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Abstract

Modern infectious disease outbreak surveillance produces continuous streams of sequence data
which require phylogenetic analysis as data arrives. Current software packages for Bayesian phy-
logenetic inference are unable to quickly incorporate new sequences as they become available,
making them less useful for dynamically unfolding evolutionary stories. This limitation can be
addressed by applying a class of Bayesian statistical inference algorithms called sequential Monte
Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated
to update the estimate of the posterior probability distribution. In this paper we describe and
evaluate several different online phylogenetic sequential Monte Carlo (OPSMC) algorithms. We
show that proposing new phylogenies with a density similar to the Bayesian prior suffers from
poor performance, and we develop ‘guided’ proposals that better match the proposal density to
the posterior. Furthermore, we show that the simplest guided proposals can exhibit pathological
behavior in some situations, leading to poor results, and that the situation can be resolved by heat-
ing the proposal density. The results demonstrate that relative to the widely-used MCMC-based
algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic
posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring
a significant loss in accuracy.
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Introduction

Phylogenetic techniques are quickly becoming an essential tool in the investigation and surveil-
lance of infectious disease outbreaks (Rusu et al. 2015; Gardy et al. 2015; Neher and Bedford
2015). Meanwhile, advances in DNA sequencing technology have made the generation of complete
genome data for isolates of bacteria and viruses a routine practice in public health laboratories.
These genome data are collected into public databases such as the FDA GenomeTrakr (FDA
2016), which in 2016 accumulated new data at an average rate of over 1000 pathogen genomes per
week. Sequencing technology itself continues to evolve, with new devices based on nanopore detec-
tion capable of generating a continuous stream of sequence data, supporting interactive real-time
analysis (Loose et al. 2016).

Ideally these new data streams would be matched with appropriate sequence analysis tools, in-
cluding Bayesian phylogenetic inference. Bayesian inference has particular value in epidemiological
investigations due to its ability to operate on models with a wide range of unknown parameters,
including divergence times, lineage-specific mutation rates, population demographics, and geogra-
phy (Kühnert et al. 2014; Lemey et al. 2009). However, all current methods for Bayesian inference
treat the data set as a static entity that has been observed in its entirety at the time that compu-
tation of the posterior probability distribution begins. Updating a dataset with new sequences, as
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might be required when a new case of an infection is presented and sequenced, necessitates that
the entire analysis be restarted.

Although Izquierdo-Carrasco et al. (2014) have proposed a maximum likelihood approach to
update a phylogenetic tree with new sequences, no such tool exists for Bayesian phylogenetic
inference. Each run using popular Bayesian phylogenetic inference tools like MrBayes (Ronquist
et al. 2012) or BEAST (Bouckaert et al. 2014) can take days or weeks of CPU time to approximate
a posterior distribution for realistic models and datasets. The inability to quickly incorporate new
data into an existing analysis is a major impediment to the use of Bayesian phylogenetics as a
decision support tool for infectious disease management and surveillance, where interventions are
most likely to be effective if made within hours or days.

Recently, Dinh et al. (2016) described a theoretical framework for updating a phylogenetic pos-
terior approximation, called Online Phylogenetic Sequential Monte Carlo (OPSMC). An overview
of OPSMC is given in Figure 1. At each iteration, a transition kernel is used to update the pos-
terior on n − 1 sequences to approximate the posterior on n sequences. Optionally, one or more
Metropolis-Hastings steps (not shown in the figure) can be applied to increase the effective sample
size. Although these authors showed the OPSMC framework has attractive theoretical properties,
it was not clear from that work whether it can be translated into an effective sampler. In addition,
more research is needed on the design of effective transition kernels for OPSMC, a subject of some
debate in related literature (Teh et al. 2008; Bouchard-Côté et al. 2012).

