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Graphical models are widely used to make inferences concern-
ing interplay in multivariate systems. In many applications, data are
collected from multiple related but nonidentical units whose under-
lying networks may differ but are likely to share features. Here we
present a hierarchical Bayesian formulation for joint estimation of
multiple networks in this nonidentically distributed setting. The ap-
proach is general: given a suitable class of graphical models, it uses
an exchangeability assumption on networks to provide a correspond-
ing joint formulation. Motivated by emerging experimental designs
in molecular biology, we focus on time-course data with interven-
tions, using dynamic Bayesian networks as the graphical models. We
introduce a computationally efficient, deterministic algorithm for ex-
act joint inference in this setting. We provide an upper bound on
the gains that joint estimation offers relative to separate estimation
for each network and empirical results that support and extend the
theory, including an extensive simulation study and an application
to proteomic data from human cancer cell lines. Finally, we describe
approximations that are still more computationally efficient than the
exact algorithm and that also demonstrate good empirical perfor-
mance.

1. Introduction. Graphical models are widely used to represent multi-
variate systems. Vertices in a graph (or network; we use both terms in-
terchangeably) G are identified with random variables and edges between
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the vertices describe conditional independence statements or, with suitable
modeling and semantic extensions, causal influences between the variables.
In many applications a key statistical challenge is to construct a network
estimator Ĝ(y), based on data y, that performs well in a sense appropriate
to the application. Such “network inference” is increasingly a mainstream
approach in many disciplines, including neuroscience, sociology and compu-
tational biology.

Network inference methods usually assume that the data are identically
distributed (specifically, that data sets satisfy an exchangeability assump-
tion). However, in many applications, data are not identically distributed,
but are instead obtained from multiple related but nonidentical units (or
“individuals”; we use both terms interchangeably). This paper concerns net-
work inference in this nonidentically distributed setting.

Our work is motivated by biological networks in cancer. Multiple stud-
ies have demonstrated the remarkable genomic heterogeneity of cancer [The
1000 Genomes Project Consortium (2010), The Cancer Genome Atlas Net-
work (2012)]. At the same time, the question of how such heterogeneity
is manifested at the level of biological networks has remained poorly un-
derstood. We focus in particular on protein signaling networks in human
cancer cell lines. Signaling networks describe biochemical interplay between
proteins and are central to cancer biology. However, sequence and transcript
data alone are inadequate for the study of signaling and, indeed, these data
types can be discordant with the abundance of signaling proteins and post-
transitional modifications (including phosphorylation) that are key to the
process [Akbani et al. (2014)]. Recent developments in proteomics, includ-
ing reverse-phase protein arrays [or RPPA, see Hennessy et al. (2010); this
technology provides the data we analyze below], have improved the ability
to interrogate signaling heterogeneity.

To fix ideas, we begin by describing the specific application that motivates
this work. We consider time-course phosphoprotein measurements obtained
using RPPA technology (details appear below) for 6 cell lines. The goal of the
study is to infer cell line-specific protein signaling networks Gj , j = 1, . . . ,6,
and additionally to highlight experimentally testable differences between
them. Prior network information is available from the literature, but it is
believed that cell line-specific genetic alterations may induce differences with
respect to the “literature network” (and between cell lines). At the same
time, the amount of data per cell line is limited (6 time points in each of
4 conditions, making a total of 24 data points per cell line j, constituting
data yj). Since the cell lines j are closely related, yet potentially different
with respect to underlying networks, a key inferential question is how to
“borrow strength” between the network estimation problems. That is, we

seek a joint estimator of the cell line-specific networks {G1 · · ·G6} based
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on the entire (nonidentically distributed) data set {y1 · · ·y6} that shares
information between the estimation problems while preserving the ability to
identify cell line-specific network structure.

This application is an example of a more general class of biological ap-
plications, where individuals j could correspond to, for example, different
patients or cell lines (or groups thereof; e.g., disease subtypes) and the net-
works themselves to gene regulatory or protein signaling networks that could
depend on the genetic and epigenetic state of the individuals. Indeed, con-
tinuing reduction in the unit cost of biochemical assays has led to an increase
in experimental designs that include panels of potentially heterogeneous in-
dividuals [Barretina et al. (2012), Cao et al. (2011), Maher (2012), The
Cancer Genome Atlas Network (2012)]. As in the signaling example above,
in such settings, given individual-specific data yj , there is scientific interest
in individual-specific networks Gj and their similarities and differences.

Following Werhli and Husmeier (2008), Penfold et al. (2012) and oth-
ers, we focus on the case of directed networks Gj that are exchangeable
in the sense that inference is invariant to permutation of individuals j ∈
J = {1, . . . , J}. We model data on all individuals {yj : j ∈ J } within a joint
Bayesian framework. Regularization of individual networks is achieved by
introducing a latent network G to couple inference across all individuals.
We report posterior marginal inclusion probabilities for every possible edge
in each individual network Gj as well as the latent network G. The high-level
formulation we propose is general and, in principle, essentially any graphi-
cal model of interest could be embedded within the framework described to
enable joint estimation.

In general, the individual j’s could have complex, hierarchical relation-
ships, for example, with j’s belonging to groups and subgroups [e.g., cor-
responding to cancer types and subtypes; see Curtis et al. (2012)]. The
exchangeable case we consider corresponds in a sense to the simplest possi-
ble hierarchy in which each individual is dependent on a single latent graph
(see Figure 1). In settings where groups can be treated as approximately
homogeneous, the approach presented in this paper can be trivially used
to give group-level estimates, by using j to index groups rather than in-
dividuals, with all data for group j modeled as dependent on graph Gj .
This corresponds to an assumption of identically distributed data within
(but not between) groups. In the empirical study presented below we con-
sider also robustness of our approach under violation of the exchangeability
assumption.

For the application to time-course data from protein signaling that we
focus on, we present a detailed development using directed graphical models
called dynamic Bayesian networks (DBNs). These are directed acyclic graphs
(DAGs) with explicit time indices [Murphy (2002)]. The main contributions
of this paper are as follows:
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• Bayesian computation. For the time-course setting, we put forward an ef-
ficient and exact algorithm. This is done by exploiting factorization prop-
erties of the DBN likelihood, analytic marginalization over continuous
parameters and belief propagation. In moderate dimensional settings this
allows exact joint estimation to be carried out in seconds to minutes (we
discuss computational complexity below).

• Theory. We provide a result that quantifies the statistical efficiency of
joint relative to separate estimation and that gives a sufficient condition
for improved performance.

• Empirical investigation. The availability of an efficient Bayesian algorithm
enables, for the first time, a comprehensive empirical study of joint esti-
mation, including a wide range of simulation regimes and an application
to experimental data from a panel of human cancer cell lines. For several
classical (nonjoint) DBNs, including a recent causal variant suitable for
interventional data [Spencer, Hill and Mukherjee (2012)], we formulate
corresponding joint estimators. This allows us to investigate the effect of
joint estimation itself; we find that it often provides gains relative to the
corresponding individual-level estimators. Some computationally favor-
able approximations to joint inference are described that we find perform
well under a range of conditions.

