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1 Introduction

Commonsense reasoning often relies on the perception of similarity as well as dis-
similarity between objects or situations. Such a perception may be expressed and
summarized by means of analogical proportions, i.e., statements of the form “A is
to B as C is to D”. Analogy is not a mere question of similarity between two objects
(or situations), but rather a matter of proportion or relation between objects. This
view dates back to Aristotle and was enforced by Scholastic philosophy. Indeed,
an analogical proportion equates a relation between two objects with the relation
between two other objects. As such, the analogical proportion “A is to B as C is to
D” poses an analogy of proportionality by (implicitly) stating that the way the two
objects A and B, otherwise similar, differ is the same way as the two objects C and
D, which are similar in some respects, differ.

A propositional logic modeling of analogical proportions, viewed as a quaternary
connective between the Boolean values of some feature pertaining to A, B, C, and
D, has been recently proposed in [14]. This logical modeling amounts to precisely
state that the difference between A and B is the same as the one between C and
D, and that the difference between B and A is the same as the one between D and
C. This view can then be proved to be equivalent to state that each time a Boolean
feature is true for A and D (resp. A or D) it is also true for B and C (resp. B or
C), and conversely. This latter point shows that a counterpart of a characteristic
behavior of numerical geometrical proportions (a

b
= c

d
), or of numerical arithmetic

proportions (a − b = c − d), namely that the product (resp. sum, in the second
case) of the extremes is equal to the product (resp. the sum) of the means, is still
observed in the logical setting.

However, analogical proportions are not the only type of quaternary statements
relying on the ideas of similarity and dissimilarity that can be imagined. They turn
out to be a special case of so-called logical proportions [17]. Roughly speaking, a



logical proportion between four terms A, B, C, D equates similarity or dissimilarity
evaluations about the pair (A, B) with similarity or dissimilarity evaluations about
the pair (C, D). A set of 120 distinct logical proportions, whose formal expressions
share the same structure as well as some remarkable properties, has been identified.
Among them, 8 logical proportions stand out as being the only ones that enjoy a
code independency property. Namely, their truth status remains unchanged when
the truth values 0 and 1 are exchanged. These 8 proportions split into two groups,
namely, 4 homogeneous ones (which include the analogical proportion) [22], and 4
heterogeneous logical proportions, which are dual in some sense of the former ones.
The pairs (A, B) and (C, D) play symmetrical roles for homogeneous proportions,
while it is not the case for the heterogeneous ones. However, both enjoy noticeable
permutation properties.

Similarity and dissimilarity are naturally a matter of degrees. Thus, the exten-
sion of homogeneous and heterogeneous logical proportions when features are graded
make sense in a multiple-valued logic setting. This makes these logical proportions
closer to a symbolic counterpart of numerical proportions where the equality between
ratios or differences of quantities may be approximate.

Besides, knowing three values, the statement of the equality of numerical ratios,
or of numerical differences, involving a fourth unknown value, and expressing a
proportionality relation, is useful for extrapolating this latter value. Similarly, the
solving of logical proportion equations may be the basis of reasoning procedures.
In particular, when an analogical proportion holds for a large number of features
between four situations described by means of n binary features, one may make the
plausible inference that the same type of proportion should also hold for a (n + 1)th
feature. If the truth value of this latter feature is known for three of the situations,
and unknown for the fourth one, this value can thus be obtained as the solution of
an analogical proportion equation.

The paper is organized as follows. In Section 2, the notion of logical proportions
is introduced and formally defined. Then, a structural typology of the different
families of logical proportions, as well as some noticeable properties, are presented.
Section 3 is devoted to a more detailed study of homogeneous proportions. Section
4 deals with extensions of homogeneous proportions for handling non Boolean or
unknown features. This is the case if the features are gradual, or if they are binary
but may not apply. It may also happen that for some situations it is not known if
a feature holds or not. The section investigates these three types of cases (gradual
features, features non applicable, and missing information about a feature), where
different multiple-valued logical calculi are involved. Section 5 focuses on heteroge-
neous proportions, studies their properties, and their extension to gradual properties.
Section 6 discusses applications of homogeneous and heterogeneous proportions. Ho-



mogeneous logical proportions, especially analogical proportions, seem of interest for
completing missing values in tables, a problem sometimes termed “matrix abduc-
tion” [1]. It amounts in the logical proportion setting to completing a series A, B,
C with X such as (A, B, C, X) makes a proportion of a given type. Heterogeneous
logical proportions are shown to be instrumental for picking out the item that does
not fit in a list. Thus, the setting of logical proportions appears to be rich enough for
coping with two different types of reasoning problems where the ideas of similarity
and dissimilarity play a key role in both cases. Psychological quizzes or tests are
used for illustrating this ability to exploit comparisons in reasoning.

This paper provides a synthesis of results that have appeared mostly in a series
of papers by the authors [19, 18, 22].

2 Logical proportions

Before introducing the formal definitions, let us briefly clarify the notations used.

• When dealing with Boolean logic, a, b, . . . denote propositional variables (hav-
ing 0 or 1 as truth value), and we use the standard symbols ∧, ∨ to build up
formulas (with parentheses when needed). For the negation operator, instead
of using the standard ¬ symbol, we will use a to denote ¬a. This is done for
saving space when writing long formulas. As usual ⊤ (resp. ⊥) denotes the
always true (resp. false) proposition.

• 0 and 1 denote the Boolean truth values, and a valuation v is just a function
from the set of propositional variables to the set of truth values, i.e., {0, 1} in
the Boolean case, or [0, 1] in the graded case.

• When we propose a new definition, we will use the symbol , meaning defini-
tional equality. The right hand side of the equation is the definition of the left
hand side.

• When we consider syntactic identity, we use =Id: for instance a ∧ b =Id a ∧ b
but we do not have a ∧ b =Id b ∧ a.

• Finally, the symbol ≡ is reserved for the equivalence, i.e.,

a → b , a ∨ b a ≡ b , (a → b) ∧ (b → a)

Logical proportions are Boolean formulas built upon what we called indicators. We
introduce this concept in the next subsection and we investigate some fundamental
properties.



2.1 Similarity and dissimilarity indicators

Generally speaking, the comparison of two items A and B relies on the representation
of these items. For instance, the items may be represented as a set of features A
and B. Then, one may define a similarity measure. This is the aim of the well-
known work of Amos Tversky [26], taking into account the common features, the
specificities of A w.r.t. B, and the specificities of B w.r.t. A, respectively modeled
by A ∩ B, A \ B, and B \ A. Here, we are not looking for any global measure of
similarity, we are rather interested in keeping track in what respect items are similar
and in what respect they are dissimilar using Boolean indicators. This is why we
adopt a logical setting: features are viewed as Boolean properties. Let P be such a
property, which can be seen as a predicate: P (A) may be true (in that case ¬P (A)
is false), or false.

When comparing two items A and B w.r.t. such a property P , it makes sense
to consider A and B similar (w.r.t. property P ):

- when P (A) ∧ P (B) is true or
- when ¬P (A) ∧ ¬P (B) is true.

In the remaining cases:
- when ¬P (A) ∧ P (B) is true or
- when P (A) ∧ ¬P (B) is true,

we can consider A and B as dissimilar w.r.t. property P .
Since P (A) and P (B) are ground formulas, they can simply be considered as

Boolean variables, and denoted a and b by abstracting w.r.t. P . If the conjunction
a ∧ b is true, the property is satisfied by both items A and B, while the property is
satisfied by neither A nor B if a∧ b is true. The property is true for A only (resp. B
only) if a ∧ b (resp. a ∧ b) is true. This is why we call such a conjunction of Boolean
literals an indicator, and for a given pair of Boolean variables (a, b), we have exactly
4 distinct indicators:

• a ∧ b and a ∧ b that we call similarity indicators,

• a ∧ b and a ∧ b that we call dissimilarity indicators.

Let us observe that negating anyone of the two terms of a dissimilarity indicator
turns it into a similarity indicator, and conversely. Hence, negating the two terms
of an indicator yields an indicator of the same type.

2.2 Building logical proportions with indicators

When describing two elementary situations encoded by two Boolean variables a and
b, one may use one of the four above indicators. Putting such a description in



relation with what takes place with two other Boolean variables c and d in terms of
some indicator, leads to state an equivalence between one indicator pertaining to the
pair (a, b) and one indicator pertaining to the pair (c, d). However, one may consider
that using two indicators to describe the status of 2 variables a and b may be more
satisfactory from some symmetrization point of view than using only one indicator.
For instance, using a∧ b together with a∧ b establishes the symmetry between a and
b, or using a ∧ b together with a ∧ b considers counter-examples as well as examples
in context a, or using a ∧ b together with a ∧ b provides the same role to negative
or positive features. Note that such symmetrizations occur for free with numerical
proportions where for instance one can exchange a and b on the one hand, c and d
on the other hand, still writing a unique equality. It is why we more particularly
focus on proportions defined as the conjunction of two distinct equivalences between
an indicator for the pair (a, b) and an indicator for the pair (c, d).

One may wonder about the simultaneous use of three indicators for comparing
two Boolean variables. This would lead to three equivalences instead of two, which
appears conceptually more complicated, and maybe farther from the idea of propor-
tion inherited from the numerical setting. Then, for the sake of simplicity, we stick
to the conjunctions of two equivalences between indicators in the following. This
defines a so-called logical proportion [17, 19]. More formally, let us denote I(a,b) and
I ′

(a,b)
1 (resp. I(c,d) and I ′

(c,d)) 2 indicators for (a, b) (resp. (c, d)). Then

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of 2 distinct equiv-
alences between indicators of the form

I(a,b) ≡ I(c,d) ∧ I ′

(a,b) ≡ I ′

(c,d)

An example of such proportion is ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) where

• I(a,b) , a ∧ b, I(c,d) , c ∧ d,

• I ′

(a,b) , a ∧ b, I ′

(c,d) , c ∧ d.

Obviously, this formal definition goes beyond what may be expected from the infor-
mal idea of “logical proportion”, since equivalences may be put between things that
are not homogeneous (i.e., mixing similarity and dissimilarity indicators in various
ways).

Let us first determine the number of logical proportions. To build an equivalence
between indicators, we have to choose one indicator among four for the pair (a, b)

1Note that I(a,b) (or I ′

(a,b)) refers to one element in the set {a ∧ b, a ∧ b, a ∧ b, a ∧ b}, and should
not be considered as a functional symbol. Still, we use this notation for the sake of readability.



and similarly for the pair (c, d), we get 4× 4 = 16 distinct equivalences. To build up
a logical proportion, we first choose one equivalence among 16, and then the second
equivalence has to be chosen among the 15 remaining ones, leading to 16 × 15 =
240 pairs of equivalences. Taking into account the commutativity of the Boolean
conjunction, we finally get 240/2 = 120 potentially distinct logical proportions . We
shall see in subsection 2.4 that they are indeed distinct. We first provide a syntactic
typology of the logical proportions.

2.3 Typology of logical proportions

Logical proportions can be classified according to the ways they are built up. At
this stage, it makes sense to distinguish between two types of indicators: similarity
indicators that are denoted by S, and dissimilarity indicators that are denoted by
D: e.g., D(a,b) ∈ {a ∧ b, a ∧ b}.

Depending on the way the indicators are chosen, one may mix the similarity and
the dissimilarity indicators differently in the definition of a proportion.

This leads us to distinguish a specific subfamily of proportions, the so-called
degenerated proportions: those ones involving only 3 distinct indicators in their
definition. For instance

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

is such a proportion where I(c,d) =Id I ′

(c,d).
For the remaining proportions, it is required that all the indicators appearing

in the definition of the proportion are distinct. At this stage, among the non-
degenerated proportions, we can identify 4 subfamilies that we describe below:

• The 4 homogeneous proportions

For these proportions, we do not mix different types of indicators in the 2
equivalences. The homogeneous proportions are of the form

S(a,b) ≡ S(c,d) ∧ S′

(a,b) ≡ S′

(c,d)

or

D(a,b) ≡ D(c,d) ∧ D′

(a,b) ≡ D′

(c,d)

Thus, it appears that only 4 proportions among 120 are homogeneous. They
are (with their name):

– analogy : A(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))



– reverse analogy: R(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

– paralogy : P (a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

– inverse paralogy: I(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Analogy already appeared under this form in [14]; paralogy and reverse analogy
were first introduced in [16], and inverse paralogy in [19]. While the analogical
proportion (analogy, for short) reads “a is to b as c is to d” and expresses
that “a differs from b as c differs from d, and conversely b differs from a as
d differs from c”, reverse analogy expresses that “a differs from b as d differs
from c, and conversely b differs from a as c differs from d”, paralogy expresses
that “what a and b have in common, c and d have it also” (positively and
negatively). Paralogy is a given name. Finally, inverse paralogy expresses that
“what a and b have in common, c and d miss it, and conversely”. As can be
seen, inverse paralogy expresses a form of antinomy between pairs (a, b) and
(c, d). Note that we use two different words, “inverse” and “reverse”, since the
changes between analogy and reverse analogy on the one hand, and paralogy
and inverse paralogy on the other hand, are not of the same nature. From
now on, we denote analogy with A, reverse analogy with R, paralogy with P ,
inverse analogy with I. When we need to denote any unspecified proportion,
we will use the letter T .

