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Highlights 

 Presents a state of the art review on SLA management from service 

provider side in Cloud Computing. 

 Presents a critical evaluation of the existing work and identifies the 

research gaps to be addressed for provider-side Cloud service 

management. A thorough literature review in the existing area is 

presented. 

 Presents an overview of our proposed framework OPV-SLA framework to 

address the identified issues and validates the results on a cloud dataset.  
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Abstract 

 
In today‟s competitive world, service providers need to be customer-focused and proactive in their marketing strategies to 

create consumer awareness of their services. Cloud computing provides an open and ubiquitous computing feature in which a 

large random number of consumers can interact with providers and request services. In such an environment, there is a need 

for intelligent and efficient methods that increase confidence in the successful achievement of business requirements. One 

such method is the Service Level Agreement (SLA), which is comprised of service objectives, business terms, service relations, 

obligations and the possible action to be taken in the case of SLA violation. Most of the emphasis in the literature has, until 

now, been on the formation of meaningful SLAs by service consumers, through which their requirements will be met. 

However, in an increasingly competitive market based on the cloud environment, service providers too need a framework that 

will form a viable SLA, predict possible SLA violations before they occur, and generate early warning alarms that flag a 

potential lack of resources. This is because when a provider and a consumer commit to an SLA, the service provider is bound 

to reserve the agreed amount of resources for the entire period of that agreement – whether the consumer uses them or not. It 

is therefore very important for cloud providers to accurately predict the likely resource usage for a particular consumer and to 

formulate an appropriate SLA before finalizing an agreement. This problem is more important for a small to medium cloud 

service provider which has limited resources that must be utilized in the best possible way to generate maximum revenue. A 

viable SLA in cloud computing is one that intelligently helps the service provider to determine the amount of resources to 

offer to a requesting consumer, and there are number of studies on SLA management in the literature. The aim of this paper 

is two-fold. First, it presents a comprehensive overview of existing state-of-the-art SLA management approaches in cloud 

computing, and their features and shortcomings in creating viable SLAs from the service provider‟s viewpoint. From a 

thorough analysis, we observe that the lack of a viable SLA management framework renders a service provider unable to 

make wise decisions in forming an SLA, which could lead to service violations and violation penalties. To fill this gap, our 

second contribution is the proposal of the Optimized Personalized Viable SLA (OPV-SLA) framework which assists a service 

provider to form a viable SLA and start managing SLA violation before an SLA is formed and executed. The framework also 

assists a service provider to make an optimal decision in service formation and allocate the appropriate amount of marginal 

resources. We demonstrate the applicability of our framework in forming viable SLAs through experiments. From the 

evaluative results, we observe that our framework helps a service provider to form viable SLAs and later to manage them to 

effectively minimize possible service violation and penalties. 

 

 

Key Words: Cloud computing, SLA monitoring, SLA management, trusted relationship, service level objectives, viable SLA 

life cycle. 
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 INTRODUCTION 1.

There are a number of definitions of cloud computing. According to the National Institute of 

Standards and Technology [1], “Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction”. Cloud computing is an emerging and popular 

new technology in parallel computing, due to the accessibility of resources to the user irrespective of 

their location, timing or platform [2]. According to Gartner Research, it is expected that US $677 

billion will be spent on cloud computing from 2013 to 2016, including $310 billion on cloud 

advertising. Business cases collected by the Open group (www.opengroup.org) show that the cloud 

computing “per-per-use” cost model decreases investment in resource planning and reduces upfront 

expense. Indeed, cloud users feel liberated from the burden of managing IT resources and free of the 

fear of running out of them.  

 

As cloud services are accessed remotely, however, cloud users are disappointed when a cloud-based 

computation does not scale as they expect [3]. Cloud service providers can be of two types. The first 

type is a large-scale enterprise level service provider such as Amazon or Azure, and the second is a 

small to medium (SME) service provider. Large-scale enterprise level service providers have 

abundant resources at their disposal but SME service providers do not, hence they need to manage 

their resources well to generate maximum revenue. Service providers manage their resources by 

using a Service Level Agreement (SLA), which is a contract between a service provider and a service 

user that defines the level of service expected from the former and the commitment of the latter. A 

typical SLA describes the relationship and roles of interacting parties, the agreed standards of 

service delivery (often called Service Level Objectives or SLOs), and the obligations and penalties 

imposed on violating parties [4]. In case of non-commitment to the formed expectations, SLAs 

describe the penalties that will be imposed on both signatories to the SLA. The seminal paper [5] 

describes the three means by which the analysis of non-commitment to SLAs is carried out: by an 

unbiased, mutually agreed third party; by trusted SLA management on the provider side; and by 

trusted SLA management on the consumer side. Irrespective of the approach used, most techniques 

for the detection of possible SLA violation initiate their detection process after the SLA has been 

established. For efficient SLA violation management, especially from the viewpoint of an SME 

service provider, we argue that the SLA management process should start at the time of SLA 

negotiation, not when the SLA is established. This is common practice in many business domains, 

such as finance, where only those service contracts (the counterparts of SLAs) which are likely to 

lead to a positive outcome are permitted to proceed. They are continuously monitored, even at the 

pre-establishment stage, and preventive actions are taken to ensure their successful outcome [6]. 

This concept is much rarer in IT contracts, where SLAs tend to involve limited negotiation by both 

parties. However, when being considered from the perspective of an SME cloud service provider, SLA 

management needs careful planning not only at the execution stage but also at the formation stage 

to protect cloud providers from:  

(a) committing their limited marginal resources to service users who may not use them, as a result 

of which the provider will not receive a financial return. Marginal resources are those extra 

resources that are kept in reserve by the users and used in the case of an increase in business 

demands;  

(b) defaulting on their obligations when many users ask to have their SLOs met at the same time.  

While these problems may not affect a high scale cloud service provider such as Amazon or Azure, 

they have serious implications for an SME cloud service provider who has limited resources with 

which to generate and maximize its revenue. In this paper, we formalize this problem and present a 

survey of SLA management approaches in cloud computing from an SME cloud service provider‟s 

perspective, discussing the advantages and shortcomings of each approach. We then propose the 

Optimized Personalized Viable SLA (OPV-SLA) framework which helps SME providers to make 

optimal decisions in service formation and management.  
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The rest of the paper is organized as follows. Section 2 describes a viable SLA life cycle from the 

provider‟s perspective. Section 3 presents a classification of SLA management approaches along with 

their features, issues and operational methods. In Sections 4 to 6, we present our survey of SLA 

management approaches. Section 7 offers a critical evaluation of the existing literature and 

highlights the research gaps that need to be investigated further to form and manage viable SLAs 

from an SME provider‟s perspective. Section 8 presents a brief overview of our proposed OPV-SLA 

framework, which addresses the identified research gaps. In Section 9, we evaluate the OPV-SLA 

framework. Section 10 concludes the paper and discusses future directions for research. 

 SLA LIFECYCLE FOR SLA MANAGEMENT FROM THE SME CLOUD SERVICE PERSPECTIVE 2.

The management of SLAs is an intricate process comprising many different activities that broadly 

form the SLA lifecycle. A basic SLA life cycle described in [7] consists of three phases, namely the 

creation phase, the operation phase and the removal phase. In the creation phase, the consumer 

subscribing to the services formally signs the contract with a provider. The provider grants access to 

the services and reserves resources as required. The second phase is the operation phase in which 

the consumer can access the read-only SLA but can also change certain parameters which may affect 

the charge for services. The third phase is the removal phase in which the consumer‟s configuration 

is removed following the completion of the services, and all reserved resources are released. 

Although the proposed SLA life cycle covers the three main functions of SLA management, it omits 

many factors, such as negotiation in the formation of the SLA, penalty enforcement, etc. A more 

thorough SLA life cycle is described in [8] which also comprises three phases: creation, operation and 

removal. In the creation phase, consumers first search for a suitable service provider that offers all 

the services they require. Consumer and provider define an SLA that contains service definitions, 

service objectives, SLA parameters and violation penalties. Once the SLA is agreed upon, the 

operation phase begins, in which real-time performance is monitored against agreed benchmarks. 

The SLA is terminated in the removal phase on completion of the service or in the event of violation; 

in the latter case, penalties are enforced. Building on this notion, [9] defines cloud SLA management 

as being composed of two phases, namely pre-interaction and post-interaction, as shown in Figure 1. 

Pre-interaction is the time phase from T-1 to T-m and includes all steps taken prior to establishing 

the SLA. The SLA is established at time T, when the post-interaction phase starts. The post-

interaction phase from time T+1 to T+n includes all the steps taken after the SLA has been 

established, such as service monitoring, violation prediction and penalty enforcement for the 

management of the SLA.  

 

Most studies in the literature focus on SLA management to detect possible violations in the post-

interaction time phase once the SLA has been established, i.e. from time T in Figure 1. To take a 

proactive approach rather than a reactive one, as mentioned in Section 1, the process of SLA 

management should start even before the SLA is established, i.e. from time T-m. This extended 

timeframe enables the service provider to observe the past commitment and/or behavior of a cloud 

consumer and subsequently design by negotiation a viable SLA which has a high chance of success. 

  
Figure 1: Pre-interaction and post-interaction time phases in SLA 
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A limited number of works in the literature, for example [10], have considered this problem from the 

provider‟s perspective prior to the establishment of an SLA, and have proposed a mechanism for the 

cloud provider to adaptively control SLA negotiation by taking the provider‟s resource status into 

consideration. Other researchers [11-16] have proposed different SLA negotiation models such as 

strategic SLA negotiation, automated SLA negotiation, multi-attribute negotiation, Markovian 

Arrival Process and Sandpiper, all of which assist cloud stakeholders to form SLAs [17]. However, 

none of these approaches consider the reliability of cloud users in committing to the SLAs formed 

during the negotiation phase, hence a stakeholder‟s decision can only be based on the ability of the 

cloud service provider to commit to the requested resources, which does not guarantee the reciprocal 

adherence of service users to the terms of the SLAs. As mentioned in Section 1, although these 

problems may not affect high scale cloud service providers, they have serious implications for SME 

cloud service providers who have limited marginal resources which they are required to manage 

properly to generate and maximize revenue. This requires an additional series of steps in the SLA 

lifecycle to be carried out in conjunction with those mentioned above and shown in Figure 2. 

 

1. Resource/service request received from consumer: The consumer requests service and/or 

resource requirements in a formal manner. Parameters accompanying the request include type, 

quantity, duration and importance. 

  

2. Determination of resource allocation criteria: When a provider receives a request from a 

consumer, the provider, unbeknownst to the consumer, uses intelligent algorithms to 

determine the trust value of the requesting consumer as well as the time for which the 

resources are requested. These criteria play a crucial role in determining whether partial or 

full resources should be allocated to the consumer during negotiation.  

 

3. Analysis of request based on the resource allocation criteria determination: In this step, the 

provider compares the criteria established for the consumer against its defined threshold 

values.  

 

4. Decision made by provider to accept, reject or negotiate: Depending on the determination of 

criteria, the provider may decide to: 

a. accept the request as is; 

b. provisionally accept the request but negotiate to formalize the amount of resources to be 

offered; or 

c. reject the service request, particularly if the resource allocation criteria indicate that the 

consumer is likely to violate the service agreement. 

 

5. Formulation of SLA: Following the negotiation and re-negotiation steps, both parties come to a 

mutual agreement and an SLA is formed.   