Joint estimation has previously been discussed in the Gaussian graphical
model (GGM) literature [Danaher, Wang and Witten (2014)]. In contrast to
GGMs, motivated by biological applications, we focus on DAG models with
a causal interpretation. Approaches to context-specific DAG structure based
on the embellishment of Bayesian networks include Boutilier et al. (1996),
Geiger and Heckerman (1996). Our approach differs by regularizing based
on network structure alone; we do not place exchangeability assumptions
on the data-generating parameters. Related work that is based on DAGs
includes Niculescu-Mizil and Caruana (2007), Werhli and Husmeier (2008),
Dondelinger, Lèbre and Husmeier (2013). In a sequel to the present work,
Oates, Costa and Nichols (2014) provide an exact algorithm for joint max-

imum a posteriori (MAP) estimate of multiple (static) DAGs. In contrast,
here we focus on Bayesian model-averaging (as opposed to MAP estimation)
and on time-course data (or, more generally, Bayesian networks with a fixed
ordering of the variables).

In a similar vein to the present paper, Oyen and Lane (2013) estimated
multiple DAGs sharing a common ordering of the vertices, but they con-
sidered only applications involving J = 2 individuals. Our work is closely
related to Penfold et al. (2012), who also considered Bayesian joint esti-
mation of directed graphs from time-course data. However, as we discuss
in detail below, the methodology they propose is prohibitively computa-
tionally expensive for the applications we consider here. In comparison, the
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exact algorithm we propose offers massive computational gains that in turn
allow us to present a much more extensive study of joint estimation than
has hitherto been possible. Furthermore, we allow for prior information re-
garding the network structure (including individual-specific characteristics)
and present theoretical results concerning the statistical efficiency of joint
network estimation.

The remainder of the paper is organized as follows. In Section 2 we de-
scribe a hierarchical Bayesian formulation and in Section 3 we discuss com-
putationally efficient joint inference in the case of DBNs. Empirical results
are presented in Section 4, including an application to protein signaling in
cancer. Finally, we close with a discussion of our findings in Section 5.

2. Joint network inference: The general case. We describe a general sta-
tistical formulation for joint network inference that can be coupled to essen-
tially any class of graphical models. For computational tractability it may
be necessary to place restrictions on the class of graphical models; in Sec-
tion 3 we present a detailed development for DBNs that are well-suited to
our motivating application in cancer.

2.1. Hierarchical model. Consider a space G of graphs on the vertex set
P = {1, . . . , P}. To keep the presentation general, we do not specify the type
of graph or restrictions on G at this stage (the special case of DBNs for
time-course data is described below). As shown in Figure 1, each individual
network Gj ∈ G is modeled with dependence on a latent network G ∈ G

Fig. 1. Joint network inference (JNI). A hierarchical model for analysis of multi-
variate data from multiple, nonidentical units or individuals, indexed by j. (Shaded
nodes are unobserved. G0 = prior network, G = latent network, Gj = network specific

to individual j, θ
j = parameters for individual j, Y

j = observables for individual j,
Zj = ancillary information available on individual j, η,λj = inverse temperature hyperpa-

rameters, φj = hyperparameters defining a prior on θ
j . Panel notation is used to indicate

the presence of multiple individuals j ∈ J . Note that in practice we take λj ≡ λ for all
j ∈ J .)
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that in turn depends on a prior network G0 ∈ G (Section 2.2). In this way,
estimates of the individual networks Gj are regularized by shrinkage toward
the common latent network G that, in turn, may be constrained by an
informative network prior. As in any graphical model, observations Yj on
individual j are dependent upon a graph Gj and parameters θj . Here Zj

denotes any ancillary information available on individual j. The model is
specified by

p(G|G0, η)∝ exp(−ηd(G,G0)),(1)

p(Gj |G,λ,Zj)∝ exp(−λjdj(Gj ,G;Zj))(2)

and a suitably chosen graphical model likelihood p(Yj|Gj ,θj ,Zj). Equation
(1) follows the “network prior” approach of Mukherjee and Speed (2008)
that was proposed for biological applications where subjective prior struc-
tural information is available. The functionals dj , d :G×G →R and hyperpa-
rameters η,λj must be specified (Section 2.2). This paper restricts attention
to exchangeable models, in particular, we consider functionals dj that are in-
dependent of the index j. We refer to the above formulation as joint network
inference (JNI).

2.2. Network prior. The network prior [equation (1)] requires a penalty
functional d :G × G → R and a prior network G0 ∈ G, with the former cap-
turing how close a candidate network G ∈ G is to the latter. We discuss
choice of G0 below. Given G0, a simple choice of penalty function d is the

structural Hamming distance (SHD) given by d(G,G0) = ‖G−G0‖, where
‖M‖=

∑

i,j |mi,j| is the ℓ1-norm of an adjacency matrix and the differential

network G −G0 is defined to have edges that occur in exactly one of the
networks G, G0 [see also Ibrahim and Chen (2000), Imoto et al. (2003)].
The hyperparameter η controls the strength of the prior network G0 [equa-
tion (1)]. Motivated by an application in cancer biology where prior struc-
tural information G0 is available, we follow Penfold et al. (2012) by restrict-
ing attention to SHD priors, however, our statistical formulation is general
(see below) and compatible with other penalty functionals. Alternatively,
one could employ a beta-binomial prior as described in, for example, Don-
delinger, Lèbre and Husmeier (2013), that allows for the hyperparameters
of the binomial to be integrated out [see also Oyen and Lane (2013)]. Note
that in the latter case it is not possible to integrate specific prior structural
information, making beta-binomial priors unsuitable for the application that
this paper considers.

Given a latent network G, individual networks Gj are regularized in a
similar way, as dj(Gj ,G) = ‖Gj −G‖. In their work on combining multiple
data sources, Werhli and Husmeier (2008) allow the λj to vary over individ-
uals j ∈ J . Likewise, Penfold et al. (2012) learn the λj on a per-individual
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basis. However, in both studies, hyperparameter elicitation is nontrivial (see
Section 3.3). In the present paper, we consider only the special case where
λ1 = λ2 = · · ·= λJ := λ.

A graph G ∈ G can be characterized by (i) its adjacency matrix or (ii)
its parent sets as G= (π1, . . . , πP ), where πp ⊆P = {1 · · ·P} are the parents
of vertex p in G. We write Gp for the set of possible parent sets for p, such
that formally G = G1 × · · · × GP . Although we focus on SHD priors, the
inference procedures presented in this paper apply to the more general class
of “modular” priors, that may be factored over p ∈ P and written in the
form

d(G,G0) =
∑

p∈P

dp(πp, π
0
p), d

j(Gj ,G;Zj) =
∑

p∈P

djp(π
j
p, πp;Z

j)(3)

for some functionals dp, d
j
p :Gp ×Gp →R. Here π0

p and πj
p are parent sets for

variable p, corresponding to G0 and Gj , respectively.
In general, inference for the JNI model [equations (1), (2)] will be compu-

tationally intensive, as demonstrated in Werhli and Husmeier (2008), Pen-
fold et al. (2012). In Section 3 below we show that efficient, exact inference
is nevertheless possible within the DBN class of graphical models.

3. Joint network inference: DBNs. The JNI model and network priors,
as described above, are general. To apply the JNI framework in a particu-
lar context requires an appropriate likelihood at the individual level, that
is, specification of the joint distribution p(Yj|Gj ,θj ,Zj) of observables Yj

given network Gj , ancillary information Zj and parameters θj , together
with a prior distribution p(θj|Gj ,Zj) over model parameters. We focus on
time-course data, using DBNs and exploiting families of conjugate prior
distributions. We show that factorization properties of the DBN likelihood
permit computationally tractable joint inference and provide an explicit al-
gorithm based on belief propagation.