• The 16 conditional proportions

Their expression is made of the conjunction of an equivalence between simi-
larity indicators and of an equivalence between dissimilarity indicators. Thus,
they are of the form

S(a,b) ≡ S(c,d) ∧ D(a,b) ≡ D(c,d)

There are 16 conditional proportions (2 × 2 choices per equivalence). An
example is

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))



Let us explain the term “conditional”. It comes from the fact that these pro-
portions express “equivalences” between conditional statements. Indeed, it has
been advocated in [5] that a rule “if a then b” can be seen as a three valued
entity that is called ‘conditional object’ and denoted b|a [4]. This entity is:

– true if a ∧ b is true. The elements making it true are the examples of the
rule “if a then b”,

– false if a∧b is true. The elements making it true are the counter-examples
of the rule “if a then b”,

– undefined if a is true. The rule “if a then b” is then not applicable.

Thus, the above proportion ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) may be
denoted b|a :: d|c combining the two conditional objects in the spirit of the
usual notation for analogical proportion. Indeed, it expresses a semantical
equivalence between the 2 rules “if a then b” and “if c then d” by stating that
they have the same examples, i.e. (a ∧ b) ≡ (c ∧ d)) and the same counter-
examples (a ∧ b) ≡ (c ∧ d).

It is worth noticing that such proportions have equivalent forms, e.g.:

(b|a :: d|c) ≡ (b|a :: d|c)

which agrees with the above semantics and more generally with the idea of
conditioning. Indeed the examples “if a then b” are the counter-examples of
“if a then b”, and vice-versa. Due to this remark, it is enough to consider the
equivalences between one of the 4 conditional objects a|b, b|a, a|b, b|a, and
the 4 other conditional objects built with (c, d), yielding 4 × 4 proportions
as expected. Besides, 8 conditional proportions have been first considered in
[19], but not the 8 remaining ones, since they do not satisfy the “full identity”
property, discussed in the next section.

• The 20 hybrid proportions

They are characterized by equivalences between similarity and dissimilarity
indicators in their definitions. They are of the form.

S(a,b) ≡ D(c,d) ∧ S′

(a,b) ≡ D′

(c,d)

or

D(a,b) ≡ S(c,d) ∧ D′

(a,b) ≡ S′

(c,d)



or

S(a,b) ≡ D(c,d) ∧ D(a,b) ≡ S(c,d).

There are 20 hybrid proportions: 2 of the first type, 2 of the second type, 16 of
the third type since we have here 4 choices for an equivalence S(a,b) ≡ D(c,d),
and 4 choices for D(a,b) ≡ S(c,d).

If we remember that negating anyone of the two terms of a dissimilarity indi-
cator turns it into a similarity indicator, and conversely, we understand that
changing a into a (and a into a), or applying a similar transformation with
respect to b, c, or d, turns

- an hybrid proportion into an homogeneous or a conditional proportion;

- an homogeneous or a conditional proportion into an hybrid proportion.

This indicates the close relationship of hybrid proportions with homogeneous
and conditional proportions. More precisely,

- on the one hand there are 4 hybrid proportions such that replacing a with a
leads to the 4 homogeneous proportions A, R, P , I. They are obtained by the
two first kinds of patterns for building hybrid proportions. Moreover, we shall
see in the next section that they constitute with the 4 homogeneous propor-
tions the 8 proportions that are the only ones satisfying “code independency”
property.

- on the other hand, there are 16 remaining hybrid proportions, obtained by the
third kind of pattern for building them. They can be written as the equivalence
of 2 conditional objects, although they do not obey the conditional proportion
pattern. For instance, ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) can be written as
a|b :: c|d. This proportion is indeed obtained from the conditional proportion
a|b :: c|d by changing a into a. Thus, these 16 new equivalences between condi-
tional objects are not of the form a|b :: c|d (or equivalently a|b :: c|d) produced
by the pattern of conditional proportions, but of a “mixed” form having an
odd number of negated terms.

• The 32 semi-hybrid proportions

One half of their expressions involve indicators of the same type, while the
other half requires equivalence between indicators of opposite types. They are
of the form



S(a,b) ≡ S(c,d) ∧ S′

(a,b) ≡ D(c,d)

or

S(a,b) ≡ S(c,d) ∧ D(a,b) ≡ S′

(c,d)

or

D(a,b) ≡ D(c,d) ∧ S(a,b) ≡ D′

(c,d)

or

D(a,b) ≡ D(c,d) ∧ D′

(a,b) ≡ S(c,d)

There are 32 semi-hybrid proportions (8 of each kind: 4 choices for the first
equivalence, times 2 choices for the element that is not of the same type as the
three others (D or S) in the second equivalence). An example of semi-hybrid
proportion is ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b ≡ (c ∧ d)).

Applying a change from a to a (and a to a), or applying a similar transforma-
tion with respect to b, c, or d, turns a semi-hybrid proportion into a semi-hybrid
proportion (since as already said, negating anyone of the two terms of a dis-
similarity indicator turns it into a similarity indicator, and conversely). This
contrasts with the hybrid proportion class which is not closed under such a
transformation.

• The 48 degenerated proportions

In all the above categories, the 4 indicators related by equivalence symbols
should be all distinct. In degenerated proportions, there are only 3 different
indicators and it is simpler to come back to our initial notation. With this
notation, these proportions are of the form

I(a,b) ≡ I(c,d) ∧ I(a,b) ≡ I ′

(c,d)

or

I(a,b) ≡ I(c,d) ∧ I ′

(a,b) ≡ I(c,d)

Their number is easy to compute: we have to choose I(a,b) among 4 indicators
and then to choose 2 distinct indicators among 4 pertaining to (c, d): we
then get 4 * 6 = 24 proportions of the first form. The same reasoning with
the second kind of expression leads to a total of 48 degenerated proportions.
Note that the change from a to a (and a to a), or a similar transformation



with respect to b, c, or d, turns a degenerated proportion into a degenerated
proportion.

It can be seen that degenerated proportions always involve a mutual exclu-
siveness condition between 2 positive or negative literals pertaining to either
the pair (a, b) or the pair (c, d). Indeed, if we consider the first form, we
get I(a,b) ≡ I(c,d) on the one hand, and I(c,d) ≡ I ′

(c,d) on the other hand, i.e.
an equivalence between two syntactically distinct indicators pertaining to the
same pair (c, d). There are 6 cases only:

– (c ∧ d) ≡ (c ∧ d) iff c ≡ d

– (c ∧ d) ≡ (c ∧ d) iff c ≡ d

– (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥

– (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥

– (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥

– (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥

Thus, we also have I(a,b) ≡ ⊥ (since we have I(c,d) ≡ ⊥ and I ′

(c,d) ≡ ⊥), which
expresses a mutual exclusiveness condition. Since we have 4 possible choices
for I(a,b), it yields 4 × 6 = 24 distinct proportions, and exchanging (a, b) with
(c, d) gives the 24 other degenerated proportions. Generally speaking, degen-
erated proportions correspond to a mutual exclusiveness condition between
component(s) or negation of component(s) of one of the pairs (a, b) or (c, d),
together with

- either an identity condition pertaining to the other pair,

- or a tautology condition on one of the literals of the other pair without any
constraint on the other literal.

2.4 Basic properties of logical proportions

In this subsection, we first establish a remarkable property that single out the logical
proportion s among the whole set of quaternary Boolean formulas. In order to do
that we need a lemma.

Lemma 1. An equivalence between indicators has exactly 10 valid valuations.

Proof: Such an equivalence eq , Ia,b ≡ Ic,d is satisfied only when it matches one
of the 2 patterns 1 = 1 or 0 = 0: due to the fact that 0 is an absorbing value for
∧, these patterns correspond to the 10 valuations shown in Table 1 for the literals



involved in the indicators (with obvious notation). Any other valuation2 does not
match anyone of the 2 previous patterns and will lead to the truth value 0 for the
equivalence eq. ✷

literal 1 literal 2 literal 3 literal 4 pattern
1 1 1 1 1 = 1
0 1 0 1 0 = 0
0 1 1 0 0 = 0
0 1 0 0 0 = 0
1 0 0 1 0 = 0
1 0 1 0 0 = 0
1 0 0 0 0 = 0
0 0 0 1 0 = 0
0 0 1 0 0 = 0
0 0 0 0 0 = 0

Table 1: 10 valid valuations for an equivalence between indicators

Proposition 1. The truth table of a logical proportion has 6 and only 6 valuations
with truth value 1.

Proof: Since a logical proportion T is the conjunction eq1∧eq2 of 2 equalities between
indicators, with eq1 Ó= eq2, it appears from Lemma 1 that T has a maximum of 10
valid valuations and a minimum of 4 valid valuations. Let us start from eq1, having
10 valid valuations which are candidate to validate T . Obviously, adding eq2 to eq1

will reduce the number of valid valuations for T . Let us assume eq2 differs from eq1

with only one literal (or negation operator). This is then a degenerated proportion.
Without loss of generality, we can consider that the difference between eq1 and eq2

occurs on the first literal meaning eq1 is a ∧ l2 ≡ l3 ∧ l4 and eq2 is a ∧ l2 ≡ l3 ∧ l4 or
vice versa. It is then quite clear that the first valuation 1111 valid for eq1 is not valid
any more for T . It remains 9 candidates valuations. Finally any valuation starting
with 01 is not valid any more and we have 3 such valuations. All the 6 remaining
valuations are still valid for T . Which ends the proof when the 2 equalities differ
from one negation (i.e. one literal). Now when they differ from 2 literals, two cases
have to be considered:

2The only valuations considered in this paper pertain to 4-tuples of variables. In practice, a
Boolean valuation v will be denoted by the values v(a)v(b)v(c)v(d) without any blank space, e.g.,
0100 is short for v(a) = 0, v(b) = 1, v(c) = 0, v(d) = 0.



• either the 2 literals where eq1 differs from eq2 are on the same side of an
equivalence i.e. eq2 is l′1 ∧ l′2 ≡ l3 ∧ l4 (degenerated proportion)

• or they are on different side i.e. eq2 is l′1 ∧ l2 ≡ l′3 ∧ l4.

In the first case, the valuations 1111, 0010, 0001 and 0000 are not valid any more,
but all other ones remain valid. In the second case, the valuations 0100, 0110, 1001
and 0001 are not valid anymore, but all the other ones remain valid. We are done
for the case of 2 differences. When they differ from 3 literals, let us suppose l4
appears in both equivalence, the valuations 1001, 0101, 0010 and 0000 are not valid
anymore and we stick with the 6 remaining ones. In the case where all the literals
are different, obviously the 4 valuations containing only one occurrence of 1 are not
valid anymore because they lead to an invalid pattern 0=1 or 1=0 for eq2. And we
have exactly 4 such valuations. It remains 6 valid valuations. ✷

Note that the negation of a logical proportion is not a logical proportion since
such a negation has 10 valuations leading to true in its table. Besides, the 120 logical
proportions are all distinct as shown below with the help of the following lemma.

Lemma 2. Two equivalences between indicators have the same truth table iff they
are identical.

Proof: It is sufficient to show that if 2 equalities eq1 and eq2 have the same truth
table, then they are syntactically identical. In other terms, we have to prove that
eq1 ≡ eq2 implies eq1 =Id eq2. Without loss of generality, let us assume that
eq1 contains a but eq2 contains a. Considering the unique valuation v such that
v(eq1) = 1 with the pattern 1 = 1, v is such that v(a) = 1. By hypothesis, v(eq2) = 1
but in that case with the pattern 0 = 0 since v(a) = 0. Let us now modify v into v′

such that v′(a) = v(a) = 0, v′(c) = v(c), v′(d) = v(d) and v′(b) = v(b). Obviously v′

does not validate eq1 but validates eq2 which contradicts the hypothesis. ✷

Proposition 2. The truth tables of the 120 proportions are all distinct.

