance of pre-negotiating phases,"
Negotiation journal, vol. 1, pp. 249-262, 1985.

[7] S. Ron and P. Aliko, "Service level agreements," Internet NG project, 2001.

[8] E. Wustenhoff and S. BluePrints, "Service level agreement in the data center," Sun BluePrints, 2002.
[9] O. K. Hussain, T. Dillon, F. K. Hussain, and E. Chang, Risk assessment and management in the networked

economy vol. 412: Springer, 2012.

[10] S. Son, D.-J. Kang, S. P. Huh, W.-Y. Kim, and W. Choi, "Adaptive trade-off strategy for bargaining-based
multi-objective SLA establishment under varying cloud workload," The Journal of Supercomputing, vol. 72, pp.

1597-1622, 2016.

[11] G. C. Silaghi, L. D. ŞErban, and C. M. Litan, "A time-constrained SLA negotiation strategy in competitive
computational grids," Future Generation Computer Systems, vol. 28, pp. 1303-1315, 2012.

[12] J. Gwak and K. M. Sim, "A novel method for coevolving PS-optimizing negotiation strategies using improved

diversity controlling EDAs," Applied intelligence, vol. 38, pp. 384-417, 2013.
[13] K. M. Sim, "Grid resource negotiation: survey and new directions," IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 40, pp. 245-257, 2010.

[14] E. Badidi, "A cloud service broker for SLA-based SaaS provisioning," in Information Society (i-Society), 2013
International Conference on, 2013, pp. 61-66.

[15] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and S. Dawson, "Markovian workload

characterization for qos prediction in the cloud," in Cloud Computing (CLOUD), 2011 IEEE International
Conference on, 2011, pp. 147-154.

[16] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, "Sandpiper: Black-box and gray-box resource

management for virtual machines," Computer Networks, vol. 53, pp. 2923-2938, 2009.
[17] W. Hussain, F. K. Hussain, and O. K. Hussain, "Maintaining trust in cloud computing through sla monitoring,"

in International Conference on Neural Information Processing, 2014, pp. 690-697.

[18] L. Wu and R. Buyya, "Service level agreement (sla) in utility computing systems," IGI Global, 2012.
[19] L. Wu, S. K. Garg, and R. Buyya, "SLA-based resource allocation for software as a service provider (SaaS) in

cloud computing environments," in Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM

International Symposium on, 2011, pp. 195-204.
[20] S. Sakr and A. Liu, "SLA-based and consumer-centric dynamic provisioning for cloud databases," in Cloud

Computing (CLOUD), 2012 IEEE 5th International Conference on, 2012, pp. 360-367.

[21] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic, R. Buyya, and C. A. De Rose, "Towards
autonomic detection of SLA violations in Cloud infrastructures," Future Generation Computer Systems, vol. 28,

pp. 1017-1029, 2012.

[22] V. C. Emeakaroha, R. N. Calheiros, M. A. Netto, I. Brandic, and C. A. De Rose, "DeSVi: an architecture for

detecting SLA violations in cloud computing infrastructures," in Proceedings of the 2nd International ICST

conference on Cloud computing (CloudComp’10), 2010.

[23] O. K. Hussain, F. K. Hussain, J. Singh, N. K. Janjua, and E. Chang, "A User-Based Early Warning Service
Management Framework in Cloud Computing," The Computer Journal, p. bxu064, 2014.

[24] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, "Low level metrics to high level SLAs-LoM2HiS

framework: Bridging the gap between monitored metrics and SLA parameters in cloud environments," in High
Performance Computing and Simulation (HPCS), 2010 International Conference on, 2010, pp. 48-54.

[25] H. Liu, D. Xu, and H. K. Miao, "Ant colony optimization based service flow scheduling with various QoS

requirements in cloud computing," in Software and Network Engineering (SSNE), 2011 First ACIS
International Symposium on, 2011, pp. 53-58.

[26] S. Yun, "Guaranteed QoS Resource Scheduling Scheme Based on Improved Electromagnetism-Like

Mechanism Algorithm in Cloud Environment," in Intelligent Networking and Collaborative Systems (INCoS),
2013 5th International Conference on, 2013, pp. 353-357.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[27] A.-F. Antonescu, P. Robinson, and T. Braun, "Dynamic sla management with forecasting using multi-objective

optimization," in 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013),
2013, pp. 457-463.

[28] R. Sahal, M. H. Khafagy, and F. A. Omara, "A Survey on SLA Management for Cloud Computing and Cloud-

Hosted Big Data Analytic Applications," International Journal of Database Theory and Application, vol. 9, pp.
107-118, 2016.

