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A coherent image source method is presented for evaluating single frequency sound propagation

from a point source in a flat waveguide with two infinite and parallel locally reactive boundaries.

The method starts from formulating reflections of the spherical sound radiation into integrals of

plane wave expansion, and the analytical evaluation of the integrals is simplified by introducing a

physically plausible assumption that wave front shapes remain the same before and after each

reflection on a reflective boundary. The proposed model can determine coherently the sound fields

at arbitrary receiver locations in a flat waveguide, even when one boundary is highly sound absorp-

tive. Being compared with the classical wave theory and the existing coherent ray-based methods,

it is shown that the proposed method provides considerable accuracy and advantages to predict

sound propagation in flat waveguides with a sound absorptive ceiling and a reflective floor over a

broad frequency range, particularly at large distances from the source where the existing methods

are problematic. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3608124]

PACS number(s): 43.50.Gf, 43.55.Ka, 43.55.Br [FCS] Pages: 772–782

I. INTRODUCTION

Speech privacy and noise control problems are often

encountered in open-plan offices and appear serious when

these rooms are large.1 In such rooms, usually, lateral dimen-

sions are much larger than the height, the ceiling is lined

with sound absorptive material and the floor is reflective. A

simplified model for such rooms can be a flat waveguide

with two infinite and parallel boundaries (ceiling and floor)

with locally reactive material.

The sound field inside a flat waveguide can be calculated

by many methods. Kuttruff2 proposed analytical formulas to

predict the sound energy distribution in flat waveguides based

on the incoherent image source method from the 1980s.

Many other researchers have studied sound propagation in

similar spaces, such as large fitted factories,3–6 workshops,7,8

and dining rooms.9 These studies are either based on the

incoherent image source methods or the ray-tracing techni-

ques, which neglect the interference effect among the direct

sound and the multiple reflections. However, it has been

shown that the accuracy of prediction can be improved if a

coherent model is used.10 Further, in some applications, such

as that for predicting sound fields of speech or narrow band

noise, interference from different sound waves must be taken

into account to provide meaningful prediction.11,12

There are some studies on the coherent ray-based pre-

diction model for sound fields in bounded spaces. Dance

et al.10 have developed an interference model to predict the

sound pressure in industrial enclosures by considering the

sound propagating phase shift and coherent summation of

different reflected waves. However, in their model, the inher-

ent phase shift of sound waves before and after reflections

on impedance boundaries are not taken into account and the

incidence angle of each reflection was not properly consid-

ered. It is also found that the method cannot provide accurate

results for receivers far away from the reflecting surfaces.10

A few years later, Wang and Bradley13 employed the image

source method to calculate coherently the total field from a

point source in open-plan offices by using the plane wave

reflection coefficients for the successive reflections of spheri-

cal sound radiation of the point source. Unfortunately, little

theoretical analysis was provided in their paper.

Brekhovskikh14 described the sound field in a flat-lay-

ered homogeneous media as the sum of the direct sound and

the multiple reflections from image sources, where each

reflection is formulated as a plane wave expansion integral.

Although the solution can be used in flat waveguides

directly, large errors are observed in the circumstances with

a sound absorptive ceiling and a reflective floor, especially at

receivers far away from the source compared to the wave-

guide height (see Figs. 3 and 7 below), whereas such situa-

tion is often encountered in large open-plan offices.

In light of Brekhovskikh’s work and based on the solu-

tion of the spherical wave reflection on an infinite plane,

Gensane and Santon15 proposed a generalized solution to

effectively model successive reflections of spherical sound

radiation from a point source in bounded spaces with several

boundaries. The plane wave reflection form, which is just

the first-order approximate solution of the spherical wave

reflection on a plane, was adopted in their study to develop a

complex image source method. The method was shown to be

able to predict coherently the sound field in bounded spaces

with sufficiently hard boundaries at high frequencies.14,15

According to the concepts of Gensane and Santon,15

Lemire and Nicolas11 replaced the reflection coefficient used

in the method of Gensane and Santon with a more accurate

solution16 of the spherical wave reflection on an infinite

plane to numerically investigate the sound field in flat wave-

guides. The method proposed by Lemire and Nicolas11 has
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been the basis of coherent prediction models recently devel-

oped by Iu and Li,17,18 Lam and Li,19 and Law et al.20 for

sound field study in narrow street canyons, long spaces, and

tunnels, respectively. Good accuracy from these models was

observed in spaces with reflective boundaries. Unfortunately

in the method of Lemire and Nicolas, it is implicitly assumed

that the wave front shapes remain spherical after each suc-

cessive reflection of the initial spherical wave incidence,11

and this requires that the boundaries can be approximated as

infinite and hard ones.21,22 It would be interesting to investi-

gate the accuracy degree of this method for spaces with ab-

sorbent boundaries, particularly when some of the

boundaries are highly sound absorptive.

Westwood23 has proposed a ray-based method for sound

fields in flat waveguides with a penetrable bottom boundary

and an idealized sound-soft top boundary to model the shal-

low water ocean environment. In his method, the multiple

reflections of a spherical wave incidence on the interfaces

were also formulated as integrals from plane wave expan-

sion and then the integrals were evaluated numerically or

with the first-order approximation similar to the method of

Gensane and Santon.15 Unfortunately, no further analytical

solutions were given.

In review of these previous studies, there are needs of

research toward a simple but accurate coherent model to pre-

dict the sound propagation in flat waveguides with a sound

absorptive ceiling and a reflective floor, particularly at large

distances from the source compared to the space height. This

is the objective of this paper.

II. THEORETICAL METHOD

A. Formulation of the problem

Figure 1(a) shows a vertical section of a flat waveguide,

where the infinite ceiling and floor planes are assumed to be

locally reactive with uniform normalized specific admittance

of bc and bf , respectively. The height between the ceiling

and floor is h, a point source is located at (0, zS) and a re-

ceiver is at ðr; zÞ with r being the horizontal distance from

the source to receiver. The time-dependent factor e�jxt is

suppressed for simplicity throughout this paper.