Proof: We are going to show that, when 2 proportions T , eq1∧eq2 and T ′ , eq′

1∧eq′

2

have the same truth table, they are syntactically identical (up to a permutation of
the 2 equalities). In other words, T ≡ T ′ implies T =Id T ′. Starting from T ≡ T ′,
it amounts to show that if eq1 is syntactically different from eq′

1, eq1 is syntactically
equal to eq′

2. This will complete the proof as a similar reasoning will show that eq2

is, in the same context, syntactically equal to eq′

1.
In fact, if eq1 is syntactically different from eq′

1, we can assume for instance
without loss of generality that eq1 contains a but eq′

1 contains a. Let us consider



the unique valuation σ, validating T and T ′, such that σ(eq1) = 1 with the pattern
1 = 1. Necessarily, this valuation σ is such that σ(a) = 1. By hypothesis, σ(eq′

1) = 1
but in that case with the pattern 0 = 0 since σ(a) = 0. Let us now modify σ into σ′

such that σ′(a) = σ(a) = 0, σ′(c) = σ(c), σ′(d) = σ(d) and σ′(b) = σ(b). Obviously
σ′(T ) = σ′(eq1) = 0 but σ′(eq1) = 1 still following the pattern 0 = 0. The only
option for having σ(T ) = σ(T ′) = 0 is thus to have σ′(eq′

2) = 0 which means a
belongs to eq′

2. Continuing the same reasoning, we show that eq1 =Id eq′

2 and we
infer that if eq1 Ó= eq′

1, necessarily eq1 =Id eq2. ✷

Combined with the fact that there are C6
16 = 8008 truth tables with 16 lines,

this result makes logical proportions quite rare in the world of quaternary Boolean
formulas.

An exhaustive investigation of the whole set of logical proportions with respect
to various other properties has been done in [19, 22, 21]. In the next subsection, we
focus on one of these properties which allows us to characterize a small subset of
remarkable proportions.

2.5 Code independency

Just as a numerical proportion holds independently of the base used for encoding
numbers, or of the system of units representing the quantities at hand, it seems
desirable that a logical proportion should be independent of the way we encode
items in terms of the truth or the falsity of features. It means that the formula
defining a proportion T should be valid when we switch 0 to 1 and 1 to 0. The
formal expression of this property, that we call code independency, writes:

T (a, b, c, d) → T (a, b, c, d)

Surprisingly, this property highlights the fact once more that a single equivalence
would not lead to a satisfactory definition for a logical proportion. Indeed, a unique
equivalence between indicators, denoted l1 ∧ l2 ≡ l3 ∧ l4, where the li’s are literals
does not satisfy code independency, as explained now. If we consider a valuation v
such that v(l1) = v(l2) = v(l3) = 0 and v(l4) = 1, obviously v makes the equivalence
valid since v(l1 ∧ l2) = v(l3 ∧ l4) = 0. But when we switch 0 to 1 and 1 to 0, it
appears that the new valuation v′ such that v′(l1) = v′(l2) = v′(l3) = 1 and v′(l4) = 0
does not validate the equivalence anymore. This shows that one equivalence is not
enough if we are interested in “code independency”. We have to consider at least 2
equivalences to capture this behavior. For instance, (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
clearly satisfies code independency.



Unfortunately, being built as the conjunction of two equivalences is not a suffi-
cient condition for code independency, and many logical proportions do not satisfy
it. We have the following result:

Proposition 3. There are exactly 8 proportions satisfying the code independency
property: the 4 homogeneous proportions A, R, P, I, and 4 hybrid proportions (shown
in Table 2).

Proof: In fact, the code independency property implies a complete equivalence:

T (a, b, c, d) ↔ T (a, b, c, d)

Since both T (a, b, c, d) and T (a, b, c, d) are logical proportions, Proposition 2 tells us
that the 2 proportions should be identical up to a permutation of the 2 equalities.
This exactly means that the second equivalence is obtained from the first one by
negating all the variables. Since we have 4 × 4 equalities between indicators, we
can build exactly 16/2 = 8 proportions satisfying code independency property: each
time we choose an equivalence, we use it and its negated form to build up a suitable
proportion. Since A, R, P, I are built this way, they satisfy code independency. ✷

Ha Hb

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
Hc Hd

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

Table 2: The 4 hybrid proportions satisfying code independency

As a consequence of this result, this set of 8 proportions stand out of the whole
set of 120 proportions. This set of proportions is clearly divided in 2 subsets: the
4 homogeneous proportions on one hand, and the 4 remaining ones, that we call
heterogeneous proportions, on the other hand. In the next two sections, we first
investigate the 4 homogeneous proportions through the angle of a list of meaningful
properties, as well as their interrelationships, and their extensions to multiple-valued
settings. After which, we shall move to the study of the 4 heterogeneous proportions
in Section 5.

3 The 4 homogeneous proportions

We investigate now the 4 homogeneous proportions A, R, P, I from a semantical point
of view. When considered as Boolean formulas, their semantics is given via their



truth tables (which have 24 = 16 lines since these proportions involve 4 variables).

3.1 Boolean truth tables

Starting from their syntactic expressions, it is an easy game to build up the truth
tables of proportions A, R, P, I: they are exhibited in Table 3, where only the valu-
ations leading to the truth value 1, are shown. This means that all the other ones
lead to the truth value 0. As expected, only 6 valuations among 16 in the tables lead
to a truth value 1. We also observe that there are only 8 distinct valuations that
appear in Table 3. This emphasizes their collective coherence as the whole class of
homogeneous proportions. Moreover, they go by pairs where 0 and 1 are exchanged,
thus pointing out their “code independency”.

A R P I

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Table 3: Analogy, Reverse analogy, Paralogy, Inverse paralogy truth tables

It is interesting to take a closer look at the truth tables of the four homoge-
neous proportions. First, one can observe in Table 3, that 8 possible valuations for
(a, b, c, d) never appear among the patterns that make A, R, P , or I true: these 8 val-
uations are of the form xxxy, xxyx, xyxx, or yxxx with x Ó= y and (x, y) ∈ {0, 1}2.
As can be seen, it corresponds to situations where a = b and c Ó= d, or a Ó= b
and c = d, i.e., similarity holds between the components of one of the pairs, and
dissimilarity holds in the other pair. Moreover, the truth table of each of the four
homogeneous proportions, is built in the same manner:

1. 2 lines of the table correspond to the characteristic pattern of the proportion;
namely the two lines where one of the two equivalences in its definition holds
true under the form 1 ≡ 1 (rather than 0 ≡ 0). Thus,

• A is characterized by the pattern xyxy (corresponding to valuations 1010
and 0101), i.e. we have the same difference between a and b as between
c and d;

• R is characterized by the pattern xyyx (corresponding to valuations 1001
and 0110), i.e., the differences between a and b and between c and d are



in opposite directions;

• P is characterized by the pattern xxxx (corresponding to valuations 1111
and 0000), i.e., what a and b have in common, c and d have it also;

• I is characterized by the pattern xxyy (corresponding to valuations 1100
and 0011), i.e. what a and b have in common, c and d do not have it,
and conversely.

2. the 4 other lines of the truth table of an homogeneous proportion T are gen-
erated by the characteristic patterns of the two other proportions that are not
opposed to T (in the sense that A and R are opposed, as well as P and I).
For these four lines, the proportion holds true since its expression reduces to
(0 ≡ 0) ∧ (0 ≡ 0).

Thus, the six lines of the truth table of A that makes it true are induced by the
characteristic patterns of A, P , and I3, the six valuations that makes P true are
induced by the characteristic patterns of P , A, and R, and so on for R and I.

3.2 Relevant properties

Before going deeper in the investigation, remember that the Boolean analogical
proportion is supposed to be, in a Boolean setting, the counterpart of the classical
numerical proportions. Then, it is interesting to consider Boolean counterparts of
the properties satisfied by the numerical proportions, other than code independency.
We list these properties below (with T denoting a logical proportion).

• Full identity: A numerical proportion holds when all the numbers are equal,
i.e., a = b = c = d, which logically translates into

T (a, a, a, a)

• Reflexivity: A numerical proportion holds between (a, b) and (a, b) which log-
ically translates into

T (a, b, a, b)

Obviously, reflexivity entails full identity.

3The measure of analogical dissimilarity introduced in [13] is 0 for the valuations corresponding
to the characteristic patterns of A, P , and I , maximal for the valuations corresponding to the
characteristic patterns of R, and takes the same intermediary value for the 8 valuations characterized
by one of the patterns xxxy, xxyx, xyxx, or yxxx.



• Sameness: A numerical proportion holds between (a, a) and (b, b), which logi-
cally translates into

T (a, a, b, b)

Still, sameness entails full identity.

• symmetry : We can exchange the pair (a, b) with the pair (c, d) in the numerical
proportion, which logically translates into

T (a, b, c, d) → T (c, d, a, b)

• Central (and extreme) permutation : This is a well known property of numer-
ical proportions, which logically translates into

T (a, b, c, d) → T (a, c, b, d) (central permutation)

and

T (a, b, c, d) → T (d, b, c, a) (extreme permutation)

• Transitivity: This property that holds for numerical proportions is logically
stated as follows

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

• Exchange-mirroring: The negation operator can play for Boolean values the
role of an inverse operator for numbers. A numerical proportion holds between
a pair (a, b) and the pair(b−1, a−1), which logically translates into

T (a, b, b, a)

• Semi-mirroring: Similarly it is worth to consider

T (a, b, a, b)

This property is not satisfied by numerical proportions.

• Negation-compatibility: Similarly it is worth to consider

T (a, a, b, b)

This property is also not satisfied by numerical proportions.



Property name Formal definition Proportion
full identity T (a, a, a, a) A,R,P
reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P
sameness T (a, a, b, b) A,R
symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P,I

permutation of means T (a, b, c, d) → T (a, c, b, d) A,I
permutation of extremes T (a, b, c, d) → T (d, b, c, a) A,I

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) I
transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) A,P

semi-mirroring T (a, b, a, b) R,I

exchange mirroring T (a, b, b, a) A,I

negation compatib. T (a, a, b, b) P,I

Table 4: Boolean properties of A, R, P, I

Investigating the homogeneous proportions with regard to the properties listed above
can simply be done with an examination of the truth table of the target proportion.
We summarize in Table 4 all the properties satisfied by A, R, P, I: the third col-
umn enumerates the homogeneous proportions satisfying the property, respectively
named and described in the 1st and 2nd columns.
Note that the 4 homogeneous proportions satisfy symmetry: T (a, b, c, d) =
T (c, d, a, b), as well as many other properties. In particular, analogical proportion
A enjoys properties that parallel properties of numerical proportions: full identity,
reflexivity, symmetry, central and extreme permutations, and transitivity.

One can also establish properties linking the homogeneous proportions, which
are easily deducible from their definitions in terms of indicators.

Proposition 4.

A(a, b, c, d) ≡ R(a, b, d, c); A(a, b, c, d) ≡ P (a, d, c, b); A(a, b, c, d) ≡ I(a, d, c, b)

As can be seen, homogeneous proportions are strongly linked together. Especially
A, R, P are exchanged through simple permutation s; in that respect, I stands apart.
Besides, A, R, P, I are mutually exclusive, as a simple examination of their truth
tables reveals that their intersection is empty.

Proposition 5. A(a, b, c, d) ∧ R(a, b, c, d) ∧ P (a, b, c, d) ∧ I(a, b, c, d) = ⊥

Lastly, having a closer look on the homogeneous proportions, we can easily build
Table 5 which gives what T (a, b, c, d) ∧ T (c, d, e, f) entails for the 4 homogeneous
proportions.



chaining result transitivity
A ∧ A A yes
R ∧ R A no
P ∧ P P yes
I ∧ I P no
A ∧ R R
P ∧ I I

Table 5: Chaining properties for A, R, P, I

All these common properties explain why the homogeneous proportions stand
out from the whole set of 120 logical proportions. It makes homogeneous proportions
a worth considering Boolean counterpart of numerical proportions.

3.3 Characterization of homogeneous proportions by properties

Some subsets of the properties listed above are sufficient for characterizing one or
more homogeneous proportions as unique among the 120 logical proportions. Let
us start with the following result:

Proposition 6. • A, R, P are the unique proportions to satisfy full identity and
code independency.

• A is the only proportion to satisfy sameness (T (a, a, b, b)) and reflexivity
(T (a, b, a, b)).

• R is the only proportion to satisfy sameness and reverse reflexivity T (a, b, b, a).

• P is the only proportion to satisfy reflexivity and reverse reflexivity.

• There is no proportion simultaneously satisfying sameness, reflexivity, and re-
verse reflexivity.

Proof: The first statement comes from Proposition 3 giving the 8 proportions sat-
isfying code independency, along with an immediate checking of the proportions
syntactic form. For instance, Ha defined as (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) is defi-
nitely not valid for valuation 0000. The same reasoning applies to all the proportions
other than A, R, P .
This is an easy proof for the first 3 following statements since each property generates
a set of 4 valid valuations (and two of them yield 6 valid valuations). For instance,



sameness (T (a, a, b, b) implies that valuations 1111, 0000, 0011, 1100 should be valid
and reflexivity (T (a, b, a, b)) implies that valuations 1111, 0000, 0101, 1010, which is
the truth table of A.
Let us consider the last statement, having the simultaneous satisfaction of the 3
properties leads to a truth table where the 8 valuations 0000, 1111, 1010, 0101,
0110, 1001, 0011, 1100 are valid: then this cannot be the truth table of a logical
proportion. ✷

It is well known that a valid numerical proportion still holds when we exchange
the extreme elements or the mean elements. And we have seen that A and I satisfy
both of these permutations. In fact, there are 6 pairwise permutations of the 4
variables appearing in a proportion. So, the behavior of logical proportions w.r.t.
these permutations is worth investigating. We denote the permutation of element
i and j by pi,j: for instance p2,3 is the mean permutation while p1,4 is the extreme
permutation. We can establish the following result:

Proposition 7. • A is the only proportion to satisfy reflexivity and to be stable
for p1,4 (or p2,3).