[29] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz, et al., "Laysi: A layered approach for

sla-violation propagation in self-manageable cloud infrastructures," in Computer Software and Applications
Conference Workshops (COMPSACW), 2010 IEEE 34th Annual, 2010, pp. 365-370.

[30] I. U. Haq, I. Brandic, and E. Schikuta, "Sla validation in layered cloud infrastructures," in Economics of Grids,

Clouds, Systems, and Services, ed: Springer, 2010, pp. 153-164.
[31] V. C. Emeakaroha, T. C. Ferreto, M. A. Netto, I. Brandic, and C. A. De Rose, "Casvid: Application level

monitoring for sla violation detection in clouds," in Computer Software and Applications Conference

(COMPSAC), 2012 IEEE 36th Annual, 2012, pp. 499-508.
[32] A. Al Falasi, M. A. Serhani, and R. Dssouli, "A Model for Multi-levels SLA Monitoring in Federated Cloud

Environment," in Ubiquitous Intelligence and Computing, 2013 IEEE 10th International Conference on and

10th International Conference on Autonomic and Trusted Computing (UIC/ATC), 2013, pp. 363-370.
[33] A. Mosallanejad and R. Atan, "HA-SLA: A Hierarchical Autonomic SLA Model for SLA Monitoring in Cloud

Computing," Journal of Software Engineering and Applications, vol. 6, p. 114, 2013.

[34] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas, and T. Varvarigou, "A Self-adaptive
hierarchical monitoring mechanism for Clouds," Journal of Systems and Software, vol. 85, pp. 1029-1041,

2012.

[35] A. M. Hammadi and O. Hussain, "A framework for SLA assurance in cloud computing," in Advanced
Information Networking and Applications Workshops (WAINA), 2012 26th International Conference on, 2012,

pp. 393-398.

[36] W. Fan and H. Perros, "A reliability-based trust management mechanism for cloud services," in Trust, Security
and Privacy in Computing and Communications (TrustCom), 2013 12th IEEE International Conference on,

2013, pp. 1581-1586.
[37] A. Chandrasekar, K. Chandrasekar, M. Mahadevan, and P. Varalakshmi, "QoS monitoring and dynamic trust

establishment in the cloud," in Advances in Grid and Pervasive Computing, ed: Springer, 2012, pp. 289-301.

[38] M. Alhamad, T. Dillon, and E. Chang, "Sla-based trust model for cloud computing," in Network-Based
Information Systems (NBiS), 2010 13th International Conference on, 2010, pp. 321-324.

[39] M. Wang, X. Wu, W. Zhang, F. Ding, J. Zhou, and G. Pei, "A conceptual platform of SLA in cloud

computing," in Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International
Conference on, 2011, pp. 1131-1135.

[40] T. H. Noor and Q. Z. Sheng, "Trust as a service: a framework for trust management in cloud environments," in

Web Information System Engineering–WISE 2011, ed: Springer, 2011, pp. 314-321.

[41] M. Egea, K. Mahbub, G. Spanoudakis, and M. R. Vieira, "A Certification Framework for Cloud Security

Properties: The Monitoring Path," in Accountability and Security in the Cloud, ed: Springer, 2015, pp. 63-77.

[42] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, "A novel approach to QoS monitoring in the cloud," in Data
Compression, Communications and Processing (CCP), 2011 First International Conference on, 2011, pp. 45-

51.

[43] B. Ciciani, D. Didona, P. Di Sanzo, R. Palmieri, S. Peluso, F. Quaglia, et al., "Automated workload
characterization in cloud-based transactional data grids," in Parallel and Distributed Processing Symposium

Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, 2012, pp. 1525-1533.

[44] A. Aamodt and E. Plaza, "Case-based reasoning: Foundational issues, methodological variations, and system
approaches," AI communications, vol. 7, pp. 39-59, 1994.

[45] D. Chua, D. Li, and W. Chan, "Case-based reasoning approach in bid decision making," Journal of construction

engineering and management, vol. 127, pp. 35-45, 2001.
[46] W. Cheetham, A. Varma, and K. Goebel, "Case-Based Reasoning at General Electric," in FLAIRS Conference,

2001, pp. 93-97.

[47] I. U. Haq, A. Paschke, E. Schikuta, and H. Boley, "Rule-based workflow validation of hierarchical service level
agreements," in Grid and Pervasive Computing Conference, 2009. GPC'09. Workshops at the, 2009, pp. 96-

103.

[48] K. Lu, R. Yahyapour, P. Wieder, E. Yaqub, M. Abdullah, B. Schloer, et al., "Fault-tolerant Service Level
Agreement lifecycle management in clouds using actor system," Future Generation Computer Systems, 2015.