 

6. Threshold formation: Once the interaction with the provider and user has commenced, the 

service provider forms a customized threshold to warn of early possible service violations 

based on the agreed thresholds in the SLA, 

  

7. Runtime Quality of Service (QoS) monitoring and QoS prediction: In this step, the QoS 

parameters for future intervals are predicted and monitored against the runtime QoS 

parameters. If there is a variation between the predicted QoS parameters and the observed 

QoS parameters, the risk management module is invoked to immediately take the necessary 

actions for SLA management. 

 

8. Risk of SLA violation: Identifying the risk of possible SLA violation, estimating the severity of 

a risk, and calculating ways to mitigate such a risk.  
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The above-mentioned steps in the SLA lifecycle are explained in Table 1, which outlines and 

classifies the steps involved in each phase of SLA management from an SME provider‟s perspective. 

As large-scale cloud service providers such as Amazon and Azure have abundant resources at their 

disposal, the above series of steps for consumer vetting while SLA formation as mentioned in Table 1 

have no relevance for them, thus they start from step five of Table 1, that is, form SLAs. However, 

this series of steps is extremely important from the viewpoint of an SME cloud service provider with 

limited resources in avoiding SLA violations. The term “SLA violation” refers to any failure to fulfill 

the service contract [17, 18]. As defined by [5], there are three types of SLA violation: “All or nothing 

provisioning” in which transactions are successful only when all SLOs are satisfied, “partial 

provisioning” in which transactions are successful when certain compulsory SLOs are satisfied, and 

“weighted partial provisioning” in which transactions are successful as a result of delivering those 

SLOs whose weight is greater than the threshold defined in the SLA. 

 
Figure 2: Viable SLA life cycle from an SME provider’s perspective 
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Table 1: Phases of SLA management from an SME provider’s perspective 

 
Pre-interaction phase Post-interaction phase 

1. Expression and classification of 

consumer‟s requirements in a formal 

manner: 

 Service/resource requirement 

 Duration of service/resource 

 Prioritization of components 

 Amount of resource/service required 

2. Determination of resource allocation 

criteria by provider. 

3. Provider determines to accept / reject / 

negotiate consumer‟s request. 

4. Provider determines the capacity of 

resource/service offered to consumer. 

5. Form SLAs. 

6. Provider determines the threshold 

value for resource usage. 

7. Real-time monitoring of consumer‟s 

behavior. 

8. Comparison between real-time 

performance and expected 

performance. 

9. Generation of an early warning to 

alert cloud provider to avoid possible 

service violation. 

10. Identify, estimate and manage the risk 

of possible SLA violation by generating 

recommendation. 

11. Update trust value of consumer on 

completion of the SLA agreement for 

formation of future SLAs. 

 

The literature on SLA management proposes various approaches to detect possible SLA violations of 

these three types, which we discuss in the next section and critically evaluate from the perspective of 

SME cloud service providers. 

 CLASSIFICATION OF SLA MANAGEMENT APPROACHES TO DETECT POSSIBLE SLA VIOLATION 3.

 

The management of SLAs involves many activities, of which monitoring is an essential element as it 

is a prerequisite for contract governance. Monitoring the difference between the agreed SLOs and 

the value delivered during runtime performance will lead to the detection of possible service 

violations. The literature presents various approaches for detecting possible SLA violations [19-22], 

however the subject of analysis in these approaches varies, thereby also varying their classification 

of SLA management analysis. For example, some approaches focus on the consumer for detecting 

possible SLA violation [20, 23], while others focus on the provider [22, 24]. Yet others, such as [25-

27], consider the problem of SLA management as an optimization problem in which consumer 

satisfaction is increased by ensuring the provisioning of promised QoS and increasing the revenue of 

the provider. The authors in [28] categorize SLA violation management into two classes - SLA 

management for cloud and SLA management for cloud-hosted big data analytic applications. They 

mainly focus on monitoring the single layer while optimizing services by considering QoS parameters.  

 

Our focus for SLA management in this paper is on the perspective of forming viable SLAs first and 

later managing them, and we therefore categorize the existing approaches according to the following 

three classes: Self-manageable Case Based Reasoning (CBR) approach, Trust model-based approach, 
and Proactive SLA management approach, as shown in Figure 3. These classifications are based on 

the functionality, working attributes and methodology employed to manage SLAs. After analyzing 

the existing approaches for SLA management from these categories, we identify the requirements for 

SLA management from the perspective of small and medium cloud providers. 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
 

 
Figure 3: Classification of SLA management approaches in cloud computing 

 

Below, we examine these classes in more detail: 

1. Self-manageable Case Based Reasoning (CBR) approaches 

CBR approaches are techniques that use self-manageable case-based reasoning to manage SLAs 

when a variation between the agreed behavior and runtime behavior is detected [21, 24, 29-34]. 

These approaches use previous knowledge to find solutions for managing future SLA violations. 

Some of these approaches use a hierarchical self-healing approach [31] which detects violations 

and manages the SLA in a hierarchical way. The hierarchical system tries to prevent violations 

by reacting autonomously before notifying the end user. Approaches in this class are discussed 

in Section 4. 

2. Trust model-based approaches 

This class incorporates techniques that use trust or reputation to manage SLAs. Reputation, or 

trustworthiness, is a key element in SLA management as it assists in the selection of a reliable 

service provider [14] [35]. The literature proposes techniques with which a consumer can score 

the reliability of a provider [14, 36-38] using approaches like the IP-based method [39], adaptive 

credibility model [40] and trust management model [36]. Approaches in this class are discussed 

in Section 5. 

3. Proactive SLA management approaches  

These approaches to SLA management are techniques whereby the likelihood of SLA violation is 

predicted before violations occur, and the service provider is alerted to take all necessary actions 

to avoid such violations. Authors in this category use a variety of SLA monitoring approaches 

[15, 16, 23, 41-43] to predict likely SLO violations and to issue early warning to a cloud provider 

for remedial action. Approaches in this class are discussed in Section 6. 

 

Using these classes, we present a comprehensive survey of the approaches for SLA management in 

relation to making viable SLAs. We discuss SLA management from the point of view of different 

stakeholders and present related concepts in an articulated manner that help to identify the 

individuality of the various approaches along with their features and shortcomings. In Sections 4-6, 

we discuss the techniques presented in the literature according to each type of approach for SLA 

management. 

 SELF-MANAGEABLE CASE-BASED REASONING APPROACH 4.

The case-based reasoning (CBR) approach is a problem solving method in which new problems are 

solved based on the solution of previous similar problems [44]. This method has been widely used for 

decision making in a variety of dynamically changing complex and unstructured problems [45]. 

However, there are certain drawbacks to the CBR approach, such as adaptation, processing time and 
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storage. The CBR approach produces reasonable solutions but it does not provide the optimal 

solution [46]. The CBR approach has been used in SLA management to identify the likelihood of SLA 

violation, and authors have used previous solutions to take early remedial action. Many techniques 

in the literature utilize this approach to quantify the degree of fulfillment of SLOs for SLA 

management. Some of these techniques are detailed below, and a summary of the various techniques 

is presented in Table 2.  

 LoM2HiS framework 4.1

Mapping low-level hardware resource metrics to high-level SLA parameters (LoM2HiS) is proposed 

in [24]. Mapping is either simple or complex, based on a pre-defined rule stored in a mapped metrics 

repository. In simple one-to-one mapping, low-level resource metrics are mapped directly to fulfill 

SLOs, with no further processing. In complex mapping, predefined rules are used to map resource 

metrics to SLOs. These rules define the thresholds for runtime SLA management and determine 

SLA violation. A run-time monitor accesses the repository and uses mapped metrics values to check 

service status. The values are compared against the corresponding thresholds; if a violation is 

detected, the enactor component is alerted to take preventive action. Although the system is capable 

of detecting SLA violation using this approach, there is no mechanism to show how an error can be 

rectified when a violation occurs. The authors define very few rules for converting low-level metrics 

to SLA parameters, and in the case of a violation it is a challenge for the system to find which low-

level metrics need to be checked to address the violation.  

 Detecting SLA Violation infrastructure (DeSVi) 4.2

An automatic SLA violation detection infrastructure called Detecting SLA Violation infrastructure 

(DeSVi) is proposed in [21]. DeSVi manages and predicts SLA violations using resource management. 

The architecture is made up of three components: an automatic virtual machine deployer that is 

responsible for arranging all the required resources for a requested service and organizing its 

deployment on a virtual machine; an application deployer that is responsible for executing the 

requested resource; and the LoM2HiS framework to plot hardware-level metrics against SLA 

parameters. LoM2HiS performs SLA monitoring, which is comprised of the following modules: a run-

time monitor, services, an agreed SLA repository, mapped metrics, a host monitor and infrastructure 

resources. The run-time monitoring module communicates with the consumer and the service 

provider. Monitoring starts when both parties agree on the SLA and the service provider establishes 

a mapping rule for LoM2HiS. The consumer requests services from the run-time monitoring module, 

which loads the corresponding SLAs from the SLA repository module. A monitoring agent is used to 

collect observables, compute the resource metrics and send them to the run-time monitoring module, 

which maps the low-level metrics and stores the results of the mapping in a repository module. The 

run-time monitoring module uses these mapped values to monitor service status and plot the degree 

of fulfillment of SLOs. In the case of SLA violation, the run-time monitoring module notifies a 

knowledge component to obtain an early remedy. Although LoM2HiS helps to detect a possible 

service violation, the system is unable to give a recommendation for its correction.  

 Hierarchical layered approach (LAYSI) 4.3

A hierarchical layered approach (LAYSI) to SLA management is proposed in [29]. The authors 

propose a bottom-up approach to the escalation of violations. There are two main components 

responsible for SLA violation escalation: the Knowledge Base and the SLA Manager. The knowledge 

base compares the violation threshold, which is generated according to a utility function, with the 

current system status and triggers a reactive action when it detects a violation threat. The reactive 

action is based on case-based reasoning and tries to solve the problem using past experiences. The 

system is multi-layered: when a particular layer is unable to suggest a reaction, the SLA manager is 

responsible for escalating SLA violation threats to the upper layers. The SLA manager receives 

violation notifications from the lower layer and accesses the current layer‟s knowledge base for an 

appropriate counter action. If no action is found, the upper layer is notified. Sometimes the violation 

escalation continues to the top layer, which informs the user by triggering the need for renegotiation 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 
 

or ending the service. The layered architecture assists in the better correction of errors; however 

further detail is needed that describes how each layer rectifies an error once a violation has occurred.  

 Holistic SLA validation framework  4.4

An holistic SLA validation framework is proposed in [30]. The framework combines three SLA 

management techniques: mapping low level resource metrics to a high level SLO (LoM2HiS) model 

[24], the hierarchical layer model (LAYSI) [29] and the rule-based SLA aggregation and validation 

model [47]. Once both parties have agreed on an SLA, the framework combines LoM2HiS with all 

the services that keep track of SLA violation threats. In the event of SLA violation, the framework 

follows the LAYSI model by trying to fix the problem at the current layer or by escalating it to an 

upper layer where corrective measures can be taken. When the framework detects a violation, it 

determines the reason and imposes a penalty on the service provider. Although the method imposes 

penalties on violating parties, there is no description of how the problem is rectified once it has 

occurred.   

