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Abstract

Graphical models are widely used to study complex multivariate biological systems. Network
inference algorithms aim to reverse-engineer such models from noisy experimental data. It is
common to assess such algorithms using techniques from classifier analysis. These metrics,
based on ability to correctly infer individual edges, possess a number of appealing features
including invariance to rank-preserving transformation. However, regulation in biological
systems occurs on multiple scales and existing metrics do not take into account the correct-
ness of higher-order network structure.

In this paper novel performance scores are presented that share the appealing properties of
existing scores, whilst capturing ability to uncover regulation on multiple scales. Theoretical
results confirm that performance of a network inference algorithm depends crucially on the
scale at which inferences are to be made; in particular strong local performance does not
guarantee accurate reconstruction of higher-order topology. Applying these scores to a large
corpus of data from the DREAMS5 challenge, we undertake a data-driven assessment of
estimator performance. We find that the “wisdom of crowds” network, that demonstrated
superior local performance in the DREAMS5 challenge, is also among the best performing
methodologies for inference of regulation on multiple length scales.

MATLAB R2013b code net_assess is provided as Supplement.

Key words: Performance assessment, multi-scale scores, network inference.



1 Introduction

Graphical representations of complex multivariate systems are increasingly prevalent within
systems biology. In general a graph or network G = (V, E) is characterised by a set V' of
vertices (typically associated with molecular species) and a set E C V' x V of edges, whose
interpretation will be context-specific. In many situations the edge set or topology E = E(G)
is taken to imply conditional independence relationships between species in V' (Pearl, 2000)).
For fixed and known vertex set V', the data-driven characterisation of network topology is
commonly referred to as network inference.

In the last decade many approaches to network inference have been proposed and ex-
ploited for several different purposes (Oates and Mukherjee, 2012a)). In some settings it is
desired to infer single edges with high precision (e.g. |[Hill, 2012)), whereas in other applications
it is desired to infer global connectivity, such as subnetworks and clusters (e.g. |[Breitkreutz
et al), 2012). In cellular signalling systems, the scientific goal is often to identify a set of
upstream regulators for a given target, each of which is a candidate for therapeutic interven-
tion designed to modulate activity of the target (Morrison et al., 2005; Winter et al., 2012]).
The output of network inference algorithms are increasingly used to inform the design of
experiments (Nelander et al.,|2008; Hill, 2012) and may soon enter into the design of clinical
trials (Chuang et al., 2007; Heiser et al. 2012). It is therefore important to establish which
network inference algorithms work best for each of these distinct scientific goals.

Assessment of algorithm performance can be achieved in silico by comparing inferred
networks to known data-generating networks. It can also be achieved using data obtained in
vitro; however this requires that the underlying biology is either known by design (Cantone
et al., [2009)), well-characterised by interventional experiments (Maathuis et al. |[2010)), or es-
timated from larger corpora of data (Weile et al. 2012). In either case an estimated network
G, typically represented as a weighted adjacency matrix, is compared against a known or as-
sumed benchmark network G. Community-wide blind testing of network inference algorithms
is performed at the regular DREAM challenges (see http://www.the-dream-project.org/;
Marbach et al. 2012; |Prill et al.l 2010).

There is broad agreement in the network inference literature regarding the selection of
suitable performance scores (described below), facilitating the comparison of often disparate
methodologies across publications. In this literature, the quality of an estimated network G
with respect to a benchmark G is assessed using techniques from classifier analysis. That is,
each possible edge (i,7) € V x V has an associated class label Z(i,j) = 1{(i,j) € E(G)},
where I is the indicator function. A network estimator G may then be seen as an attempt
to estimate Z(i,j) for each pair (i,7). Two of the main performance scores from classifier
analysis are area under the receiver operating characteristic curve (AUROC) and area under
the precision-recall curve (AUPR), though alternative performance scores for classification
also exist (e.g. [Drummond and Holte| (2004))). These scores, formally defined in Sec. [2.4] are
based on confusion matrices of true/false positive/negative counts and represent essentially
the only way to quantify performance at a local level (i.e. based on individual edges).
At present, performance assessment in the network inference literature does not typically
distinguish between the various scientific purposes for which network inference algorithms
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are to be used. Yet network inference algorithms are now frequently employed to perform
diverse tasks, including identifying single edges with high precision (Hill, 2012), eliciting
network motifs such as cliques (Wang et al., 2008; Feizi et al., [2013)) or learning a coherent
global topology such as connected components (Breitkreutz et al., 2012).

Whilst performance for local (i.e. edge-by-edge) recovery is now standardised, there
has been comparatively little attention afforded to performance scores that capture ability
to recover higher-order features such as cliques, motifs and connectivity. Recent studies,
including Banerjee and Jost| (2009)); |Jurman et al.| (2011a,b)), proposed to employ spectral
distances as a basis for comparing between two networks on multiple length scales. In
this article we present several additional multi-scale scores (MSSs) for network inference
algorithms, each of which reflects ability to solve a particular class of inference problem.
Much of the popularity of existing scores derives from their objectivity, interpretability and
invariance to rank-preserving transformation. Unlike previous studies, we restrict attention
only to MSS that satisfy these desiderata.

The remainder of this paper proceeds as follows: In Section 2| we formulate the assess-
ment problem, state our desiderata and present novel performance scores that satisfy these
requirements whilst capturing aspects of network reconstruction on multiple scales. Using a
large corpus of estimated and benchmark networks from the DREAMYS Challenge in Section
[, we survey estimator performance and conduct an objective, data-driven examination of
the statistical power of each MSS. The proposed MSSs provide evidence that the “wisdom
of crowds” approach, that demonstrated superior (local) performance in the DREAMS5 chal-
lenge, also offers gains on multiple length scales. Sections {4] and |5| provide a discussion of
our proposals and suggest directions for future work. MATLAB R2013b code net_assess
is provided in the Supplement, to accelerate the dissemination of ideas discussed herein.

2 Methods

We proceed as follows: Sections [2.1] and clarify the context of the assessment problem
for network inference algorithms amd list certain desiderata that have contributed to the
popularity of local scores. Sections [2.3]and [2.4]introduce graph-theoretic notation and review
standard performance assessment based on recovery of individual edges. In Sections [2.5[ and
[2.6] we introduce several novel MSSs for assessment of network inference algorithms. We
require each MSS to satisfy our list of desiderata; however these scores differ from existing
scores by assessing inferred network structure on several (in fact all) scales. For each MSS
we discuss associated theoretical and computational issues. Finally Section describes
computation of p-values for the proposed MSSs.

2.1 Problem Specification

Performance assessment for network inference algorithms may be achieved by comparing esti-
mated networks against known benchmark information. The interpretation of the estimated
networks themselves has often been confused in existing literature, with no distinction draw



between the contrasting notions of significance and effect size. In this Section we therefore
formally state our assumptions on the interpretation of both the benchmark network G and
the network estimators or estimates G.

A1 All networks are directed, unsigned and contain no self-edges.

A network is signed if each edge carries an associated +/— symbol. (A1) is widely applicable
since an undirected edge may be recast as two directed edges and both signs and self-edges
may simply be removed. The challenge of inferring signed networks and more generally the
problem of predicting interventional effects requires alternative performance scores that are
not dealt with in this contribution, but are surveyed briefly in Sec. The preclusion of
self-edges aids presentation but it not required by our methodology.

The form of this benchmark information will influence the choice of performance score
and we therefore restrict attention to the most commonly encountered scenario:

A2 The benchmark network G is unweighted.

A network is weighted if each edge has an associated weight w € R. Note that the case of
unweighted benchmark networks is widely applicable, since weights may simply be removed
if necessary. We will write G, for the space of all directed, unweighted networks that do not
contain self-edges and write G for the corresponding space of directed, weighted networks
that do not contain self-edges.