Based on the plane wave expansion of a spherical wave,

the Green function in free field can be expressed as14

ejkR0

4pR0

¼ jk

8p2

ð2p

0

ðp=2�j1

0

ejk�R0 sin h dh du; (1)

where k¼ k(sin h cos u, sin h sin u, cos h), k is the wave

number, and R0 is the distance vector from the source to the

receiver with a magnitude of R0. The parameters h and u
represent the azimuth angles characterizing the direction of

each plane wave propagation in vertical and horizontal

planes, respectively.

In the absence of the ceiling, the first reflection of the

spherical wave incidence can be obtained by superposition

of all the elementary plane wave reflections on the floor

plane as14

P�1 ¼
jk

8p2

ð2p

0

ðp=2�j1

0

ejk�R�1 Vf ðhÞ sin h dh du; (2)

where P�1 denotes the field of the first reflection on the floor

and R�1¼ (R�1 sin h�1 cos u�1, R�1 sin h�1 sin u�1, R�1

cos h�1) is the corresponding distance vector from the image

source S�1 to the receiver, as shown in Fig. 1(b). Vf ðhÞ repre-

sents the plane wave reflection coefficient of the floor at the

incidence angle h and is given by

Vf ðhÞ ¼
cos h� bf

cos hþ bf

: (3)

When the ceiling presents, the total field can be constructed

with the rays from an infinite number of image sources,14

Ptot ¼
Xþ1

n¼�1
Pn; (4)

in which n ¼ 0, 61, 62,…, and Pn represents the ray contri-

bution from the nth image source, where a positive n is for

FIG. 1. Vertical section of a typical flat waveguide. (a) The source and re-

ceiver geometry, where the floor plane is z¼ 0, the ceiling plane is z¼ h,

and the horizontal distance between the source and receiver is r. (b) The

schematic geometry of image sources, where the real source is assumed to

be S0. Each source leads a sound ray propagation path to the receiver with

different reflection orders on the floor (nf) and on the ceiling (nc). Rn denote

the propagation distance of the corresponding ray from the nth image source

to the receiver and hn represents the separation angle between the vertical

direction and propagation direction of the rays. Images of the ceiling and

floor planes are also shown in the geometry to help better understand the

reflections on the boundaries during propagation of the rays.
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an image source located in the source series above the ceil-

ing and a negative n is for that located below the floor as

shown in Fig. 1(b). Particularly P0 denotes the direct sound

from the real source. Similar to Eq. (2), the ray contribution

from the path with nf floor reflections and nc ceiling reflec-

tions can be expressed with an integral as14

Pn¼
jk

8p2

ð2p

0

ðp=2�j1

0

ejk�Rn ½Vf ðhÞ�nf ½VcðhÞ�nc sinhdhdu; (5)

where Rn¼ (Rn sin hn cos un, Rn sin hn sin un, Rn cos hn) is

the distance vector from the nth image source Sn to the re-

ceiver, hn and un denote the azimuth angles to characterize

the direction of Rn in vertical and horizontal planes, respec-

tively. VcðhÞ is the plane wave reflection coefficient on the

ceiling boundary,

VcðhÞ ¼
cos h� bc

cos hþ bc

: (6)

The boundary reflection order nf and nc can be determined

from the image source order n with a rule of

nf ¼
jnj
2
� 1

2
sgnðnÞremðjnj; 2Þ; (7a)

and

nc ¼
jnj
2
þ 1

2
sgnðnÞremðjnj; 2Þ; (7b)

where sgnð�Þ denotes the signum function that is þ 1 for the

positive input and equals � 1 for the negative input, and

remðjnj; 2Þ represents the remainder of jnj after division by

2.

Defining an overall coefficient VðhÞ to replace the term

½Vf ðhÞ�nf ½VcðhÞ�nc and using the geometrical identity of

r ¼ Rn sin hn, Pn in Eq. (5) is rewritten as

Pn ¼
jk

8p2

ð2p

0

ðp=2�j1

0

exp

�
jk r sin h cos u cos unð½

þ sin u sin unÞ þ Rn cos h cos hn�
�

VðhÞ sin hdhdu; (8)

and then can be further transformed into

Pn ¼
jk

8p2

ðp=2�j1

0

ð2p

0

exp jkr sin h cos u� unð Þ½ �du

� �
� exp Rn cos h cos hnð ÞVðhÞ sin hdh: (9)

As the function VðhÞ is independent of integration variable

u, by using14,24

ð2p

0

exp jkrsinhcos u�unð Þ½ �du�2pJ0ðkrsinhÞ; (10)

where J0ð�Þ represents the Bessel function of the zeroth

order, Eq. (9) can be simplified as

Pn ¼
jk

4p

ðp=2�j1

0

exp jkRn cos h cos hn½ �VðhÞJ0ðkr sin hÞ

� sin hdh: (11)

Using the identities for a complex number u that J0ðuÞ
¼ H1

0ðuÞ þ H2
0ðuÞ

� �
=2 and H2

0ð�uÞ ¼ �H1
0ðuÞ, Eq. (11) can

be written as

Pn ¼
jk

8p

ðp=2�j1

�p=2þj1
VðhÞ sin hH1

0ðkr sin hÞ

� exp jkRn cos h cos hn½ �dh; (12)

where H1
0ð�Þ and H2

0ð�Þ are the Hankel functions of the first

and second kind with the zeroth order. Now the total field

from a point source in a flat waveguide is explicitly formu-

lated by Eq. (4) accompanied by the integral equation (12).