3.1. DBN formulation. A DBN is a graphical model based on a DAG
on the vertex set P × T , where T is a set of time indices [Figure 8(a);
see Murphy (2002)]. This DAG with PT vertices is known as the “unrolled”
DAG. Here, following Hill et al. (2012) and others, we use DBNs that permit
only edges forward in time and that are stationary in the sense that neither
the network nor parameters change with time. For such DBNs, the network
can be described by a directed graph G with exactly P vertices, with edges
understood to go forward in time in the unrolled DAG [see Appendix B
and Figure 8(b)]. Note that G may have cycles. In what follows, all graphs
(prior, latent and individual) describe the latter P -vertex representation.

Under a modular network prior, structural inference for DBNs can be
carried out efficiently as described in Hill et al. (2012). In brief, the posterior
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Gj |y factorizes into a product of local posteriors πj
p|y, one factor for each

target variable p. Background and assumptions for DBNs are summarized in
Appendix B; for general background on DBNs we refer the interested reader
to Murphy (2002) and for relevant details concerning the class of DBNs used
here to Hill et al. (2012).

Write y(t) for the matrix of observed data at time t for all individuals j
and variables p. In order to simplify notation, we define a data-dependent
functional

P(X) = p(X(1))

m
∏

t=2

p(X(t)|y(t− 1))(4)

that implicitly conditions upon observed history. Let yjp(t) denote the ob-
served value of variable p in individual j at time t. The above notation allows
us to conveniently summarize the product

p(yjp(1)|π
j
p)p(y

j
p(2)|y(1), π

j
p) · · ·p(y

j
p(m)|y(m− 1), πj

p)(5)

as P(yj
p|π

j
p). Thus, we have that, for DBNs, the full likelihood also satisfies

p(y|G1, . . . ,GJ ,Z1, . . . ,ZJ) =
∏

j∈J

∏

p∈P

P(yj
p|π

j
p,Z

j),(6)

where y denotes the complete data (for all individuals, variables and times).

In other words, the parent sets πj
p for p ∈P , j ∈ J are mutually orthogonal

in the Fisher sense, so that inference for each may be performed separately.

3.2. Efficient, exact joint estimation. We carry out exact inference in
this setting using belief propagation [Pearl (1982)]. Belief propagation is
an iterative procedure in which messages are passed between variables in
such a way as to compute exact marginal distributions; in this respect belief
propagation belongs to a more general class of iterative algorithms known
as “sum-product” algorithms [Kschischang, Frey and Loeliger (2001)]. Our
algorithm is summarized as follows (for simplicity we suppress dependence
upon ancillary information Zj):

(1) We begin by marginalizing over parameters θj and caching the local

scores P(yj
p|π

j
p) for all parent sets πj

p ∈ Gp, all variables p ∈ P and all indi-
viduals j ∈ J ; these could be obtained using any DBN likelihood. In this
paper we exploited conjugate priors to obtain exact expressions for marginal
likelihoods [equation (33), see Appendix C for details].

(2) Following marginalization, the JNI graphical model collapses to the
discrete Bayesian network shown in Figure 2, whose nodes are themselves
graphs.
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Fig. 2. Marginalization of JNI over continuous (unknown) parameters θj . (Shaded nodes
are unobserved. G0 = prior network, G= latent network, Gj = network specific to individ-
ual j, Yj = observables for individual j, Zj = ancillary information available on individual
j. Hyperparameters η, λj , φj are suppressed for clarity. Panel notation is used to indicate
the presence of multiple individuals j ∈ J .)

(3) Posterior marginal distributions p(πp|yp, π
0
p) and p(πj

p|yp, π
0
p) are then

computed using belief propagation on this discrete Bayesian network. Pseu-
docode for this step is provided in Algorithm 1 in Appendix D.

Let AJNI denote the P ×P matrix of marginal posterior inclusion proba-
bilities for edges in the latent network G, that is, (AJNI)ip := p(i ∈ πp|y,G

0).
These quantities are analogous to posterior inclusion probabilities in Bayesian
variable selection and are computed, using Bayesian model averaging, as

(AJNI)ip = p(i ∈ πp|y,G
0) =

∑

πp∈Gp

1i∈πpp(πp|y, π
0
p),(7)

where 1A is the indicator of the event A and similarly for individual networks
(Aj

JNI)ip := p(i ∈ πj
p|y,G0).

Following Hill et al. (2012), we reduced the space of parent sets Gp using

an in-degree sparsity restriction of the form |πj
p| ≤ c for all πj

p ∈ Gp, p ∈ P ,
j ∈ J . Thus, the cardinality of the space of parent sets |Gp| = O(P c) is
polynomial in P , where it was previously super-exponential. As in variable
selection, the bound c should be chosen large enough that Gp includes the
true data-generating model with high probability.

Caching of selected probabilities is used to avoid redundant recalculation.
Pseudocode is provided in Algorithm 1 in Appendix D, consisting of three
phases of computation. Storage costs are dominated by phases I and II,
each requiring the caching of O(JP 1+c) terms. Phase II dominates compu-
tational effort, with total (serial) algorithmic complexity O(J2P 1+2c). How-
ever, within-phase computation is “embarrassingly parallel” in the sense that
all calculations are independent (indicated by square parentheses notation
in the pseudocode). In practice, we have found that problems of size P ≤ 20,
J ≤ 20, c ≤ 3 can be solved within minutes using serial computation on a
standard laptop computer. We provide serial and parallel MATLAB R2014a
implementations in Supplement B [Oates et al. (2014b)].
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3.3. Network prior elicitation. Elicitation of hyperparameters for net-
work priors is an important and nontrivial issue. Here we specify the hyper-
parameters λ, η in a subjective manner. We do so due to reported difficulties
in estimation of hyperparameters for related models [Werhli and Husmeier
(2008), Dondelinger, Lèbre and Husmeier (2013), Penfold et al. (2012)]. We
present three criteria below that, for the special case of SHD, are simple to
implement and can be used for expert elicitation. These heuristics seek to
relate the hyperparameters to more directly interpretable measures of the
similarity and difference that they induce between prior, latent and individ-
ual networks: (i) First, we note the following formula for the probability of
maintaining the status (present/absent) of a candidate parent i ∈P between
the latent network G and an individual network Gj :

hλ := p(i /∈ πj
p∆πp) =

1

1+ e−λ
.(8)

This probability provides an interpretable way to consider the influence of λ.
For example, a prior confidence of hλ ≈ 0.73 that a given edge status in G is
preserved in a particular individual Gj translates into an odds ratio hλ/(1−
hλ)≈ 2.7 and a hyperparameter λ≈ 1 (see SFigure 1 in the supplementary
material [Oates et al. (2014a)]). An analogous equation relates η and hη :=

p(i /∈ πp∆π0
p), allowing prior strength to be set in terms of the probability

that an edge status in the prior network G0 is maintained in the latent
network G. (ii) A second, related approach is to consider the expected total
SHD between an individual network Gj and the latent network G:

E(‖Gj −G‖) = P 2(1− hλ).(9)

This can be interpreted as the average number of edge changes needed to
obtain Gj from G. An analogous equation holds for η and hη . (iii) Third,
in certain applications, the latent network G may not have a direct sci-
entific interpretation, in which case the criteria presented above may be
unintuitive. Then, hyperparameters can be elicited by consideration of (a)
similarity between individual networks Gj ,Gk and (b) concordance of indi-
vidual networks Gj with the prior network G0 (see Supplement A [Oates et
al. (2014a)] for further discussion).