A3 The benchmark network GG contains at least one edge and at least one non-edge.

A4 Network estimators G are weighted (G € G), with weights having the interpretation
that larger values indicate a larger (marginal) probability of the corresponding edge
being present in the benchmark network.

In particular we do not consider weights that instead correspond to effect size (see Sec. .

A5 In all networks, edges refer to a direct dependence of the child on the parent at the
level of the vertex set V'; that is, not occurring via any other species in V.

Assumptions (A1-5) are typical for comparative assessment challenges such as DREAM
(Marbach et al., 2010; Prill et al., 2010]).

2.2 Performance Score Desiderata

Fix a benchmark network G. A performance score is defined as function S : G x Gy — R
that accepts an estimated network G € G and a benchmark network G € Gy and returns
a real value S (G’, G) that summarises some aspect of G with respect to G. Examples of
performance scores are given below. Our approach revolves around certain desiderata that
any (i.e. not just multi-scale) performance score S ought to satisfy:



DO (Interpretability) S(G,G) € [0,1] for all G € G, G € Gy, with larger values correspond-
ing to better performance at some specified aspect of network reconstruction.

D1 (Computability) S should be readily computable.
D2 (Objectivity) S should contain no user-specified parameters.

A network estimate G € G is called S-optimal for a benchmark network G if it maximises
the performance score S(-, G) over all networks in G.

D3 (Consistency) The oracle estimator G = G is S-optimal.

A rank-preserving transformation {xz;} — {z} of a collection of real values z; € R satisfies
z; < x; whenever z; < ;.

D4 (Invariance) S should be invariant to rank-preserving transformations of the weights
associated with an estimate G.

The criteria (D0-3) are important for practical reasons; (D4) is more technical and reflects the
fact that we wish to compare estimators whose weights need not belong to the same metric
space. i.e. different algorithms may be compared on the same footing, irrespective of the
actual interpretation of edge weights (subject to (A4)). Given that much of the popularity
of standard classifier scores derives from (D0-4), it is important that any proposed MSS also
satisfies the above desiderata. As we will see below, previous studies, such as Banerjee and
Jost| (2009); Jurman et al.| (2011ab); Peters and Biithlmann| (2013)), do not satisfy (D2,4),
precluding their use in objective assessment such as the DREAM Challenges. In Secs. [2.5),
below we present novel MSS that satisfy each of (D1-4).

2.2.1 Examples of Performance Scores

The local performance scores that have become a standard in the literature, defined in Sec.
below, are easily shown to satisfy the above desiderata. To date, the challenge of assessing
network inference algorithms over multiple scales has received little statistical attention; yet
there are several general proposals for quantifying higher order network structure. Notably
Jurman et al| (2011b) assessed spectral distances for suitability in application to biological
networks. The authors recommended use of the Ipsen-Mikhailov distance (IMD) due to
its perceived stability and robustness properties, as quantified on randomly generated and
experimentally obtained networks (Jurman et al., 2011a). IMD evaluates the difference of the
distribution of Laplacian eigenvalues between two networks and therefore could be considered
an MSS. There has, to date, been no examination of IMD and related spectral metrics in
the context of performance assessment for network inference applications. However IMD
and related constructions (e.g. [Banerjee and Jost|, 2009)) fail to satisfy the above desiderata:
(i) IMD itself fails to satisfy (D4) since eigenvalues are not invariant to rank-preserving
transformations; (ii) the IMD formula contains a user-specified parameter, invalidating (D2).

Peters and Bithlmann (2013)) recently introduced “Structural Intervention Distance”
(SID; actually a pre-distance) which interprets inferred networks G as estimators of an
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underlying causal graph G, where both G and G must be acyclic (Pearl, 2000). Specifically,
SID is the count of pairs of vertices (i,j) for which the estimate G7 incorrectly predicts
intervention distributions (in the sense of [Pearl| (2000)) within the class of distributions that
are Markov with respect to GG. As such, SID is closely related to the challenge of predicting
the effect of unseen interventions. However SID fails to satisfy (D0) due to the requirement
that estimated and benchmark networks must be acyclic (i.e. a causal interpretation will
not be justified in general) and is therefore unsuitable for this application.

2.3 Notation

Below we introduce notation that will be required to define our proposed scores: Throughout
this paper an unweighted network G € Gy on vertices V = {1,2,...,p} (where p < o0) is
treated as a binary matrix G € {0, 1}P*? with (4, j)th entry denoted G(i, j). When G(i,7) =1
or G(i,7) = 0 we say that G contains or does not contain the edge (i, 7), respectively. Write
G(e,7) = {i € V : G(i,j) = 1} for the set of parents for vertex j € V. In this paper we
do not allow self-edges (A1), so that G(i,i) = 0 for all i € V. A path P from i to j in
G € {0, 1}P*? is characterised by a sequence of vertices

P = (p()apla s 7pm—1apm) € Vm+1’ bo = i’ Pm :j (1)

such that G(px_1,px) = 1 and pg # i for all £ > 1. Note that a path P may contain cycles,
but these cycles may not involve py. We say that this path has length ¢(P) = m where
1 <m < 0. Let G(i — j) denote the set of all paths in G from i to j, so that in particular
G(i — 1) = 0.

We identify weighted, unsigned networks G € G with non-negative real-valued matrices
G € [0,1]P*? and denote the (i, j)th entry by G(i, 7). Should a network inference procedure
produce edge weights in [0,00) then by dividing through by the largest weight produces a
network with weights in [0, 1]. This highlights the importance of property (D4), invariance to
rank preserving transformations. It will be required to map G into the space of unweighted
networks by thresholding the weights at a certain level 7. For 0 < 7 < 1 we write G™ for the
unweighted network corresponding to a matrix with entries G7 (7, j) = I{G(i,j) > 7}.

2.4 Local Scores

In this Section we briefly review local scoring, which has become an established standard in
the network inference literature.

Definition: Classification performance scores are defined as functions of confusion matrices,
that count the number of true positive (TP), false positive (FP), true negative (TN) and false
negative (FN) calls produced by a classifier. From (A4) it follows that the k largest entries in
a network estimate G correspond to the k pairs of vertices with largest marginal probabilities
of being present as edges in the benchmark network G it is therefore reasonable to threshold
entries of G, say at a level 7, and to consider confusion matrices corresponding to the classifier
G7. In the standard case of local estimation, confusion matrices are given by TP(7) =



> GT(,0)G (0, g), FP(r) =32, G7(4, ) (1-G (1, 7)), TN(7) = >, ,(1-G"(i,5))(1-G(i, j))
and FN(7) = >, .(1— G7(i,7))G(i, 7). Based on these quantities, (local) performance scores
may be defined. In particular, one widely used score is the area under the receiver operating
characteristic (ROC) curve

local —

SROC = / TPR dFPR (2)

where TPR = TP/(TP + FN) is the true positive rate and FPR = FP/(FP + TN) is the
false positive rate. SROY has an interpretation as the probability that a randomly selected
pair from {(i,j) : G(i,7) = 1} is assigned a higher weight G(i,j) that a randomly selected
pair from {(i,7) : G(i,5) = 0} (Fawcett, 2006). As such SEOS takes values in [0, 1] with 1
representing perfect performance and 1/2 representing performance that is no better than
chance. For finitely many test samples, SE2¢ curves may be estimated by linear interpolation
of points (FPR(7), TPR(7)) in ROC-space.