B. The coherent image source method

As shown in Fig. 1(b), P0 is the direct sound ejkR0=4pR0,

and P1 and P�1 are the fields of single reflections whose in-

tegral expressions with Eq. (12) can be evaluated with the

exact (integral) solution provided by Nobile and Hayek,25

P1 ¼
ejkR1

4pR1

1� 4jkbcBR1

bc þ cos h1

Iðk;R1; bc; h1Þ
� �

; (13a)

P�1¼
ejkR�1

4pR�1

1�
4jkbf BR�1

bf þcosh�1

Iðk;R�1;bf ;h�1Þ
" #

; (13b)

where Ið�Þ is an integral function given by

Iðk;Rn; b; hnÞ ¼
ð1

0

e�jkRnðt2þ2BtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2=H � 2Bt=H

p dt; (14)

in which b is the normal specific admittance of the plane that

the reflection takes place on

B ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b cos hn � ð1� b2Þ1=2

sin hn

q
; (15a)

and

H ¼ 1þ b cos hn þ ð1� b2Þ1=2
sin hn: (15b)

For the ray with multiple reflections (jnj � 2) on boundaries,

although the exact solution of integral expression of Pn is

generally not possible, it is feasible to approximate such in-

tegral analytically with the method of steepest descents for

larger kr.14,16 A second-order approximate solution provided

by Brekhovskikh14 in term of asymptotic series with accu-

racy to terms of 1=ðkRnÞ2 is

Pn ¼
ejkRn

4pRn
VðhnÞ �

ejkRn

4pRn

j

2kRn
V0ðhnÞ cot hn þ V00ðhnÞ½ �

þ � � � ; (16)

where V0ðhnÞ and V00ðhnÞ represent the first and second deriv-

ative of VðhÞ at hn, respectively, and VðhÞ ¼ ½Vf ðhÞ�nf
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½VcðhÞ�nc . Although Eq. (16) can be used in flat waveguides

directly, its convergence needs to be analyzed before applica-

tions into the circumstance concerned in this paper. After

substituting the expressions of Vf ðhÞ and VcðhÞ in Eqs. (3)

and (6) into Eq. (16), a common factor of ðcos hn½
þbf Þnf ðcos hn þ bcÞnc ��1

can be found in all series terms

in Eq. (16).

In the current circumstance, the floor is acoustical reflec-

tive, which leads jbf j ! 0. If a receiver is far from the source

compared to the waveguide height, which is a situation often

encountered in large open-plan offices, the incidence angle hn

of rays at the first few orders whose contributions are signifi-

cant in the total field, will approach p=2 as shown in Fig.

1(b). This causes ðcos hn þ bf Þ ! 0, and then limits the con-

vergence radius of the asymptotic series in Eq. (16). Hence

the second-order approximation in Eq. (16) might not be suffi-

ciently accurate for the current problem theoretically.

Using explicit higher orders of the asymptotic series in

Eq. (16) to improve the approximation is not successful as the

exponential complexity is encountered as the order

increases14,15 and such an extension appears not sensible

when the common factor ðcos hn þ bf Þnf ðcos hn þ bcÞnc
� ��1

!1.16 The steepest descent method modified by subtraction

of the pole has been employed to remedy the similarly worsen

accuracy of the asymptotic series for sound propagation along

a single reflective boundary.16,26 This modified method is

based on the Laurent series expansion of the integrand in Eq.

(2) to avoid the singularities from the poles. Nonetheless such

a strategy becomes difficult in the case of flat waveguides

with two boundaries, because the poles in this case come

from the denominator ðcos hþ bf Þnf ðcos hþ bcÞnc of the inte-

grand in Eq. (12) and are mostly high order ones. It is intracta-

ble to explicitly obtain the residues of this integrand at these

higher poles for Laurent series expansion.

Analysis on the physics of the problem might be helpful to

overcome the mathematical intractability above and simplifies

the problem. The solution in Eq. (13a) or (13b) for the singly

reflected field from a point source on an infinite plane can be

rewritten for generality with a form of image source method as

Psr ¼ PdisQsr; (17)

where Psr is the single reflection field of a spherical wave inci-

dence on an infinite plane, Pdis is the direct field at the receiver

from the image source due to the single perfect reflection, and

Qsr is the single reflection coefficient for spherical wave inci-

dence, and can be determined from Eq. (13a) or (13b) by

Qsr ¼ 1� 4jkbBRn

bþ cos h0

I k;Rn; b; hnð Þ; (18)

where Rn implies the propagation distance of the ray and

interpretations of other parameters are in accord with those

in Eqs. (13a), (13b), and (14).

It has been shown that the reflected wave of the spheri-

cal sound incidence from a point source remains almost

spherical along a sufficiently hard boundary.22 The wave

front shapes of Pdis or Psr, which may be regarded as the spa-

tial distribution of wave energy propagation in the time do-

main, can always be described as a function of the direction

characterized with the incident angle hn from the image

source to different spatial locations (receivers). From Eq.

(17), the phenomenon that the wave front shape of Psr is

almost the same as that of Pdis, requires a reflection coeffi-

cient Qsr that is almost the same for different spatial parts of

the wave front of Pdis for field phase shift during the reflec-

tion, namely, to require Qsr being weakly dependent on hn.

This indicates that the coefficient Qsr can be assumed to be

uniform for different spatial parts of incident wave fronts in

the reflection on a hard boundary, no matter what shape the

incident wave fronts are. Thus, according to Eq. (17), each

reflection of a ray on a reflective boundary that is denoted by

RB, regardless of the reflection being the first or the succes-

sive one in the ray propagation from the spherical radiation,

can be heuristically approximated by

Pr � PrpQrefðIS;RjRBÞ; (19)

where Pr denotes the ray field at receiver after a reflection

on RB, and Prp represents the expected ray field at the re-

ceiver if the boundary RB is rigid, which is just the perfectly

reflected field on this boundary. QrefðIS;RjRBÞ, determined

by Eq. (18) also, is used to replace the single reflection coef-

ficient Qsr for reflections on the reflective boundary RB and

corresponds to the ray from the image source IS to receiver

R. Equation (19) shows that each reflection of a ray on a re-

flective boundary can be evaluated by multiplying the corre-

sponding perfectly reflected field with the spherical wave

reflection coefficient on this boundary.

In the current circumstances, the floor boundary is re-

flective. Thus, before and after each reflection on it, the

wave front shape can be assumed to remain the same. The

ray field alterations after each reflection on it can be quanti-

fied by a weighting factor QrefðIS;RjFBÞ that depends on the

floor boundary (FB) and the ray geometry according to Eq.