 Cloud Application SLA Violation Detection (CASViD) framework  4.5

Cloud Application SLA Violation Detection architecture (CASViD) [31] manages SLAs at the 

application level. It comprises the provision of services, setting up services, monitoring services and 

detecting SLA violations. To detect violations, CASViD finds an effective measurement interval in 

which to identify the resource consumption of each application. Effective measurement is conducted 

by sampling time intervals and checking the applications at each interval. If the utility of the 

current time interval is greater than the previous interval, the current interval is set as an effective 

measurement interval. The process continues until the end of the interval. The monitoring agent in 

each node monitors the application and sends information to the SLA management module. The SLA 

management module accesses the database and retrieves the SLA with its violation threshold. The 

module then compares the current SLA with the predefined threat threshold to analyze future SLA 

violation threats. The threat threshold is defined manually by the provider; it indicates future SLA 

violations and the system reacts proactively to avoid these violations. Although the measurement 

interval helps in better managing an SLA, the system lacks a reaction based on previous records.  

 SLA management using Sky framework  4.6

Falasi et al. [32] proposed an architecture capable of managing multilevel maintenance and 

monitoring SLAs in a federated cloud environment. Their proposed architecture, based on the Sky 

framework, consists of a sky broker, a socialization module and a federation module that together 

adaptively implement SLAs to manage changes in a federated cloud environment. A performance 

evaluation report for each dependent SLA in a federated cloud is used to ensure that the primary 

SLA is preserved and all relevant parties are updated when changes occur. The authors describe an 

SLA life cycle which lacks the pre-SLA negotiation stage, monitoring steps or renegotiation after 

SLA violation. Moreover, the system does not alarm a service provider in the event of violation to 

arrange for necessary actions for early remedy.    

 Hierarchical self-healing of SLA (HS-SLA) 4.7

Another hierarchical self-healing SLA management framework is proposed in [33]. Each SLA is 

connected to the related layer of the cloud. The service provider in each layer of the cloud has one or 

more copies of the SLA. Each upper layer is dependent on a lower layer. Two QoS parameters, 

response time and throughput, are considered to measure the efficiency of this system. The SLA is 

monitored by the monitoring function available in each SLA. When it detects a possible violation, the 

system tries to resolve the issue by switching to other resources in that layer, but if the layer is 

unable to resolve the problem, it informs the other SLAs in the upper layer. The system tries to 

prevent violation before it affects end users; however, the approach is reactive in SLA management. 
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Furthermore, due to vendor lock-in and lack of standards in a real scenario, most cloud consumers 

face problems when they migrate from one service provider to another.  

 Fault-tolerant actor system SLA management framework 4.8

An actor system was proposed by Lu et al [48] to manage the SLA life cycle. The agent creates a 

parent and child relationship that helps to escalate an error message upward for its resolution. The 

proposed actor system is responsible for managing the entire SLA process. If a violation occurs, a 

concerned actor tries to rectify the error. If it is unable to solve the problem, it informs its immediate 

supervisor actor in the hierarchy. However, it is not mentioned how SLA management would be 

controlled if the single actor system responsible for the whole process were to crash. Moreover, there 

is no violation prediction mechanism, and in the event of service violation, the concerned layer 

promotes the violation report to the upper layers for remedial action.    

 Multi-layer monitoring 4.9

A self-adaptive SLA management mechanism is proposed in [34] which monitors SLAs on the basis 

of monitoring time intervals and parameters. The proposed mechanism manages both application 

and infrastructure layers and triggers on-the-fly reconfiguration. The management mechanism 

comprises six components that are arranged according to the three layers of a typical cloud stack. 

The Platform as a Service (PaaS) layer includes a Monitoring Framework Service (MFS) and the 

Monitoring Central Index (MCI). The MFS is responsible for monitoring applications and performs 

corrective actions in the case of violations. The MCI is a repository that stores parameter values. The 

Infrastructure Monitoring Service (IMS), which resides in the Infrastructure as a Service (IaaS) 

layer, is responsible for collecting the parameter values and sending them to the MCI. The Software 

as a Service (SaaS) layer consists of three components, the Monitoring Service Instance (MSI), the 

Monitoring Index Service (MIS) and the Data Collector (DC), which completes the process with an 

additional data-like name, value and unit of measure and publishes them in the local repository. 

Self-adaptation allows both the data collector and the infrastructure monitoring service to adjust 

resources or monitor time intervals. The IaaS monitoring layer is based on low-level information and 

related metrics; however, the authors of [36] do not describe those metrics. Self-adaptation depends 

on customized policies with the help of experts, but these policy functionalities are integrated with 

the monitoring module which does not provide flexibility or a user friendly policy enforcement 

mechanism. The approach does not provide scalability. 

 
Table 2: Self-manageable case-based reasoning approach 

SLA management 

approach 

Description of the 

approach 

Features of the 

approach 

Issues/limitations of the approach 

 

LoM2HiS framework 

[24] 

 

Converts low-level 

metrics to high-level 

SLA parameters and 

compares them with 

the threat threshold 

to predict likely 

service violation.   

 

Capable of detecting 

future SLA violation 

by comparing SLA 

objectives with the 

threat threshold 

values. 

 

When system detects 

SLA violation, it 

informs enactor 

components to take 

early remedial 

action. 

 

Automatic SLA 

management and 

enforcement. 

When a violation occurs, the 

system does not describe the error 

correction method. 

 

Only two rules are discussed for 

converting resource metrics to 

SLA parameters. 

 

In case of service violation, it is 

very difficult to state which low-

level metrics need to be checked to 

address the violation. 

  

The criteria for a threat threshold 

are not defined and the system is 

unable to prevent violation once it 

has started to occur.  
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SLA management 

approach 

Description of the 

approach 

Features of the 

approach 

Issues/limitations of the approach 

DesVi  

framework [21] 

 

Resource 

management by 

LoM2HiS, which is 

able to monitor and 

detect SLA violation.  

 

Effective SLA 

management 

interval. 

 

Flexible and reliable 

management of SLA. 

Early detection of 

SLA violation using 

a threat threshold 

value. 

Reactive action 

using the case-based 

reasoning approach. 

 

Only capable of managing a single 

cloud data center. There is a lack 

of reactive action based on the 

best measurement interval. 

 

Limitations of LoM2HiS discussed 

above.  

 

No mechanism is described to 

select an optimal measurement 

interval. 

 

The system is unable to prevent 

violation once it has started to 

occur.   

 

LAYSI  

Approach [29] 

 

 

SLA management by 

LoM2HiS.  

Bottom-up approach 

for propagation of an 

SLA violation threat. 

 

Proactive alarming. 

Violation threat of 

SLA. 

Self-manageable. 

Propagation of 

violation threat to 

layer of concern. 

 

Does not describe how a system 

rectifies an error once a violation 

has occurred. 

 

Uses the CBR approach, which 

has its own limitations. 

 

Lacks description of the basis on 

which the threat threshold for 

violation detection is defined. 

 

Limitations of LoM2HiS discussed 

above. 

 

Approach does not describe how a 

system reacts when a violation 

occurs.   

Holistic SLA validation 

approach [30] 

Combination of 

LoM2HiS, LAYSI 

and SLA aggregation 

and validation 

framework. 

 

Features of 

LoM2HiS, LAYSI. 

Consistency check 

for SLA 

penalty enforcement 

on violating party.  

 

Limitations of LoM2HiS and 

LAYSI approaches discussed 

above. 

 

Layered bottom up approach for 

violation propagation, but no 

mechanism for management by 

each layer. 

 

Limitations of CBR approach. 

  

Study focuses only on basic design 

and lacks detail on real 

implementation; system is unable 

to manage violation once it has 

started to occur.   

CASViD [31] 
 

Detects SLA 

violation based on 

threat threshold. 

 

Monitors and detects 

SLA violation at the 

application layer. 

 

Manually defined threat threshold 

by a provider. 
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SLA management 

approach 

Description of the 

approach 

Features of the 

approach 

Issues/limitations of the approach 

Manages and 

monitors the SLA at 

the application 

layer. 

Determines an 

effective 

measurement 

interval. 

Lack of reactive action based on 

previous knowledge. 

 

SLA management focuses on post-

interaction phase only. 

 

 

Sky framework model 

[32] 

Handles multilevel 

SLA management in 

a federated cloud 

environment. 

 

Management of a 

multilevel SLA. 

 

Dynamic SLA 

validation and 

deployment. 

 

SLA life cycle lacks pre-SLA 

management. 

 

No procedure defined for SLA 

management once violation has 

started to occur. 

 

Lacks negotiation and 

renegotiation following SLA 

violation. 

HS-SLA [33] Manages SLA by 

monitoring 

violations in a 

hierarchical way and 

prevents them by 

migrating to another 

provider or 

propagating the 

violation to an upper 

layer. 

 

Self-healing of SLA 

violation, which 

includes SLA 

monitoring, SLA 

violation detection 

and all necessary 

actions to rectify a 

violation. 

Follows a layered 

hierarchical pattern 

for violation 

propagation and 

prevention. 

 

System reacts once a violation 

occurs, but there is no mechanism 

to predict violation in advance. 

 

Migrates to other service 

providers, which itself has many 

issues and is not a wise suggestion 

for a consumer.   

 

Does not describe actions to be 

taken when violation occurs. 

 

Fault-tolerant actor 

system [48] 

Actor system 

automatically 

manages the 

complete SLA life 

cycle, following a 

hierarchical 

structure for fault-

tolerant, effective 

and efficient SLA 

management. 

Actor system 

accomplishes better 

SLA management. 

 

Follows a layered 

hierarchical 

structure for fault-

tolerant SLA 

management 

structure and in case 

of service violation, 

propagates the 

violation to an upper 

layer for a possible 

solution. 

 

No prediction of SLA violation; 

remedial action is performed when 

a violation occurs. 

 

Complete SLA system depends on 

a single actor system, but there is 

no explanation of how SLA 

management works if problems 

arise with the actor system. 

 

Authors do not describe the 

necessary action to be taken by 

the system to avoid SLA 

violations.  

 

 

Multilayer monitoring 

[34] 

Aggregates the QoS 

from the application 

and infrastructure 

layer in the platform 

layer.  

Measures QoS 

parameters at 

infrastructure and 

application levels. 

 

Self-configures the 

monitoring time 

interval and 

monitoring 

No information about low-level 

metrics. 

Policy functionalities are 

integrated within the monitoring 

module and lack a convenient 

policy imposition system.  

 

It is necessary to enhance the 

scalability performance of the 
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SLA management 

approach 

Description of the 

approach 

Features of the 

approach 

Issues/limitations of the approach 

parameter. 

 

Runtime 

adaptability of 

resource 

provisioning, 

estimation and 

decision. 

 

SLA management is 

done at each layer. 

system using a load balancing 

method.  

 

 TRUST MODEL-BASED APPROACH FOR SLA MANAGEMENT 5.

Establishing and maintaining trust relationships in cloud computing is a great challenge because of 

the large number of service providers and consumers. Trust in the provider, trust representation, 

and the criteria for trust calculations are only three of the issues that concern consumers. Trust has 

a life cycle that includes establishment, maintenance and termination. Fachrunnisa and Hussain [49] 

proposed a proactive performance management mechanism for trust maintenance by introducing 

third party agents and trust-level metric recalibrations. The third party agent is responsible for SLA 

administration and performance management, and compares the actual behavior with the agreed 

behavior defined in the SLA. Both parties recalibrate their trust to calculate the final trust level. 