• A is the only proportion to satisfy sameness and to be stable for p1,4 (or p2,3).

• R is the only proportion to satisfy sameness and to be stable for p1,3 (or p2,4).

• R is the only proportion to satisfy reverse reflexivity and to be stable for p1,3

(or p2,4).

• P is the only proportion to satisfy reflexivity and to be stable for p1,2 (or p3,4).

• P is the only proportion to satisfy reverse reflexivity and to be stable for p1,2

(or p3,4).

• A and I are the only proportions to satisfy symmetry and to be stable for p1,4

(or p2,3).

• P and I are the only proportions to satisfy symmetry and to be stable for p1,2

(or p3,4).

• I is the unique logical proportion to satisfy the 6 permutations.

Proof: The proofs are quite similar for the 8 first statements. Let us give an example
for the first statement. reflexivity means that valuations 0000, 1111, 0011, 1100 have
to be valid. Adding stability for p2,3 leads to add 0101 and 1010 as valid valuations.
This is the truth table of A.



Let us consider the last statement which is a bit more tricky. It is easy to check that
these permutations induce a partition of the set of valuations into 5 classes, each of
them being closed for these 6 permutations:

• the class {0000} and the class {1111}

• the class {0111, 1011, 1101, 1110}

• the class {1000, 0100, 0010, 0001}

• the class {0101, 1100, 0011, 1010, 1001, 0110}

Taking into account that a logical proportion is true for only 6 valuations (Proposi-
tion 1), we only have 3 options:

- a proportion valid for {0000}, {1111} and {0111, 1011, 1101, 1110},
- or for {0000}, {1111} and {1000, 0100, 0010, 0001},
- or for {0101, 1100, 0011, 1010, 1001, 0110}.

It appears that the latter class is just the truth table of inverse paralogy. Lemma 3
that we shall prove below allows us to complete the proof. ✷

Lemma 3. A logical proportion cannot satisfies the class of valuation

{0111, 1011, 1101, 1110} or the class {1000, 0100, 0010, 0001}.

Proof: It is enough to show that this is the case for an equivalence between indica-
tors. So let us consider such an equivalence l1∧l2 ≡ l3∧l4. If this equivalence is valid
for {0111, 1011}, it means that its truth value does not change when we switch the
truth value of the 2 first literals from 0 to 1: there are only 2 indicators for a and b
satisfying this requirement: a∧ b and a∧ b. On top of that, if this equivalence is still
valid for {1101, 1110}, it means that its truth value does not change when we switch
the truth value of the 2 last literals from 0 to 1: there are only 2 indicators for c and
d satisfying this requirement: c ∧ d and c ∧ d. Then the equivalence l1 ∧ l2 ≡ l3 ∧ l4
is just a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d or a ∧ b ≡ c ∧ d. None of these
equivalences satisfies the whole class {0111, 1011, 1101, 1110}. The same reasoning
applies for the other class. ✷

We summarize the results of this subsection by a pair of properties characterizing
a subset of homogeneous proportions, in Table 6 and Table 7. An empty cell means
that the corresponding properties do not characterize any subset of homogeneous
proportion. For instance, the diagonal cells are all empty because an homogeneous
proportion cannot be characterized with only one property.



full identity code indep. symmetry sameness reflexivity rev. reflexivity
full identity A, R, P
code indep. A, R, P A, R, P, I A, R A, P R, P
symmetry A, R, P, I A, R R, P
sameness A, R A, R A R
reflexivity A, P A P

rev. reflexivity R, P R, P R P

Table 6: Characteristic properties of A, R, P, I

p1,2 p1,3 p1,4 p2,3 p2,4 p3,4

sameness R A A R
reflexivity P A A P

rev. reflexivity P R R P
symmetry P, I A, I A, I P, I

Table 7: Characteristic properties of A, R, P, I w.r.t. permutations

To conclude this section, we establish a result which shows how singular I is
among the set of homogeneous proportions.



Proposition 8.

• A logical proportion satisfying 2 properties among semi-mirroring, negation-
compatibility and exchange-mirroring satisfies the remaining one, and is
unique. This is the inverse paralogy I.

• A logical proportion stable for 4 permutations is stable for the 2 remaining
ones and is unique. This is the inverse paralogy I.

Proof: Considering the first statement, let us choose for instance semi-mirroring
and negation-compatibility. First of all, we can observe that, for a proportion T
to satisfy semi-mirroring, means the 4 valuations 1010, 1001, 0110, 0101 are valid.
For negation-compatibility to be satisfied, the 4 valuations 1100, 0011, 1001, 0110
should be valid. Then the truth table of a proportion satisfying both properties
should contains all these valuations i.e. 1010, 1001, 0110, 0101, 1100, 0011. Thanks
to Proposition 1, this is the truth table of inverse paralogy I. A similar reason-
ing applies for the other cases. Regarding the second statement, let us consider
a proportion stable for 4 pairwise permutations: since such pairwise permutations
generate the full group of permutations of 4 elements, it means this proportion is
stable for any permutations. We can consider 2 cases:

- either such a proportion is valid for a valuation having an even number of 0 and
other than 0000 and 1111. We can consider this is 0110 for instance. The stability
leads to have 0011, 0110, 0101, 1001, 1010 valid as well: this is the truth table for i.

- or such a proportion does not have a valid valuation with an even number
of 0 other than 0000 and 1111. It means there is a valid valuation with an odd
number of 0 like 1000. In that case, the stability w.r.t. the permutations leads
to have 1000, 0100, 0010, 0001 as valid valuations, which is not possible thanks to
Lemma 3. ✷

3.4 Equation solving

The idea of proportion is closely related to the idea of extrapolation, i.e. to guess/-
compute a new value on the ground of existing values. In the case of geometrical
proportions, this leads to the well known “rule of three” where, knowing that a

b
= c

x

holds, allows us to compute the value of x from a, b, c. In the Boolean setting, if for
some reason it is believed or known that a logical proportion holds between 4 binary
items, 3 of them being known, then one may try to infer the value of the 4th one,
at least when this extrapolation leads to a unique value. For a proportion T , there
are exactly 6 valuations v such that:

v(T (a, b, c, d)) = 1



In our context, the problem can be stated as follows. Given a logical proportion T
and a valuation v such that v(a), v(b), v(c) are known, does it exist a Boolean value
x such that v(T (a, b, c, d)) = 1 when v(d) = x, and in that case, is this value unique?

We will refer to this problem as “the equation solving problem”, and for the sake
of simplicity, a propositional variable a is denoted as its truth value v(a), and we
use the equational notation T (a, b, c, x) = 1, where x ∈ {0, 1} is unknown. First of
all, it is easy to see that there are always cases where the equation has no solution.
Indeed, the triple a, b, c may take 23 = 8 values, while any proportion T is true only
for 6 distinct valuations, leaving at least 2 cases with no solution. For instance,
when we deal with analogy A, the equations A(1, 0, 0, x) and A(0, 1, 1, x) have no
solution. We have the following results:

Proposition 9.

The analogical equation A(a, b, c, x) is solvable iff (a ≡ b) ∨ (a ≡ c) holds. In that
case, the unique solution is x = a ≡ (b ≡ c).

The reverse analogical equation R(a, b, c, x) is solvable iff (b ≡ a) ∨ (b ≡ c) holds. In
that case, the unique solution is x = b ≡ (a ≡ c).

The paralogical equation P (a, b, c, x) is solvable iff (c ≡ b) ∨ (c ≡ a) holds.

In each of the three above cases, when it exists, the unique solution is given by
x = c ≡ (a ≡ b), i.e. x = a ≡ b ≡ c.

The inverse paralogical equation I(a, b, c, x) is solvable iff (a Ó≡ b) ∨ (b Ó≡ c) holds. In
that case, the unique solution is x = c Ó≡ (a Ó≡ b).

Proof: By immediate investigation of the truth tables. ✷

The anthropologist, linguist and computer scientist Sheldon Klein [9, 10] was
the first to propose to solve analogical equations of the form A(a, b, c, x) = 1, where
x is unknown, as x = c ≡ (a ≡ b), without however providing an explicit definition
for A(a, b, c, d), nor distinguishing between A, R, and P . As we can see, the first 3
homogeneous proportions A, R, P behave similarly. Still, their conditions of equation
solvability differ. Moreover, it can be checked that at least 2 of these proportions are
always simultaneously solvable. Besides, when they are solvable, there is a common
expression that yields the solution.

3.5 Alternative writings for homogeneous proportions

When sticking to the Boolean setting, we can use standard equivalences to get
alternative writings for A, R, P, I. First of all, using the De Morgan’s laws and the
fact that p ≡ q is equivalent to p ≡ q, we get definitions where the internal ∧ are



replaced with ∨ as shown in Table 8. It means that, in a Boolean setting, indicators
involving ∨ are a perfect replacement for indicators using ∧.

A R

(a ∨ b ≡ c ∨ d) ∧ (a ∨ b ≡ c ∨ d) (a ∨ b ≡ c ∨ d) ∧ (a ∨ b ≡ c ∨ d)
P I

(a ∨ b ≡ c ∨ d) ∧ (a ∨ b ≡ c ∨ d) (a ∨ b ≡ c ∨ d) ∧ (a ∨ b ≡ c ∨ d)

Table 8: A, R, P, I definitions with ∨ operator

A more interesting option is to start from the definition of P with indicators

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) (P )

and to use again De Morgan’s laws to rewrite the second equivalence. This leads to
a definition of P without any negation that we denote P ∗:

(a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d) (P ∗)

Then, considering the link between A and P established in Proposition 4, namely
A(a, b, c, d) ≡ P (a, d, c, b), it comes another definition for A, without any negation
operator:

(a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c) (A∗)

It is noticeable that this latter new definition exactly corresponds to what the psy-
chologist Jean Piaget [15], called logical proportion! However, strangely enough, he
has not developed their study nor pointed out their link with analogy.

Thus, since a and d are the extreme variables, b and c the mean variables, the
analogical proportion A(a, b, c, d) can be read as “the conjunction (resp. disjunction)
of the extremes is equivalent to the conjunction (resp. disjunction) of the means”.

Considering the link between A, R, P, I coming from Proposition 4, we can finally
get alternative writing denoted A∗, R∗, P ∗ and I∗ that are shown in Table 9.

A∗ R∗

(a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c) (a ∧ c ≡ b ∧ d) ∧ (a ∨ c ≡ b ∨ d)
P ∗ I∗

(a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d) (a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d)

Table 9: A∗, R∗, P ∗, I∗ definitions



Since, in the Boolean setting, the equivalence T (a, b, c, d) ≡ T ∗(a, b, c, d) holds
(where T denotes any homogeneous proportion among A, R, P, I), one could consider
T ∗ as an alternative writing for T . It is interesting to note that this approach
leads to rewrite A, R, P without any negation. We have to be aware that these
equivalences, leading to alternative writings, are not necessarily valid outside the
Boolean framework.

4 Homogeneous proportions:

multiple-valued semantics

Ultimately, logical proportions, and in particular the homogeneous ones, could be
used for practical applications where we have to deal with missing information or
features whose satisfaction is a matter of degree. To cover such situations, exten-
sions of the Boolean interpretation to multiple-valued logics (3-valued at least) is
necessary. A formal way to cope with these situations is to extend the Boolean
framework to a multiple-valued one by introducing truth values belonging to [0, 1].
We should carefully distinguish between three cases:

• when feature satisfaction is a matter of degree instead of being binary, i.e., the
truth value of a given feature may be an intermediate value between 0 and 1.

• when a feature does not make sense for a given item, i.e., the feature is non
applicable to it.

• when information about some features is missing, i.e., we have no clue about
the truth value of some features for some items, and the corresponding truth
value is not known, i.e., unknown.

At this stage, two questions arise:

1. in a given model, what are the valuations that correspond to a “perfect” pro-
portion of a given type (i.e., having 1 as truth value)? For instance, does
T (a, a, a, a) postulate still have to be satisfied by A, R, P , or can we consider
models where A(u, u, u, u) = u, u being a truth value distinct from 0 and 1?

2. are there valuations that could be regarded as “imperfect” proportions of a
given type (i.e., with a truth value distinct from 0 and 1) and in that case,
what is their truth value?

We investigate these issues in the following subsections keeping in mind an essential
principle: whatever the way we define the truth values, the Boolean model should
be the limit case of our models when restricted to Boolean valuations.