(19). Therefore in the propagation of a ray with reflection

order nf on the floor and nc on the ceiling shown in Fig. 1(b),

after each “transmission” through the floor or its images, the

propagation field of the ray can be once weighted by the

reflection coefficient QrefðSn;RjFBÞ. After the ray field being

weighted for nf times due to transmission through the floor

and its images in propagation, the field contribution of the

ray, Pn, can be approximated as

Pn � QrefðSn;RjFBÞ½ �nf
jk

8p

ðp=2�j1

�p=2þj1
VcðhÞ½ �nc sin hH1

0

� ðkr sin hÞ exp jkRn cos h cos hnð Þdh; (20)

where QrefðSn;RjFBÞ can be determined from Eq. (18).

Being compared to Eq. (12), the integral of Pn in Eq. (20)

has been simplified, and now the integrand involves only the

reflection coefficient on the ceiling.

The integral in Eq. (20) describes the field of the ray af-

ter nc times reflections on the absorbent ceiling. This can be

evaluated by the second-order approximation in Eq. (16)

with ensured accuracy because jbcj does not approach zero

and for the asymptotic series there is no singularity similar

to that from ðcos hn þ bf Þ ! 0 when hn ! p=2. So Pn can

be further approximated for larger kr by
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Pn � QrefðSn;RjFBÞ½ �nf

(
VtðhnjCB; ncÞ �

j V0tðhnjCB; ncÞ cot hn þ V00t ðhnjCB; ncÞ
� �

2kRn

)
ejkRn

4pRn
; (21)

where VtðhjCB; ncÞ represents a total plane wave reflection

coefficient to take account of the successive nc times plane

wave reflections on the absorbent ceiling boundary (CB) at

an incident angle h, which equals VcðhÞ½ �nc here.

V0tðhnjCB; ncÞ and V00t ðhnjCB; ncÞ are the first and second

derivatives of VtðhjCB; ncÞ at hn, respectively. The factor

ejkRn=4pRn is the direct sound field at the receiver from the

nth image source, while the factors in front of it act like a

combined reflection coefficient to evaluate the overall influ-

ence from all the successive reflections during the ray propa-

gation. Hence Pn can be expressed as

Pn ¼ Qn
ejkRn

4pRn
; (22)

where Qn denotes the combined reflection coefficient corre-

sponding to the ray with reflection order n as

Qn ¼ QrefðSn;RjFBÞ½ �nf QabsðSn;RjCB; ncÞ; (23)

in which QabsðSn;RjCB; ncÞ represents an overall reflection

coefficient taking account of all the successive reflections on

an absorbent boundary for a ray with spherical radiation,

where nc times successive reflections have taken place on

the absorbent ceiling during the propagation of the ray from

Sn to R. The coefficient QabsðSn;RjCB; ncÞ can be approxi-

mated by

QabsðSn;RjCB; ncÞ � VtðhnjCB; ncÞ �
j V0tðhnjCB; ncÞ cot hn þ V00t ðhnjCB; ncÞ
� �

2kRn
; (24)

and VtðhjCB; ncÞ ¼ VcðhÞ½ �nc .

Equations (22) and (23) are the main contribution of this

paper, which in company with Eq. (4), deliver a coherent

image source method to solve approximately the total field

from a point source in flat waveguides with a sound absorp-

tive ceiling and a reflective floor. On the basis of asymptotic

approximations by the steepest descent method for large kr
and a physically plausible assumption that wave front shape

remains the same before and after each reflection on a suffi-

ciently hard boundary, the solution has no other limitations

in principle. In the next section, numerical simulations will

be carried out to validate the model and compare it to the

existing coherent ray-based methods.

III. NUMERICAL RESULTS AND DISCUSSIONS

The wave theory is a classical method to study sound

fields in spaces with regular shape allowing separation of

variables.27,28 Although it is hard to be extended to the real-

istic enclosures with irregular shape,11,29 the wave theory is

analytically exact and can be used as a reference to validate

the ray-based methods applied to the flat waveguides in this

paper. The equations used in the wave theory to solve the

sound field from a point source in flat waveguides are

detailed in Appendix A. In the simulations, a general

approach30 for solving complex transcendental equations has

been employed to numerically solve the eigenvalue equation

[Eq. (A6)] for absorbent boundaries. Moreover it is assumed

in this paper that the high-order modes with an eigenvalue

amplitude larger than 1.5 times of the actuating wave num-

ber can be neglected in total field computations in Eq. (A1)

with the wave theory. A corresponding description and dis-

cussion on the evaluation with the wave theory are given in

Appendix A in detail. For implementation of the image

source methods in simulations, the locations of image sour-

ces can be determined through Fig. 1(b). The maximum

image source order l for truncation is determined when the

amplitude of the total energy field accumulated differs less

than 0.1% from that accumulated at the order l� 10.

To represent a realistic circumstance of open-plan offi-

ces in simulations, the ceiling of the flat waveguide is

assumed to be a suspended one where a layer of homogene-

ous porous absorbent material is backed by a cavity of cer-

tain depth L. For simplicity, the backing cavity is assumed to

be divided with partitions permitting the sound propagation

in the cavity to be normal to the ceiling surface. The floor is

assumed to be a simplified wooden one that is made up of a

single homogeneous wood layer with an acoustically hard

backing. The evaluation of surface admittances for the sus-

pended ceiling and the wooden floor is detailed in Appendix

B, where the media parameters of the ceiling porous material

layer or the floor wood layer, flow resistivity (r), porosity

(X), tortuosity (T), pore shape factor (Sp), and thickness (d),

are used for description. Figure 2 shows the normal incident

absorption coefficient of the ceilings and floor used in simu-

lations hereafter as a function of frequency.

Two numerical cases are investigated to access the pre-

diction performance with the proposed method and the exist-

ing coherent ray-based methods in flat waveguides, such as

the method of Brekhovskikh,14 the method of Lemire and

Nicolas,11 and the method of Gensane and Santon.15 In the

simulations, the method of Lemire and Nicolas11 is modified
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by replacing the approximate spherical wave reflection coef-

ficient employed in it, the term Rp þ ð1� RpÞFðxÞ, in Eq.

(7) of Ref. 11, with the exact integral one in Eq. (18) pro-

posed by Nobile and Hayek25 for better accuracy and applic-

ability.11,25 The ceiling of the flat waveguide is assumed to

be highly sound absorptive in the first case and to be moder-

ately absorptive in the second, whereas the floor keeps re-

flective and the waveguide height is always 2 m unless

otherwise stated.