In this work we implement OPSMC with a variety of transition kernels, and compare their
ability to efficiently update phylogenetic posteriors with new data. In particular we compare
the efficiency of näıve proposals to guided proposals, showing that the extra effort required to
compute a guided proposal leads to a significant overall improvement in sampler efficiency. Finally,
we discuss prospects for the incorporation of OPSMC into widely used algorithms and software
packages for Bayesian phylogenetic inference. For this paper, we restrict ourselves to “pure” SMC
without Metropolis-Hastings steps. Our implementation is available at https://github.com/

OnlinePhylo/sts/.
Our results build upon several key pieces of previous work building trees using SMC via subtree

merging. Teh et al. (2008) were the first to describe the use of Sequential Monte Carlo for Bayesian
inference of tree-structured models. Bouchard-Côté et al. (2012) adapted that work to infer rooted,
ultrametric phylogenetic trees. Wang et al. (2015) showed that SMC could also be applied to
unrooted phylogenetic trees and provided an implementation of the algorithm and performance
comparison with the widely used MrBayes software. Because each of these methods proceeds by
joining the roots of subtrees merged by previous steps, they can only add additional sequences at
the root of the tree. Thus each of those previous contributions is only appropriate for the case
where the data set is static and completely known when inference begins.

In contrast, our work relaxes those assumptions to evaluate algorithms for online inference.
Dinh et al. (2016) was the first to describe a theoretical framework to extend phylogenetic SMC
approaches to online inference. In parallel work, Everitt et al. (2016) have also described an online
phylogenetic inference step as part of a larger framework of SMC methods for spaces of varying
dimension (see also Everitt et al. 2017). We will compare our work and that of these authors in
the Discussion.

Material and Methods

Definitions. In Bayesian inference we are interested in estimating the posterior distribution of
a model conditioned on data. In phylogenetics, the data are a set of nucleotide or amino acid
sequences ψ = (ψ1, ψ2, . . . , ψN ) collected from N taxa, wherein the homologous nucleotides among
sequences have been identified and grouped as sites (columns) in a sequence alignment (Felsenstein
2004). We assume that alignment sites are IID and that mutation events along each branch of a
phylogenetic tree τ occur independently accordingly to a continuous time Markov chain. In this
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Figure 1. An overview of the Online Phylogenetic Sequential Monte Carlo al-
gorithm as implemented in sts. Panel A shows a population of particles going
through an SMC iteration. For each particle, a new sequence (taxon) ψn is at-
tached to the tree using proposal Qn(·), its weight is computed and particles are
resampled using the weights. Panel B depicts the three-step proposal applied by
sts to a single particle.

paper we use the Jukes-Cantor (Jukes et al. 1969) substitution model with equal base frequencies
and equal transition rates.

The posterior probability of a phylogenetic tree with topology τ and branch lengths l =
(l1, . . . , l2N−3) conditioned on ψ follows from Bayes Theorem:

π(τ, l | ψ) =
P(ψ | τ, l)π(τ, l)

P(ψ)

where P(ψ | τ, l) is the phylogenetic likelihood calculated using the standard Felsenstein pruning
algorithm (Felsenstein 2004) and π(τ, l) is the prior on the topology and branch lengths of the
phylogenetic tree. For unrooted trees, branch length priors are usually assumed to be IID with
a simple distribution such as truncated uniform or exponential. A prior can also be specified on
the unrooted topologies, a common choice being the uniform distribution. The marginal likeli-
hood of the model P(ψ) =

∑∫
P(ψ, τ, l) is analytically intractable. Therefore the joint posterior

distribution is usually approximated using Monte Carlo methods.

Sequential Monte Carlo. Sequential Monte Carlo (SMC) algorithms are a class of sampling
methods that have been extensively investigated in the context of sequential Bayesian inference.
We consider that data arrive sequentially ψ1, . . . , ψN and we wish to update the approximation of
a probability distribution.

The idea is to track, at each iteration n, a collection of Kn particles pn1 , . . . , p
n
Kn

associated with
positive weights wn

1 , . . . , w
n
Kn

whose empirical distribution converges to the target distribution πn.
Given a collection of weighted particles from the previous iteration n− 1 the algorithm applies

the three steps: resampling, mutation, and reweighting.
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The resampling step prunes particles associated with low weights. This step is optional and
is typically triggered when the effective sample size (Beskos et al. 2014) of the particle collection
drops below a predetermined threshold. The effective sample size (ESS) for a collection of particles
with weight wn

i for the ith normalized particle at iteration n is

ESSn =

(
Kn∑
i=1

wn
i

)2/Kn∑
i=1

(wn
i )2 .