3.4. An information sharing bound. Below we consider the extent to
which information can be shared between individuals within JNI, provid-
ing an upper bound that is attained as the number of individuals J grows
large. To formalize the contribution to inference from information sharing,
we consider the case in which no data is available on a specific individual
(without loss of generality, individual j = 1) and analytically quantify the ex-

tent to which JNI can estimate the true network G1 by “borrowing strength”



JOINT NETWORK INFERENCE 11

from the data Y2, . . . ,YJ that represent observations on the remaining in-
dividuals. (Over-lines will be used to signify the “true” data-generating net-

works.) As a baseline, write Aj
0 = p(i ∈ πj

p|Yj) for the (naive) estimator that
prohibits the sharing of information between individuals. For simplicity we
restrict attention to the case where no network prior is used (η = 0), the
data-generating hyperparameter λ is known and in-degree restrictions are
not in place (c= P ). Then, with neither data nor prior information available
on individual 1, it trivially follows that

E
Y,G,G1,...,GJ |η,λ

[

‖A1
0 −G1‖

P 2

]

=
1

2
,(10)

where the expectation is taken over all possible data-generating networks
and corresponding data.

From standard, independent network inference we know that consistent
estimation requires unbiasedness of the likelihood function p(Yj|Gj), in the

sense that E
Yj |Gjp(Y

j|Gj) is maximized by Gj =Gj . We therefore begin by

constructing the analogous regularity condition for joint estimation: Write R
for the matrix that encodes the prior metric on G as (R)G,G′ = exp(−λ‖G−
G′‖)/C(λ), where C(λ) =

∑

G∈G exp(−λ‖G‖). Write S for the matrix of

expected Bayesian scores (S)
Gj ,Gj = E

Yj |Gjp(Y
j|Gj).

Assumption (Joint regularity). For each column of the matrix M =
(RSR)G,G, the nondiagonal entries are strictly smaller than the diagonal

entry, that is, MG,G <MG,G for all G 6=G.

To gain intuition for the joint regularity assumption, consider the special
case where λ→∞; here R= I and we only require that the expected local
Bayesian score (S)

Gj ,Gj is maximized by Gj = G, that is, we recover the

unbiasedness condition from standard network inference.

Theorem. Under the joint regularity assumption, there exists 0< ε< 1
such that

E
Y,G,G1,...,GJ |η,λ

[

‖A1
JNI −G1‖

P 2

]

= f(J) +
1

1+ eλ
,(11)

where f(J)≤ 2P 2εJ−1 → 0 as J →∞.

Proof. See Appendix A. �

Comparing equation (11) to (10), we see that information sharing offers
gains in estimation, agreeing with intuition, with larger gains when the true
networks are almost homogeneous (λ large). Moreover, the statistical power

of JNI to estimate G1 converges to its maximum exponentially quickly as
J →∞.
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4. Results. The proposed methodology was compared against several
existing network inference algorithms. We restricted attention to methods
that are compatible with time-course data and, following the majority of the
literature, carry out estimation for each individual separately. The computa-
tional demands of Niculescu-Mizil and Caruana (2007), Werhli and Husmeier
(2008), Penfold et al. (2012) precluded application in this setting. Specifi-
cally, in the simulated data examples we report below, over 3000 rounds
of inference were performed in total, on problems larger than DREAM4
(P = 10, J = 5). Using the approach of Penfold et al. (2012), these exper-
iments would have required more than 10 years serial computational time;
in contrast, our approach required less than 24 hours serial computation on
a standard laptop. Thus, we consider the following methods:

(i) DBN. A dynamic Bayesian network, as described in Hill et al. (2012),
including nonlinear interaction terms. For this choice of model it is possible
to construct a fully conjugate set of priors, delivering a closed-form expres-
sion for the local Bayesian score P(yj

p|π
j
p,Zj). The model is summarized in

Appendix B.
(ii) IDBN. Spencer, Hill and Mukherjee (2012) recently proposed an ex-

tension of Hill et al. (2012) that allows analysis of data sets that contain
interventions; this is outlined in Appendix B. Interventional DBNs (IDBNs)
inherit the computational advantages of DBNs, in the sense that there is a
closed-form expression for the local Bayesian score, but extend DBNs in a
causal direction. We considered two alternative implementations of IDBNs:
(i) IDBN. The approach of Spencer, Hill and Mukherjee (2012) was ap-
plied to each individual separately. (ii) Mono IDBN. Data on all individuals
were pooled together and fed into a single IDBN analysis, an approach that
Werhli and Husmeier (2008) described as “monolithic.”

(iii) Rel Nets. A popular approach within the bioinformatics community
is to score edges based on Pearson correlation of participating nodes [“rel-
evance networks”; see, e.g., Butte et al. (2000)]. Here, we used a time-
course analogue in which the correlation is calculated between successive
time points.

(iv) LASSO. An ℓ1-penalized likelihood was used to obtain estimates for
coefficients in a linear autoregressive model. Coefficients were estimated for
each variable independently, taking each variable in turn as the response.
The penalty parameters λp were each selected using leave-one-out cross-
validation. Nonzero coefficients indicated the presence of edges. Further de-
tails appear in Supplement A [Oates et al. (2014a)].

Note that DBN and IDBN are able to integrate a prior network G0, whereas
Rel Nets and LASSO are not. JNI facilitates joint estimation given a suitable
graphical model likelihood. We applied JNI to the DBN and IDBN models
described above. This resulted in several proposed estimators:
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(v) J-DBN. JNI applied to DBN.
(vi) J-IDBN. JNI applied to IDBN.
(vii) Fixed IDBN. Here we formed the likelihood assuming a single graph

for all individuals and the latent network (i.e., G1 = · · ·=GJ =G) but with
parameters allowed to differ. This can be considered a joint analogue of
Mono IDBN that allows individual-specific parameter values.

(viii) AJ-IDBN. A computationally efficient approximation to J-IDBN,
in which the latent network topology is first estimated using Fixed IDBN.
This is in turn used as an informative network prior within J independent
rounds of IDBN. In this way information sharing is allowed to occur, but at
the expense of a coherent joint posterior.

In the empirical study below we compare JNI variants (v)–(viii) against
existing methods (i)–(iv).