In the first case, parameters of the porous material in the

suspended ceiling are r ¼30 cgs (where 1 cgs¼ 1

kPa s m�2), X ¼1, T ¼1, Sp ¼0.25, and d ¼0.1 m to repre-

sent a highly sound absorptive wool layer31 and the backing

cavity depth L is 0.2 m. The selected parameters of the floor

wood layer are r ¼10 000 cgs, X ¼0.2, T ¼1.4, Sp ¼0.5,

and d ¼0.01 m to represent a high density wooden floor-

ing.31,32 The predictions of the sound pressure level (SPL)

are first investigated versus the horizontal distance between

the source and receiver at 1 000 Hz, where heights of the

source and receivers are chosen to be 0.25 m and the normal

incident absorption coefficients of the ceiling and floor are

0.84 and 0.02 respectively.

The corresponding results with the proposed method, the

wave theory, and the exiting ray-based methods are com-

pared in Fig. 3. It can be seen that the results from the pro-

posed method and those from the wave theory almost overlap

over the range of r/h from 1 to 50. The method of Gensane

and Santon15 provides accurate results only when the hori-

zontal distance between the source and receiver is smaller

than two times of the waveguide height, and the modified

method of Lemire and Nicolas11 is accurate with r/h below 3.

Although the method of Brekhovskikh,14 which is the sec-

ond-order approximate solution in Eq. (16) for the flat wave-

guide, predicts much better than the latter two existing image

source methods, large discrepancies are found between the

results from it and those from the wave theory after r

becomes larger than 8 times that of h. This indicates that

when receivers are far away from the source compared to the

height of flat waveguides, the existing coherent ray-based

methods are hard to predict the sound propagation accurately.

On the other hand, the excellent prediction agreement

between the existing ray-based methods and the wave theory

at receivers rather close to the source provides cross-valida-

tion for the numerical calculations with the wave theory at

the receivers far from the source, because the eigenvalues

FIG. 3. (Color online) Predictions of the sound pressure levels (SPLs) at

frequency 1000 Hz vs the horizontal distance (r) between the source and re-

ceiver in a flat waveguide with height (h) of 2 m, where all the source and

receivers are located at 0.25 m above the floor. The ceiling is the highly

sound absorbent type and the floor is reflective. The solid line represents the

results with the proposed method, the circles are those in the wave theory,

the dashed line with cross markers is with the ray method from Brekhov-

skikh (Ref. 14) (Brekhovskikh’s method), the dash-dotted line is from the

modified method of Lemire and Nicolas (Ref. 11) (Lemire’s method), and

the dotted line is with the method of Gensane and Santon (Ref. 15) (Gen-

sane’s method).

FIG. 4. Spectra of sound pressure levels (SPLs) in a flat waveguide with

height (h) of 2 m, where the source is located at (0, 0.25 m) and receivers

are at (r, 0.25 m) and pairs of results corresponding to different source/re-

ceiver distances are shifted to fit on a single figure. The ceiling is the highly

sound absorbent type and the floor is reflective. The solid lines represent the

results with the proposed method, and the dotted lines with cross markers

are those in the wave theory.

FIG. 2. Spectra of normal incident absorption coefficient of three types of

boundaries used in the numerical simulations, where the highly absorbent

ceiling is defined by r ¼30 cgs, X ¼1, T ¼1, Sp ¼0.25, d ¼0.1 m, and

L ¼0.2 m, whereas the moderately absorbent one is defined with the same

parameters except that r ¼150 cgs. The floor is assumed to be a reflective

wooden one with parameters of r ¼10 000 cgs, X ¼0.2, T ¼1.4, Sp ¼0.5,

and d ¼0.01 m.
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from the wave theory solution at a given frequency are

exactly the same for the sound field at different receivers.

Computations have been carried out in this case to fur-

ther validate the proposed method in the frequency range

from 100 to 2 000 Hz, where receivers are chosen with a set

of horizontal distances from the source of 5, 10, and 20 times

of the waveguide height. Figures 4 and 5 show the results

corresponding to the situations where the source and

receivers are close to the sound reflective floor (zs ¼ z ¼0.25

m) or the absorbent ceiling (zs ¼ z ¼1.8 m), respectively, so

as to simulate the propagation of noise from the floor-stand-

ing electrical appliances or the ceiling-mounted ventilation

devices in usual open-plan offices. The situation for sound

propagations at the height of a seated person (zs ¼ z ¼1.2 m)

is also investigated and the corresponding results are pre-

sented in Fig. 6.

As shown from Figs. 4–6, the prediction of SPLs with

the proposed method always agree well with the wave theory

over a broad frequency range, except small differences

observed at some lower audio frequencies, which may be

explained with two reasons. First the accuracy of Eq. (16) is

ensured in theory for large kr. Second at these low frequen-

cies, the magnitude of bc becomes small from the evaluation

by the surface admittance model in Eqs. (B1), (B3a), and

(B3b). This leads to large ðcos hn þ bcÞ�1
in the common fac-

tor of the series in Eq. (24), as well as large ðcos hn þ bf Þ�1

for the series in Eq. (16) as hn ! p=2, which can reduce the

degree of approximation for QabsðSn;RjCB; ncÞ significantly.

In the second numerical case, the ceiling is defined with

the same parameters used in the first case except that the

flow resistivity r of the porous material changes to be 150

cgs. The parameters of the floor are the same with those in

the first case. The corresponding SPL vs r=h curves pre-

dicted with the proposed method, the wave theory, and the

existing ray-based methods are compared in Fig. 7, where

zS ¼ z ¼0.25 m and the frequency is 1 000 Hz still for exam-

ination, whereas the normal incident absorption coefficient

of the ceiling becomes 0.55.