Resampling obtains Kn particles, mn
1 , . . . ,m

n
Kn

, via a multinomial distribution on the particles

parameterized with the weights wn−1
1 , . . . , wn−1

Kn
. Alternatively, more sophisticated resampling

methods such as stratified resampling (Kitagawa 1996) and residual resampling can be used in
order to reduce the variance of the new particle population (Doucet et al. 2001; Del Moral et al.
2012).

The mutation step draws Kn new particles from a proposal distribution Qn(sni → pni ) for
i = 1, . . . ,Kn.

The unnormalized weight w̃n
i of each particle pni is updated:

w̃n
i =

π(pni )

π(mn
i )Qn(mn

i → pni )
;

after renormalizing these weights we obtain an empirical approximation of πn:

π̂n,Kn
=

Kn+1∑
i=1

wn
i δpn

i
(·).

The SMC sampler initializes each particle with equal weights w0
i = 1/K0 for all i = 1, . . . ,K0.

Online phylogenetic sequential Monte Carlo. Given an initial set of phylogenetic trees that
represent a sample from the posterior distribution, we set out to update the posterior approximation
represented by these samples with new sequences using an Online Phylogenetic SMC (OPSMC).

While the state space of standard SMCs is of fixed dimension, the model complexity and dimen-
sion in the OPSMC setting increases as the number of taxa increases. Indeed, the number of tree
topologies increases super-exponentially with the number of taxa for both rooted and unrooted
trees (St. John 2016). In addition to the discrete component of the tree space, the addition of
each taxon requires additional continuous parameters. For rooted trees with a molecular clock,
each additional taxon introduces two new parameters (the coalescence time and the identity of the
branch where the new lineage attaches) whereas three parameters are introduced in the non-clock
case: the attachment branch, the attachment position on the attachment branch, and the length
of the pendant branch leading to the new taxon. Unless stated otherwise, in the rest of the paper
trees are assumed to be unrooted with no clock. Nevertheless, it will be convenient for the purposes
of description that the trees have been given an arbitrary root.

The OPSMC algorithm assumes that sequences arrive sequentially one by one: even if several
new sequences have become available, every particle will incorporate the same sequence at a given
iteration. This simplification circumvents the over-counting problem highlighted in (Bouchard-
Côté et al. 2012; Wang et al. 2015) who showed that uniform tree proposals were biased toward
balanced tree topologies. It should be clear that, unlike previously described phylogenetic SMCs,
the OPSMC method does not require specifying an extension over a forest of trees since each
particle represents a single tree.

Each of the proposals follows a three step process:

(1) Choose an attachment branch e from 2n− 3 branches.
(2) Choose location x along e to attach the new taxon. We refer to x as the distal length:

distance from the attachment location to the end of the edge that is farthest away from the
root of the tree. In these proposals the length of the attachment branch does not change.
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(3) Propose a new pendant branch length y leading to the new taxon.

One can mix and match choices for each of these steps from the following strategies.
We encode each step with a single letter to distinguish among the possible methods used at that

step (Table 1). We will use the resulting three-letter code to describe a complete proposal strategy:
for example, the LAF proposal uses the L method for the first step, A for the second step, and F
for the third step. Some of the methods are decorated with a tilde in order to distinguish heated
from unheated proposals (the exact meaning of a heated proposal will be clarified below).

In the remainder of this section we describe different proposals for each of the three steps and for
each step two broad classes of methods are described. The simplest methods are called unguided
proposals. Although unguided proposals are fast and simple to implement they tend to generate a
very large number of particles with low likelihoods. This causes much CPU time to be expended
on calculating likelihoods and SMC weights for particles that ultimately drop out of the posterior
approximation during the weighted resampling step. Guided proposals refer to more complex
methods that use the data to get more accurate proposals.

Step 1: attachment branch choice.

Uniform (Ũ) proposals. The unguided uniform proposals are the simplest proposal scheme investi-

gated in this paper and they bear similarities to the “PriorPrior” proposal described in (Teh et al.
2009). In our implementation of uniform proposals the attachment branch is chosen uniformly
among all branches. Alternatively, the branch can be selected with weight proportional to its
length.