4.1 Semantics for gradual features

When the satisfaction of features may be a matter of degree, we have to consider
that the truth values belong to a linearly ordered scale L. The simplest case is when
L = {0, α, 1}, with the ordering 0 < α < 1, which can be generalized into a finite
chain L = {α0 = 0, α1, · · · , αn = 1} of ordered grades 0 < α1 < · · · < 1, or to an
infinite chain using the real interval [0, 1]. A proposal for extending A in such cases
has been advocated in [18]. It takes its source in the initial definition

A(a, b, c, d) = (a ∧ b̄ ≡ c ∧ d̄) ∧ (ā ∧ b ≡ c̄ ∧ d),

where now

• i) the central ∧ is taken as equal to min;

• ii) s ≡ t is taken as min(s →L t, t →L s) where →L is Łukasiewicz implication,
defined by s →L t = min(1, 1 − s + t), for L = [0, 1] (in the discrete cases,
we take α = 1/2 and αi = i/n), and thus s ≡ t = 1 − |s − t| ; note that
s ≡ t = (1 − s) ≡ (1 − t);

• iii) s ∧ t̄ = max(0, s − t) = 1 − (s →L t), i.e., ∧¯is understood as expressing a
bounded difference. Note that this choice preserves A(a, b, c, d) = A(ā, b̄, c̄, d̄)
for the involutive negation x̄ = 1 − x.

The resulting expression for A(a, b, c, d) is given in Table 10. Then, we under-
stand the truth value of A(a, b, c, d) as the extent to which the truth values a, b, c, d
makes an analogical proportion. For instance, in such a graded model, the truth
value of A(0.9, 1, 1, 1) = 0.9, which fits the intuition. It can be checked that the
semantics of A(a, b, c, d) thus defined in the graded case, reduces to the previous
definition when restricted to the Boolean case.

It is interesting to study in what cases A(a, b, c, d) = 1 (and in what cases
A(a, b, c, d) = 0). Then it is clear that A(a, b, c, d) = 1 when a − b = c − d. When
a, b, c, d ∈ {0, α = 1/2, 1}, it yields the 19 following patterns 1111; 0000; αααα;
1010; 0101; 1α1α; α1α1; 0α0α; α0α0; 1100; 0011; 11αα; αα11; αα00; 00αα; 1αα0;
0αα1; α10α; α01α.

This means that A(a, b, c, d) = 1 when the change from a to b has the same
direction and the same intensity as the change from c to d. However, the last 4
patterns show that there is no need to have a = b and a = c while these conditions
hold for the 15 first patterns, which are all of the form xyxy, xxyy, or xxxx. In
contrast, note that the last 4 patterns exhibit 3 distinct values.

A(a, b, c, d) = 0 when a − b = 1 and c ≤ d, or b − a = 1 and d ≤ c, or a ≤ b and
c − d = 1, or b ≤ a and d − c = 1. It means the 22 following patterns in the 3-valued



A(a, b, c, d) =
1− | (a − b) − (c − d) | if a ≥ b and c≥ d, or a ≤ b and c ≤ d
1 − max(|a − b |,|c − d |) if a ≤ b and c≥ d, or a ≥ b and c ≤ d

R(a, b, c, d) = A(a, b, d, c)

P ∗(a, b, c, d) =
min(1 − |max(a, b) − max(c, d)|, 1 − |min(a, b) − min(c, d)|)

Table 10: Graded definitions for A, R, P ∗

case: 1110; 1101; 1011; 0111; 0001; 0010; 0100; 1000; 1001; 0110; 10αα; 01αα; αα10;
αα01; 100α; 011α; 10α1; α001; 0α10; 1α01; 01α0; α110. Thus, A(a, b, c, d) = 0 when
one change inside the pairs (a, b) and (c, d) is maximal, while the other pair shows
no change or a change in the opposite direction.

Using L = {0, α, 1}, A(a, b, c, d) = α for 81 - 19 - 22 = 40 distinct patterns.

In [18], the graded extension of R(a, b, c, d) is defined by permuting c and d in
the definition of A, according to Proposition 4. But the extension of the paralogy
is no longer obtained by permuting b and d in the definition of A (as Proposition
4 would suggest). In fact, the paralogical proportion is defined directly from P ∗

(thus changing ā ∧ b̄ ≡ c̄ ∧ d̄ into a ∨ b ≡ c ∨ d), and taking ∧ = min, ∨ = max,
and s ≡ t = 1 − |s − t|, we obtain the definition in Table 10. If we now exchange b
and d (using Proposition 4 again) in this definition, we get the graded version of A∗

(which is no longer equivalent to A), namely

A∗(a, b, c, d) = min(1 − |max(a, d) − max(b, c)|, 1 − |min(a, d) − min(b, c)|)

This is the direct counterpart of the definition without negation of the analogical pro-
portion in the Boolean case. This alternative extension still preserves A∗(a, b, c, d) =
A∗(ā, b̄, c̄, d̄) for the involutive negation x̄ = 1−x. It can be checked that A∗(a, b, c, d)
= 1 only for the 15 patterns with at most two distinct values (for which A(a, b, c, d) =
1), while A∗(a, b, c, d) = α for the 4 other patterns for which A(a, b, c, d) = 1, namely
for 1αα0; 0αα1; α10α; α01α. Besides, A∗(a, b, c, d) = 0 for only 18 among the 22
patterns that make A(a, b, c, d) = 0. The 4 patterns for which A∗(a, b, c, d) = α
(instead of 0) are 10αα; 01αα; αα10; αα01.

Using L = {0, α, 1}, A∗(a, b, c, d) = α for 81 - 15 - 18 = 48 distinct patterns.



Thus, it appears that A∗(a, b, c, d) does not acknowledge as perfect the analogical
proportion patterns where the amount of change between a and b is the same as
between c and d and has the same direction, but where this change applies in different
areas of the truth scale. Still, A∗(a, b, c, d) remains half-true in these cases, for
L = {0, α, 1}. When L = [0, 1], it can be checked that A∗(a, b, c, d) ≥ 1/2 when
a − b = c − d; in particular, ∀a, b, A∗(a, b, a, b) = 1, which corresponds to the case
where a = c and b = d. In the same spirit, if L = {0, α, 1} as well as for L = [0, 1],
A∗(a, b, c, d) = 0 when a change inside the pairs (a,b) and (c,d) is maximal, while the
other pair shows a change in the opposite direction starting from 0 or 1. However,
A∗(1, 0, c, c) = min(c, 1−c) and A∗ takes the same value for the 7 other permutations
of (1, 0, c, c) obtained by applying symmetry and/or central permutation.

As can be seen in Table 11, A∗ and A also coincide on some patterns having
intermediary truth values, but diverge on others. Generally speaking, A∗ is smoother
than A in the sense that more patterns have intermediary truth values with A∗ than
with A.

A A∗

A(1, 1, u, v) = 1 − |u − v| A∗(1, 1, u, v) = 1 − |u − v|
A(1, 0, u, v) = u − v if u ≥ v A∗(1, 0, u, v) = min(u, 1 − v)

= 0 if u ≤ v
A(0, 1, u, v) = v − u if u ≤ v A∗(0, 1, u, v) = min(v, 1 − u)

= 0 if u ≥ v
A(0, 0, u, v) = A(1, 1, u, v) A∗(0, 0, u, v) = A∗(1, 1, u, v)

Table 11: The two graded definitions of the analogical proportion in [0, 1]

Both A and A∗ continue to satisfy the symmetry property (as P, R, and P ∗, R∗

with R∗(a, b, c, d) = A∗(a, b, d, c) = P ∗(a, c, d, b)). However, only A∗ still enjoys the
means permutation and the extremes permutation properties. This is no longer the
case with A, as shown by the following counter-example.

A(0.8, 0.6, 1, 0.3) = 1− | (0.8 − 0.6) − (1 − 0.3) |= 1− | 0.2 − 0.7 |= 0.5 since
0.8 ≥ 0.6 and 1 ≥ 0.3, and A(0.8, 1, 0.6, 0.3) = 1− max(| 0.8 − 1 |, | 0.6 − 0.3 |) =
1−max(0.2, 0.3) = 0.7 since 0.8 ≤ 1 and 0.6≥ 0.3.

But, as already mentioned, both A and A∗ continue to satisfy the code inde-
pendency property with respect to a = 1 − a. Some more Boolean properties that
remain valid in the multiple-valued case are summarized in Table 12.



Property name Formal definition Proportion

full identity T (a, a, a, a) A∗, A, R, P

reflexivity T (a, b, a, b) A∗, A, P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A∗, A, R

symmetry T (a, b, c, d) → T (c, d, a, b) A∗, A, R, P

permutation of means T (a, b, c, d) → T (a, c, b, d) A∗

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A∗

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

semi-mirroring T (a, b, a, b) R

exchange mirroring T (a, b, b, a) A

negation compatib. T (a, a, b, b) none

Table 12: Graded properties of A, A∗, R, P

4.2 Dealing with non-applicable features

The abbreviation ‘n/a’ (for non applicable) is currently used in data tables when an
attribute does not apply, when a feature does not make sense for a particular item.
However, the extensive use of ‘n/a’ may be often ambiguous when it also appears in
the same tables when information is non available for some attribute values of some
items. Indeed one has to carefully distinguish the case where the feature does apply
to the item, but it is not known if the feature is true or is false for the item, from the
case where the feature is neither true nor false for the item since the feature does
not apply to it. The case of unknown truth values is discussed in the next section,
while we now address the problem of dealing with genuinely non applicable features.

The idea of introducing a third truth value for ‘non applicable’ (na for short
in the following) in the context of analogy can be already found in the pioneering
work of Sheldon Klein [9, 10], which we already mentioned in the equation solving
subsection 3.4. However, his handling of na is based on (na ≡ na) = na, which
suggests that the evaluation of an analogical proportion where na appears may
receive the truth value na, which is more in the spirit of understanding na as ‘not
available’, or ‘unknown’.

Indeed, although a property may be ‘true’, ‘false’, or ‘non applicable’ for an
item, it seems natural to expect that A(a, b, c, d) can only be ‘true’ or ‘false’, since
1na1na looks intuitively satisfactory as an analogical proportion, while 1na00 is not.
More precisely, in the context of non applicable properties, we have only 3 valuation
patterns that should make an analogical proportion true: xxxx, xyxy, and xxyy,



where x, y ∈ {0, 1, na}. Any other option should make it false, since {0, 1, na} play
the same role. This leads to acknowledge as true the 15 following valuations:

- 1111; 0000; nananana corresponding to xxxx;
- 1010; 0101; 1na1na; na1na1; 0na0na; na0na0 corresponding to xyxy with

x Ó= y;
- 1100; 0011; 11nana; nana11; nana00; 00nana corresponding to xxyy with

x Ó= y.
All the remaining valuations lead to false.
In other words, we are in a situation somewhat similar to the one encountered in

the previous section in the case of a unique intermediary truth-value α between true
and false, meaning ‘half-true’ (or equivalently ‘half-false’), when we refuse the four
valuations 1αα0, 0αα1, α01α and α10α as being true, except that now no valuation
leads to the third truth value. It is possible to find logical definitions of the analogical
proportion having the expected behavior for the truth values {0, 1, na}. A solution
to get the exact truth table is:
- to order {0, 1, na} as the chain 1 > na > 0,
- to use Kleene conjunction and disjunction, see, e.g., [2], respectively defined by the
minimum and the maximum according to the above ordering,
- to use the strong Kleene equivalence ≡, where x ≡ y = 1 if and only if x = y, and
x ≡ y = 0 otherwise,
- to define analogical proportion with A∗ instead of A, namely

A∗(a, b, c, d) = (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c).

A counterpart to A(a, b, c, d) = (a \ b ≡ c \ d) ∧ (b \ a ≡ d \ c) where \ here
denotes the Boolean logical connective corresponding to set difference, can also be
found. However, since we do not want to have 1nana0 true, the difference between
1 and na and the difference between na and 0 should not be the same, neither the
same as between 1 and 0, nor between 1 and 1 for sure. Thus we need 4 distinct
values for the difference. This is impossible with 3 truth values! This contrasts with
the Boolean case where there are only two possible difference values needed. The
solution is then to use 2 connectives for differences:

x \1 y =1 if x=1 and y =0; x \1 y =na if x=1 and y =na; x \1 y =0 otherwise;
x \2 y =1 if x=1 and y =0; x \2 y =na if x=na and y =0; x \2 y =0 otherwise.

Then the definition of A(a, b, c, d) becomes

(a \1 b ≡ c \1 d) ∧ (b \2 a ≡ d \2 c) ∧ (a \2 b ≡ c \2 d) ∧ (b \1 a ≡ d \1 c)

where x ≡ y = 1 iff x = y; x ≡ y = 0 otherwise; and ∧ is any conjunction connective
that coincides with classical conjunction on {0, 1}. This definition yields 1 for the
15 expected patterns and is 0 otherwise for the 81 - 15 = 66 remaining patterns.