[49] O. Fachrunnisa and F. K. Hussain, "A methodology for maintaining trust in industrial digital ecosystems,"

Industrial Electronics, IEEE Transactions on, vol. 60, pp. 1042-1058, 2013.
[50] T. B. Quillinan, K. P. Clark, M. Warnier, F. M. Brazier, and O. Rana, "Negotiation and monitoring of service

level agreements," in Grids and Service-Oriented Architectures for Service Level Agreements, ed: Springer,

2010, pp. 167-176.
[51] D. Marudhadevi, V. N. Dhatchayani, and V. S. Sriram, "A Trust Evaluation Model for Cloud Computing Using

Service Level Agreement," The Computer Journal, p. bxu129, 2014.

[52] Y. Zhang, Z. Zheng, and M. R. Lyu, "Exploring latent features for memory-based QoS prediction in cloud
computing," in Reliable Distributed Systems (SRDS), 2011 30th IEEE Symposium on, 2011, pp. 1-10.

[53] G. Cicotti, L. Coppolino, S. D'Antonio, and L. Romano, "How to monitor QoS in cloud infrastructures: the

QoSMONaaS approach," International Journal of Computational Science and Engineering, vol. 11, pp. 29-45,
2015.

[54] G. Cicotti, L. Coppolino, R. Cristaldi, S. D’Antonio, and L. Romano, "QoS monitoring in a cloud services

environment: the SRT-15 approach," in European Conference on Parallel Processing, 2011, pp. 15-24.

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[55] Y. Sun, W. Tan, L. Li, G. Lu, and A. Tang, "SLA detective control model for workflow composition of cloud

services," in Computer Supported Cooperative Work in Design (CSCWD), 2013 IEEE 17th International
Conference on, 2013, pp. 165-171.

[56] E. Schmieders, A. Micsik, M. Oriol, K. Mahbub, and R. Kazhamiakin, "Combining SLA prediction and cross

layer adaptation for preventing SLA violations," 2011.
[57] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and F. Leymann, "Runtime prediction of

service level agreement violations for composite services," in Service-Oriented Computing.

ICSOC/ServiceWave 2009 Workshops, 2010, pp. 176-186.
[58] V. Cardellini, E. Casalicchio, F. Lo Presti, and L. Silvestri, "Sla-aware resource management for application

service providers in the cloud," in Network Cloud Computing and Applications (NCCA), 2011 First

International Symposium on, 2011, pp. 20-27.
[59] L. Wu, S. K. Garg, and R. Buyya, "SLA-based admission control for a Software-as-a-Service provider in Cloud

computing environments," Journal of Computer and System Sciences, vol. 78, pp. 1280-1299, 2012.

[60] W. Hussain, F. K. Hussain, and O. K. Hussain, "SLA Management Framework to Avoid Violation in Cloud," in
International Conference on Neural Information Processing, 2016, pp. 309-316.

[61] W. Hussain, F. K. Hussain, O. Hussain, and E. Chang, "Profile-based viable Service Level Agreement (SLA)

Violation Prediction Model in the Cloud," presented at the 2015 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 2015.

[62] W. Hussain, F. K. Hussain, O. K. Hussain, and E. Chang, "Provider-Based Optimized Personalized Viable SLA

(OPV-SLA) Framework to Prevent SLA Violation," The Computer Journal, vol. 59, pp. 1760-1783, 2016.
[63] W. Hussain, F. Hussain, and O. Hussain, "QoS prediction methods to avoid SLA violation in post-interaction

time phase," in Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on, 2016, pp. 32-

37.
[64] Y. Zhang, Z. Zheng, and M. R. Lyu, "WSPred: A time-aware personalized QoS prediction framework for Web

services," in Software Reliability Engineering (ISSRE), 2011 IEEE 22nd International Symposium on, 2011, pp.

210-219.
[65] CloudClimate. Watching the Cloud. Available: http://www.cloudclimate.com/

[66] P. N. Monitor. Available: https://prtg.paessler.com/
[67] W. Hussain, F. K. Hussain, and O. Hussain, "Comparative analysis of consumer profile-based methods to

predict SLA violation," presented at the FUZZ-IEEE, Istanbul Turkey, 2015.

[68] W. Hussain, F. K. Hussain, and O. Hussain, "Allocating Optimized Resources in the Cloud by a Viable SLA
Model," presented at the Fuzzy Systems (FUZZ-IEEE), 2016 IEEE International Conference on. IEEE, 2016,

Vancouver, Canada 2016.

[69] W. Hussain, F. K. Hussain, and O. K. Hussain, "Risk Management Framework to Avoid SLA Violation in
Cloud from a Provider’s Perspective," in International Conference on P2P, Parallel, Grid, Cloud and Internet

Computing, 2016, pp. 233-241.