Precision-recall (PR) curves are an alternative to ROC curves that are useful in situations
where the underlying class distribution is skewed, for example when the number of negative
examples greatly exceeds the number of positive examples (Davis and Goadrich, [2006)). For
biological networks that exhibit sparsity, including gene regulatory networks (Tong et al.,
2004) and metabolic networks (Jeong et all 2000), the number of positive examples (i.e.
edges) is frequently smaller than the number of negative examples (i.e. non-edges). In this

case performance is summarised by the area under the PR curve

local ™

SPR — / PPV dTPR, (3)

where PPV = TP/(TP + FP) is the positive predictive value. (In this paper we adopt the
convention that PPV = 0 whenever TP + FP = 0.) SLR also takes values in [0, 1], with
larger values representing better performance. For finitely many test samples in PR-space,
unlike ROC-space, linear interpolation leads to over-optimistic assessment of performance.
The MATLAB code provided in the Supplement follows |Goadrich et al| (2004) in using
nonlinear interpolation to achieve correct, unbiased estimation of area under the PR curve.
Captures: Local scores capture the ability of estimators to recover the exact placement of
individual edges. Both SRO¢ and SR | summarise the ability to correctly infer local topology
across a range of thresholds 7, with PR curves prioritising the recovery of positive examples
in the “top k edges” (Fawcett, [2006]).

Desiderata: (D1; computability), (D2; objectivity) and (D3; consistency) are clearly satis-
fied. (D4; invariance) is satisfied, since the image of a parametric curve is invariant to any

monotone transformation of the parameter (in this case 7).

2.5 Multi-Scale Score 1 (MSS1)

We now introduce the first of our MSSs, which targets ability to infer the connected com-
ponents of the benchmark network G, through the existence or otherwise of directed paths
between vertices.



Definition: In the notation of Sec. [2.3] local performance scores are based on estimation
of class labels Z(i,7) = G(i,j) associated with individual edges. A natural generalisation
of this approach is to assign labels Z(i,7) € {0,1} to pairs of vertices (i,7) € V x V, such
that ¢ # 7, based on descendancy; that is, based on the presence or otherwise of a directed
path from vertex i to vertex j in the benchmark network. i.e. Z(i,j) = I{G(i — j) # 0}.
By comparing descendancies in GT against descendancies in G, we can compute confusion
matrices and, by analogy with local scores, we can construct area-under-the-curve scores by
allowing the threshold 7 to vary. We denote these scores respectively as SEos; and Siits,. By
analogy with local scores, both SESS,, StRq, take values in [0, 1], and Shes; is characterised
as the probability that a randomly selected pair from {(i,7) : G(i — j) # 0} is assigned a
higher weight

= a in G(p:. v 4
T petr (i) 0IZAP) (pi,pis) (4)

than a randomly selected pair from {(i,7) : G(i — j) = 0}.

Captures: MSS1 captures the ability to identify ancestors and descendants of any given
vertex. MSS1 scores therefore capture the ability of estimators to recover connected compo-
nents on all length scales.

Desiderata: (D1; computability) is satisfied due to the well-known Warshall algorithm
for finding the transitive closure of a directed, unweighted network (Warshall, [1962)), with
computational complexity O(p?). For the estimated network G it is required to know, for each
pair (i, j) the value of 7 ;, i.e. the largest value of the threshold 7 at which G7(i — j) # 0.
To compute these quantities we generalised the Warshall algorithm to the case of weighted
networks; see Sec. (D2-4) are automatically satisfied analogously to local scores, by
construction of confusion matrices and area under the curve statistics.

2.6 Multi-Scale Score 2 (MSS2)

Whilst MSS1 scores capture the ability to infer connected components, they do not capture
the graph theoretical notion of differential connectivity (i.e. the minimum number of edges
that must be removed to eliminate all paths between a given pair of vertices). Our second
proposed MSS represents an attempt to explicitly prioritise pairs of vertices which are highly
connected over those pairs with are weakly connected:
Definition: For each pair (7,j) € V x V we will compute an effect 0 < e;; < 1 that can
be thought of as the importance of variable i on the regulation of variable j according to
the network G (in a global sense that includes indirect regulation). To achieve this we take
inspiration from recent work by [Feiglin et al. (2012) as well as Morrison et al.| (2005); (Winter
et al.(2012), who exploit spectral techniques from network theory. Since the effect e;;, which
is defined below, includes contributions from all possible paths from ¢ to j in the network G ,
it explicitly captures differential connectivity.

We formally define effects for an arbitrary unweighted network H (which may be either



G or GT) Specifically the effect e;; of 7 on j is defined as the sum over paths

oP)

w=0t D H,H ()

PcH(i—j) k ’pk

where 9;; is the Kronecker delta. Effects e;; quantify direct and indirect regulation on all
length scales. To illustrate this, notice that Eqn. [5| satisfies the recursive property

1
eij:m Z Cik (6)

keH (e,j)

(see Sec. [3.1)). Intuitively, Eqn. [20| states that the fraction of j’s behaviour explained by
1 is related to the combined fractions of j’s parents’ behaviour that are explained by <.
Rephrasing, in order to explain the behaviour of 7 it is sufficient to explain the behaviour of
each of j’s parents. Moreover, if a parent k of j is an important regulator (in the sense that j
has only a small number of parents) then the effect e;;, of i on k& will contribute significantly
to the combined effect e;;. Eqn. is inspired by |Page et al.|(1999) and later Morrison et
al (2005); Winter et al. (2012), but differs from these works in two important respects: (i)
For biological networks it is more intuitive to consider normalisation over incoming edges
rather than outgoing edges, since some molecular species may be more influential than
others. Mathematically, [Page et al] (1999) corresponds to replacing |H (e, j)| in Eqn. 20| with
|H(i,)]. (ii) Page et al|(1999) employed a “damping factor” that imposed a multiplicative
penalty on longer paths, with the consequence that effects were readily proved to exist and
be well-defined. In contrast our proposal does not include damping on longer paths (see
discussion of D2 below) and the theory of |[Page et al| (1999) and others does not directly
apply in this setting.

Below we write e = {e;;} for the matrix that collects together all effects for the benchmark
network G similarly denote by é7 the matrix of effects for the thresholded estimator G7.
Any well-behaved measure of similarity between é” and e may be used to define a MSS.
We constructed an analogue of a confusmn matrix as TP=}_, ;éle;;, FP= 3", e7.(1 —ey),
TN= >, (1 —¢€)(1 —ei;), FN= 3", (1 —¢];)e;;. Repeating the construction across varying
threshold 7, we compute analogues of ROC and PR curves. (Note that, unlike conventional
ROC curves, the curves associated with MSS2 need not be monotone; see Supp. Sec. )
Finally scores SEQS,, SFR., are computed as the area under these curves respectively.
Captures: MSS2 is a spectral method, where larger scores indicate that the inferred network
G better captures the eigenflows of the benchmark network G (Lakhina et al. 2004). In
general neither Shas, nor SiRe, need have a unique maximiser (see Sec. . As such,
MSS2 scores do not require precise placement of edges, provided that higher-order topology
correctly captures differential connectivity.

Desiderata: Eqn. 5| involves an intractable summation over paths: Nevertheless (D1; com-
putability) is ensured by an efficient iterative algorithm related but non-identical to Page et
al] (1999), described in Sec. 3.1 In order to ensure (D2; objectivity) we did not include a
damping factor that penalised longer paths, since the amount of damping would necessarily



depend on the nature of the data and the scientific context. It is important, therefore, to
establish whether effects e;; are mathematically well defined in this objective limit. This
paper contributes novel mathematical theory to justify the use of MSS2 scores and prove
the correctness of the associated algorithm (see Sec. [3.1). As with MSSI1, the remaining
desiderata (D3-4) are satisfied by construction.