It is even possible to find an expression for A(a, b, c, d) where \1 and \2 are
expressed in terms of a conjunction (denoted ∧∗) and two distinct negation operators

(̄·)
1

and (̄·)
2
, i.e., where x\1 y is replaced by x∧∗ ȳ1 and x\2 y is replaced by x∧∗ ȳ2.

We obtain a definition for A(a, b, c, d) under the form

(a ∧∗ b̄1 ≡ c ∧∗ d̄1) ∧∗ (b ∧∗ ā2 ≡ d ∧∗ c̄2) ∧∗ (a ∧∗ b̄2 ≡ c ∧∗ d̄2) ∧∗ (b ∧∗ ā1 ≡ d ∧∗ c̄1)

where the two negations are Post-like negations defined through a circular ordering
of the three truth-values, where the negation of a value is the successor value in
the ordering, namely 0

1
= na; na1 = 1; 1

1
= 0 and 0

2
= 1; na2 = 0; 1

2
= na. This

acknowledges the fact that in some sense these three truth-values play similar roles.
The non-standard three-valued conjunction ∧∗, which is defined by

x ∧∗ y = 1 if x = 1 and y = 1
x ∧∗ y = u if x = na and y = na
x ∧∗ y = 0 otherwise

also agrees with this view, while coinciding with classical conjunction in the binary
case.

As in the previous section, we summarize in Table 13 the properties of the
Boolean case that remain valid in this 3-valued model where na, standing for non
applicable, is the third truth value.

Property name Formal definition Proportion

full identity T (a, a, a, a) A,R,P

reflexivity T (a, b, a, b) A,P

reverse reflexivity T (a, b, b, a) R,P

sameness T (a, a, b, b) A,R

symmetry T (a, b, c, d) → T (c, d, a, b) A,R,P

permutation of means T (a, b, c, d) → T (a, c, b, d) A

permutation of extremes T (a, b, c, d) → T (d, b, c, a) A

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

Table 13: Properties of A, R, P with truth value na (as non applicable)

4.3 Dealing with unknown features

In this section, we briefly consider a situation that is quite different from the ones
studied in the two previous sections. We assume now that the features used for
describing situations are all binary (i.e., they can be only true or false), but their
truth value may be unknown.



Thus, the possible states of information regarding a Boolean variable x pertaining
to a given feature may be represented by one of the 3 truth value subsets {0}, {1}
or {0, 1}, corresponding respectively to the case where the truth value of x is false,
true or unknown. We denote this state of information by x̃, which is a subset of
{0, 1}. The evaluation of a logical proportion T (a, b, c, d) then amounts to compute
the state of information denoted T (ã, b̃, c̃, d̃) about its truth value, knowing ã, b̃, c̃, d̃.
It is given by the standard set extension:

T (ã, b̃, c̃, d̃) = {v(T (a, b, c, d)) | v(a) ∈ ã, v(b) ∈ b̃, v(c) ∈ c̃, v(d) ∈ d̃}

where v denotes a Boolean valuation.

From now on, we focus on analogical proportion A only, but R, P and I could
be handled in a similar manner. For instance, let us take the example A(a, b, c, d)
where ã = {1}, b̃ = {0}, c̃ = d̃ = {0, 1}. Applying the previous formula leads to

A(ã, b̃, c̃, d̃) = {0, 1}

since the truth value of A(a, b, c, d) may be 0 for the valuations 1001, 1000, 1011,
and 1 for 1010.

Let us now consider the following expression A(a, b, a, b) when ã = b̃ = {0, 1}. A
similar computation leads to

A(ã, b̃, ã, b̃) = {1}

since the truth value of A(a, b, a, b) is 1 for any of the valuations 1010, 1111, 0101,
or 0000. Similarly, the truth value of A(a, a, a, a) is 1, even when ã = {0, 1}.

But, the set of possible truth values for A(a, b, c, d) is {0, 1} when ã = {0, 1}, b̃ =
{0, 1}, c̃ = {0, 1}, d̃ = {0, 1}. It should be clear that this does not mean that the
Boolean variables a, b, c, d are equal; we just have the same state of information for
all of them. This expresses that the full identity property does not hold any longer
at the information level for analogical proportion. And this illustrates the fact that
the logic of uncertainty is no longer truth functional, since the state of information
about the truth value of A(a, b, c, d) does not only depend on the state of information
about the truth values of a, b, c, and d, but is also constrained by the existence of
possible logical dependencies between these variables.

Nevertheless, some key properties of homogeneous proportions remain valid at
the information level such as symmetry, or central and extreme permutations. Indeed
it can be checked that, for instance, for symmetry:

A(ã, b̃, c̃, d̃) = A(c̃, d̃, ã, b̃)



Using the set extension evaluation of logical proportions in presence of incom-
plete information, we can compute the set of possible truth values of the analogical
proportion for the different 4-tuples of states of information. We now denote by u
the state {0, 1}, and respectively by 0 and 1, the states of information {0} and {1}.
A 4-tuple of states of information will be called information pattern, or pattern for
short, and denoted by a 4-tuple of elements of {0, 1, u} without blank space. For
instance, 01u1 is such a pattern and should be understood as the 4-tuple of states
of information ({0}, {1}, {0, 1}, {1}).

Then, the 6 patterns 0000, 1111, 0011, 1100, 1010, 0101 that makes A true in the
Boolean case, and where u does not appear, are the only ones that are still true
with the above view (for which we get the singleton {1} as information state for
A(a, b, c, d)). As soon as at least one state of information is u in the pattern, the
state of information for A(a, b, c, d) is u or 0. Indeed, for instance, 01u0 leads to 0
since whatever the truth value of the 3rd variable, the analogical proportion does not
hold. Thus, despite the lack of knowledge regarding the 3rd variable, we know the
exact truth value of the proportion in this case, namely it is false. It appears that
there are 18 patterns that lead to 0. They are the 10 patterns of the Boolean case
and the 8 following ones: 01u0, 0u10, u001, 100u, 10u1, 1u01, u110, 011u. Thus, in
the 81 − 6 − 18 = 57 remaining cases, the state of information for A(a, b, c, d) is u.

It can be checked that these results can be retrieved both with the initial def-
inition of A or with A∗ where complete ignorance u is handled with ,̄ ∧, ∨ as the
strong Kleene connectives (see [2]) and ≡ as Bochvar connective, where u is an
absorbing element. The corresponding truth tables are recalled in Table 14. This

¯ ∧ 0 1 u ∨ 0 1 u ≡ 0 1 u

0 1 0 0 0 0 0 0 1 u 0 1 0 u
1 0 1 0 1 u 1 1 1 1 1 0 1 u
u u u 0 u u u u 1 u u u u u

Table 14: Truth tables for u as lack of knowledge

provides a way to extend the definition of the analogical proportion in case of lack
of knowledge when no dependencies between the variables exist. As in the Boolean
case, the definitions A (resp. R, P, I) and A∗ (resp. R∗, P ∗, I∗) are equivalent.

Nevertheless, this truth-functional calculus provides only a description of the
evaluation of the patterns at the information level. Namely, it enables us to retrieve
the tri-partition of the patterns in respectively 6, 18 and 57 patterns leading respec-
tively to 1, 0 and u, but it does not account for the full calculus of the extended
definition of logical proportions in presence of incomplete information, when depen-



dencies take place between variables, for instance it can be checked that A(a, b, a, b)
and A∗(a, b, a, b) when a and b are unknown does not yield 1 as expected, but u (this
is just due to the fact that constraints a = c and b = d are ignored).

5 Heterogeneous proportions

As highlighted in the introduction, there are 4 other proportions that satisfy code
independency, and as such stand out of the 120 logical proportions, namely the
heterogeneous proportions, whose truth tables are given in Table 15.

Ha Hb Hc Hd

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0
1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Table 15: Ha, Hb, Hc, Hd - Boolean truth tables

It is stunning to note that these truth tables exactly involve the 8 missing tuples
of the homogeneous tables, i.e., those ones having an odd number of 0 and 1. It
should not come as a surprise that they satisfy the same association properties as the
homogeneous ones: for instance, any combination of 2 or 3 heterogeneous propor-
tions is satisfiable, but the conjunction Ha(a, b, c, d) ∧ Hb(a, b, c, d) ∧ Hc(a, b, c, d) ∧
Hd(a, b, c, d) is not satisfiable. This fact contributes to make the heterogeneous
proportions the perfect dual of the homogeneous ones.

5.1 Properties

The formal definitions given in Table 2 lead to immediate Boolean equivalences
between heterogeneous and homogeneous proportions that we summarize in Table
16.

Obviously, the heterogeneous proportions are strongly linked together: for in-
stance, using the symmetry of I,

Ha(a, b, c, d) ≡ I(a, b, c, d) ≡ I(c, d, a, b) ≡ Hc(c, d, a, b).

We may consider two different ways for generating these proportions:



Ha Hb

Ha(a, b, c, d) ≡ I(a, b, c, d) Hb(a, b, c, d) ≡ I(a, b, c, d)

Ha(a, b, c, d) ≡ P (a, b, c, d) Hb(a, b, c, d) ≡ P (a, b, c, d)

Ha(a, b, c, d) ≡ P (a, b, c, d) Hb(a, b, c, d) ≡ P (a, b, c, d)

Hc Hd

Hc(a, b, c, d) ≡ I(a, b, c, d) Hd(a, b, c, d) ≡ I(a, b, c, d)

Hc(a, b, c, d) ≡ P (a, b, c, d) Hd(a, b, c, d) ≡ P (a, b, c, d)

Hc(a, b, c, d) ≡ P (a, b, c, d) Hd(a, b, c, d) ≡ P (a, b, c, d)

Table 16: Equivalences between heterogeneous and homogeneous proportions

- A semantic viewpoint: The full identity postulate T (a, a, a, a) asserts that pro-
portion T holds between identical values. Negating one variable position only gen-
erates an intruder, as in T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) and T (a, a, a, a), and
leads to new postulates respectively denoted Ta, Tb, Tc and Td. We call the negated
position the intruder position: for instance, Ta expresses the fact that the first po-
sition is an intruder. For a proportion, to satisfy the property Ta means that the
first variable may be an intruder. Since each postulate Ta, Tb, Tc and Td is validated
by 2 distinct valuations, it is clear that 3 of them are enough to define a logical
proportion having exactly 6 valid tuples. There is no proportion satisfying all these
postulates since it leads to 8 valid tuples, which excludes any logical proportion. It
can be easily checked that Ha satisfies Tb, Tc, Td and does not satisfy Ta: then Ha is
uniquely characterized by the conjunction of properties Tb ∧ Tc ∧ Td. We can inter-
pret Ha(a, b, c, d) as the following assertion: the first position is not an intruder and
there is an intruder among the remaining positions. As a consequence, Ha(a, b, c, d)
does not hold when there is no intruder (i.e., when there is an even number of 0),
or when a is the intruder. The same reasoning applies to Hb, Hc, Hd.

- A syntactic viewpoint: Here we start from the definition of the inverse paralogy
I: (a∧b ≡ c∧d)∧(a∧b ≡ c∧d). To get the definition of an heterogeneous proportion
satisfying postulates where the intruder is in position 4, 2 or 1 for instance, we add
a negation on the 3rd variable in both equivalences defining I. Here we get Hc as:

(a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

This process, allowing us to generate the 4 heterogeneous proportions, shows that,
in some sense, they are “atomic perturbations” of I: for this reason and since they
are heterogeneous proportions, they have been respectively denoted Ha, Hb, Hc and
Hd where the subscript corresponds to:



• the postulate which is not satisfied by the corresponding proportion or, equiv-
alently,

• the negated variable in the equivalence with I.

For instance Ha(a, b, c, d) ≡ I(a, b, c, d), Ha satisfies Tb, Tc, Td and does not satisfy Ta.
This leads to another way to interpret Ha(a, b, c, d). Since Ha(a, b, c, d) ≡ I(a, b, c, d),
when Ha(a, b, c, d) = 1, a is not the intruder, i.e., a is the value of the intruder. The
different possible cases are as follows:

• abcd= 1100 or 0011 and the intruder is b,

• or abcd = 0101, 0110, 1010 or 1001 and the intruder is c or d.

In other words, there is an intruder in (a, b, c, d), which is not a, iff the properties
common to a and b (positively or negatively) are not those common to c and d, and
conversely.