In Fig. 7, the agreement between the proposed method

and the wave theory is remarkably good with r=h ranging

from 1 to 50. The method of Brekhovskikh14 is shown with

errors for an r=h ratio larger than 7, whereas the perform-

ance from the methods of Lemire and Nicolas11 and Gen-

sane and Santon15 seems better by comparison with that in

Fig. 3 of the first case, which might be explained by less

wave front shape distortion after each reflection on the ceil-

ing as it is less absorbent. In this case, the spectra of SPL in

the frequency range from 100 to 2 000 Hz, predicted with

the proposed method and the wave theory, are also com-

pared with the same considerations on source/receiver geo-

metries in the first case. The results corresponding to the

situation where zs ¼ z ¼1.2 m are presented in Fig. 8,

which shows that predictions from the proposed method are

in good agreement with the reference method over a broad

frequency range again, except small differences at some

low frequencies.

FIG. 5. Same caption as Fig. 4 except that the height of the source and

receivers becomes 1.8 m.

FIG. 6. Same caption as Fig. 4 except that the height of the source and

receivers becomes 1.2 m.

FIG. 7. (Color online) Same caption as Fig. 3 except that the ceiling

becomes the moderately sound absorbent type.
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More similar results were obtained by selecting other

source/receiver geometries and other parameters of the ceil-

ing and floor extensively, but they are not presented here for

reasons of brevity. These results support that the proposed

method is valid for predicting the sound propagation in flat

waveguides with a sound absorptive ceiling and a reflective

floor over a broad frequency range, even at large distances

from the source compared to the space height while the ceil-

ing can be highly sound absorptive.

The computational time with the proposed method is

also investigated versus the frequency and the space height,

by comparison to that from the numerical evaluation of the

wave theory. The boundary parameters in the first numerical

case are used for these investigations and the waveguide

height is assumed to be 2, 3, 4, and 5 m in sequence. The

location of source is (0, 0.25 m) and those of receivers are

(5h, 0.25 m). The corresponding computational time with

these two methods in the frequency range from 300 to 2 000

Hz with different space heights are presented in Fig. 9. It is

shown that the computational time with the wave theory

increases remarkably as the actuating frequency increasing,

whereas the general trend of that with the proposed method

is observed to be a little decrease at higher frequencies, de-

spite of fluctuations that may be due to field coherence

between different reflected waves during truncating image

source series at single frequencies.

Numerical results presented in Fig. 10 may explain the

frequency dependence of computational time with the wave

theory, which are carried out to validate the convergence of

the total field computations in Eq. (A1). It is indicated from

Fig. 10 that more eigenvalue roots in Eq. (A6) are needed to

be found to include more high-order modes into total field

computation at higher frequencies for convergence, which

increases the computational time with the wave theory.

However for the proposed image source method, generally

less image source orders are needed for convergence at

higher frequencies as the boundaries lined with porous mate-

rials become more acoustically absorbent at higher frequen-

cies as shown in Fig. 2.

From Fig. 9, it is also shown that with larger space

heights, more computational time is needed for the evaluation

of the wave theory, but a little less time is needed for the cal-

culation of the proposed method. This is because larger space

FIG. 8. Spectra of sound pressure levels (SPLs) in a flat waveguide with

height (h) of 2 m, where the source is located at (0, 1.2 m) and receivers are

at (r, 1.2 m) and pairs of results corresponding to different source/receiver

distances are shifted to fit on a single figure. The ceiling is the moderately

sound absorbent type and the floor is reflective. The solid lines represent the

results with the proposed method, and the dotted lines with cross markers

are those in the wave theory.

FIG. 9. (Color online) Spectra of the computational time with the proposed

method and the numerical evaluation of the wave theory to predict the sound

fields in flat waveguides with different heights (h) from 2 to 5 m, where the

source is located at (0, 0.25 m) and receivers are at (5h, 0.25 m). The ceiling

is the highly sound absorbent type and the floor is reflective. The lines repre-

sent the computational time results with the proposed method, and the lines

with markers are those with the wave theory.

FIG. 10. The convergence of sound pressure level (SPL) in the total field

evaluated with the wave theory vs the maximum eigenvalue amplitude

( kmtj j) in truncating the infinite mode series in total field computations in Eq.

(A1) at four different actuating frequencies (f), where k is the actuating

wave number. The flat waveguide is 2 m high, the source is located at (0,

0.25 m) and the receiver is at (10 m, 0.25 m). The ceiling is the highly sound

absorbent type and the floor is reflective.
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dimensions lead to higher distribution density of the eigen-

value roots in a given interval with the wave theory,27,28 but

they cause faster energy fading of the image sources in the

proposed method due to geometric attenuation. It should be

noted that the evaluation of the wave theory may be speeded

up with some other numerical methods33 or other configura-

tions. Nevertheless, it is indicated from Fig. 9 that for predict-

ing the sound fields in the flat waveguides with absorbent

boundaries, the proposed method is preferable to the wave

theory at higher frequencies and for spaces with larger

dimensions.

From the above-mentioned results for sound fields in flat

waveguides with a sound absorptive ceiling and a reflective

floor, it is clear that the proposed coherent image source

method is valid and can provide more accurate predictions

than the existing coherent ray-based methods for various

source/receiver geometries. Although it is found from the nu-

merical results that the proposed method can have reasonable

accuracy at certain low frequencies, it must be remarked that

the method is based on two assumptions: (i) kr being large

and (ii) wave front shape remaining the same before and after

each reflection on a reflective boundary. Moreover, numerical

results validate the idea proposed in Eq. (23) of separating

the reflections on the reflective boundaries from those on ab-

sorbent ones in applying reflection coefficients in the image

source method. This idea is expected to be useful for devel-

oping an accurate and versatile coherent image source

method for sound fields in practical enclosures with absorb-

ent boundaries.