2.7 Significance Levels

In performance assessment of network inference algorithms we wish to test the null hypothesis
Hy : G ~ M, for an appropriate null model Mgy. We will construct a one-sided test based
on a performance score .S and we reject the null hypothesis Hy when S(G’, G) € (s*,1] for an
appropriately chosen critical value s*. In general the distribution of a score S(R,G) under
a network-valued random variable R displays a nontrivial dependence on the benchmark
network G. We therefore follow Marbach et al.| (2012) and propose a Monte Carlo approach
to compute significance levels, though alternative approaches exist including |Scutari and
Nagarajan| (2013). Specifically, significance of an inferred network G under a null model M,
is captured by the p-value p(é) = P(S(R,G) > S(C’, (7)) and given by the strong law of
large numbers as

—ZH (R;,G) > S(G,G) %3 p(G)  asn— o0 (7)

where the R; are independent samples from M.

The choice of null model M is critical to the calculation and interpretation of p-values
p(é’) In most biological applications, the null would ideally encompass biological sample
preparation, experimental data collection, data preprocessing and network estimation; how-
ever in practice it is convenient to define a null model M, = Mo(é) conditional upon the
inferred network G (e.g. Marbach et al. 2010). For brevity, we restrict attention to the
following choice: A random network R = (w(V), E(QG)) is obtained from G by applying a
uniformly random permutation 7 to the vertex labels V; that is, R is a uniform sample from
the space of graph isomorphisms of G. This choice has the interpretation that, for determin-
istic network inference algorithms, the null Mg( A) corresponds to randomly permuting the
variable labels in the experimental dataset, prior to both data preprocessing and network
inference. Note that Mo(G) results in a trivial (R;-independent) hypothesis test when G is
either empty or complete; we do not consider these degenerate cases in this paper.

In Sec. we empirically assess the power of this test based on both existing and
proposed scores S. MATLAB R2013b code net_assess, that was used to compute all of
the scores and associated p-values used in this paper, is provided in the Supplement.

3 Results

In Sec. below we present theoretical results relating to the proposed scores, demonstrating
that MSS and local scores can yield arbitrarily different conclusions in settings where local



topology is recovered very well but higher-order topology is recovered very poorly and vice
versa. In Sec.[3.2] in order to empirically assess the statistical power our proposed scores, we
appeal to the large corpus of data available from the DREAM community, that represents a
large and representative sample of network estimators used by the community.

3.1 Theoretical Results

Whilst distributional results are difficult to obtain, we are able to characterise the behaviour
of MSS in both favourable and unfavourable limits. Our first result proves non-uniqueness
of S-optimal estimates:

Theorem 1 (Non-uniqueness of S-optimal networks). For each score SEOS, SPE. =~ SEIC
and Siiss, the benchmark network G is always S-optimal (D3). However, for MSSI and
MSS2, S-optimal estimates are not unique.

This result contrasts with local performance scores, where SEO§ and SFR, are uniquely
maximised by the benchmark network G. Intuitively, Theorem [I] demonstrates that it is
possible to add or remove individual edges from a network without changing its higher-order
features, such as its connected components.

Our second result proves that the MSS are fundamentally different from existing scores by
demonstrating it is possible to simultaneously recover local topology with arbitrary accuracy

yet fail to correctly accurately recover the higher-order topology (and vice versa):

Theorem 2 (MSS are distinct from local scores). (a) For any € > 0 there exist a benchmark
network G € Gy and an estimate G € G that satisfy (i) SEOY, SPE, > 1 — ¢, (ii) SESS,,
SH9% < 5 +e€, and (iii) Site;, Siiess < €.

(b) For any € > 0 there ezist a benchmark network G € go and an estimate G € G that
satisfy (i) Syssi. SSSe: Siiss: Shidse > 1 — €, (i1) Siiai < 5+ €, and (i) Spiy < e.

local

loca

An important consequence of this result is that estimators that perform well locally,
including DREAM Challenge winners, may not be appropriate for scientific enquiry regarding
non-local network topology. Given the increasing use of network inference algorithms in
systems biology (e.g. Chuang et all 2007; Breitkreutz et al., [2012)), this highlights the need
to study performance of network inference algorithms on multiple length scales.

Our final theoretical contribution is to propose and justify efficient algorithms for compu-
tation of both MSS1 and MSS2. For MSS1 we generalise the Warshall algorithm to compute
the transitive closure of a directed, weighted graph:

Theorem 3 (Computation of MSS1). For a fized weighted network H, let 7, ; = max{r :
H7(i — j) # 0} be the largest value of the threshold parameter T for which there ex-

ists a path from i to j in the network H™. Then T = {7,;} may be computed as fol-
lows:
T=H

fork<1:pdo
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fori<1:pdo
forj <+ 1:pdo
Tij < maX(Tiyj, min(qk, Tk,j))
end for
end for
end for
return T

For MSS2, following Page et al.| (1999) we formulate effects e;; as solutions to an eigen-
value problem. However our approach is non-identical to |Page et al| (1999) (see Sec. ;
as a consequence we must prove that (i) effects are mathematically well-defined, and (ii)
an appropriately modified version of the algorithm of |Page et al| (1999) converges to these
effects. Below we contribute the relevant theory:

Theorem 4 (Computation of MSS2). The effects e;; for an unweighted network H exist,
are unique, satisfy Fqn. and may be computed as

MDp(n—1)
C— lim o™ ) — 2TY (0 s
- 17 e R ®

where e; is the ith row of e and MY is defined by (i) Ml(f,z = Oim, (11) M,S)L = Wikﬂ for all
m € H(e, k) and H(i — k) # 0, (i) M,E,:i = 0 otheruwise.

Theorem [ facilitates highly efficient numerical computation of the effect matrices e required
for MSS2. In practice Eqn. [§| requires convergence diagnostics; for experiments in this paper
we used the stopping rule ||[v™ — ™= Y|} < 0.01 x p.

3.2 Empirical Results

For an objective comparison covering a wide range of network inference methodologies, we
exploited the results of the DREAMS challenge, where 36 methodologies were blind-tested
against both simulated and real transcription factor data (Marbach et al. 2012). The net-
work inference challenge included (i) in silico data generated using GeneNet Weaver (Marbach
et all 2009), (ii) experimentally validated interactions from a curated database for E. coli,
and (iii) transcription-factor binding data and evolutionarily conserved binding motifs for S.
Cerevisiae. Data were provided on the genomic scale, involving (i) 1643, (ii) 4297 and (iii)
5667 genes respectively. For each of these systems, benchmark information was provided in
the form of targets for a subset of genes. For assessment purposes we restricted attention to
predictions made regarding these subnetworks only, satisfying (A1-3), consisting of (i) 195,
(i) 334 and (iii) 333 genes respectively. The DREAMS5 data are well-suited for this investi-
gation, representing a wide variety of network reconstruction algorithms contributed by the
community and containing sufficiently many samples to provide a definitive assessment of
statistical power.

11



In each challenge, participants were required to provide a list of inferred edges (i, j),
together with associated weights 0 < C?(z, j) < 1. Such edges were directed, unsigned
and excluded self-edges, satisfying (A1). Participants were asked to “infer the structure of
the underlying transcriptional regulatory networks”, so that edges were ranked in terms of
their probability of existence, rather than their inferred effect size (A4). For DREAMS5,
(Ab; direct dependence) appears to be implicit. The algorithms used to obtain edge lists
and weights varied considerably, being classified according to their statistical formulation
as either Bayesian, Correlation, Meta, Mutual Information (MI), Regression or Other. For
each methodology we obtained performance scores for datasets (i-iii) using the net_assess
package (Supp. Figs. [3| [4] ). We also investigated the Overall Score reported by [Marbach
et al.| (2012)), that summarises performance by combining local AUROC and AUPR scores
across all 3 datasets (further details in Supp. Sec. .

In Section below we examine the characteristics of our proposed scores in an aggre-
gate sense based on the full DREAMS5 data. Section then considers estimator-specific
score profiles in order to understand the multi-scale properties of different network inference
algorithms. In particular Section focusses on a “wisdom of crowds” approach that
has previously demonstrated strong local performance in this setting. Finally Section [3.2.4]
quantifies the statistical power of our proposed scores in the context of hypothesis testing.