Trust can be calculated either in monetary form or in reputation form. Reputation is based on the 

reliability of a service provider, and consumers score providers on each successful or unsuccessful 

transaction. If consumers give good feedback on every successful transaction, this will result in a 

high reputation value for the provider; the converse will be true for unsuccessful transactions. This 

scoring method allows false, biased and unreliable feedback to skew the results, which can impact 

the reputation of the provider [36]. Wang et al. [39] speculated that transaction validity could be 

verified by analyzing the IP addresses of consumers. They proposed an iteration monitoring 

mechanism and IP monitoring mechanism to collect and record the IP addresses of service providers 

and consumers and make an analysis based on the IP region, the IP record and the transaction 

validity. The system cancels multiple feedback from the same IP region, thus differentiating between 

the biased feedback and the true consumer feedback. Nevertheless, the study does not describe how 

the system will function if multiple consumers from the same region and the same organization 

provide genuine feedback. In [50], the authors propose that trust between a provider and a consumer 

can be maintained by managing trust from the consumer-side and the provider-side. A trusted third 

party monitors communication between consumers and providers; however, it cannot determine the 

internal state of either consumer or provider. The provider-side trust model has access to the 

internal state of the provider and can take measures to avoid violations. Many techniques in the 

literature utilize trust as an approach for SLA management, some of which are detailed below and 

summarized in Table 3.  

 Adaptive credibility model 5.1

Noor and Sheng [40] proposed an adaptive credibility model offering trust as a service which 

differentiates between the credible and biased feedback of consumers by using consumer capability 

and majority consensus. It considers unanimous feedback and measures whether a specific score is 

close to the majority of the feedback. The proposed framework has two components – a credibility 
module and a distributed trust feedback assessment and storage module. The first module is 

responsible for distinguishing between true and biased feedback by considering the majority 

consensus feedback and the second module stores the feedback assessment in a distributive way. The 

proposed framework is comprised of three layers that use service oriented architecture to offer trust 
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as a service. The authors attempted to address the issue of differentiating between true and biased 

feedback, but the model is only feasible for a service provider that has provided services for a long 

time and has enough previous feedback to satisfy the majority consensus. The authors did not 

describe how much feedback constitutes a majority consensus, nor how to manage the situation if a 

group of consumers deliberately give false feedback and target a specific service provider. The 

proposed model is suitable for consumers who have a previous history of service usage and feedback. 

The feedback of new consumers who have just started using a service has lower impact, whether or 

not these consumers give true feedback. There is no mechanism for bootstrapping new consumers. 

 Reliability-based trust management model 5.2

Fan and Perros [36] proposed a trust management model that filters feedback according to two 

factors, familiarity and consistency. These factors are calculated from the trust feedback value of the 

consumer and the duration of the services used. The two factors are multiplied together to calculate 

the trust feedback of consumers. The proposed trust management system is divided into two sections 

– provider and consumer. The provider section concerns the connection of a consumer with a 

provider domain, and the consumer section concerns the collection of cloud service information. The 

framework allows consumer and provider to establish a trusted relationship for service selection and 

classification. The authors proposed a trust value range from 1 to 5, and only consumers whose 

reliability factor exceeds a pre-defined threshold, determined by service usage history over a set 

period, are able to assess providers. The assessment of consumers who have not used services for a 

long time is not reliable, although the authors did not specify a timeframe. No bootstrapping 

mechanism is defined for consumers who have just subscribed to services or have no previous record, 

and no mechanism is defined for threshold formation and consumer comparison. The authors did not 

justify their selection of two parameters for decision-making, and there are many unconsidered 

parameters that could significantly improve results. 

 Trust mining model 5.3

Marudhadevi et al. [51] proposed a trust mining model that calculates the degree of trust based on 

the subjective and objective rating of consumers. The model calculates a trust value according to 

such attributes as the number of successful and unsuccessful responses, average response time, and 

the number of complaints from consumers. The system considers the consumer feedback for each 

service. The model helps consumers to select trustworthy cloud services and acts as a decision 

system for determining whether to continue with the same provider or to switch to another provider. 

The model also assists the service provider to monitor the services offered, which can help to sustain 

a trusted association with a consumer. Rough set and Bayesian inference are used to generate the 

prediction results. The proposed approach calculates trust at two levels. At the first level, the system 

uses existing data about a provider and calculates its trust value. Once a transaction has been 

completed, the consumer provides feedback, based on which the second level of trust is calculated 

using the Bayesian inference theorem. The consumer decides whether or not to continue based on 

the trust value determined at levels one and two. The approach is reactive and calculates a trust 

value when a provider violates its commitment; moreover, the authors do not describe how to alert 

the service provider to cases of service degradation. There is no procedure for SLA violation and no 

penalty enforcement is defined.     

 Dynamic trust calculation method using Markov Chains 5.4

Chandrasekar et al. [37] presented an effective SLA management and QoS monitoring technique to 

monitor trust in a provider. A provider's service profile should be based on both its present and past 

services, thus it is necessary to extract QoS information from previous SLAs. The authors proposed a 

dynamic trust calculation method based on Markov Chains. They assigned different weights to QoS 

parameters based on their importance and calculated their cost by multiplying the assigned weights 

by the difference between the actual value and the expected value. The cost is calculated regularly, 

as a result of which the Markov chain may be in one of three states: steady state, unsteady state, or 

failure state. The trust value is computed at regular intervals. When a provider reaches maximum 
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trust, any extra trust is banked as a surplus to be used when there is a failure to maintain the 

maximum trust value. The authors proposed a 50% trust value for untrusted providers, but they 

were unable to describe how the system should handle a provider with poor trust value who starts a 

business with new details. Moreover, the authors focussed only on the bandwidth required to 

transmit QoS by analysis through the Markov Chain model, without comparing other models. 

 SLA-based trust model 5.5

Alhamad, Dillon and Chang [38] proposed an SLA-based trust model to assist cloud consumers to 

select the most suitable cloud provider based on trustworthiness value. Their proposed model 

comprises the components of the SLA agent, a cloud consumer module, a cloud service directory and 

a cloud provider module. Each of these components performs different functions which combine to 

form the trust model. The authors proposed a common directory in which all cloud providers register 

their details, which helps consumers to find a suitable provider. They defined a set of SLA metrics 

for each cloud layer and used them with the trust value to calculate the suitability of the provider; 

however, no method for choosing the parameters was described. There are a number of parameters 

which, if considered, could help a consumer to choose an appropriate service provider more 

effectively. The study lacks a description of the process of forming an SLA agreement and 

negotiation, which is very important for a cloud consumer. Additionally, the paper proposes a 

concept without describing the criteria and methodology, and lacks a method of evaluation and 

implementation for calculating a trust value. 

 Cloud service registry and discovery model 5.6

Trust, privacy and security are three factors that hinder adaptation in cloud computing. Muchahari 

and Sinha [2] proposed a trust management architecture called the cloud service registry and 
discovery (CSRD) model which acts as a monitoring agent between the consumer and the provider. 

The framework is comprised of three modules: a registry module, trust calculating module, and 

dynamic trust monitoring module. The registry module registers service providers and service 

consumers, and lists them based on their trust values. The trust calculating module calculates the 

trust value of a provider by considering the feedback of credible consumers and credible cloud service 

providers. The feedback depends on the QoS parameters and SLA. Consumer credibility is the 

product of the total number of services consumed and their duration. Provider credibility is 

calculated based on service duration and the total number of services offered. The feedback of all 

consumers and providers that have a credibility value higher than the mean of the total calculated 

credibility value is considered to be reliable feedback, although the mean credibility value can be 

biased and the feedback of new consumers or providers is not considered at all. The approach 

calculates trust dynamically using standard deviation of duration, which is considered to be 

inversely proportional to trust. The proposed approach is suitable for systems that have existing 

records of consumers and providers, but in a real scenario, there are many factors that can influence 

the feedback of others for one provider. The criteria for credibility are not defined. The approach is 

based on a conceptual framework and has no validation or implementation.  

 Trust and risk assessment model 5.7

Hammadi and Hussain [35] proposed a risk and reputation assessment framework for third party 

cloud service providers that uses two inputs to help cloud consumers in the decision making process 

for the continuation or recomposition of services, namely, the trust of the provider and the risk of 

service level degradation. The proposed framework has three layers. A third party defines the time 

for QoS assessment and then divides the period into pre- and post-interaction phases. The selection 

of a provider is dependent on user recommendations. Credible users receive a reputation request 

from a third party and reply with a trust value based on the provider‟s previous record stored in the 

information repository. However, the authors do not describe how to calculate the credibility of 

consumers and how to deal with biased feedback and genuine consumer feedback. The authors 
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proposed a fuzzy logic approach in which three inputs are considered: a credibility value, a time 

delay value, and a recommendation opinion. The third-party SLA monitoring component aggregates 

all the reputation values from all recommending users and calculates the final reputation value of 

the service provider. It also accesses the run-time SLA parameter and compares it with the threshold 

to identify the probability of failure. However, the literature does not describe the threshold 

parameters and the issues that might arise during migration to other cloud providers. 

 
Table 3: Trust model-based approach 

SLA management 

approach 

Description of the 

approach 

Features of the approach Issues/limitations of the 

approach 

Adaptive credibility 

model [40] 
 

Model offers trust as a 

service by considering 

consumer‟s capability 

and majority consensus 

to distinguish between 

true and biased 

feedback.  

 

Offers trust as a service 

which helps service 

provider to distinguish 

between true and biased 

feedback. 

Proposed model offers 

distributed feedback 

management to avoid the 

hurdles of a centralized 

system.  

Feedback of an 

experienced consumer has 

higher value than 

feedback of other 

consumers.  

 

The number of consumers 

that combine to form a 

majority is not described. If a 

certain number of consumers 

target a single provider, the 

system cannot handle 

problems. 

  

The authors consider only two 

factors for measuring 

reliability of feedback.  

 

Proposed framework is 

suitable for existing 

consumers, but there is no 

mechanism to bootstrap new 

consumers. 

  

Reliability-based 

trust management 

model [36] 

Trust management 

framework considers 

the familiarity and 

consistency of 

consumers and 

differentiates between 

true and biased 

feedback. 

Differentiates between 

true consumer feedback 

and biased consumer 

feedback. 

System assists new 

consumers to select an 

appropriate service 

provider. 

Timeframe for determining 

the recent past and distant 

past is not defined. 

No mechanism defined for 

bootstrapping new consumers. 

The comparison threshold is 

not defined. 

 

Trust mining model 

[51] 

Model assists cloud 

consumers to choose a 

reliable service provider 

during the negotiation 

phase. This approach 

uses Rough set and 

Bayesian inference to 

calculate trust.  

Calculates trust at two 

levels, before an 

agreement is signed and 

during a transaction.  

Approach guarantees the 

services the consumer 

expects and allows the 

provider to monitor 

performance. 

 

Framework suggests 

whether a consumer 

should keep using services 

or switch to another 

provider. 

Reactive SLA management 

approach. 

 

No mechanism to show how a 

provider can mitigate 

violation. 

 

Approach does not describe 

violation penalties and the 

procedure for their 

enforcement.   

 

Switching from one provider 

to another has many issues, 

such as data integrity and its 

compatibility. 

Markov Chain 

model [37] 

Trust in the service 

provider can be 

determined by 

Effective monitoring 

technique using state 

monitoring and derived 

Providers with low reputation 

can start business with 

different details and will be 
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SLA management 

approach 

Description of the 

approach 

Features of the approach Issues/limitations of the 

approach 

 employing a state 

monitoring approach 

and establishing 

dynamic trust using the 

Markov Chain Model 

monitoring techniques. 