IV. CONCLUSION

An accurate coherent image source method has been

proposed in this paper to predict single frequency sound

propagation in flat waveguides with a sound absorptive ceil-

ing and a reflective floor. By expending a spherical wave

into plane wave integrals, the method avoids the intractabil-

ity in analytically evaluating the integrals of reflection

waves. This is achieved by introducing a physically plausible

assumption that wave front shapes remain the same before

and after each reflection on a reflective boundary. The pro-

posed coherent model can be used to predict sound propaga-

tion from a point source to arbitrary receiver locations in flat

waveguides with highly absorptive ceiling. The method has

been numerically validated with the wave theory for various

source/receiver geometries over a broad frequency range. It

is shown that the proposed method can accurately predict the

single frequency sound propagation, even if at large distan-

ces from the source compared to the waveguide height

whereas the existing coherent ray-based method are inaccu-

rate. It is also shown that the proposed method is preferable

to the wave theory at higher frequencies and with larger

space dimensions. The proposed method should be useful for

sound field prediction in open-plan offices.
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APPENDIX A: THE WAVE THEORY SOLUTION FOR
THE SOUND FIELD FROM A POINT SOURCE IN FLAT
WAVEGUIDES

Based on the wave theory in Refs. 27 and 28, the sound

field from a point source in flat waveguides can be solved as

a summation of normal modes along directions z and r in

Fig. 1(a). It is expressed as27,28

Ptot ¼
jA

4

X1
m¼0

wmðzSÞwmðzÞ
jjwmjj

2
H1

0ðKrrÞ; (A1)

where A is the amplitude of the point source and assumed to

be unit, zS and z are heights of the source and receiver,

respectively, and r denotes the source/receiver horizontal

distance. The term jjwmjj
2

represents the norm of the eigen-

function wmð�Þ:

jjwmjj
2 ¼

ðh

0

wmðzÞ½ �2dz: (A2)

The eigenfunction wmð:Þ can be expressed as

wmðzÞ ¼ ejkmz þ cme�jkmz; (A3)

where km denotes the eigenvalue in the z direction and cm is a

complex constant related to km. Correspondingly the wave

number in the r direction in Eq. (A1), Kr, is determined from

km by

Kr ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

m

q
; (A4)

where the complex square root is taken to yield a result with

a positive real part and k is the wave number. The eigenvalue

km and constant cm are obtained from the boundary condition

equations along the pair of planes in the posed problem,

which are

@wmð0Þ
@z

þ jkbf wmð0Þ ¼ 0 on the floor boundary

@wmðhÞ
@z

� jkbcwmðhÞ ¼ 0 on the ceiling boundary: (A5)

8>><
>>:

Hence the eigenvalue equations can be obtained as

km þ kbf

km � kbf

km þ kbc

km � kbc

¼ e2jhkm ; (A6)

and

cm ¼
km þ kbf

km � kbf

: (A7)
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It should be noted that the analytical solution of Eq. (A6) is

available only if the boundaries are rigid. For boundaries

with complex admittance, transcendental equation (A6)

becomes complex and may be solved by approximations27,28

or classical numerical approaches, such as Newton’s itera-

tion if the boundaries are nearly rigid with sufficiently low

admittance amplitude.33 When boundaries are absorbent

with large admittance amplitude, the number of eigenvalue

roots in Eq. (A6) and their possible locations in a given inter-

val become hard to know,33 to which the classical numerical

methods in solving nonlinear equations become inapplicable

because they need one “good” single initial guess to yield a

root. To ensure high accuracy of evaluation with the wave

theory as a validation benchmark, a general numerical

scheme30 can be used to solve all the eigenvalue roots in Eq.

(A6) in a given interval with robustness, which avoids select-

ing the initial guesses in eigenvalue solution.

The solution in Eq. (A1) is expressed as the superpo-

sition of an infinite mode series, which however can be

truncated at a finite number of modes in practice.33 To

validate the truncation criterion considered in this paper

for convergence of the total field computations, sound

pressure levels in the total field at frequencies of 800,

1000, 1400, and 2000 Hz are examined versus the maxi-

mum eigenvalue amplitude kmtj j considered for truncating

the infinite mode series. The corresponding results based

on parameters in the first numerical case in Sec. III are

presented in Fig. 10, which show that the total field

becomes convergent with kmtj j larger than about 0.6 times

of the actuating wave number k at different frequencies.

Therefore kmtj j is chosen to be 1.5 times k in this paper to

ensure high evaluation accuracy of the wave theory as a

reference method.

APPENDIX B: EVALUATION OF BOUNDARY SURFACE
ADMITTANCE FOR THE CEILING AND FLOOR

The surface admittance of the suspended ceiling, bc,

and that of the wooden floor, bf , can be evaluated, respec-

tively, according to classic electrical transmission line

analogy,32

bc ¼
Za þ jZL tan kadð Þ

Za ZL þ jZa tan kadð Þ½ � ; (B1)

and

bf ¼
1

Za coth jkadð Þ ; (B2)

where ZL in Eq. (B1) represents the specific characteristic

impedance of the backing cavity in the ceiling and can be

�j= tanð2pfL=cÞ in this paper, in which f is the frequency of

interest, L denotes the cavity depth, and c is the sound veloc-

ity in air. Parameter d represents the thickness of the ceiling

porous material layer in Eq. (B1) or the floor wood layer in

Eq. (B2). Za and ka denote, respectively, the specific charac-

teristic impedance and the propagation constant inside the

ceiling porous material in Eq. (B1) or inside the floor wood

layer in Eq. (B2), which can be evaluated by Attenborough’s

“three-parameter” approximation32

Za ¼
4T

3X
� 4jXre

2pfq0

	 

2pf

cka

	 

; (B3a)

ka ¼
2pf

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c aT � 4jX2re

2pf q0

	 
s
; (B3b)

where X and T are the porosity and tortuosity inside the

media, respectively. q0 and c denote the density and the ratio

of specific heats for air separately, where q0¼ 1.293

kg m�3and c ¼ 1:4 in simulations at the room temperature.

Parameter a inside Eq. (B3b) is defined by a ¼ 4=3

� ðc� 1Þ=c½ �NPr, where NPr is the Prandtl number for air and

can be 0.71 at the room temperature. In Eqs. (B3a) and (B3b),

re denotes an effective flow resistivity and is defined by

re ¼ 4S2
pr=X, where Sp is the pore shape factor and r is the

flow resistivity of the media with a unit of cgs (1 cgs¼ 1

kPa s m�2).

1M. Asselineau, “Noise control of laboratories: case studies,” Proceedings

of Acoustics 08 Paris, 2008, pp. 5165–5169.
2D. A. Bies and C. H. Hansen, Engineering Noise Control Theory and
Practice, 3rd ed. (E&FN SPON, London, 2006), pp. 314–324.