3.2.1 Aggregate Results

Local and MSS scores may be arbitrarily different in principle (Theorem [2), however in
practice these scores may be highly correlated. To investigate this we produced scatter
plots between the existing and proposed performance scores over all 36 estimators and all 3
datasets (a total of n = 108 samples; Fig. , Supp. Fig. @ Our findings, based on Spearman
correlation (Table , showed that all scores were significantly correlated under AUPR on the
in silico and E. Coli datasets (p < 0.01), but not on the S. Cereviviae dataset. Indeed results
for the S. Cerevisiae dataset were less impressive for all methods, under all performance
scores, in line with the general poor performance on this dataset reported by Marbach et
al.| (2012). On the combined data, both MSS1 and MSS2 was significantly correlated with
the local score under AUROC (p = 0.84, p = 0.57; p < 1071° in each case) suggesting that
accurate reconstruction of local topology is associated with accurate reconstruction of higher-
order topology. On the other hand, on all 3 datasets and both AUROC and AUPR statistics,
MSS2 was less highly correlated with the local score compared to MSS1 (e.g. on the combined
data and AUPR, p = 0.82 versus p = 0.29). This suggests that estimated local topology
is more predictive of descendancy relationships than predictive of differential connectivity
and spectral features. In many cases MSS1 and MSS2 were significantly correlated; this was
expected since both estimators target multiple scales by design.

3.2.2 Individual Participant Performance

Network inference algorithms are predominantly employed in contexts where there is consid-
erable uncertainty regarding the data-generating network topology. In such settings attention
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Figure 1: DREAMS5 network inference challenge data. [The 36 DREAMS5 methodologies were
assessed using both local and multi-scale performance scores. Participants were grouped ac-
cording to their statistical formulation as either Bayesian, Correlation, Meta, Mutual Infor-
mation (MI), Regression or Other. Community represents a crowd-sourced network estimator
proposed by [Marbach et al.| (2012). Left to right: In silico dataset, E. Coli dataset, S. Cere-
visiae dataset. Here we show results based on area under the precision recall curve.]

is often restricted to the “most significant” aspects of inferred topology; we therefore simi-
larly restrict attention to individual estimator performance as quantified by scores based on
AUPR, reserving AUROC results for Supp. Sec. [B.4]

Under MSS1 the best performing methods included Bayesian 1,2,6 and Meta 1,5 (Fig. [1).
For MSS2 many methods attained similarly high scores; these included Bayesian 1,2,6 and
Meta 1,5. Interestingly these 5 best performing algorithms did not rank highly according
to the (local) Overall Score of Marbach et al.| (2010) (placing 8th, 24th, 20th, 22nd and
34th respectively out of 36). Similarly Regression 2, which almost maximised Sp, on the
in silico dataset, was among algorithms with the lowest S}ig,. This appears to be a real
example of the conclusion of Theorem [2, where Regression 2 recovers several individual
edges yet fails faithfully reconstruct higher-order topology, including connected components.
Supp. Fig. [7] displays inferred and benchmark topology for Regression 2; it is visually
clear that the algorithm fails to distinguish between different connected components in the
true data-generating network. Conversely, estimators such as Bayesian 1,2 simultaneously
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0.60 0.80 0.64 0.78 0.87 0.77 | Local
In Silico <10~ 0.53 0.78 | <10°1° 0.53 0.52 | Marbach et al.
(n = 36) <107 <1073 051 | <1002 <1073 0.82 | MSS1
<107* <107'° <1072 < 107 =102 < 107 MSS2
0.42 0.92 0.13 0.58 0.92 0.44 | Local
E. Coli 0.01 0.27 0.46 <1073 0.50 0.54 | Marbach et al.
(n=36) | <1072 0.1 005 | <1002 <102 0.42 | MSS1
0.46 <1072 0.77 <1072 <1073 0.01 MSS2
0.26 0.70 0.17 0.29 0.44 0.18 | Local
S. Cerevisiae 0.13 0.13 0.45 0.09 0.22 0.23 | Marbach et al.
(n=36) <107® 0.46 -0.06 | <1072 0.19 0.32 | MSS1
0.31 <1072 0.74 0.29 0.17 0.06 MSS2
0.29 0.84 0.57 0.37 0.82 0.29 | Local
Combined <1072 0.28 034 | <1074 0.27 0.36 | Marbach et al.
(n=108) | <1020 <1072 040 | <1020 <102 0.04 | MSS1
<107 <103 <1074 <1072 <1073 0.69 MSS2
AUROC AUPR

Table 1: Spearman correlation between performance scores (white) and associated p-values
(grey); DREAMS network inference challenge data. [Performance scores include area under
the receiver operating characteristic (AUROC) and precision recall (AUPR) curves, based on
both local scores and the proposed Multi-Scale Scores (MSS). The Overall Score of Marbach
et al.| (2012) combines both local AUROC and AUPR scores as described in Supp. Sec. ]

achieve strong multi-scale performance and unimpressive local performance (Fig. . It
is well understood that Bayesian estimators are well suited to recovery of a coherent joint
graphical model, compared to estimators that decompose network inference into independent
neighbourhood selection problems (Marbach et al., 2010). These results suggest that this
intuition is manifest in the multi-scale performance of Bayesian network inference algorithms
as quantified by both St and Sii,.

3.2.3 Community Performance

A key finding of [Marbach et al. (2012) was that the Community network, a principled
aggregation of the DREAMS participants’ predictions, was able to maximise the Overall
Score for local performance (the so-called “wisdom of crowds” phenomenon). Interestingly,
we found that this Community network also performed well over multiple length scales (Supp.
Figs. BI|5). In fact the Community network was almost SLgS, and SiRq,-optimal over all 36
methodologies on all 3 datasets and was ranked highly under SESS, in all experiments. These
results suggest that aggregation of estimators that perform well locally (e.g. Regression 2)
and well on higher-order topology (e.g. Bayesian 2) may be a successful strategy to achieve
strong performance over multiple length scales.
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3.2.4 Significance Testing

A common fault of complex test statistics is that they lack power relative to simpler statistics
(e.g. |Simon and Tibshirani (2012)). In order to explore the relative statistical power of
existing and proposed performance scores S in hypothesis testing, we computed Monte Carlo
p-values for each network estimate G in the DREAMS5 challenge, taking each score in turn
as a test function (see Sec. . Under the assumption that all DREAMS5 participants were
capable, in principle, of recovering some aspects of structural information (i.e. estimators
were not simply random samples from M), we may estimate statistical power by treating
the DREAMS5 data as cases where Hy should be rejected. Results (Fig. [2)) showed that, over
all 36 participants and all 3 datasets, SCZ, assigned a significance level p < 0.05 to 88%
of the networks, SpRs, achieved 73% whilst S} Rq, achieved 71% at this threshold. Varying
the threshold 1 > p > 0.01 we see that SER is roughly 25% more powerful compared to
both SERq, and ShRs,. Given that challenge participants likely developed methodology to
optimise local performance scores rather than multi-scale scores, these findings support the
conclusion that the multi-scale scores Sy%q;, Shings offer comparable power relative to SER,.
From the perspective of methodology, these results show that most DREAMS5 algorithms are
better suited to identifying local rather than higher-order topology. Results for ROC-based
scores demonstrated a more considerable decrease in statistical power between local and
multi-scale test statistics; it may therefore be prudent to restrict attention to multi-scale

results based on PR-scores.