4.1. Performance metrics. The proposed methodology addresses three
questions, some or all of which may be of scientific interest depending on
the application: (i) estimation of the latent network G, (ii) estimation of
individual networks G1, . . . ,GJ , and (iii) estimation of differences between
individual networks [“differential networks”; Ideker and Krogan (2012)]. We
quantify performance for each task using the area under the receiver operat-
ing characteristic (ROC) curve (AUR). This metric, equivalent to the proba-
bility that a randomly chosen true edge is preferred by the inference scheme
to a randomly chosen false edge, summarizes, across a range of thresholds,
the ability to select edges in the data-generating network. AUR may be
computed relative to the true latent network G or relative to the true indi-
vidual networks Gj , quantifying performance on tasks (i) and (ii), respec-
tively. Both sets of results are presented below, in the latter case averaging
AUR over all individual networks. For (iii), in order to assess ability to esti-
mate differential networks, we computed AUR scores based on the statistics
F j
ip = |p(i ∈ πj

p|y,G0,Zj)− p(i ∈ πp|y,G
0,Z1, . . . ,ZJ)| that should be close

to one if i ∈ πj
p∆πp, otherwise F j

ip should be close to zero.
It is easy to show that inference for the latent network, under only the

prior (i.e., Ĝ=G0), attains mean AUR equal to hη . Similarly, prior inference

for the individual networks (i.e., Ĝj =G0) attains mean AUR equal to 1−
hη − hλ +2hηhλ. This provides a baseline for the proposed methodology at
tasks (i) and (ii) and allows performance to be decomposed into AUR due
to prior knowledge and AUR contributed through inference.

Using a systematic variation of data-generating parameters, we defined 15
distinct data-generating regimes described below. For all 15 regimes we con-
sidered 50 independent data sets; standard errors accompany average AUR
scores. Results presented below use a computationally favorable in-degree
restriction c= 3. In order to check robustness to c, a subset of experiments
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were repeated using c= 4, with close agreement observed (SFigure 4 in the
supplementary material [Oates et al. (2014a)]).

4.2. Simulation study.

4.2.1. Data generation. Data were generated according to DBN models
(Appendix B) as described in detail in Supplement A [Oates et al. (2014a)].
This data-generating scheme was extended to mimic interventional experi-
ments that are a feature of our application to breast cancer. In this case,
for each time course, a randomly chosen variable is marked as the target
of an interventional treatment. Data were then generated according to the
augmented likelihood described in Appendix B (fixed effects were taken to
be zero).

4.2.2. Model misspecification and nonlinear data-generating models. We
assume exchangeable networks; it is therefore interesting to explore the per-
formance of the proposed estimators when the assumption of exchangeability
is violated. Specifically, we consider a “worst case” scenario where individual
networks G1, . . . ,GJ are sampled from a mixture model with two distinct
components. Moreover, we consider the extreme case where networks in dis-
tinct mixture components share only a few edges in common; it is expected
that exchangeable estimators will exhibit poor performance in this scenario.
Further, in order to investigate the impact of model misspecification at the
level of the time-series model itself, we considered time-course data gener-
ated from a computational model of protein signaling, based on nonlinear
ODEs [Xu et al. (2010)]. In order to extend this model, which is for a single
cell type, to simulate a heterogeneous population, we selected three pro-
tein species per individual (at random) and deleted their outgoing edges
to obtain the data-generating networks Gj (see Supplement A [Oates et al.
(2014a)]).

4.2.3. Estimator performance. We consider the three estimation tasks:

Latent network. We investigated ability to recover the latent network G.
The existing approaches (i)–(iv) estimate only individual-specific networks.
For estimation of the latent, shared network using these methods, we sim-
ply took an unweighted average of the J estimated adjacency matrices. The
proposed joint estimators (v)–(viii) were assigned hyperparameter values
η = 1, λ= 2 [λ= 3 for Xu et al. (2010)] based on the heuristic of equation (8);
sensitivity to misspecified hyperparameter values is investigated later in Sec-
tion 4.2.4. Results based on simulated data with interventions are displayed
in STable 3 (see supplementary material [Oates et al. (2014a)]). We found
little difference in the ability of J-IDBN, Fixed IDBN and AJ-IDBN to re-
cover the latent network structure across a wide range of regimes, though
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J-IDBN achieved best performance in 9 out of 15 regimes. Interestingly,
we found that the IDBN estimator, which performs an unweighted aver-
age of J independent inferences, performed significantly worse than each of
J-IDBN, Fixed-IDBN and AJ-IDBN in, respectively, 15, 13 and 11 out of
15 regimes. Similarly, all the above approaches clearly outperformed Mono
IDBN and Rel Nets, which were in turn outperformed by inference based on
the prior alone, demonstrating the importance of accounting for individual-
specific parameter values. The joint formulation of DBNs (J-DBN) signif-
icantly outperformed standard DBNs, with higher AUR in all 15 regimes.
LASSO performed best in the regime with long time series (n = 10) but
failed in other regimes to outperform inference based on the prior alone. We
obtained qualitatively similar results for both alternative data-generating
schemes (STables 4–5, see supplementary material [Oates et al. (2014a)]).

Individual networks. At this task, J-IDBN outperformed all other approa-
ches in 9 out of 15 regimes. AJ-IDBN offered a similar level of performance
and together these estimators demonstrated better performance compared
to alternatives in 13 out of 15 regimes. Since AJ-IDBN avoids intensive com-
putation, this may provide a practical estimator of individual networks in
higher dimensional settings. Again, the joint approaches J-IDBN and J-DBN
both outperformed the standard approaches IDBN and DBN, respectively,
demonstrating an increase in statistical power resulting from the proposed
methodology. Rel Nets and LASSO performed poorly at this task. Similar
results were observed using the alternative data-generating schemes (STables
4–5, see supplementary material [Oates et al. (2014a)]).

Differential networks. Since JNI regularizes between individuals, we sought
to test whether it could eliminate spurious differences and thereby improve
estimation of differential networks. Differential networks may also be esti-
mated using existing methods (i)–(iv); to do so, in each case we compared
individual network estimates with the estimate of the latent network ob-
tained as described in Section 4.2.3 above. We found that, while estima-
tion of differential networks appears to be more challenging than the other
tasks, J-IDBN outperformed the other approaches in 7 out of 15 regimes.
Moreover, the J-IDBN and J-DBN methods outperformed IDBN and DBN,
respectively, in all 15 regimes. These results suggest that coherence of joint
analysis aids in suppressing spurious features for estimation of differential
network topology. Rel Nets performed poorly at this task and LASSO per-
formed slightly better. Intriguingly, AJ-IDBN performed well in estimating
differential networks, performing best in 7 out of 15 regimes. This suggests
that the approximate joint estimator may be suited to estimation of differ-
ential networks. Results on the noninterventional data sets supported this
conclusion (STable 4, see supplementary material [Oates et al. (2014a)]). On
the Xu et al. (2010) data sets, however, IDBN and Rel Nets were among the
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best performing estimators (STable 5, see supplementary material [Oates et
al. (2014a)]), despite being misspecified for the nonlinear data-generating
model.

4.2.4. Robustness. We assess three aspects of robustness:

Hyperparameter misspecification. For the above investigation we used equa-
tion (8) to elicit hyperparameters η,λ. This was possible because the data-
generating parameters were known by design, however, in general this will
not be the case. We therefore sought to empirically investigate the effect
of hyperparameter misspecification. SFigure 3 (see supplementary material
[Oates et al. (2014a)]) displays how performance of the J-IDBN estimator
for latent networks depends on the choice of hyperparameters λ, η. Perfor-
mance does not appear to be highly sensitive to the precise hyperparameter
values used and there is a large region in which AUR remains high.