 

Dynamic trust 

calculations based on 

deviation from the actual 

value. 

 

Trust is represented by 

numeric value, which is 

added or subtracted 

according to performance 

behavior.  

able to obtain 50% trust 

value. 

 

Approach was tested using 

only Markov Chain without 

comparison with other 

methods.  

 

No method is proposed to 

handle situation if a system 

detects deviation from agreed 

and monitored QoS . 

SLA-based trust 

model [38] 

SLA-based trust model 

helps cloud consumers 

to select reliable cloud 

provider based on 

trustworthiness values. 

Trust model helps 

consumer to select reliable 

cloud provider. 

Framework determines 

the responsible party in 

case of service violation 

and determines violation 

penalties. Credibility 

metrics define the 

trustworthiness of the 

provider. 

Framework lacks the process 

of negotiation and SLA 

formation. 

Management of the service 

directory is not defined. 

Cannot differentiate between 

true and biased feedback to 

calculate provider‟s trust 

value. 

CSRD model [2] Framework calculates 

the trust value of each 

provider based on 

credible feedback from 

consumers and 

providers. It keeps 

track of the dynamic 

trust value with respect 

to time and 

transactions. 

CSRD and dynamic trust 

overcomes security, 

privacy and trust 

problems for the 

adaptation of the cloud. 

Trust of provider and 

consumer is calculated 

and updated dynamically. 

Model does not support third 

party providers, which are 

generally needed in many 

real-time applications. 

Considering provider‟s 

feedback for another provider 

has many issues. 

Approach is applicable for 

existing providers and 

consumers.  

Credibility criteria are not 

defined. 

Approach operates on an 

abstract level without 

implementation and 

evaluation.  

Trust and risk 

assessment [35] 

Selects reliable cloud 

providers based on 

their reputation value 

and monitors runtime 

performance as defined 

in the SLA.  

Framework enables a 

consumer to select an 

appropriate cloud service 

provider.  

Framework provides real 

time assessment for SLA 

monitoring. 

 

QoS assessment in both 

pre-interaction and post-

No methodology defined for 

calculating credibility of 

consumer. 

No distinction between true 

and biased feedback. 

Parameters of the threshold 

are not defined. 

Issue of vendor lock-in when 

migrating to other cloud 

providers. 
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SLA management 

approach 

Description of the 

approach 

Features of the approach Issues/limitations of the 

approach 

interaction time phases. 

 

 PROACTIVE SLA MANAGEMENT APPROACHES 6.

A significant amount of research has been conducted on proactive and reactive SLA management in 

cloud computing [32, 37, 50]. In proactive SLA management, the system detects a possible SLA 

violation before it occurs and performs all necessary action to avoid actual violation. In reactive SLA 

management, the system monitors the SLA at runtime only. Predicting a possible SLA violation 

requires proactive SLA management to identify any discrepancies between parties and apply all 

necessary actions to achieve a possible remedy before the parties are affected. Proactive 

management approaches can be self-monitoring, self-healing, use a case-based reasoning approach, 

predict a violation based on QoS parameters, or use mathematical approaches. Several proactive 

SLA management approaches are described in the following sub-section and a summary is presented 

in Table 4. 

 SLA violation prediction by QoS prediction 6.1

An SLA, as discussed earlier, is composed of one of more than one SLO. Each SLO may consist of one 

or many QoS measurements. For example, throughput is one SLO defined in an SLA which is 

dependent on multiple components, each of which has a QoS throughput measurement. The 

prediction of QoS parameters plays a key role in avoiding SLA violation in the SLA management 

framework. A provider that predicts a difference between the agreed and actual QoS parameters 

takes all necessary actions to manage an SLA. Below are a number of approaches that use QoS 

prediction to manage SLAs in cloud.   

6.1.1 QoS prediction by CloudPred 

A neighborhood-based collaborative approach was proposed in [52]. The authors presented the idea 

of sharing local cloud component usage with all users to calculate global usage. Using QoS data from 

a nearest neighbor and applying both user-based and item-based collaborative filtering approaches, 

they were able to predict the QoS for a particular user. First, they collected QoS data using the 

concept of user-collaboration, in which all users send their previous web service QoS data to a 

central repository. Users with similar QoS data are then grouped using Pearson‟s Correlation 

Coefficient. The significance weighting of the top N users reduces the influence of less similar users. 

Once similar users have been identified, the QoS values are predicted, using user-based and item-

based collaborative filtering methods. The approach is based on the assumption that consumers have 

used the same QoS parameters for the same services in the past, but in reality, this may not be so. 

Moreover, the study did not cover the criteria for monitoring and prediction intervals, both of which 

are very important in the decision-making process. 

6.1.2 QoS monitoring as a service (QoS-MONaaS) 

Offering QoS monitoring as a service to cloud consumers was proposed in [42, 53]. The proposed 

model monitors the performance of cloud providers using a stream processing framework for quick 

and timely responses. The framework operates on an SRT-15 platform [54] that has a two-tier 

architecture: a business logic tier and a data tier. The business logic tier is composed of two modules, 

QoS monitoring and QoS checking. The QoS monitoring module controls the monitoring process, 

manages the database scheme,  and parses and adds a timestamp for the digital signature. The QoS 

checking module is responsible for executing the monitoring algorithm, which oversees all QoS 

parameters, and for notifying the QoS manager in the event of violation, so that the pool of QoS 

detectors, which uses a monitoring algorithm to parse the input with reference to defined ontologies, 

can be managed. The authors make no mention of how the prediction algorithm predicts the QoS 

parameters, and the prediction intervals are not defined. In addition, the authors do not describe the 
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actions performed by the consumer or the provider. The approach works only if a cloud consumer and 

cloud provider are using the SRT-15 platform.       

 Workflow SLA Violation Detective Control Model (WSVDC) 6.2

The Workflow SLA Violation Detective Control Model (WSVDC) is proposed in [55]. The authors 

consider a utility function that measures the level of satisfaction and give control charts for each 

SLA. Performance is measured against four QoS parameters: response time, cost, reputation and 

reliability. The Western Electric rule is used to manage service behavior and detect service violation. 

In Statistical Process Control, the Western Electric Rules are decision rules for detecting "out-of-

control" or non-random conditions on control charts. Observables that lie outside control limits 

(typically at ±3 standard deviations) attract the attention of the monitor to the service as they may 

predict future violations. The approach does not describe how the control charts and control rules are 

formed, nor how an optimal monitoring mechanism is guaranteed. The study only considers four 

SLA variables, whereas in reality there are many other attributes which cannot be ignored. 

Moreover, the study does not describe the reputation and reliability calculation mechanism.    

 RaaS-based Early Warning Framework 6.3

A Risk Assessment as a Service-based early warning framework was proposed in [23]. The 

framework detects future violations of SLAs based on SLO parameters or performance metrics. The 

authors‟ approach assists consumers to control deviations in performance and helps them to avoid 

violations before they occur. The framework comprises a number of modules. The early warning 

system monitors the difference between actual performance and predicts performance over a period 

of time. Depending on the difference between performance and the potential risk to the user, the 

system may suggest migrating the service. Autoregressive integrated moving average (ARIMA) and 

exponential smoothing methods are used to forecast the quality of cloud services. The QoS SLA 

violation detector determines the deviation between the QoS expected curve (QEC) and the QoS 

observed curve (QoC). To predict future violations, the previous QEC value is sampled into a 

different time interval, based on the assumption that future behavior can be predicted by observing 

a previous pattern of behavior. The risk propensity of all users is determined by three attitudes, i.e. 

risk averse, risk neutral and risk taking. Recommendations to discontinue a service are dependent 

on the output of the fuzzy inference system. The decision-making module checks the direction of a 

deviation between the observed QoS value and the expected QoS. An output value of 1 shows that 

the service is acceptable to the user, whereas a value of 0 shows that it is not. Although the approach 

covers both pre- and post-interaction phases, it lacks a mechanism for SLA negotiation and the 

formation of viable SLAs that guarantee the QoS parameters and appropriate actions for the 

avoidance and mitigation of violations. Migration to another service provider raises issues such as 

vendor lock-in and data compatibility. 

 SLA violation prevention by cross-layer adaptation 6.4

Schmieders et al. [56] proposed a cross-layer adaptation to manage SLA and prevent SLA violation 

of service-based applications. Service management is performed by a Service Level Agreement 

Monitor (SALMon) which compares the retrieved QoS with the expected QoS value in service-based 

applications. If a violation is detected, the SALMon sends a notification to the Specification and 

Assumption-based Detection (SPADE) module. This notification contains the assumption for the 

violation and the violating value. SPADE checks the requirements. If the requirements are not 

satisfied, the service-based application adapts to avoid delays. If the requirements are fulfilled, the 

Adaptation Strategy Engine (ASE) module is activated. Within the ASE module, each agent gathers 

information and negotiates the decision to adapt with the others. When the system detects a 

violation, a related Process Agent is activated to choose an adaptation strategy. These adaptations 

include service replacement, SLA re-negotiation or service infrastructure adaptation. The adaptation 
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strategies are very limited and there is no guarantee that a suitable service replacement adaptation 

will be found every time.   

 Machine learning regression technique 6.5

Runtime SLA violation prediction, based on a regression model using existing data, was proposed in 

[57]. This approach predicts a likely violation before an actual violation takes place based on 

previous QoS data for each SLO. Prediction can be conducted at multiple checkpoints. At each 

checkpoint, there may be one of three types of information:  

 fact data: data which are known at the checkpoint. These data are used as the input for 

determining unknown data. 

 unknown data: data which are not known at the time of prediction. It is necessary to know all 

related data to achieve accurate prediction results. 

 estimate data: estimate data are all those data which are not available at the time of prediction 

but which can be estimated. The checkpoint predictor module uses the fact data to approximate a 

numerical value for each SLO using a machine learning technique, such as regression. 

Approximation can be carried out on existing, known QoS and instance data. The prediction is 

then represented as a graphical user interface and the prediction manager manages the entire 

life cycle of prediction, i.e. its initialization, maintenance and termination. All predictions are 

stored in the database for future analysis. 

The authors in [59] defined checkpoints for describing where the prediction should be carried out, 

based on an assumption which is triggered by their proposed component „hook‟ and „checkpoint 

predictor‟. However, these checkpoints do not have a factual basis, and any approach for the 

prediction of SLA violation should make predictions early enough for a provider or consumer to take 

action to avoid actual violations. Prediction only works when data are available, and the authors 

used only a machine learning method for prediction and did not describe the dataset. There are other 

prediction methods which give optimal results. The approach did not describe the action to take if 

the system predicts a violation or when an actual violation occurs. Rather, the authors proposed a 

conceptual framework without any evaluation or implementation of their approach.   

 Prediction of violation by Workload Analyzer 6.6

Ciciani et al. [43] proposed the Workload Analyzer for the Cloud TM project which is able to 

anticipate future workload fluctuations, and hence predict SLA violations by monitoring resource 

data. The Workload Analyzer manages and classifies consumption data at both the infrastructure 

and platform layer. It combines the data from all nodes of the Cloud TM platform, then filters and 

correlates them. Once the data is gathered, it makes a complete workload outline of all applications, 

describing the current and future need for hardware and software resources. It uses various 

statistical functionalities to predict the future tendency of workload variations and generates a user 

alert to potential violations of their SLA. There is no mechanism when the violation is prediction 

then what remedial actions need to be taken to avoid actual violation. The proposed approach work 

only when a provider and a consumer are using cloud-TM project. 