4 Discussion

Network inference algorithms are increasingly used to facilitate diverse scientific goals, in-
cluding prediction of single interactions with high precision, identifying motifs such as cliques
or clusters, and uncovering global topology such as connected components. Yet performance
assessment of these algorithms does not currently distinguish between these contrasting goals;
we do not know which algorithms are most suited to which tasks. Widely used local scores
based on classifier analysis capture the ability of an algorithm to exactly recover a benchmark
network at the local level. In this paper we proposed novel multi-scale scores (MSSs) that
instead capture ability to infer connectivity patterns simultaneously over all length scales.
Unlike previous multi-scale proposals, our MSS satisfy desiderata that have contributed to
the popularity of local performance scores, including invariance to rank-preserving transfor-
mation. Theoretical results demonstrated the potential for local and multi-scale analyses to
draw arbitrarily different conclusions. Empirical results, based on a comprehensive analysis
of the DREAMS5 challenge data, confirmed that whilst local and multi-scale performance
were correlated, in several cases an estimator recovered local topology well but recovered
higher-order topology poorly and wvice versa. These results highlight the importance of per-
formance assessment on multiple length scales, since apparently promising methodologies
may be highly unsuitable for inference of non-local network topology. Notably the Commu-
nity network proposed by Marbach et al.[(2012]) enjoyed both good local and good multi-scale
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Figure 2: Significance testing; empirical study of statistical power. [Here we considered
all 36 DREAMb5 methodologies and all 3 datasets, computing Monte Carlo p-values for
each of the area under the receiver operating characteristic (AUROC) and precision-recall
(AUPR) curves, as defined by both local and multi-scale scores. Error bars represent the
68% confidence region, computed via bootstrap resampling. |

performance. Finally we demonstrated that one proposed score (SiRs,) possesses comparable
statistical power with respect to local scores.

Our proposals extend scores based on individual edges by considering paths of length
> 1. Multi-scale analysis of networks is now an established research field; indeed techniques
based on Page et al.| (1999) have recently come to light in both gene regulatory network
(Morrison et al., 2005, Winter et al., 2012)) and protein signalling network (Johannes et al.,
2010; Feiglin et al) 2012)) analyses. This work differs to these within-network studies by
focussing on the challenge of performance assessment. The statistical comparison of two
unweighted networks has recently been considered by [Stadler and Mukherjee (2013); [Yates
and Mukhopadhyay| (2013)). In related work, Milenkovi¢ et al| (2009)) constructed an ad-
hoc null distribution over residue interaction graphs based on degree-distribution, clustering
coefficient, clustering spectrum, average network diameter and spectrum of shortest path
lengths. However these are mean field statistics, which do not respect vertex labels, making
their use inappropriate for many scientific applications.

Existing and proposed scores capture complementary aspects of performance, so that it
is misleading to speak of a universally “best” methodology. MSS was specifically designed to
capture aspects of higher-order network reconstruction that have been relatively neglected
by the community, however in general the existing and proposed scores together still fail to
capture many important aspects of estimator performance. In that respect, this paper rep-
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resents a small step towards more comprehensive characterisation of estimator performance.
MSS1 required a factor of O(p) more computation than existing local scores, with MSS2
requiring a factor of O(p?). (Computational times are presented in Supp. Fig. [§]) Given
that in practice it may be desirable to restrict attention to a single measure of multi-scale
performance, and given that Sjig; and S}jg, provide similar statistical power, it may be
preferable to favour MSS1 over MSS2.

Whilst multi-scale analysis has the potential to complement local analyses and deepen
our understanding of the applicability and limitations of network inference algorithms, there
are two commonly encountered settings where multi-scale analyses may actually be preferred
over local analyses:

1. Time series data: Iwasaki and Simon| (1994)); Dash| (2003) and others have noticed
that, in the setting of causal graphical models and time series data, the “true” causal
graph G depends crucially on the time scale at which the process is described. To see
this, notice that the simple multivariate process defined by the causal graph G, equal
to--- — X; = X;11 — ... and distributions X; 1 (¢t +1) = X;(t) + €11 (t+ 1) with €(¢)
independent N (0, 0?) random variables, satisfies X;,o(t +2) = X;(t) + €;12(t +2) with
¢ independent A(0,52) random variables. Thus any consistent estimator of a linear
Gaussian vector autoregressive process will, based on data from even time points only,
infer the causal graph G=Gequalto - — X; = Xii9 — .... i.e. the apparently
natural estimator demonstrates the worst possible performance under Sgi?/ PR This

is undesirable since it remains the case that all descendancy relationships in G are
all contained in G. However G is readily seen to be 511\?8{31 /MSSQ—optimal, so that the
proposed scores are robust to the problem of inappropriate sampling frequency. Real-
world examples of this problem arise in the (frequently encountered) settings where
no natural time scale is available for experimental design, or the sampling frequency is
limited by resource constraints.

2. Interventional experiments: In experimental settings, network topology is fre-
quently inferred through targeted interventions (e.g. knock-downs, knock-outs, small
molecule inhibitors, monoclonal antibodies etc.). Differential analysis with respect to a
control sample in this case does not reveal the direct children of the interventional tar-
get, but rather specifies the descendants of that target. Thus benchmark information
is naturally available on descendants, whereas additional experimental work is required
to uncover direct edges. In these settings performance assessment using descendancy
(i.e. MSS1) rather than using individual edges facilitates a reduction in experimental
cost.

This paper focused on the problem of inference for network structure, but an alternative
viewpoint is to assess networks by their predictive power (Prill et al., 2011)). In this setting
(A4) is replaced by an assumption that estimator weights correspond to effect size (and
may be signed). For example these weights may be average causal effects (ACE; |Pearl,
2000; Maathuis et al., [2010). However this setting is less common as many popular network
inference methodologies do not entail a predictive statistical model. Moreover, prediction
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is often computationally intensive, whereas assessment of the inferred topology is relatively
cheap.

5 Conclusion

This paper lays statistical and conceptual foundations for the analysis of network infer-
ence algorithms on multiple scales. We restricted attention to the important problem of
comparing between inference procedures, as in the DREAM challenges, and proposed novel
multi-scale scores (MSSs) for this setting. An empirical study based on the DREAMS5 data
demonstrated that multi-scale analysis provides additional insight into the character and
capability of network inference algorithms and suggested that a crowd-source approach to
inference may offer improved reconstruction of higher-order topology. In this paper we fo-
cussed on connectivity, but multi-scale scores may be designed to capture ability to infer
specific motifs such as cliques, or particular feedback circuits, for example. This work is ex-
ploratory and should not be used to form conclusions regarding the performance of specific
teams in the DREAMSD5 challenge.
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A Proofs

Proof of Theorem[]. S-optimality of the benchmark network G follows immediately from
the definition of each score. To prove nonuniqueness we begin by considering MSS1. For
this, take G to be the network A — B — C' — A and take G’ to be the network A «+
B + C + A; then both networks entail the same descendancy relationships. It follows from
(D3; consistency) that both G and G’ maximise Shgs) and SiRe,, demonstrating that the
maximiser will be non-unique in general. The argument for MSS2 is analogous, using the
same pair of networks. O

Proof of Theorem[9. (a) Given ¢ > 0. We proceed by constructing a sequence of pairs
(G, é) indexed by p, the number of vertices, such that the scores associated with G end
simultaneously to the required limits as p — oo. Define a data-generating network G on p
vertices by the edge set

BG) ={(1,i) : 2<i<p—1}U{(i,p) : 2<i<p—1} 9)
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and consider an unweighted network G with topology E(G) = E(G)U{(p,1)}. Le. G differs
to G in the addition of a single edge (p,1). The ROC curve corresponding to G is defined
by the three points

{(0,0), (FPR, TPR), (1,1)} (10)

so that by linear interpolation the area under the curve is %( 1+TPR—FPR). The PR curve
is similarly defined by

{(0,0),(TPR, PPV), (1,%) } (11)

Here T is the number of true examples; for local scores this is E(G), for MSS1 this is #{(i, j) :
G(i—j) #0, i # j} and for MSS2 thisis ), . ¢; ;. To compute the area under this curve we
must use nonlinear interpolation (Goadrich et al., 2004). Specifically, interpolation between
the two points A, B with true/false positive values (TPA,FP,), (TP, FPp) respectively we
create new points for each of TP, + 1, TP4 4+ 2,..., TP — 1, increasing the false positives
for each new point by (FPg — FP4)/(TPg — TP 4). By direct calculation we have that the
area under this interpolated curve is
T-TP

TP? 1 (TP +5)(T — TP)

T(TP+FP) ' T 2 (TP + FP)(T — TP) + j[p(p — 1) = TP — FP]’

(12)

Fix € > 0. For (i), since G differs to G by just a single edge we have TP = 2(p — 2), FP
=1,T=2(p—-2), TPR=1,FPR = , PPV = 2p 4 . It is then easily checked that

(p— 1)(
850?21(1“—;)—” as p— o0 (13)
2 (p—1—-2) ’
2(p — 2))?