Outliers and batch effects. The biological data sets that motivate this study
often contain outliers. At the same time, experimental design may lead to
batch effects. In order to probe estimator robustness, we generated data
as described above, with the addition of outliers and certain batch effects.
Specifically, Gaussian noise from the contamination model 0.95N (0,0.12)+
0.05N (0,102) was added to all data prior to inference. At the same time,
one individual’s data were replaced entirely by Gaussian white noise to sim-
ulate a (strong) batch effect that could arise, for example, if preparation
of a specific biological sample was incorrect. The relative decrease in per-
formance at feature detection is reported in SFigure 5 (see supplementary
material [Oates et al. (2014a)]). We found that J-IDBN remained the best-
performing estimator for all three estimation problems. However, for the
differential network estimation task, in particular, the decrease in perfor-
mance was pronounced for joint methods.

Nonexchangeability. SFigure 6 (see supplementary material [Oates et al.
(2014a)]) displays the result of inference on data where the exchangeability
assumption is violated. It can be seen that the performance of all (exchange-
able) estimators decreases in these circumstances, but the magnitude of the
decrease is small (e.g., for estimation of individual networks, J-IDBN experi-
ences a 0.01 decrease in AUR). We note that the proposed estimators can be
extended to nonexchangeable settings where elements of the structure that
relates individuals are known; see Oates and Mukherjee (2014) for further
details.

4.3. Protein signaling networks in breast cancer. We consider experi-
mental data derived from human breast cancer cell lines, focusing on protein
signaling networks within which many (wild type) causal relationships are
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Fig. 3. Signaling downstream of the epidermal growth factor receptor (EGFR). The graph
shown summarizes known causal links characterized by extensive biochemistry. (Note that
edges in the graph represent high-level summaries of often complex molecular interactions
that may involve latent chemical species.)

well understood from extensive biochemistry (Figure 3). The investigation
presented below serves three purposes: First, it allows investigation of the
applicability of the proposed joint approaches to experimental data. Sec-
ond, it allows investigation of the use of ancillary information, in the form
of mutational status and histological information. Finally, the results and
approach are relevant to the topical question of exploring signaling hetero-
geneity across cancer cell lines.

Data were obtained using reverse-phase protein arrays [Hennessy et al.
(2010)] from J = 6 breast cancer cell lines (AU 565, HCC 1569, MCF 7,
MDA MB 231, SKBR3 and SUM 190PT; experimental protocol is described
in brief in Supplement A [Oates et al. (2014a)]). Data comprised observa-
tions for the P = 17 proteins shown in Figure 3 (see also STable 1 in the
supplementary material [Oates et al. (2014a)]; we note that these data form
part of a larger study including further cell lines and proteins). Specifically, y
contains the logarithms of the measured concentrations. Data were acquired
under treatment with an EGFR/HER2 inhibitor Lapatinib (“EGFRi”), an
Akt inhibitor (“Akti”), EGFRi and Akti in combination, and without inhi-
bition (“DMSO”) at 0.5, 1, 2, 4, 8 and 24 hours following Serum stimulation,
giving a total of nj = 24 observations of each variable in each individual cell
line.

4.3.1. Informative priors on causal structure. For the cancer cell lines
analyzed here, ancillary information is available in the form of genetic aber-
rations (mutation statuses) and histological profiling. These were obtained
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from published sources [Neve et al. (2006)] and online databases [Forbes et
al. (2011)] and reproduced in STable 2 (see supplementary material [Oates
et al. (2014a)]). These sources give causally relevant information on struc-
ture specific to the individual cell lines j ∈ J . We used this information to
help specify priors on the graphs Gj , considering in particular two cases:
(i) Loss-of-function mutations in kinase domains; in line with the nature of
the mutation, here we set the prior probability on edges emanating from
the mutant protein to zero. Where the mutation is known to also affect the
ability of a protein to be phosphorylated, then incoming edges were also
assigned zero prior probability. (ii) Cell lines with ectopic expression of the
receptor HER2 are known to depend heavily upon EGFR signaling. In this
case the network prior did not penalize edges emanating from the EGFR
receptor nodes. A full discussion of ancillary data appears in Supplement A
[Oates et al. (2014a)].

In addition to the cell-line-specific mutational information above, decades
of experimental work (including interventional, biochemical and biophysical
studies) have provided a wealth of information about (wild type) causal
relationships between nodes. We used this noncell line-specific information
to specify a prior graph G0 that was common to all cell lines j ∈ J (shown
in Figure 3). Cancer signaling is expected to differ with respect to wild type
signaling, but a priori we expect the differences to be small in number. In
light of this observation, we used subjective elicitation (Section 3.3) to set
hyperparameters λ = 4, η = 5, corresponding to E(‖Gj −G‖) ≈ 5, E(‖G −
G0‖)≈ 2.

4.3.2. Validation. In order to test performance, we first considered the
latent network G, comparing estimates to the (causal) literature network
shown in Figure 3. For a fair assessment we used an empty prior network
G0. Inferred networks are displayed in SFigure 7 (see supplementary material
[Oates et al. (2014a)]). Results demonstrated good recovery of the literature
network, with J-IDBN attaining the highest AUR (0.67, p < 0.01, permu-
tation test; Figure 4). As in the simulation study, J-IDBN outperformed
IDBN, with AJ-IDBN and Fixed IDBN representing good alternative esti-
mators and the remaining estimators performing poorly. This suggests the
conclusions drawn in Section 4.2 apply also to the analysis of biological time
series data. In particular, modeling of interventions appears to be crucial
in this setting, in line with the conclusions of Spencer, Hill and Mukherjee
(2012).

4.3.3. Inference for cell line networks. We investigated inference for cell
line-specific networks Gj (Figure 5), taking the prior network G0 from the
literature (Figure 3). In order to assess results, we exploited the fact that cell
lines AU565 and SKBR3 derive from the same patient. We would therefore
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Fig. 4. Results from breast cancer cell line data, comparison with network based on
literature. The methods shown were used to estimate a latent network; AUR is with respect
to the literature-based network shown in Figure 3; the latter was not used to provide prior
information in these experiments. (Asterisks denote AUR scores which were significant at
the 1% level under a permutation test with AUR as the statistic and 10,000 samples used
to obtain an empirical null distribution.)

expect these two cell lines to be most similar at the network level. J-IDBN
networks for AU565 and SKBR3 were indeed the most similar, maximizing
the Pearson correlation coefficient between corresponding posterior marginal
inclusion probabilities over all

(

6
2

)

= 15 pairs of cell lines. In contrast, stan-
dard IDBNs did not do so (Figure 6). Figure 7 compares posterior inclusion
probabilities (or analogous edge weights for the non-Bayesian methods) for
AU565 against SKBR3. We find posterior edge probabilities from these two

Fig. 5. Breast cancer data; cell line-specific networks inferred by J-IDBN. (Edge width
and color are proportional to posterior marginal inclusion probabilities. The layout of ver-
tices is congruent to Figure 3, which can be used as a key.)
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Fig. 6. Breast cancer data; pairwise similarity between cell line-specific networks inferred
by J-IDBN (left) and IDBN (right). J-IDBN identifies AU 565 and SKBR 3 as having
the most similar networks; these cell lines were originally derived from the same patient.
In contrast, IDBN does not do so. [Colors denote Bonferroni − log(p) values based on the
Pearson correlation coefficient of posterior inclusion probabilities for pairs of cell lines, so
that red indicates a high degree of similarity. For presentation the diagonal is set to zero.]

lines are closer under JNI estimators compared with standard, independent
estimators. However, a thorough assessment of the accuracy of the individ-
ual cell line-specific networks requires additional experimental work and is
beyond the scope of this paper.