As in the case of homogeneous proportions, the semantic properties of heteroge-
neous proportions are easily derived from their truth tables, which we summarize in
Table 17. It is clear on their truth tables, that none of the heterogeneous propor-

Property name Formal definition Proportion

full identity T (a, a, a, a) none

reflexivity T (a, b, a, b) none

reverse reflexivity T (a, b, b, a) none

sameness T (a, a, b, b) none

symmetry T (a, b, c, d) → T (c, d, a, b) none

means permut. T (a, b, c, d) → T (a, c, b, d) Ha, Hd

extremes permut. T (a, b, c, d) → T (d, b, c, a) Hc, Hb

all permutations ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) none

transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) none

Ta T (a, a, a, a) Hb, Hc, Hd

Tb T (a, a, a, a) Ha, Hc, Hd

Tc T (a, a, a, a) Ha, Hb, Hd

Td T (a, a, a, a) Ha, Hb, Hc

Table 17: Properties of heterogeneous proportions

tions satisfy neither symmetry nor transitivity. From a practical viewpoint, these



proportions are closely related with the idea of spotting the odd one out (the in-
truder), or if we prefer of picking the one that doesn’t fit among 4 items. This will be
further discussed in Section 6, but we first consider the extension of heterogeneous
proportions to the case of graded properties with intermediate truth values.

5.2 Multiple-valued semantics

We extend here what has been done for homogeneous proportions and their multiple-
valued semantics in Section 4.1. Roughly speaking, in the case of Ha, the graded
truth value of Ha(a, b, c, d) estimates how far we are from having a as an intruder.

Obviously the same questions as for homogeneous proportions arise but with a
different interpretation:

1) what are the valuations that correspond to a “perfect” proportion of a given
type (i.e., having 1 as truth degree)? For instance, we want the truth value of
Ha(0, u, 0, u) to be equal to 1 (as well as the truth value of Hc(0, u, 0, u)) because
in that context, it is true that a = 0 (resp. c) cannot be the intruder, whatever the
value of u.

2) are there valuations that could be regarded as approximate proportions of a
given type (with an intermediate truth degree) and in that case, what is their truth
value? For instance, in the valuation (0.7, 1, 1, 0.9), it is likely that a is the intruder
just because the other candidate, d, has a value very close to 1, and the closer d is to
1, the more likely a is the intruder: then the truth value of Ha(0.7, 1, 1, 0.9) should
be small and related to 1 − d = 0.1 (since Ha excludes a as intruder).

The most rigorous way to proceed is to start from the definition of multiple-
valued paralogy given in Section 4.1. This definition is based on P ∗: it leads, for a
three valued scale, to 15 valuations fully true, and 18 fully false. The 48 remaining
patterns get intermediate truth value given by the following general formula

P ∗(a, b, c, d) = min(1 − |max(a, b) − max(c, d)|, 1 − |min(a, b) − min(c, d)|)

which, thanks to the symmetry of P ∗ and stability w.r.t. the permutation of its two
first variables, has the following behavior:

general case case u = v
P ∗(1, 1, u, v) = min(u, v) P ∗(1, 1, u, u) = u

P ∗(1, 0, u, v) = min(max(u, v), 1−min(u, v)) P ∗(1, 0, u, u) = min(u, 1−u)
P ∗(0, 0, u, v) = 1 − max(u, v) P ∗(0, 0, u, u) = 1 − u

Starting from the equivalences given in Table 16, we get the multi-valued defini-
tion for Ha (and similar definitions for Hb, Hc, Hd), still leading to 15 true valuations,
18 false valuations and 48 with intermediate values in case of a three valued scale:



Ha(a, b, c, d)=min(1−|max(a,1−b)−max(c,d)|,1−|min(a,1−b)−min(c,d)|)

Let us note that Ha(0,0,u,v)=Ha(1,1,u,v) due to the equality Ha(0,0,u,v)= P (0, 1,
u, v) = P (1, 0, u, v). We have:

general case case u = v
Ha(1, 1, u, v) = min(max(u,v), 1−min(u,v)) Ha(1,1,u,u) = min(u,1−u)
Ha(1, 0, u, v) = min(u, v) Ha(1, 0, u, u) = u
Ha(0, 1, u, v) = 1 − max(u, v) Ha(1, 0, u, u) = 1 − u

Let us analyze two examples to highlight the fact that the above definition really
fits with the intuition.

• Considering the valuation 100u, its truth value is:

- u for P : if u is close to 1, we are close to the fully true paralogical proportion
and the truth value is high. In the opposite case, u is close to 0 and we are
close to a fully false paralogical proportion 1000.

- 1-u for Hb, Hc, Hd: if u is close to 1, we are close to the valuation 1001 which
is definitely not a valid valuation for Hb, Hc, Hd: so 1-u is a low truth value.
But if u is close to 0, we are close to the valuation 1000 which is valid for
Hb, Hc, Hd and 1-u is a high truth value.

- finally 0 for Ha: whatever the value of u, 100u means “an intruder is in first
position”, when the semantics of Ha is just the opposite.

• Back to the graded valuation valuation 0.7 1 1 0.9 considered above:

- regarding P , the truth value as given by the formula is 0.8, i.e., the valuation
is close to be a true paralogy.

- regarding the heterogeneous proportions, we understand that we have 2 can-
didate intruders namely a = 0.7 and d = 0.9. But they are not equivalent in
terms of intrusion and it is more likely to be a than d. This is consistent with
the fact that the truth value of Ha(0.7, 1, 1, 0.9) is 0.1 (very low), but the truth
value of Hd(0.7, 1, 1, 0.9) is 0.3 (a bit higher).

- in fact, 0.7 1 1 0.9 does not give a genuine impression that there is an intruder,
which is in agreement with the fact that Hb(0.7, 1, 1, 0.9) = Hc(0.7, 1, 1, 0.9) =
0.4.



6 Applications

In this section, we provide an overview of the use of logical proportions for various
reasoning purposes. Since we have distinguished two remarkable groups of propor-
tions, differing both from a syntactic and a semantic viewpoint, it is not surprising
that they can be used for two different styles of applications. On the one hand, the
homogeneous proportions allow us to build up a missing item in a given sequence.
On the other hand, the heterogeneous proportions are suitable for a dual task which
is to pick up the odd one out in a set. Let us start by discussing the use of the
homogeneous logical proportions, which is the most developed.

6.1 Using homogeneous proportion for finding missing values

From a general viewpoint, a homogeneous proportion between 4 items a, b, c, d
expresses that the elements of the pair (a, b) are similar (or dissimilar) in a way that
can be related to the way the elements of the pair (c, d) are similar (or dissimilar).
The equation-solving process described above enables us to compute d from the
knowledge of a, b, c, when possible. Obviously, in practical cases, the items to be
considered cannot be simply described by a single Boolean (or multiple-valued)
variable, and a straightforward extension, allowing to cope with more sophisticated
representations, can be given for Boolean vectors in B

n, as follows (where T denotes
any logical proportion):

T (−→a ,
−→
b , −→c ,

−→
d ) iff ∀i ∈ [1, n], T (ai, bi, ci, di).

The solving process of the equation T (−→a ,
−→
b , −→c , −→x ) is still effective: instead of

getting one Boolean value, we get a Boolean vector, by solving equations compo-
nentwise, computing di from ai, bi, and ci (provided that the solution exists). This
can be illustrated on a sequence of 3 pictures to be completed (see Figure 1, as it
is often the case in IQ tests . Indeed, a noticeable part of the IQ tests are based
on providing incomplete analogical proportions (see, e.g., [6]). Usually, the 3 first
items A, B, C are given and the 4th item X has to be chosen among several plau-
sible candidates. In this case, the homogeneous logical proportion method applies
straightforwardly. The items A, B, C in the example of Figure 1 can be described
respectively by vectors (1, 0, 1, 0, 1), (1, 0, 0, 1, 1), (0, 1, 1, 0, 1), where the vector com-
ponents refer respectively to the presence (or not) of a square, of a triangle, of a
star, of a circle, and of a black point. Assuming that an analogical proportion should
hold, by solving componentwise the analogical proportion equations expressing that
A(ai, bi, ci, xi) holds true for i = 1, 5, we easily get X = (0, 1, 0, 1, 1), which corre-
sponds to the result exhibited in Figure 1. Note that X is directly computed with



Figure 1: IQ test: Graphical analogy

Figure 2: Analogy with a graded feature

this method, rather than chosen among a set of more or less “distant” potential
solutions that would be given. In case the analogical equation has no solution for
some component, on may try if another homogeneous proportion would fit for all
the features. It would not be difficult to build examples of sequences of 4 pictures,
where the display of squares, triangles, stars, circles and black dots is different from
Figure 1, and where the fourth picture would be obtained via one of the three other
homogeneous proportions R, P , or I, rather than via A as in Figure 1.

Moreover, Figure 2 illustrates the idea of having graded features, where here the
presence of a circle is a matter of degree (the more densely dotted the circle, the
higher the degree α of presence of a circle (in Figure 2 the analogical proportion
A(0, α, 0, α) clearly holds for the ‘circle’ variable).

In the above example, the problem is handled at a rather high conceptual level
that requires that triangles, circles and so on be identified in the pictures. However,
it has been pointed out [20] that the analogical proportion-based technique can still
be applied at the pixel level. Then a black and white picture is represented by the
Boolean vector made of its bitmap description that acknowledges (or not) the black
color of each pixel. This supposes that all the geometric shapes (squares, triangles,
stars, circles) use exactly the same pixels in all cases. Then, the proportion-based
procedure automatically builds the associated geometric figure (when it exists), with-
out introducing any knowledge about triangle, circle, etc.

Lastly, let us mention that it may be convenient to have extensions of the pro-
portions allowing for the explicit handling of functional symbols, as in, e.g., the
analogical proportion A(x, f(x), y, f(y)), for handling more sophisticated sequences
of pictures (where for instance, elements are reversed from one picture to another),



or analogical proportions quizzes like “abc is to abd as ijk is to ?” (where we have
to encode that d is the successor of c); see [3].

6.2 Classification and matrix abduction

We now consider variants of the process described in the previous subsection, when
it is first checked that an homogeneous proportion holds on a series of n features
between 4 items, and on this basis, one extrapolates that the same logical proportion
still holds for a (n+1)th feature of interest, which is known only for the first 3 items.
Solving the logical proportion equation corresponding to this latter feature then
enables us to compute a plausible value of this feature for the 4th item. Classification
problems are an important instance of this situation where the (n+1)th feature refers
to the class of the item while the n other features pertain to its description. See [13]
for the case of binary features, where very good results are reported on classification
benchmarks. The graded version A has been used for handling numerical features
in classification problems (also with promising experimental results [23]), while A∗

has not been experienced yet. It is still unclear if A∗ may be more suitable for
classification purposes.

The problem of completing a matrix where some values are missing is quite
close to the classification problem, and thus different methods may be thought of
in order to deal with this issue. Whatever the technique, the main question is to
know if the extra knowledge that we may have about the problem and the available
data carry sufficient information for an accurate reconstruction of the missing cells.
This is not always the case. We focus here on a particular case, called “matrix
abduction problem”, using [1]’s terminology. It consists in guessing plausible values
for cells having empty information in a matrix where each line corresponds to a
situation described according to different binary features (each column corresponds
to a particular feature).

Let us consider the screen example used by [1], where computer screens are de-
scribed by 6 characteristic features: P is for price over £450, C for self collection,
I for screen bigger than 24 inch, R for reaction time below 4ms, D for dot size less
than 0.275, and S for stereophonic; 1 means “yes” and 0 means “no”. We have 3
screens (screen 1, screen 2 and screen 4) whose characteristics are known and screen
3 where the truth value of the attribute S is missing (see Table 18).

To tackle such a common sense problem, a general idea (which may be also found
in classification) is that replacing an unknown value by either 1 or 0 should result
in the least possible perturbation of the matrix. This idea may be implemented in
diverse ways. In [1] the idea is to choose the value that least perturbs the pre-



P C I R D S

screen1 0 1 0 1 0 1

screen2 0 0 1 1 0 1

screen3 0 0 0 0 1 ?

screen4 1 1 0 0 1 1

Table 18: The screen example

existing partial ordering between the column vectors of the matrix. In [25], the idea
is rather to respect betweenness and parallelism relations that hold in conceptual
spaces. We suggest here to enforce an homogeneous proportion T that already holds
for completely known features.

Assume we have a Boolean vector incompletely describing a situation with re-
spect to a set of n + 1 considered features, say v = (v1, ..., vn, xn+1), where for
simplicity we assume that only xn+1 is unknown. For trying to make a plausible
guess of the value of xn+1, we have a collection (which may be rather small) of
completely informed examples ei = (ei

1, ..., ei
n, ei

n+1) for i = 1, n. Then one may have
at least three strategies:

i) comparing v to each ei separately, and using a k-nearest neighbors approach,
extending the idea that T (e, e, e, v) should hold true and has v = e as solution.

ii) looking for pairs ei, ej such that T (ei
h, vh, vh, ej

h) makes a continuous homo-
geneous proportion T for a maximal number of features h, implementing the idea of
having vh between ei

h and ej
h ; observe however, that in the Boolean case, this would

force to have the trivial situations T (1, 1, 1, 1) or T (0, 0, 0, 0) on a maximal num-
ber of features, and tolerate some “approximate” patterns T (1, 1, 1, 0), T (0, 1, 1, 1),
T (0, 0, 0, 1), or T (1, 0, 0, 0), while rejecting patterns T (0, 1, 1, 0) and T (1, 0, 0, 1).

iii) looking for triples ei, ej , ek such that T (ei
h, ej

h, ek
h, vh) makes an homogeneous

proportion T for a maximal number of features h.