Likelihood (L̃) proposals. For each branch in the current tree, an attachment weight for the new
taxon is calculated as described below. The attachment branch is then drawn randomly according
to a multinomial distribution parameterized with the attachment branch weights.

Calculating the maximum likelihood attachment configuration for each branch is computation-
ally expensive so we instead resort to a heuristic approach inspired by a similar strategy used in
pplacer (Matsen et al. 2010). The new taxon is attached in the middle of each branch and likeli-
hoods are calculated using a set of predetermined branch lengths. By default OPSMC calculates
the tree likelihood with pendant branch length equal to 0 and separately with the pendant branch
length set to the median branch length from the first tree in the initial posterior sample of trees
we want to update with the new taxa.

This allows discarding branches that are unlikely candidates (i.e. low probability) for attaching
the new taxon. The resulting attachment location is selected from a multinomial distribution with
weights equal to the highest likelihood among the set of pendant branch lengths tested for each
branch.

This heuristic could be refined at the cost of additional compute time. For example the likeli-
hood profile of a fixed number of edges with the highest attachment probability can be improved
by testing more attachment locations and additional potential pendant branch lengths (e.g. {0,
median/2, median} instead of {0, median}). Alternatively, the posterior probability of attachment
on each branch could be calculated directly (Matsen et al. 2010), however this may be too time
consuming to be a practical improvement.

Parsimony (P̃) proposal. Alternatively, multinomial weights can be derived using parsimony scores,

which are simply calculated using the first pass of the Fitch (1971) algorithm. The unnormalized
attachment weight g̃i for the ith branch is calculated with the heuristic

g̃i = exp(min(S)− si)
where S = (si, . . . , s2n−3) is a vector containing the parsimony score of each attachment branch.

Heated parsimony (P) and likelihood (L) proposals. Through our simulations we noted that when
simply normalizing the parsimony scores or likelihoods to a sampling distribution, the probability
of the highest scoring branch is often several log units higher than the attachment probabilities of
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the other branches. Therefore the proposal often chooses the same branch with high probability.
Unfortunately, for some sequences and tree configurations this attachment branch proposal algo-
rithm can, with high probability, propose tree topologies that have low posterior support. That
is, the attachment branch proposal distribution and posterior distribution can be poorly matched
for some trees and sequences.

To mitigate the impact of poorly matching proposal and posterior distributions we explored
a “heated” proposal distribution, created by raising the attachment probabilities to the power
α = 0.05. This approach is inspired by the Metropolis-coupled MCMC method (Geyer 1991) in
which the posterior distribution of a hot chain is exponentiated with a number less than one,
hence flattening out the posterior distribution. The one-letter code of non-heated proposals is

decorated with a tilde. For example, L̃ refers to the non-heated likelihood-based proposal and L
denotes the corresponding heated proposal. In our implementation α was chosen by evaluating
a range of possible values on an independent simulated test data set and is fixed throughout the
simulations presented in the result section. Tuning the α parameter might improve the efficiency
of the sampler. We have not explored this possibility.

Step 2: distal length choice.

Uniform (U) proposal. The location on the attachment branch e to attach the pendant branch is

drawn from a uniform distribution, X ∼ U(0, |e|), where |e| is the length of branch e.

Maximum likelihood normal (N) proposal. In this proposal scheme, the attachment location along
branch a of the new branch and the pendant branch length are co-estimated using maximum
likelihood. The distal length x is then drawn from a truncated normal distribution with location
parameter µ equal to the maximum likelihood estimate (MLE) of the distal branch length. The
distribution is truncated below 0 and above the length of the attachment branch. The scale
parameter σ is arbitrarily chosen to be σ = |e|/4. The distal length is set to 0 for |e| < 1× 10−8.

Maximum likelihood asymptotic (A) proposal. This method proceeds in the same manner as N,
except that the standard deviation in the proposal distribution is found using the posterior distri-
bution around its maximum. Specifically, we use a quadratic approximation to the log likelihood
distribution L centered on the maximum likelihood estimate of x. That is,

L(x | ψ) ≈ N (xMLE, [I(xMLE)]−1/2)

where I(xMLE) is the observed information

I(xMLE) = − d2

dx2
L(xMLE | ψ)

Step 3: branch length choice.