Soct = B2 Bp- -7 NPT )

Thus 3P, € N:Vp > P, SROY > 1 — € Slocal > 1—e

local

possible descendancy. Thus TP = 3(p —2), FP =p? —4p+1, T = 3(p—2), TPR = 1, FPR

_ _ 3(p—2)
=1, PPV = <§—1> and
roc 1 1
SM831:§(1+1—1)—>§ as p — 00, (15)
3(p—2))

S = B Br -2+ (P dprD] 0 P (16)

Thus 3P, € N: Vp > P, SNSS) < 5 +¢€, Sifsg < €. For MSS2 note that the estimated effects
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are € = 1,,, whereas the benchmark effects are

11 ...1 1

leading to TP = 2p, FP = p(p —2), T =2p, TPR =1, FPR = 1, PPV = % and

SROC o

1
MSSe = (1+1—1)—>§ as p — 00, (18)

N | —

PR _ [210]2
Shissz = 2p](2p + p(p — 2)]

Thus 3P; € N: Vp > Py, S5S5, < 3 + €, Siisg < €.

Taking p > max{P;, P, P3}, we have shown that (G, @) satisfy the conclusions of the
theorem.

(b) The converse result is proved similarly, taking G to be the cyclel -2 — -+ —p — 1
andétobethereverse1<—2<—---<—p<—1. O

—0 as p— oo. (19)

Proof of Theorem|[3. Let P = (po,...,pm) be a path from pg to p,,. Define the intermediate
vertices in the path to be the vertices py,...,pmn_1. For each pair of vertices ¢ and j we wish
to calculate 7; ;, the largest threshold 7 for which ¢ and j are connected by a path in H7.

For k = 0,...,p, let 7 represent the largest value of the threshold 7 for which HT™

z?J
contains a path from ¢ to j with intermediate vertices in the set {1,...,k}. From this
definition, we have Ti(g) = H, the weighted adjacency matrix and 7;; = Ti(’?). Next we show
that for k =1,...,p,
(k) (k=1) .o (k=1) _(k=1)
Tij = max{rm ,mln{%k s Thj I3 (20)

To see this, note that 7" = £*D ynless there is a more strongly connected path which

2% i,
goes through k. Such a path must first connect i to k, and then connect k to j, with both
paths involving intermediate vertices in {1,...,k — 1}. This connection is broken in H™

once the threshold 7 is raised above the minimum of these two connections, that is when
T > min{Ti(,lzfl), T,g;*l)}.

The conclusion of the Theorem follows by iterative application of Eqn. 20} m

Remarks on the proof of Theorem[3: To make the algorithm more memory efficient, we note
that it is not necessary to store more than O(p?) values for 7 at any point. This stems from
the fact that each iteration is calculated only from the results of the previous one, reducing
the necessary storage to 2p?. This can be improved further by noting that if :(kl)c or ‘{k:1 )k:

then k cannot be an intermediate vertex in a path connecting ¢ to j and hence 7,77 = 7;;

These 2k — 1 index values are the only elements needed to calculate the kth iteration, and
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they themselves do not need to be updated. Hence, the remaining elements in the matrix
are needed only for their own update and can be safely over-written. A corollary to this is
that the ¢ and j loops in the algorithm can be completed in any order or even in parallel.
Note that this algorithm works whether or not the weight matrix H is allowed to contain
loops. Irrespective of whether loops are permitted or not, 7;; represents the largest value of
the edge threshold for which node ¢ is contained in a cycle.

For Theorem [] we require a series of Lemmas:

Lemma 1. The effects

eij = 5@']‘ + Z H m; (21)

are well-defined and satisfy 0 < e;; < 1.

Proof. We show the sum in Eqn. [21] converges absolutely. Since all terms are non-negative,
it is sufficient to prove that, for each ¢ # j such that P(i, j) # (), the sum is bounded above.
Consider the partial sums

e(P)

o _ b
T A 2

PeP(i,j):4(P)<n k=1

If Eqn. 21| diverges, so must lim,, eE?) since all paths are of finite length, so it is sufficient

to prove eg;l) is bounded above by one as n — co. We proceed inductively, with base case
1 s .
0 _ [ mean tE€HOI) L 23
i { 0 :otherwise | — (23)

Suppose e\"~" < 1. Then for i ¢ H(e,j) we have

ij
(n) 1 (n—1)
€ = —e, 24
U= 2 e 29

since a path P of length m can be decomposed into a path from pg =i to p,,_1 = k and an
edge from p,,—1 = k to p,,, = j. Therefore ez(?) < D keH(e)) m =1 as required. The case
where i € H (e, j) is similar, leading to

n 1 n—1
= D T (25)

keH (e,5)\{i}

from which we again conclude eg;l) < D keH (o)) m = 1. Therefore egl) < 1 for all n by

induction. 0

21



Lemma 2. E[fects as deﬁned in Eqn. satisfy (i) e;; = 6 for all 4,5 s.t. P(i,5) = 0,
(i) €5 = ker(e,) T gy Gk Jor all i, j s.t. P(i, j) # 0.

Proof of Lemma @ The first statement follows immediately from Eqn. 21} For the second
statement, consider two cases: Firstly, for ¢ # j such that i ¢ H(e, j) we have

1
2 et = 2 | < 2 H|H (26)

kGH(o,j) PeP(z k) 1=1 o, n1)|
PeP(i,j)

Note that absolute convergence (Lemma/l]) ensures the manipulation of infinite sums is valid.
The proof for i € H (e, j) is similar but requires slightly more care:

1 1
L et T 2 e | H|H 23)

keH (e,5) kEH (e,5) PeP(i,k)
- e S 5 e @
k;éz PGP

- Z H| Z H| (30)

PeP(ij) I= (. 1) PeP(z]) =1
Pe(p)—1=1% Pe(p)—170
PeP(i,j) I=1

Lemma 3. Deﬁne a matriv M@ by (i) MZ(;)L = Oim, (1) for P(i,k) # 0 and m € H(e k),
set M() IH

to the followmg For each i, the vector v where v, = ey, satisfies MWy = v.

(m) M( ) — 0 otherwise. Then the conclusions of Lemmal|4 are equivalent

Proof. Equivalence may be verified directly. m
Lemma 4. Suppose v satisfies MWv = v. Then for all k we must have |vy| < |vy].

Proof. Suppose not. Then there exists k such that (i) |vx| > |v;| and (11) |vg| is maxi-
mal. Without loss of generality P(i, k) # () since otherwise v, = >, M, ( Z Ov; = 0.
Then |v,| = |vg] for all m € H(e, k), since v, = M,Sn U = ZmeH(. k) THTs k)|vm and
D meH(ok) m = 1. By induction on a path from i to k we arrive at |v;| = |vg|, contra-
dicting (i). O
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Lemma 5. There exists a unique solution to MWv = v with v; = 1.