In cases ii) or iii), the principle amounts to say that if an homogeneous proportion
holds for a number of features as great as possible among features h such that
1 ≤ h ≤ n, it should still hold for feature n + 1, which provides an equation for
finding xn+1 if solvable. If there are several triples that are equally good in terms of
numbers of features for which the proportion holds, but lead to different predictions,



one may then consider that there is no acceptable plausible value for xn+1.

The application of the first strategy on the above example yields 1 considering
that screen 3 is already identical to screen 4 on 3 features. Using the second strategy,
we observe that screen 3 is only in “between” screen 2 and screen 4 in the sense
described above, leading again to 1 as a solution.

Using the third strategy that should involve 4 distinct items, we can observe
that the analogical proportion A(screen 1, screen 2, screen 4, screen 3) holds com-
ponentwise for features C, R, and D (while it fails with proportions P and I). Again
we get 1 as a solution for ensuring an analogical proportion (namely A(1, 1, 1, 1))
on S. Observe also that whatever the order in which the screens are considered,
an homogeneous proportion holds for features C, R, D, and S. Considering other
triples (if available) may lead to other equations having 0 as a solution. A predic-
tion based on the triple making an homogeneous proportion with the incompletely
described item on a maximal number of features, should be preferred. In case of ties
on this maximal number of features between concurrent triples leading to opposite
predictions, no prediction can be given. It is worth noticing that in [1], the use of
0 and 1 in the Boolean coding in their matrices is not just a matter of convention
and we cannot exchange the 2 values since it will change the ordering. This is not
the case with our approach since A, R, P, I satisfy code independency. The screen
example is clearly a toy example but, in [1], similar examples are discussed which
could also be handled using homogeneous proportions.

6.3 Analogical proportions in Raven’s tests

Among the picture-based IQ tests (the use of pictures avoids the bias of a cultural
background), the so-called Raven’s Progressive Matrices [24] are considered as a
reference for estimating the reasoning component of “the general intelligence”. Re-
cently a computational model for solving Raven’s Progressive Matrices has been
investigated in [11]. This model combines qualitative spatial representations with
analogical comparison via structure-mapping [7]. In the following, we suggest with
an example that the Boolean proportion approach can be also used for solving such
a test (see [20, 3] for other examples).

Each Raven test is constituted with a 3x3 matrix pic[i, j] of pictures where the
last picture pic[3, 3] is missing and has to be chosen among a panel of 8 candidate
pictures. An example is given in Figure 3 and its solution in Figure 4. We assume
that the Raven matrices can be understood in the following way, with respect to
rows and columns:

∀i ∈ [1, 2], ∃f such that pic[i, 3] = f(pic[i, 1], pic[i, 2])



Figure 3: An example of Raven matrix

Figure 4: Raven matrix: the solution

∀j ∈ [1, 2], ∃g such that pic[3, j] = g(pic[1, j], pic[2, j])

The two complete rows (resp. columns) are supposed to help to discover f (resp. g)
and to predict the missing picture pic([3, 3]) as f(pic[3, 1], pic[3, 2]) (resp. g(pic[1, 3],
pic[2, 3])).

Obviously, these tests do not fit the standard equation solving scheme, but they
follow an extended one telling us that A((a, b), f(a, b), (c, d), f(c, d)) holds for lines
and A((a, b), g(a, b), (c, d), g(c, d)) for columns, i.e.

A((pic[1, 1], pic[1, 2]), pic[1, 3], (pic[2, 1], pic[2, 2]), pic[2, 3])

A((pic[1, 1], pic[2, 1]), pic[3, 1], (pic[1, 2], pic[2, 2]), pic[3, 2])

Thus, in that case, we have to consider a pair of cells (pic[i, 1], pic[i, 2]) as the first
element of an analogical proportion, and then the pair ((pic[i,1], pic[i,2]),
pic[i, 3]) provides the 2 first element a and b of the analogical proportion we are
considering. In terms of coding, in the example of Figure 3, we may consider
the pictures as represented by a pair (or vector) (hr, vr) with one horizontal rect-
angle hr and a vertical one vr, each of these rectangles having one color among
Black, W hite, Grey, we have then the following obvious encoding of the matrix in
Table 19.

It leads to the following analogical patterns (using the traditional notation for
analogical proportion a : b :: c : d instead of A(a, b, c, d)):



1 2 3
1 W B GG BW
2 GW BB W G
3 BG W W ?i?ii

Table 19: Raven matrix: a coding

(WB,GG) : BW :: (GW, BB) : WG (1st and 2nd rows)

(WB,GG) : BW :: (BG,WW) : ?i?ii (1st and 3rd rows)

where BW = f(WB,GG) and WG = f(GW,BB).

(WB,GW) : BG :: (GG, BB) : WW (1st and 2nd columns)
(WB,GW) : BG :: (BW,WG) : ?i?ii (1st and 3rd columns)

where BG = f(WB,GW) and WW = g(GG,BB),

or if we prefer, since analogical proportions holds componentwise, we have the fol-
lowing valid proportions

- for the horizontal bars:

(W,G) : B :: (G, B) : W (horizontal analysis)
(W,G) : B :: (B,W) : ?i (horizontal analysis)

(W,G) : B :: (G, B) : W (vertical analysis)

(W,G) : B :: (B,W) : ?i (vertical analysis)

- for the vertical bars:

(B,G) : W :: (W, B) : G (horizontal analysis)

(B,G) : W :: (G,W) : ?ii (horizontal analysis)
(B,W) : G :: (G, B) : W (vertical analysis)

(B,W) : G :: (W,G) : ?ii (vertical analysis)

One can observe that the item (B, W ) appears only in the analogical proportions
with question marks for horizontal bars, while the items (G, W ) and (W, G) appear
only in the analogical proportions with question marks for vertical bars. Analogical
proportions coming from both horizontal or vertical analysis are insufficient for con-
cluding here. However, we can consider the Raven matrix provides a set of analogical
associations without any distinction between those ones coming from the horizontal
bars and those ones coming from vertical bars. In other words, we now relax the
componentwise reading by considering that what applies to horizontal bars, may
apply to vertical bars, and vice-versa. With this viewpoint, it appears that the pair
(B, W ) and the pair (W, G) are respectively associated to G (vertical association for



vertical bar) and B (horizontal association for horizontal bar), which encodes the
expected solution GB (as pictured in Figure 4). Note also that (G, W ) cannot help
predicting ?ii.

6.4 Using heterogeneous proportions “to pick up the one which

does not fit”

As it is the case for homogeneous proportions, heterogeneous proportions can also
be related to the solving of some type of quiz problem. As we have seen, the truth
tables of the heterogeneous proportions highlight a Boolean value (0 or 1) which is
different from the 3 remaining ones. It is then natural to think in terms of exception
or intruder in a sequence of 4 items: the heterogeneous proportions play a dual role
with regard to homogeneous proportions. Given a sequence of objects, they allow
to distinguish the object which does not follow the “logic” of the sequence. As a
consequence, heterogeneous proportions are suitable for the “Finding the odd one
out” problem where a complete sequence of items being given, we have to find the
item that does not fit with the other ones and which is, in some sense, an intruder
or an anomaly. On this basis, a complete battery of IQ tests has been recently
proposed in [8]. Solving ‘Find the odd one out’ tests (which are visual tests) has been
recently tackled in [12] by using analogical pairing between fractal representation
of the pictures. It is worth noticing that the approach of these authors takes its
root in the idea of analogical proportion. However, this method relies on the use
of similarity/dissimilarity measures rather than referring to a formal logical view
of analogical proportion. In the following, we show that an opposite type (in some
sense) of proportions, namely heterogeneous proportions, provides a convenient way
to code and to tackle this problem.

Let us first consider the case of 4 items: obviously, if these items are completely
different in many respects, there is no notion of intruder. The intruder comes as
soon as there is a kind of unique dissimilarity among an obvious set of similarities or
identities. Let us start with a simple case where each item a can be represented as
a Boolean vector a1, . . . , an where n is the number of attributes and ai ∈ {0, 1}. Let
us consider the simple example (lorry, bus, bicycle, car) (where the obvious intruder
is bicycle) shown in Figure 5 where n = 5 with a straightforward coding.

When considering the item componentwise, we see that:

• for i = 1, 3, 5, Ha(ai, bi, ci, di) = Hb(ai, bi, ci, di) = Hc(ai, bi, ci, di) =
Hd(ai, bi, ci, di) = 0.

• for i = 2, 4, Ha(ai, bi, ci, di) = Hb(ai, bi, ci, di) = Hd(ai, bi, ci, di) = 1.



canMove hasEngine onRoad has4Wheel canFly
lorry 1 1 1 1 0
bus 1 1 1 1 0

bicycle 1 0 1 0 0
car 1 1 1 1 0

Figure 5: A simple quiz and its Boolean coding

• for i = 2, 4, Hc(ai, bi, ci, di) = 0

The indexes 1, 3 and 5 are not useful to pick up the intruder because all the pro-
portions have the same truth value. This is not the case for the indexes 2 and 4:
Ha for instance, being equal to 1, insures that there is an intruder (which is not the
first element). The intruder is then given by the proportion having the value 0: for
instance, Hc(ai, bi, ci, di) = 0 means that the fact that c is not an intruder is false,
which exactly means that c is the intruder for component j. In our example, Hc

is 0 on both components 2 and 4: this exactly leads to consider the third element
bicycle, intruder for the components 2 and 4, as the global intruder. It may be the
case that, we do not get the same intruder depending on the component: in that
case, a majority vote may be applied and we choose as intruder the one which is
intruder for the maximum number of components.

Thanks to the multiple-valued extension, this method can be generalized to the
non Boolean case where each item a is represented as a real vector a1, . . . , an and
ai ∈ [0, 1]. Then, the truth values of Ha, Hb, Hc and Hd on some features may be
close to 0, which means that there is no clear intruder according to these features.
Let us focus on the other features that are not identical. For each such index j,
we can compute the 4 values Ha(aj , bj , cj , dj), Hb(aj , bj , cj , dj), Hc(aj , bj , cj , dj) and
Hd(aj , bj , cj , dj). We know that they cannot be all equal (or close to) 1 since their
conjunction is not satisfiable: in fact, exactly one proportion has to be close to
0, thus spotting out the intruder for that component. Applying again a majority
vote, we shall consider as global intruder the one which is intruder for the maximum
number of components.

In the case where we have to ‘Find the odd one out’ among more than 4 items,
diverse options are available. We may consider all the subsets of 4 items. For each
such subset, we apply the previous method to exhibit an intruder (if any). Then
the global intruder will be the one which is intruder for the maximum number of
subsets.



7 Conclusion

The Boolean modeling of logical proportions which relate 4 items in terms of sim-
ilarity and dissimilarity, and which may be viewed as a counterpart to numerical
proportions, has led to identify a set of 120 distinct proportions. All these logical
proportions have the same type of truth table, namely they are true for exactly 6
valuations (and thus false for the 10 remaining valuations). Among this set, only 8
proportions satisfy a so-called code-independency property which makes sure that
the evaluation of the proportion remains unchanged when the truth values of the 4
components are changed into their complement (1 is changed into 0, and 0 into 1).
This property is important since it ensures that the evaluation of logical proportions
will not depend on the positive or negative encoding of the features of the considered
items. This set of 8 remarkable proportions divides into 4 homogeneous proportions,
and the 4 heterogeneous proportions. These two subsets can be strongly contrasted
and appear to be complementary. The 6 valuation patterns that make true homo-
geneous proportions have all an even number of 1 (and consequently of 0), while
for heterogeneous proportions the numbers are odd. Homogeneous proportions are
symmetrical, while heterogeneous ones are not. Both types of proportions satisfy
remarkable permutation properties. Interestingly enough, these two subsets of log-
ical proportions can be related to two types of IQ tests or quizzes respectively of
the type “Find the missing item” and of the type “Find the odd one out”. Thus,
both from a formal viewpoint and from an applicative viewpoint, heterogeneous
proportions appear as a perfect dual of the homogeneous ones. Ultimately, logical
proportions provide an elegant unique framework for dealing with IQ tests, from
Raven progressive matrices to Find the odd one out quizzes, in a uniform way. Gen-
erally speaking, beyond these illustrations, logical proportions still constitute an
intriguing set of quaternary connectives, including diverse subsets with remarkable
properties, that look interesting for different reasoning purposes where the ideas of
similarity and dissimilarity play a role.
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