5. Discussion. We focused on three related structure learning problems
arising in the context of a set of nonidentical but exchangeable units or
individuals:

(1) Estimation of a shared network from the heterogeneous data.

Fig. 7. Comparison of posterior edge probabilities obtained from analysis of data from
two breast cancer cell lines (AU 565 and SKBR 3) that were originally derived from the
same patient. The joint estimators J-IDBN and J-DBN improve the Spearman correlation
coefficient (“rho”) between posterior edge probabilities compared to independent inference
using IDBN and DBN.
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(2) Estimation of networks for specific individuals.
(3) Learning features specific to individuals (“differential networks”).

Each problem may be of independent scientific interest; the joint approaches
investigated here address all three problems simultaneously within a coher-
ent statistical framework. We considered simulated data, with and without
model misspecification, as well as proteomic data obtained from cancer cell
lines. For all three problems we demonstrated that a joint analysis performs
at least as well as independent or simpler aggregate analyses.

We considered modular priors (that factorize over nodes) that facilitated
efficient computation. However, it may be useful to consider richer priors
for joint estimation. One possibility that is pertinent to applications in can-
cer biology would be hierarchical regularization that allows entire pathways
to be either active or inactive. However, we note that this would require
revisiting hyperparameter elicitation since the heuristics we described are
specific to SHD priors. We restricted the joint model to have equal inverse
temperatures λ1 = · · · = λJ := λ. Relaxing this assumption may improve
robustness to batch effects that target single individuals, since then weak
informativeness (λj ≈ 0) may be learned from data. It would also be inter-
esting to distinguish between G \Gj (“loss of function”) and Gj \G (“gain
of function”) features. In this work we did not explore information sharing
through parameter values θj , yet this may yield more powerful estimators
of network structure in settings where individuals’ parameters θj ,θk are not
independent.

The case of exchangeable networks that we considered here represents the
simplest of a more general class of models for related networks. In a sequel
to the present paper [Oates and Mukherjee (2014)], we discuss the case
where multiple individuals are related according to a known tree structure.
In this more general setting, efficient algorithms based on belief propagation
continue to apply, since the tree constraint ensures that the corresponding
factor graph is acyclic and so the sum-product lemma continues to hold
[Kschischang, Frey and Loeliger (2001)]. Still more general (and challenging)
is the case where both the networks and the hierarchical structure that relate
them to one another are unknown. Oates et al. (2014a, 2014b) present a first
step in this direction, in the context of MAP estimation for nonexchangeable
DAGs.

APPENDIX A: PROOF OF THEOREM

The following Lemma shows that, under the joint regularity assumption,
JNI is a consistent estimator of the true latent network G in the limit J →∞:

Lemma. Let η = 0. Then under the joint regularity assumption there

exists 0< ε< 1 such that E
Y,G,G1,...,GJ |η,λ

p(G|Y)> 1− |G|εJ .
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Proof. Since we are using a flat prior (η = 0) on G, we have, suppressing
dependence upon λ,

p(G|Y) =
p(Y|G)

∑

G∈G p(Y|G)
,(12)

so from Jensen’s inequality

E
Y,G1,...,GJ |G,λ

p(G|Y)≥
E
Y,G1,...,GJ |G,λ

p(Y|G)
∑

G∈G EY,G1,...,GJ |G,λ
p(Y|G)

(13)

=

[

1 +
∑

G∈G

G 6=G

E
Y,G1,...,GJ |G,λ

p(Y|G)

E
Y,G1,...,GJ |G,λ

p(Y|G)

]−1

(14)

> 1−
∑

G∈G

G 6=G

E
Y,G1,...,GJ |G,λ

p(Y|G)

E
Y,G1,...,GJ |G,λ

p(Y|G)
(15)

= 1−
∑

G∈G

G 6=G

∏

j∈J

E
Yj ,Gj |G,λ

p(Yj|G)

E
Yj ,Gj |G,λ

p(Yj|G)
.(16)

The joint regularity assumption is equivalent to the requirement that
E
Yj ,Gj |G,λ

p(Yj |G) has a unique maximum at G=G, since

E
Yj ,Gj |G,λ

p(Yj|G) = E
Gj |G,λ

E
Yj |Gj

∑

Gj∈G

p(Yj |Gj)p(Gj |G)(17)

=
∑

Gj∈G

p(Gj |G)
∑

Gj∈G

[E
Yj |Gjp(Y

j |Gj)]p(Gj |G)(18)

=
∑

Gj∈G

∑

Gj∈G

(RT )G,Gj(S)Gj ,Gj (R)
Gj ,G

(19)

= (RTSR)G,G = (RSR)G,G,(20)

where we have used that R is symmetric. It follows that

ε := max
G∈G

G 6=G

E
Yj ,Gj |G,λ

p(Yj|G)

E
Yj ,Gj |G,λ

p(Yj|G)
< 1.(21)

We therefore conclude that

E
Y,G1,...,GJ |G,λ

p(G|Y)> 1− |G|εJ .(22)



JOINT NETWORK INFERENCE 23

Since equation (22) is independent of G, the result follows. �

Proof of Theorem. Since no observables are available on the first
individual (Y1 =∅), we have

A1
JNI =

∑

G∈G

p(G|Y)
∑

G1∈G

p(G1|G)G1.(23)

We also require the “oracle” estimator (O-JNI); this is simply JNI but with
G fixed and known, that is,

A1
O-JNI =

∑

G1∈G

p(G1|G)G1.(24)

Note that E
G|η,λ‖A

1
O-JNI −G1‖= E

G1,G|λ
‖G−G1‖= P 2(1− hλ). We begin

by showing that JNI approximates O-JNI:

A1
O-JNI −A1

JNI = (1− p(G|Y))
∑

G1∈G

p(G1|G)G1

(25)
−

∑

G∈G

G 6=G

p(G|Y)
∑

G1∈G

p(G1|G)G1

and, by the triangle inequality,

‖A1
O-JNI −A1

JNI‖ ≤

∥

∥

∥

∥

(1− p(G|Y))
∑

G1∈G

p(G1|G)G1

∥

∥

∥

∥

+

∥

∥

∥

∥

∑

G∈G

G 6=G

p(G|Y)
∑

G1

p(G1|G)G1

∥

∥

∥

∥

(26)

≤ (1− p(G|Y)) sup
G1∈G

‖G1‖+ (1− p(G|Y)) sup
G1∈G

‖G1‖(27)

≤ 2(1− p(G|Y))P 2.(28)

Again, by the triangle inequality,

‖A1
JNI −G1‖ ≤ ‖A1

JNI −A1
O-JNI‖+ ‖A1

O-JNI −G1‖.(29)

Taking expectations and applying the Lemma produces

E
Y,G|η,λ‖A

1
JNI −G1‖ ≤ 2P 2|G|εJ−1 +P 2(1− hλ),(30)

as required. �
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Fig. 8. Dynamic Bayesian networks (DBNs). (a) An “unrolled” dynamic Bayesian
network (DBN) showing each variable at successive time points. (b) The corresponding
“static” representation of DBN (a) with exactly one vertex for each variable.