Proof. Existence: The ith row of M® contains only zeros, except for the ith entry which
is equal to 1. Hence the characteristic polynomial contains a root (eigenvalue) A = 1 with
corresponding eigenvector © # 0. From Lemma {4l we must have v; # 0 (else |0;] < |5;] =0
for all j, implying that © = 0). Taking v = ©/v;; proves existence.

Uniqueness: Suppose v and v' both satisfy the criteria. Then v” = v — v’ is also an
eigenvector of M with unit eigenvalue. From Lemma {4 we have |[v}| < [v/] = 0 for all k,
implying that v = v'. ]

Proof of Theorem[{]. Together Lemmas 1-5 prove that the effect matrix e = {e;;} exists and
is unique. Moreover, the ith row e; of e may be computed as the unique eigenvector of M ®
corresponding to unit eigenvalue.

For moderate dimensional matrices M| eigenvectors may be calculated using any valid
algorithm. One such algorithm, suitable for high dimensional problems, is the “power itera-
tion” method. Specifically we compute the leading eigenvector v of M® ag

M (D) qy(n—1)
i o™ ) — 0 _ s
¢ = lm o v = e Y = (32)
Efficient computation in this setting is reviewed in [Berkhin| (2005). O
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B Supplement to “Quantifying the Multi-Scale Perfor-
mance of Network Inference Algorithms”

B.1 AUC Convention

For MSS2 only, the analogue of the confusion matrix does not respect monotonicity of the
entries TP, FP, TN, FN with respect to varying threshold parameter 7. As a consequence
both the ROC and PR curves constructed by interpolation have the potential to exhibit self-
intersection and hence there may exist estimates G such that the area S under the associated
ROC and PR curves (AUC) need not be bounded by 0 < S < 1, invalidating the definition
of a score function having image in [0,1]. To construct a consistent performance measure
we instead define AUC as follows: Let (z1,11) — (22,%2) — -+ — (Zm,ym) denote the
coordinates of points on the curve whose AUC is to be calculated. Reorder the sequence as
(Tnys Yny) = (@ngy Uny) = -+ = (Tn,,s Yn,,) such that the x-coordinates form an increasing
sequence T, < Tn, < --- < x, . Then AUC is defined using the trapezium rule as S =
o, % X (2p, — Tn,_,). Note that whilst an ordering {z,,} may in general be non-
unique, the expression for S does not depend on which particular ordering is selected.

B.2 The “net assess” Package

The net_assess package for MATLAB R2013b is provided to compute all of the scores
and associated p-values discussed in this paper. In the case of MSS2 we compute ROC and
PR curves based on 100 uniformly spaced thresholds 7; defined implicitly by |E(CA;“)
(i/100) x |E(G)|. This package can be used as shown in the following example:

A2 = rand(100)>0.98; \J% benchmark network

A1 = 0.5*rand(100) + 0.5%rand(100).*A2; \J, estimate

score = 1; \/, 1 = local, 2 = MSS1, 3 = MSS2

[AUROC,AUPR] = net_assess(score,Al,A2)

MC_its = 100; \% num. Monte-Carlo samples for p-val. computation

[AUROC, AUPR,p_AURQOC,p_AUPR] = net_assess(score,Al1,A2,MC_its)

Typical computational times for the package, based on the DREAMS data analysis per-
formed in this paper, are displayed in Supp. Fig. . Note that local scores require O(p?)
operations to evaluate, whereas MSS1 requires O(p?) and MSS2 requires O(p?).

B.3 Overall Score (Marbach et al.)

We briefly summarise the approach of Marbach et al.| (2012) that assigns each network
inference algorithm an “Overall Score”. For each network inference algorithm a combined
AUROC score was calculated as the (negative logarithm of the) geometric mean over p-values
corresponding to 3 individual AUROC scores (in silico, E. Coli, S. Cerevisiae respectively).
Likewise a combined AUPR score was assigned to each network inference algorithm. For each
algorithm an Overall Score was computed as the arithmetic mean of the combined AUROC



and combined AUPR scores. Note that Marbach et al.|(2012) report the Overall Score over
all 3 datasets, whereas the performance scores which we report in this paper were computed
for each dataset individually. Note also that p-values used by Marbach et al| (2012) were
computed using a common null distribution, rather than the estimator-specific nulls ./\/lo(é’)
that are used in this paper.

B.4 Additional Results

Supp. Figs. B] [, [f] display the scores S obtained by each of the 36 dream methodologies
on, respectively, the in silico, E. Coli and S. Cerevisiae datasets. Supp. Fig. [6] compares
results for the DREAMS5 Challenge data based on both local and multi-scale scores and ROC
analysis. Supp. Fig. [7] displays both inferred benchmark topology for the in silico dataset
using Regression 2.
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Figure 3: DREAMS5 Challenge data; results on the in silico dataset. [The 36 DREAMS5
methodologies were assessed using both local and multi-scale performance scores. Partici-
pants were grouped according to their statistical formulation as either Bayesian, Correlation,
Meta, Mutual Information (MI), Regression or Other. Community represents a crowd-sourced
network estimator proposed by Marbach et al.| (2012)). Performance scores include area under
the receiver operating characteristic (AUROC) and precision recall (AUPR) curves, based on
both local scores and the proposed multi-scale scores (MSS). The Overall Score of
combines both local AUROC and AUPR scores as described in Supp. Sec. ]
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Figure 4: DREAMb5 Challenge data; results on the E. Coli dataset. [The 36 DREAMS5
methodologies were assessed using both local and multi-scale performance scores. Partici-
pants were grouped according to their statistical formulation as either Bayesian, Correlation,
Meta, Mutual Information (MI), Regression or Other. Community represents a crowd-sourced
network estimator proposed by Marbach et al.| (2012)). Performance scores include area under
the receiver operating characteristic (AUROC) and precision recall (AUPR) curves, based on
both local scores and the proposed multi-scale scores (MSS). The Overall Score of
combines both local AUROC and AUPR scores as described in Supp. Sec. ]
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Figure 5: DREAMS5 Challenge data; results on the S. Cerevisiae dataset. [The 36 DREAMS5
methodologies were assessed using both local and multi-scale performance scores. Partici-
pants were grouped according to their statistical formulation as either Bayesian, Correlation,
Meta, Mutual Information (MI), Regression or Other. Community represents a crowd-sourced
network estimator proposed by Marbach et al.| (2012)). Performance scores include area under
the receiver operating characteristic (AUROC) and precision recall (AUPR) curves, based on
both local scores and the proposed multi-scale scores (MSS). The Overall Score of
combines both local AUROC and AUPR scores as described in Supp. Sec. ]
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Figure 6: DREAMS5 network inference challenge data. [The 36 DREAMS5 methodologies were
assessed using both local and multi-scale performance scores. Participants were grouped ac-
cording to their statistical formulation as either Bayesian, Correlation, Meta, Mutual Infor-
mation (MI), Regression or Other. Community represents a crowd-sourced network estimator
proposed by [Marbach et al.| (2012). Left to right: In silico dataset, E. Coli dataset, S. Cere-
wvistae dataset. Here we show results based on area under the receiver operating characteristic

curve. |
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(b) Network topology inferred by Regression?2

Figure 7: Global connectivity patterns in the DREAMS5 in silico chellenge; Regression2 is
unable to identify disconnected components (red box) in the data-generating network. [High
definition available in electronic version.] (a) In silico data-generating network, based on
known transcriptional regulatory networks of model organisms (Marbach et al., [2009). (b)
Network topology inferred by Regression2; an approach that combines steady-state and time-
series data using a group LASSO, followed by bootstrapping. [Edges and associated weights
are shown for the highest weights only, such that both networks (a) and (b) contain an equal
number of edges.|
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Figure 8: Computational times for the DREAMS5 Challenge data. [Red; 95% confidence
intervals for the mean. Blue; inter-quartile range. The full data are shown as points.]
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