3E. A. Lindqvist, “Sound attenuation in larger factory spaces,” Acustica.

50, 313–328 (1982).
4M. Hodgson, “On the prediction of sound fields in large empty rooms,” J.

Acoust. Soc. Am. 84, 253–261 (1988).
5M. Hodgson, “On the accuracy of models for predicting sound propagation

in fitted rooms,” J. Acoust. Soc. Am. 88, 871–878 (1990).
6S. M. Dance and B. M. Shield, “The complete image-source method for

the prediction of sound distribution in non-diffuse enclosed spaces,” J.

Sound Vib. 201, 473–489 (1997).
7A. M. Ondet and J. L. Barbry, “Modeling of sound propagation in fit-

ted workshops using ray tracing,” J. Acoust. Soc. Am. 85, 787–796

(1989).
8M. Hodgson, “Ray-tracing evaluation of empirical models for predicting

noise in industrial workshops,” Appl. Acoust. 64, 1033–1048 (2003).
9J. Kang, “Numerical modeling of the speech intelligibility in dining

spaces,” Appl. Acoust. 63, 1315–1333 (2002).
10S. M. Dance, J. P. Roberts, and B. M. Shield, “Computer prediction of

sound distribution in enclosed spaces using an interference pressure mod-

el,” Appl. Acoust. 44, 53–65 (1995).
11G. Lemire and J. Nicolas, “Aerial propagation of spherical sound waves in

bounded spaces,” J. Acoust. Soc. Am. 85, 1845–1853 (1989).
12R. Pirn, “Acoustical variables in open planning,” J. Acoust. Soc. Am. 49,

1340–1345 (1971).
13C. Wang and J. S. Bradley, “A mathematical model for a single screen

barrier in open-plan offices,” Appl. Acoust. 63, 849–866 (2002).
14I. Brekhovskikh, Waves in Layered Media, 2nd ed. (Academic, New York,

1980), pp. 225–320.
15M. Gensane and F. Santon, “Prediction of sound fields in rooms of arbi-

trary shape: validity of the image sources method,” J. Sound Vib. 63, 97–

108 (1979).
16K. Attenborough, S. I. Hayek, and J. M. Lawther, “Propagation of sound

above a porous half space,” J. Acoust. Soc. Am. 68, 1493–1501 (1980).
17K. K. Iu and K. M. Li, “The propagation of sound in narrow street can-

yons,” J. Acoust. Soc. Am. 112, 537–550 (2002).
18K. M. Ii and K. K. Iu, “Propagation of sound in long enclosures,” J.

Acoust. Soc. Am. 116, 2759–2770 (2004).
19P. M. Lam and K. M. Li, “A coherent model for predicting noise reduction

in long enclosures with impedance discontinuities,” J. Sound Vib. 299,

559–574 (2007).

J. Acoust. Soc. Am., Vol. 130, No. 2, August 2011 Min, Chen, and Qiu: Sound prediction in flat waveguides 781

Downloaded 10 Aug 2011 to 218.94.142.226. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



20M. K. Law, K. M. Li and C. W. Leung, “Noise reduction in tunnels by

hard rough surfaces,” J. Acoust. Soc. Am. 124, 961–972 (2008).
21J. B. Allen and D. A. Berkley, “Image method for efficiently simulating

small-room acoustics,” J. Acoust. Soc. Am. 65, 943–950 (1979).
22U. Ingard, “On the reflection of a spherical sound wave from an infinite

plane,” J. Acoust. Soc. Am. 23, 329–335 (1951).
23E. K. Westwood, “Ray methods for flat and sloping shallow-water wave-

guides,” J. Acoust. Soc. Am. 85, 1885–1894 (1989).
24S. Hassani, Mathematical Physics: A Modern Introduction to its Founda-

tions (Springer, New York, 1999), pp. 438–442.
25M. A. Nobile and S. I. Hayek, “Acoustic propagation over an impedance

plane,” J. Acoust. Soc. Am. 78, 1325–1336 (1985).
26C. F. Chien and W. W. Soroka, “Sound propagation along an impedance

plane,” J. Sound Vib. 43, 9–20 (1975).
27H. Kuttruff, Room Acoustics, 5th ed. (Taylor & Francis, New York, 2009),

pp. 67–91.

28P. M. Morse and K. U. Ingard, Theoretical Acoustics (McGraw-Hill, New

York, 1968), pp. 492–509.
29M. Willatzen and L. C. Lew Yan Voon, “Eigenmodes of triaxial ellipsoi-

dal acoustical cavities with mixed boundary conditions,” J. Acoust. Soc.

Am. 116, 3279–3283 (2004).
30Y. Long and H. Jiang, “Rigorous numerical solution to complex transcen-

dental equations,” Int J. Infrared Milli. 19, 785–790 (1998).
31K. Attenborough, “Acoustical characteristics of rigid fibrous ab-

sorbents and granular materials,” J. Acoust. Soc. Am. 73, 785–799

(1983).
32K. Attenborough, “Ground parameter information for propagation mod-

eling,” J. Acoust. Soc. Am. 92, 418–427 (1992).
33Y. Naka, A. A. Oberai, and B. G. Shinn-Cunningham, “Acoustic engenval-

ues of rectangular rooms with arbitrary wall impedances using the interval

Newton/generalized bisection method,” J. Acoust. Soc. Am. 118, 3662–

3671 (2005).

782 J. Acoust. Soc. Am., Vol. 130, No. 2, August 2011 Min, Chen, and Qiu: Sound prediction in flat waveguides

Downloaded 10 Aug 2011 to 218.94.142.226. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp


	s1
	cor1
	s2
	s2A
	E1
	E2
	E3
	E4
	F1
	E5
	E6
	E7a
	E7b
	E8
	E9
	E10
	E11
	E12
	s2B
	E13a
	E13b
	E14
	E15a
	E15b
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	E23
	E24
	s3
	F3
	F4
	F2
	F5
	F6
	F7
	F8
	F9
	F10
	s4
	EA1
	EA2
	EA3
	EA4
	EA5
	EA6
	EA7
	EB1
	EB2
	EB3a
	EB3b
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33