 Resource management by heuristic policies 6.7

Cardellini et al. [58] proposed heuristic policies for Application Service Management to produce an 

optimal solution. The approach automatically manages resources at the application level while 

considering both QoS objectives and resource utilization. The authors proposed proactive and 

reactive heuristic policies that use a prediction algorithm based on the recursive least square 

algorithm to predict the workload for future time slots and evaluated their approach using only a 

stochastic workload model The policy is capable of detecting SLA violations but is unable to prevent 

them. 
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Table 4: Proactive SLA management approach 

SLA management 

approach 

Description of the 

approach 

Features of the 

approach 

Issues/limitations of the approach 

CloudPred [52] 
User-based and item-

based collaborative 

filtering methods are 

applied to predict 

future QoS value and 

avoid service 

violation. 

Time-aware 

personalized QoS 

prediction for different 

consumers. 

Predicts QoS value 

based on previous 

experience. 

 

The basis for selecting monitoring 

and prediction intervals is not 

defined. 

The approach evaluates consumers 

using the same QoS parameters 

for the same services, however in 

real time this may vary.  

QoS-MONaaS [52] 
The framework offers 

monitoring as a 

service to all cloud 

consumers to monitor 

QoS parameters and 

detect service 

violation. 

The QoS monitoring 

service allows 

consumers to monitor 

runtime services and 

predict violation in 

advance. 

 

The framework has a 

feature of complex 

event processing and 

content-based routing. 

The approach only works when 

both provider and consumer are 

using the SRT-15 platform.  

Prediction intervals are not 

defined. 

No process is defined once the 

system detects QoS violation. 

WSVDC [55] 

 

The approach uses 

the SLA utility 

function and control 

charts to identify the 

difference in workflow 

composition and to 

improve the quality of 

cloud services and 

performance. 

 

Proactively detects 

SLA violation based on 

runtime monitoring 

parameters. 

 

Helps an enterprise to 

detect faults in its 

system and adjusts 

workflow in the case of 

changing providers. 

Improves workflow 

reliability.  

The formation of control charts 

and control rules is not defined. 

Does not guarantee an optimal 

monitoring mechanism.   

No procedure defined for 

reliability and reputation 

calculation. 

The study only considers four SLA 

variables but there may be other 

important variables which need to 

be examined. A detective model 

which considers multiple criteria 

is needed.  

RaaS [23] ARIMA and 

exponential 

smoothing are used to 

predict QoS, the 

result of which helps 

the consumer to 

decide whether to 

continue with the 

same provider or 

migrate to another 

service provider. 

Generation of an early 

warning to alert 

consumer to likely 

service violation. 

The approach uses FIS 

by considering the risk 

attitude of the 

consumer and 

suggesting service 

continuation or 

migration.  

Migration from one provider to 

another provider raises such 

issues as vendor lock-in and data 

compatibility. 

Approach lacks a methodology for 

suggesting appropriate actions 

once consumer detects violation.  

The pre-interaction phase lacks a 

negotiation process for QoS 

parameters and the formation of a 

viable SLA.   

 

Cross-layer 

adaptation [56] 

Discusses the 

proposed assumption 

in the context of 

service-based 

Cross layer adoption 

and prevention of SLA 

violation. 

Both consumer and 

There is no guarantee a suitable 

service replacement will be found. 

The adaptation strategies are very 
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applications to check 

whether real-time 

data correlates with 

their proposed 

assumption. If there 

is a difference 

between the agreed 

and predicted SLA, 

the approach chooses 

an appropriate 

adaptation strategy to 

avoid violation.  

provider benefit from 

service-based 

application. 

The adaptation 

strategies minimize 

the impact of service 

violation.   

 

 

limited. 

The approach does not describe 

the process to follow when a 

violation has occurred. 

Migrating to other service 

providers has many issues. 

Machine learning 

regression [57] 

Runtime prediction of 

SLA violation for 

composite services 

using existing QoS 

data. 

Predicts SLA 

violation based on the 

prediction 

checkpoints. 

Predicts SLA violation 

of composite services. 

Checkpoints describe 

the execution of 

composite services and 

define the input of the 

prediction.  

Consumer is alerted in 

the event of likely 

violation. 

The selection of checkpoints for 

prediction is not justified. 

Prediction only works if data is 

available. 

The dataset is not defined. 

No procedure for avoiding actual 

violation when the system detects 

likely violation. 

Workload analyzer 

[43] 

Workload analyzer 

predicts future 

workload and demand 

for resources.  

Statistical data are 

gathered from 

different nodes to 

develop workload 

profile. 

 

Anticipates future 

workload fluctuations 

for SLA violation 

prediction. 

Generates an alarm 

when violation is 

detected. 

This approach works when 

consumer and provider are using a 

cloud-TM platform. 

No suggestion for appropriate 

remedial action when violation is 

detected. 

  

Resource 

management by 

heuristic policies [58] 

Manages resources on 

runtime using 

proactive and reactive 

heuristic policies to 

help the cloud 

provider to manage 

its resources to avoid 

violation. 

Assists application 

service provider to 

manage resources. 

Improved workload 

prediction model.  

No procedure defined for SLA 

management once violation has 

occurred. 

There are no criteria for 

monitoring intervals. 

 CRITICAL EVALUATION OF EXISTING SLA MANAGEMENT APPROACHES FOR FORMING VIABLE 7.

SLAS FROM AN SME SERVICE PROVIDER‟S VIEWPOINT 

In this section, we present a comparative analysis of SLA management approaches to forming viable 

SLAs from the viewpoint of the SME service provider, in order to proactively manage possible SLA 

violations. We compare the approaches according to the basic parameters required for SLA 

management. They are the focus of the SLA management process (whether in the pre- or post-

interaction phase), their ability to predict future QoS to detect possible SLA violations, their 

approach to determining a process when a possible SLA violation is detected, and recommendations 

for possible action. The comparisons are presented in Table 5.   
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Table 5: Critical evaluation of existing SLA management approaches 

Source SLA management Process Predict 

SLA / SLO 

/QoS 

Procedure 

defined when 

violation threat 

detected 

SLA violation 

recommendation 

Pre-interaction Post-

interaction 

Emeakaroha et al. [24] 

 

✖ ✔ ✔ ✖ ✖ 

Emeakaroha et al.[21] ✖ ✔ ✔ ✖ ✖ 

Brandic et al. [29] ✖ ✔ ✔ ✔ ✖ 

Haq et al. [30] ✖ ✔ ✔ ✔ ✖ 

Emeakaroha et al. [31] ✖ ✔ ✔ ✔ ✖ 

Mosallanejad et al. [33] ✖ ✔ ✖ ✔ ✖ 

Katsaros et al. [34] ✖ ✔ ✖ ✖ ✖ 

Al Falasi et al. [32] ✖ ✔ ✖ ✖ ✖ 

Chandrasekar et al. [37] ✖ ✔ ✔ ✖ ✖ 

Alhamad et al. [38] ✖ ✔ ✖ ✖ ✖ 

Wang et al. [39] ✖ ✔ ✖ ✖ ✖ 

Hammadi and Hussain [35] ✖ ✔ ✖ ✖ ✖ 

Muchahari and Sinha [2] ✖ ✔ ✖ ✖ ✖ 

Cicotti et al. [52] ✖ ✔ ✔ ✖ ✖ 

Romano et al. [42] ✖ ✔ ✔ ✖ ✖ 

Sun et al. [55] ✖ ✔ ✔ ✖ ✖ 

Hussain et al. [23] ✔ ✔ ✔ ✔ ✔ 

Leitner et al. [57] ✖ ✔ ✔ ✖ ✖ 

Ciciani et al. [43] ✖ ✔ ✔ ✖ ✖ 

Cardellini et al. [58] ✖ ✔ ✔ ✖ ✖ 

Son et al. [10] ✔ ✖ ✖ ✖ ✖ 

Silaghi et al. [11] ✔ ✖ ✖ ✖ ✖ 

Badidi [14] ✔ ✖ ✖ ✖ ✖ 

Pacheco-Sanchez et al. [15] ✔ ✖ ✔ ✖ ✖ 

Wood et al. [16] ✖ ✔ ✖ ✔ ✖ 

Schmieders et al. [56] ✖ ✔ ✔ ✔ ✖ 

Noor and Sheng [40] ✖ ✔ ✖ ✖ ✖ 

Fan and Perros[36] ✔ ✖ ✖ ✖ ✖ 

 

Our comparative study of the literature demonstrates that there are a variety of approaches for SLA 

management, including mutually agreed third party, management at the provider or consumer side, 

and hierarchical self-monitoring and management of SLAs. In almost every approach, SLA 

management is conducted periodically. In the case of discrepancies, violations are recorded and 

relevant parties are informed. Works in the literature consider different methods of violation 

prediction, such as formula-based mapping between SLOs and resource metrics, defining threat 

thresholds, or applying different mathematical approaches, such as prediction, exponential 

smoothing, ARIMA, Markov Chain theory and Recursive Least Squares (RLS) to avoid possible 

violation of an SLA. However, the majority of approaches perform SLA management in the post-

interaction time phase when both parties have formed the SLA. Although existing approaches try to 

avoid SLA violation and maintain a trusted relationship between both parties, they could be 

improved by first forming a viable SLA based on an intelligent determination of likely violations by 
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the consumer before entering into an agreement. For an SME service provider, an SLA that reflects 

the consumer‟s requirements would not only assist with resource provisioning but would also help 

guide the provider in their decision to accept a customer. As evident from the literature [19, 59] the 

choice in selecting a consumer depends upon the cost/benefit ratio of the service provider. The service 

provider assesses a consumer based on certain parameters and decides to either accept or reject a 

new consumer request. To maximize their profit, an SME cloud provider desires to commit resources 

to consumers who will fully utilize them, therefore it is necessary to commence SLA management 

from the pre-interaction time phase. Once a provider is able to form a viable SLA, the discrepancies 

between parties are easily identified and are fixed by proactively managing each SLO, before either 

party is affected. In conclusion, we found the following shortcomings in the literature for efficient 

SLA management from the perspective of SME cloud service providers: 

 Most SLA management approaches fail to guide a service provider in their decisions about service 

formation with a consumer. Providers thus form SLAs with users who may have flawed intent 

that will result in them failing to achieve the financial revenue they expect to generate in a given 

time period. In other words, most of the existing literature presents SLA management when the 

SLA is executed; none of the methods describe SLA management by considering the consumer‟s 

previous transaction history. 

 The bulk of the literature focuses on SLA management from the consumer‟s perspective when an 

SLA is executed between a consumer and a provider. Some approaches, such as [10], help the 

cloud provider to adaptively control SLA negotiation parameters such as price, performance and 

timeslots, but they do not specify how these factors can be used by the provider to decide on 

marginal resources when SLAs are formed according to workload trends.  

 Nothing in the literature determines the maximum amount of marginal resources to be offered to 

a consumer relative to information about the consumer's past performance, which is required to 

form a viable SLA. 

 From a provider‟s perspective, the literature is unable to describe a complete SLA management 

framework that starts by forming a viable SLA (offering the optimal amount of marginal 

resources), monitoring the runtime behavior of the consumer, predicting the likely resource 

usage, and identifying and managing the risk of SLA violation.  

 OPTIMIZED PERSONALIZED VIABLE SLA (OPV-SLA) FRAMEWORK  8.