APPENDIX B: DYNAMIC BAYESIAN NETWORKS

For the DBNs used here, an edge (p, q) from p ∈ P to q ∈ P in Gj ∈ G

implies that Y j
q (t), the observed value of variable q in individual j at time

t, depends directly upon Y j
p (t− 1), the observed value of p in individual j

at time t− 1 [Figure 8(a); note that t indexes the sample index rather than
actual sampling time]. Let Yj denote a vector containing all observations
for individual j. Then Yj(t) is conditionally independent of {Yj(t − τ) :
τ ≥ 2} given Yj(t − 1), θj , Gj and Zj (first-order Markov assumption).
These conditional independence relations are conveniently summarized as
a (static) network Gj with exactly P vertices [Figure 8(b)]; note that this
latter network need not be acyclic.

Hill et al. (2012) describe a DBN rooted in the Bayesian linear model.

Specifically, the response Y j
p (t) is predicted by covariates Yj(t− 1), that is,

Yj
p =X0α+X

j

πj
p

β+ ε,(31)

where ε∼N(0n×1, σ
2In×n). In many cases multiple time series will be avail-

able. In this case the vector Y
j
p contains the concatenated time series. The

matrix X0 = [1{t=1} 1{t>1}]n×2 contains a term for the initial time point in

each experiment. The elements of Xj

πj
p

corresponding to initial observations

Y j
p (1) are simply set to zero. Parameters θj

p = {α,β, σ} are specific to model

πj
p, variable p and individual j. In the simplest case, given data Y = y, the

model-specific component Xj

πj
p

of the design matrix consists of the raw pre-

dictors y
j

πj
p

(t − 1), where y
j
Z denotes the elements of the vector yj(t − 1)
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belonging to the set A, though more complex basis functions may be used,
including interaction terms. For experiments performed in this paper, in-
teraction terms were taken to be all possible products of parent variables,
following Hill et al. (2012).

Spencer, Hill and Mukherjee (2012) modeled interventional data by mod-
ification to the DAG using ideas from causal inference [Pearl (2000)]. We
mention briefly some of the key ideas and refer the interested reader to
the references for full details. A “perfect intervention” corresponds to 100%
removal of the target’s activity with 100% specificity. In the context of pro-
tein phosphorylation, kinases may be intervened upon using chemical agents.
Spencer, Hill and Mukherjee (2012) make the simplifying assumptions that
these interventions are perfect [the “perfect out fixed effects” (POFE) ap-
proach]. We refer the reader to Spencer, Hill and Mukherjee (2012) for an
extended discussion of POFE. This changes the DAG structure to model
the intervention and also estimates an additional fixed effect parameter to
model the change under intervention in the log-transformed data. When
generating data for the simulation study in Section 4.2 we take fixed effects
to equal zero.

APPENDIX C: EXACT MARGINAL LIKELIHOOD FOR DBN
AND IDBN

Hill et al. (2012) employed an exact Bayesian approach to capture the suit-

ability of the candidate parent set πj
p. In brief, a Jeffreys prior p(α, σ|πj

p, φj ,
Zj) ∝ 1/σ for σ > 0 was placed over the common parameters. Prior to in-
ference, the noninterventional components of the design matrix are orthog-
onalized using the transformation (Xj

πj
p

)ik 7→
∑

l(In − P0)il(X
j

πj
p

)lk, where

P0 =X0(X
T
0 X0)

−1XT
0 [Bayarri et al. (2012)]. A g-prior was placed on re-

gression coefficients [Zellner (1986)], given by

β|α, σ, πj
p, φ

j ,Zj ∼N(0b×1, φ
jσ2(XT

πj
p
X

πj
p
)−1),(32)

where b = dim(β). Using these priors alongside either DBNs or IDBNs as
outlined above, the marginal likelihood can be obtained in closed-form:

P(yj
p|π

j
p, φ

j,Zj)
(33)

∝
1

(φj +1)b/2

(

yjT
p

(

In×n −P0 −
φj

φj + 1
P

πj
p

)

yj
p

)−(n−a)/2

,

where P
πj
p
= X

πj
p
(XT

πj
p

X
πj
p
)−1XT

πj
p

, a = dim(α) and b = dim(β). Empirical

investigations have previously demonstrated good results for network infer-
ence based on the above marginal likelihood [Hill et al. (2012), Spencer, Hill
and Mukherjee (2012)].
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The hyperparameter φj , that is related to the weight of the parameter
prior p(β|α, σ) relative to the data y

j
p, was selected in this paper using the

conditional empirical Bayes procedure outlined in George and Foster (2000),
corresponding to

φ̂j(πj
p) = argmaxgP(yj

p|π
j
p, g,Z

j).(34)

For computational efficiency, we evaluated the argument over a set of eight
candidate values corresponding to prior weights of 0, 10, 20, 30, 40, 50% and
(100/n)% (the unit information prior). Alternative strategies for eliciting g-
priors are discussed in Bayarri et al. (2012), Liang et al. (2008).

APPENDIX D: BELIEF PROPAGATION FOR JNI

Exact inference for JNI is based on belief propagation [Pearl (2000)].
Algorithm 1 displays pseudocode for exact joint model averaging. We also
indicate computational complexity in terms of the numberM = |Gp| of possi-
ble parent sets and the number J of individuals. Computational complexity
of calculating marginal likelihoods P(yj

p|π
j
p) will partly depend upon sam-

ple size n; scaling exponents shown here assume O(n) =O(1). Algorithm 1
contains pseudocode for computation of posterior marginal inclusion prob-
abilities for edges in both the latent network G and individual-specific net-
works Gj . For simplicity, we suppress dependence upon ancillary data Zj

throughout.

Algorithm 1 Belief propagation for JNI
1: for p ∈ P do

Phase 0:

2: Compute and cache P(yj
p|π

j
p) [∀j ∈J ] [∀πp ∈ Gp]

Phase I:

3: Compute and cache [∀j ∈ J ] [∀πp ∈ Gp]

4: P(yj
p|πp) =

∑

π
j
p∈Gp

P(yj
p|π

j
p)p(π

j
p|πp) [O(M)]

Phase II:

5: Compute and cache [∀j ∈ J ] [∀πp, π
j
p ∈ Gp]

6: p(πp|yp, π
0

p)∝ p(πp|π0

p)
∏

j∈J P(yj
p|πp) [O(J)]

7: p(πj
p|yp, π

0

p)∝
∑

πp∈Gp
p(πp|π0

p)P(yj
p|π

j
p)p(π

j
p|πp)

∏

k∈J\{j}P(yk
p |πp)[O(MJ)]

Phase III:

8: Compute and cache [∀j ∈ J ] [∀i ∈ P ]

9: p(i ∈ πp|y,G0) =
∑

πp∈Gp
1i∈πp

p(πp|yp, π
0

p) [O(M)]

10: p(i ∈ πj
p|y,G

0) =
∑

π
j
p∈Gp

1
i∈π

j
p
p(πj

p|y, π
0

p) [O(M)]

11: end for
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Supplement A: Additional results and protocols

(DOI: 10.1214/14-AOAS761SUPPA; .pdf). Includes: Alternative data gener-
ating models; robustness to in-degree restriction, outliers, batch effects and
nonexchangeability; ancillary information for breast cancer; inferred wild
type networks for breast cancer.

Supplement B: Computational implementation

(DOI: 10.1214/14-AOAS761SUPPB; .zip). MATLAB R2014a code (serial
and parallel) implementing joint network inference.
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