Considering the shortcomings in the literature, we propose a novel optimized personalized viable 

SLA management framework (OPV-SLA) as shown in Figure 4. The proposed framework assists the 

service provider to form personalized and viable SLAs with the various consumers requesting 

resources [60]. This enables the process of possible SLA violation detection to start at the SLA 

negotiation phase and not after an SLA has been formed, as happens in most of the approaches in 

the literature. As shown in Figure 4, OPV-SLA performs computations over two different time 

phases, namely the pre-interaction time phase and post-interaction time phase [61]. The 

computations in the pre-interaction time phase, shown in Figure 4, are carried out by two modules: 

the Identity Manager Module (IMM) and Viable SLA module (VSLAM), whereas in the post-

interaction time phase, these computations are run by four modules: the threshold formation module 

(TFM), the runtime QoS monitoring module (RQoSMM), the QoS prediction module (QoSPM) and 

the risk management module (RMM). A brief explanation of each phase in the pre- and post-

interaction start time phases is discussed below.  
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Figure 4: Framework for formulating viable SLAs [61, 62] 

 Pre-interaction time phase 8.1

When a consumer requests resources or services, the service provider first validates the user using 

the Identity Management Module (IMM), with one of two possible outcomes: either the consumer is 

new or the consumer has a previous record of using services from the provider, as presented in 

Figure 5. Depending upon the category, the consumer is validated and the request is forwarded to 

the Viable SLA Module (VSLAM). As shown in Figure 6, VSLAM performs computations, based on 

which the decision is made to accept or reject the consumer‟s request. If the request is to be accepted, 

the amount of resources to be offered is determined. VSLAM comprises two sub-modules, namely the 

Consumer‟s request assessment module (CRAM) and the resource allocation determination module 

(RADM), which assist in making this decision. A brief explanation of each phase is given below. 

8.1.1 Consumer‟s request assessment module (CRAM) 

CRAM utilizes the trust value of a requesting consumer to determine whether or not to allocate 

resources. If the IMM determines that the consumer has a previous record, the concept of 

transaction trend (Ttrend) is utilized. Ttrend is the number of successful transactions or the successful 

commitment by the requesting consumer to the formed SLAs divided by the total number of 

transactions it has performed. For existing consumers, CRAM considers the consumer‟s previous 

profile and calculates their Ttrend value. For a new consumer who does not have a previous profile, 

CRAM determines the top-K nearest neighbors that are similar to the requesting consumer‟s profile, 

and based on their Ttrend, calculates the likely Ttrend value of the requesting consumer. The requesting 

consumer‟s Ttrend value is compared with the defined threshold value, which is the success ratio 

defined by a provider to classify a consumer as reliable or not. Based on the comparative result, the 

CRAM either accepts a request or it does not. If the request is accepted, the next decision making 

factor is to determine how much resource to offer to the consumer. This is done by the RADM 

module, which is explained in the next sub-section. 

8.1.2 Resource allocation determination module (RADM) 

A cloud provider offers static and marginal resources and, due to the dynamic nature of cloud, it is 

very important for providers to decide wisely how much of its marginal resources it wants to offer to 

a consumer in light of their trustworthiness value and the time they are requesting. In our 

framework, the provider is assisted in this decision-making by the RADM. RADM takes the 

reliability of the consumer (Ttrend value), the contract duration and the risk propensity of the service 

provider as inputs and, using a multi-layered Fuzzy Inference System (FIS), decides the resource 

amount to offer the consumer. Based on the output from RADM, the provider informs the consumer 

how much resource it will offer. The consumer accepts, rejects or renegotiates the offer depending 

upon its circumstances, and when both parties have agreed, a formal SLA is signed and the provider 

is bound to reserve the committed resources for that consumer.  
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As a result of this series of steps, the SLA that is formed is a viable SLA in which the provider 

already knows the expected behavior of the requesting consumer through its transaction trend. Once 

the SLA has been formed, the management process shifts to the post-interaction time phase.   

 Post-interaction time phase 8.2

The second phase in the management process of OPV-SLA is the post-interaction time phase which 

we term the provider-based Risk Management Framework for SLA violation abatement (RMF-SLA). 
The RMF-SLA framework enables SME cloud providers to manage the risk of SLA violations to 

avoid penalties. The proposed framework performs SLA monitoring in the post-interaction time 

phase, and detects and manages the risk of possible SLA violation by suggesting an appropriate 

action that the cloud provider should take. The run-time behaviour of consumers is constantly 

compared with the SLAs formed in the previous phase, based on which an early warning is 

generated in the event of possible SLA violation. This phase comprises the following five sub-

modules, as shown in Figure 7: Threshold Formation Module (TFM), Runtime QoS Monitoring 

Module (RQoSMM), QoS Prediction Module (QoSPM), Risk Identification Module (RIM) and Risk 

Management Module (RMM). A brief explanation of each of these modules is given below. 

 

 
Figure 5: Modules in pre-interaction time phase 

 

8.2.1 Threshold formation module (TFM) 

This module is responsible for defining a threshold value for a provider upon which an early warning 

will be generated in the event of a violation occurring. In our framework, we defined two thresholds: 

the agreed threshold (Ta) and the safe threshold (Ts). Ta is the threshold that a provider and 

consumer have agreed in respect of each SLO and is defined in the SLA. Ts is a threat threshold that 

a provider forms for its own security.  To explain the notion of Ts and Ta with an example, let us 

assume a provider and consumer agree on the provider giving 20TB of storage space to the consumer 

from 6 PM to 8 PM on 20/08/2016. The availability of the 20TB of storage space is the Ta value, 

agreed by both parties, which is also defined in the SLA. However, for service management and 

possible SLA violation abatement, a provider defines its customized threshold for the storage, say 

22TB, from 6 PM to 8 PM on 20/08/2016, which is a Ts value for the provider. When the runtime 

availability of the memory space falls below Ts (22TB from 6 PM to 8 PM on 20/08/2016) the 
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framework alerts the service provider and activates the risk management module to manage any 

risk of the provider violating the formed viable SLA.  

8.2.2 Runtime QoS monitoring module (RQoSMM) and QoS prediction module (QoSPM) 

RQoSMM is responsible for monitoring the runtime QoS parameters of each agreed SLO. Once the 

QoS parameters at the current point of time are observed, they are sent to the QoS prediction 

module (QoSPM) where they are used to recalibrate the QoS of SLOs in the near future. The QoSPM 

module of RMF-SLA is responsible for predicting the resource usage of consumers in terms of QoS 

parameters over the SLA time period to detect possible violations. The consumer‟s likely resource 

usage is predicted using the resource history and an optimal prediction algorithm. In our previous 

work [63], we observed that an optimal prediction result is obtained by considering small time 

intervals and using the Autoregressive Integrated Moving Average (ARIMA) method. The accuracy 

of a prediction result is enhanced by considering the value of the SLOs in the previous time intervals 

from the RQoSMM, thereby constantly updating it.  

 

.   
Figure 6: Sequence of steps in VSLA module of OPV-SLA [62] 
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8.2.3 Risk identification module (RIM) 

The risk identification module (RIM) is responsible for comparing the value from QoSPM with the Ts 

value on a regular basis. If the value of the QoSPM reaches or exceeds the Ts value, it activates the 

risk management module (RMM) to manage the possible risk of SLA violation. 

8.2.4 Risk management module (RMM) 

This module is comprised of two sub modules: the risk estimation module (REM) and the risk 

mitigation module (RMtM). REM is activated with RIM to determine the possible occurrence of SLA 

violation and estimates the risk. Decisions on risk estimation depend on the risk attitude of the 

provider, the reputation of the consumer, and the transaction trend curve of future intervals. The 

risk attitude of a provider is the provider‟s capacity to deal with risk. A provider with a risk 

propensity of risk averse is more reluctant to take a risk than a provider with an attitude that is risk 

neutral or risk taking. The reputation of a consumer is its reliability or trust value, namely Ttrend 

value, which is determined by CRAM in the pre-interaction phase. The third input is the predicted 

resource usage by the consumer, determined by the QoSPM in the post-interaction phase. The 

processed output of these input variables is determined by RMtM which gives the estimated risk of 

possible violation as either high risk, medium risk or low risk. Depending on the level of risk 

determined, the provider chooses an appropriate action to manage and mitigate possible violation of 

the formed SLA. When the risk of possible SLA violation is assessed as high, the module sends an 

alarm to the service provider for immediate action. When the risk is estimated as medium or low, the 

service provider decides whether to take delayed action or no action, depending on the input values. 

The provider arranges sufficient resources within a certain time period. When the risk is estimated 

as low, it has no significant effect on the provider. The provider accepts the risk and does not take 

any action.  

 

 
Figure 7: RMF-SLA framework and its modules 

 

By using the proposed framework, a service provider is first able to form viable SLAs and then 

manage them in the best way. In the next section, we present the results of the validation of our 

approach in the pre-interaction start time phase and demonstrate the applicability of OPV-SLA in 

forming viable SLAs from the viewpoint of small to medium cloud service providers.  
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 VALIDATION AND APPLICABILITY OF OPV-SLA IN VIABLE SLA FORMATION AND MANAGEMENT 9.

We validate the OPV-SLA framework in the pre- and post-interaction time phases. The objective of 

OPV-SLA in the pre-interaction time phase is to assist the service provider to form viable SLAs, and 

in the post-interaction time phase it is to manage or prevent SLA violations. We use two datasets to 

form a viable SLA. The first is the QoS dataset used by Zhang et al. [64], which comprises 142 users 

using 4532 web services for 64 time intervals, and the second dataset is from Amazon Elastic 

Compute Cloud (EC2) IaaS cloud services – EC2 US East, collected from cloudclimate [65] through 

the Paessler Router Traffic Grapher (PRTG) monitoring service [66]. In our experiments, we 

consider two Quality of Service (QoS) parameters, namely the throughput and response time in 

which SLAs are formed in the pre-interaction phase, and one QoS parameter, namely CPU usage, 

when managing SLAs in the post-interaction phase. The captured datasets are stored in Microsoft 

Visual Studio 2010 with Microsoft SQL Server Management Studio 2008 for the databases, and 

MATLAB is used to program the computations in the pre-interaction start time phases to form 

viable SLAs. Our objective in using these computations is to demonstrate how a provider can form 

viable SLAs by utilizing the previous record of a consumer's commitment to the formed SLAs, and 

can start the process of SLA management before the SLAs are formed, as opposed to approaches in 

which this is done after the formation of SLAs. 

 

We assume that there are three possible consumers with the consumer IDs 122, 254 and 111 that 

are requesting services from a service provider. The implementation process in the OPV-SLA takes 

the following steps in the pre-interaction start time phase to form viable SLAs: 

 

Step 1: When IMM receives a request with all the details of a consumer, it authenticates the 

consumer as either a returning customer or a new customer, as shown in Figure 4. To demonstrate 

the working of our framework, let us suppose the first consumer with consumer ID 122 is new, 

whereas the second and third consumers with consumer IDs 254 and ID 111 respectively have an 

existing record with the provider. The requests and all detail of the consumers as shown in Figure 4 

are passed to VSLAM for a decision on the consumer‟s request and to decide the amount of marginal 

resources to be offered.    

 

Step 2: The VSLAM, as shown in Figure 5, determines the Ttrend value for all consumers. Ttrend is the 

consumer‟s previous profile and is an important factor in determining possible future SLA violations 

[67, 68]. As consumer 122 is a new customer, the module selects its top-K nearest neighbors 

according to Pearson Correlation Coefficient (PCC) value to determine the Ttrend value. The top-K 

nearest neighbors with their Ttrend are presented in Table 6. 

 
Table 6: Top-K NN with their Ttrend value for consumer - ID 122 (reproduced from [62]) 

# 

 

Nearest 

neighbors 

Consumer # 

Level of nearness 

according to PCC value 

No. of successful 

transactions 

No. of violated 

transactions 

Transaction 

trend 

1 131 0.9999889 6 4 60.00% 

2 63 0.9999765 3 3 50.00% 

3 11 0.9999503 3 19 13.63% 

4 39 0.9999412 7 2 77.78% 

5 87 0.9997249 1 20 4.76% 

6 05 0.9992545 11 8 57.89% 

7 110 0.9992148 11 4 73.33% 

8 72 0.9992032 8 3 72.73% 

9 15 0.9992014 0 1 0.00% 

 
Let us consider that the provider has set a Ttrend threshold of 40% to even consider forming resource 

provision requests from consumers. The Ttrend obtained for consumer 122 from its top-KNN is Ttrend = 

45.55%. The Ttrend for consumers 254 and 111 is determined by their past history and presented in 

Table 7. 
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Table 7: Transaction trends of consumers ID – 254 and 34 (reproduced from [62]) 

# Consumer 

Number 

No. of successful 

transactions 

No. of violated 

transactions 

Transaction trend ((Ts/Tn)* 
100 

1 254 6 5 54.55% 

2 122 2 6 25. 00% 

 

From Tables 6 and 7, we see that the Ttrend value of consumers 122 and 254 is above the threshold 

value, but that the Ttrend value of consumer 111 is below the threshold value, therefore the provider 

accepts only the request from consumers 122 and 254. This avoids forming a service-provisioning 

request with consumer 111, which may lead to possible SLA violation.  

 

Step 3: In this step, VSLAM determines the amount of resources to offer to the customers whose 

requests it accepts, as shown in Figure 5. Upon determining the resource amount, the service 

provider and service consumer negotiate further and decide on the specific quantity of resources on 

which to form an SLA. To determine the amount of resources to offer, the VLSLAM utilizes fuzzy 

inference systems which combine many different variables to reach a decision on resource allocation 

and the amount of resources to offer to each requesting customer, as shown in Figure 6. A brief 

explanation of the different variables used is as follows:   

 

Suitability value: In our proposal, the provider categorizes customers requesting resources according 

to four levels of suitability: none, low, medium and high. These levels are determined by fuzzy 

inference rules based on the reliability value of a customer and the duration for which they are 

requesting resources. The fuzzy rules are formed such that the provider gives high preference to 

requests from reliable customers who reserve resources for a short time period.  

 

Decision on allocation and amount of resources to offer: The suitability value determined for each 

customer is combined with the risk propensity or risk appetite value of the service provider to 

ascertain whether an SLA should be formed with a consumer, and if so, the level at which its request 

should be accepted. The four fuzzy predicates over which the decision to allocate resources to a 

consumer are: none, marginal, partial and full. The fuzzy rules are formed to capture the risk 

attitude of the provider (risk averse, risk neutral and risk taking) with the suitability value to 

ascertain the level of acceptance of the consumer‟s request for resources. 

 

Table 8 shows the results of performing the computations using the above processes, and details the 

amount of resources to offer to consumers with 122 and 254. The table presents the Ttrend value for 

each customer along with the threshold set by the provider (from Step 2), the determined suitability 

value of each consumer (expressed as fuzzy variables over the range of low, medium and high) the 

risk attitude of the provider (expressed as fuzzy variables over the range of risk averse, risk neutral 

and risk taking) with the recommended decision on the consumer‟s request for service provisioning 

along with the level at which to accept the request. 

 
Table 8: Request decision and amount of resources offered (reproduced from[62] ) 

Consumer ID Ttrend Threshold Suitability value Risk propensity Decision on consumer 

request 

Resource allocate 

122 45.55% 40%     M=0.1 H=0.5    RN=1.0    RA=0.0 Accept 19.12% 

254 54.55% 40%     M=0.3 H=0.7    RN=0.6    RA=0.4 Accept 65.68% 

 

111 25.00% 40% --- --- --- --- Reject --- 

  

We see from Table 8 that the request by consumer 111 is rejected because it does not satisfy the 

required threshold, and the requests by consumers 122 and 254 are recommended for acceptance 

with provisioning at 19.12% and 65.68% of the requested marginal requests respectively. The 

provider is thus able to make the optimal decision regarding the consumers‟ requests and the 
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amount of resources to offer them. Negotiation, if needed, can be conducted between the provider and 

consumer following this stage. The approaches in the literature do not consider this approach for 

SLA management, but by using the OPV-SLA framework, the drawbacks mentioned at the end of 

Section 7 regarding the need to form viable SLAs can be addressed.  

Once a viable SLA has been formed, the next step in SLA management is to anticipate possible SLA 

violations and take appropriate steps to manage them. As discussed earlier, we use the notion of risk 

in OPV-SLA to achieve this in the post-interaction time phase and manage the SLO CPU usage. We 

consider that, based on the recommendations from VSLAM as shown in Table 8, the provider forms 

an SLA and resource provisioning agreement with consumer 254 in the SLO - CPU usage. Let us 

consider that the Ta value of 290ms is the defined level of commitment between the provider and the 

consumer in this SLO. As explained earlier, Ta is the threshold that a provider and consumer have 

agreed for each SLO and defined in the SLA. Our objective by using this value and using the RMF-

SLA framework is to demonstrate how the provider constantly monitors the QoS parameters and 

ascertains in advance the likelihood of SLA violation occurring, along with taking appropriate action 

for violation management.  

 

Step 4: Once the service resource provisioning between a consumer and provider has started, the 

provider defines a safe threshold Ts for SLA management that is stricter than the Ta agreed by both 

users at the SLA formation stage, as shown in Figure 6. Let us consider that the defined safe 

threshold level determined by the provider in the case of CPU SLO is 260ms. Once the Ta and Ts 

values have been defined, the past data point values related to the resource usage of consumer 254 

in terms of CPU usage over past SLAs or the available resources on the provider‟s side related to 

CPU SLO are captured and sent to the QoSPM module for prediction over the future period.  

 

Step 5: Using the data collected from Amazon EC2 EU, the QoS values of the SLO CPU are 

predicted over the next 60 minutes in time intervals of 15 minutes each. Table 9 shows the predicted 

values for CPU SLO by the ARIMA method for the period 11:45 AM to 12:45 PM on 3/2/2016. 

 

 
Table 9: Predicted values for CPU SLO by ARIMA method 

Interval Predicted result Ts Ta 

3/2/2016 11:45:00 AM - 12:00:00 PM 249.028569ms 260ms 290ms 

3/2/2016 12:00:00 PM - 12:15:00 PM 258.0277777ms 260ms 290ms 

3/2/2016 12:15:00 PM - 12:30:00 PM 266.8571404ms 260ms 290ms 

3/2/2016 12:30:00 PM - 12:45:00 PM 272.818178ms 260ms 290ms 

 

Figure 9 graphically represents the predicted QoS value of CPU along with the agreed threshold and 

defined safe threshold. The blue line represents the prediction result using the ARIMA method for 

the time interval, the red line represents the Ts value, and the green line represents the Ta value. 

The objective in this representation is to ascertain when the CPU QoS value is expected to intersect 

or exceed Ts in order to activate the RMM module of RMF-SLA. The process of ascertaining whether 

the predicted SLO value at a given point in the future is more or less than the safe threshold is 

performed by the RIM module of RMF-SLA. Figure 7 shows that the provider, through RIM, notes 

that the predicted QoS value of SLO CPU at the first interval of 11:45:00 AM to 12:00:00 PM is less 

than the Ts value, but it starts to increase from 12:00:00PM and exceeds the Ts value for the next 

two intervals, 12:15:00 PM and 12:30:00 PM. When the predicted result exceeds the Ts value, the 

RMM is activated to predict the possibility of a violation occurring and to manage it accordingly [69].  
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Figure 9: Representation of predicted CPU SLO value along with defined Ta and Ts 

 

Step 6: In this step, RMM ascertains the risk of a possible SLA violation occurring by considering 

three decision-making variables. The first variable is the risk attitude of the service provider, 

classified on the levels of risk averse, risk neutral and risk taking. The second input variable is the 

reliability of the consumer, classified on the levels of bronze, silver and gold according to their 

commitment to previous SLAs. The premise here is that the more reliable the service consumer is, 

the more responsive the service provider will be to managing and avoiding the possible risk of non-

service provisioning to these users. The third decision making variable is the direction of the 

predicted trajectory, which is either towards Ta or away from Ta once it crosses Ts. When the 

predicted trajectory is defined as „Towards‟, it means that the trajectory has reached the Ts and is 

moving towards the Ta. When the predicted trajectory is defined as „Away‟, it means that the 

trajectory has exceeded the Ts value and is moving back towards the Ts. These inputs are important 

considerations in ascertaining the possibilitiy of SLA violation and are used to manage the risk.  

 
Table 10: Output of RMM showing the action to be taken to avoid possible SLA violation 

Consumer ID Ttrend Risk propensity 

value of provider 

Predicted 

trajectory  

Decision recommendation 

254 5  4.54%    RN=1.0    RA=0.0 towards Immediate action = 67% Delayed action = 33% 

254   20%    RN=1.0    RT=0.0 away Immediate action = 33% Delayed action = 67% 

 

Continuing with the discussion of consumer 254, the output from the fuzzy inference rules after 

considering consumer reliability, the service provider‟s risk attitude (from Table 8 ) and the projected 

trajectory of Ts (from Figure 9), is shown in Table 10. The first row of the table shows the RMM 

output after defuzzification as 67% towards immediate action and 33% towards delayed action. This 

is determined by considering the customer‟s reliability, the service provider‟s risk attitude and the 

project trajectory, and utilizing this information to categorize the risk as high risk with a very high 

possibility of SLA violation. The recommendation is for the provider to take immediate action to 

remove the risk of SLA violation at the earliest possible time. The second row of Table 10 shows the 

RMM output if the input details were to be changed as shown. It can be seen from the output that, 

depending on the scenario, RMM will recommend the most appropriate action for the provider to 

take to avoid possible SLA violation. These two phases of OPV-SLA, when combined, assist the 

provider to first form viable SLAs and then to manage them appropriately to prevent SLA violations.   

 CONCLUSION AND FUTURE WORK 10.

The rise of cloud computing promises to eliminate the need for managing complex and expensive 

computing resources. The elastic nature of cloud computing allows cloud providers to maximize 

profits if they can ensure the provision of an optimal level of resources to meet consumer needs. This 

is very important if the provider is an SME that has limited resources from which to generate and 

maximize its revenue. To achieve a satisfactory outcome, SME cloud providers need to intelligently 

determine the likely resource usage of prospective consumers and form a viable SLA that allows 

them to meet those needs. In this work, we have described existing SLA management approaches, 
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highlighting their limitations in addressing this problem. We have discussed our proposed Optimized 

Personalized Viable SLA (OPV-SLA) framework and demonstrated the working of each of its phases. 

In contrast to the approaches in the literature, our proposed approach focuses on the SME cloud 

service provider and assists with the formation and management of optimal and viable SLAs with 

consumers. In our future work, we will look at applying the framework in a real world SME cloud 

provider setting.  
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