Prior (P) proposal. The pendant branch length is simply drawn from the prior (e.g. Y ∼ Exp(10)).

Maximum likelihood (M) proposal. The first guided method to draw the pendant branch length
is similar in spirit to Step 2: the branch length is drawn from an exponential distribution with
mean equal to the MLE of the pendant branch as calculated in the previous step.

lcfit (F) proposal. The second method makes use of a surrogate log-likelihood function to approx-
imate the marginal posterior distribution of the pendant branch. This four-parameter surrogate
function is specialized to the task of approximating single-branch phylogenetic likelihood functions.
An implementation is available at https://github.com/matsengrp/lcfit and a manuscript de-
scribing it is in preparation (Claywell et al. 2017). For completeness we outline the method here.

Let f be the lcfit function, which is defined by four non-negative parameters, and evaluated at
branch lengths t:

f(c,m, r, b; t) = c log[(1 + e−r(t+b))/2] +m log[(1− e−r(t+b))/2]
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Ignoring the parameter b, this is the log-likelihood function of the binary substitution model on a
two-taxon sequence alignment with c constant sites, m mutated sites, and substitution rate r. The
parameter b effectively allows truncation of the left hand side of the curve, which enables modeling
of likelihood curves with nonzero likelihood at t = 0.

One can fit the likelihood curve efficiently with access to the maximum likelihood branch length,
an estimate of the second derivative at this location, and several other sampled points. Once the
parameters of the lcfit surrogate are fit, one can use rejection sampling to obtain samples from the
surrogate posterior formed by the product of the surrogate likelihood and the branch length prior.

Step 1 Step 2 Step 3

Uniform [Ũ] X ∼ U(0, |e|) [U] Y ∼ Exp(λ = 10) [P]

Likelihood [L̃]/[L] X ∼ N (xMLE, |e|/4), 0 ≤ X ≤ |e| [N] Y ∼ Exp(λ = 1/yMLE) [M]
Parsimony [P] X ∼ N (xMLE, I(xMLE)−1/2), 0 ≤ X ≤ |e| [A] Y ∼ lcfit [F]

Table 1. A summary of the proposal distributions for the three steps: first,
sampling an attachment edge, second, sampling a position at which to attach the
new pendant branch, and third, sampling a pendant branch length. The one-
letter code of each sampling strategy is between square brackets. In Step 1, the
one-letter code is decorated with a tilde for non-heated proposal.

Simulations. We generated 5 replicates of 10, 50, and 100 taxon trees under the birth-death
process (λ = 6, µ = 2) using the R package TreeSim (Stadler 2010). Data sets will be labeled
DxTy where the x is the replicate index and the y corresponds to the number of taxa (e.g. data
set D1T10 is the first of five data sets containing 10 taxa). For each tree a nucleotide alignment
with 1000 sites was simulated using the Jukes-Cantor substitution model (JC69) using bppseqgen
from the Bio++ package (Guéguen et al. 2013). The posterior distribution of each phylogeny was
approximated in two independent runs using MrBayes with three chains (i.e. 2 heated chains)
for 300,000 iterations, ensuring an average standard deviation of split frequencies (ASDSF) below
0.01. A uniform prior on the topology and an exponential prior with mean 0.1 on branch lengths
were specified. The chain was thinned down to 1,000 samples, of which the first 250 iterations
were discarded.

For each data set, 1, 3, or 5 sequences were removed and the posterior distribution of each tree
was approximated again using MrBayes, as described above.

The resulting posteriors were used as a starting point for inference with the our sts software
(described below). The, 1, 3, or 5 removed sequences were sequentially added to MrBayes posterior
samples using sts to approximate the full posterior. sts used the same priors as in the MrBayes
analysis. We tested various numbers of particles in our SMC runs, each of which was a multiple
of the number of trees in the original sample (in this case, 750). Define the particle factor to be
the number of particles in the SMC divided by the number of trees in the original sample.

Results

We implemented a prototype of Online Phylogenetic Sequential Monte Carlo (OPSMC) in an
open source software package called sts. sts implements several different transition kernels for
updating a phylogenetic posterior with new sequences. These transition kernels are described in
detail in the Methods section, and include a uniform proposal and more sophisticated proposals that
were developed with the aim of sampling updated trees more efficiently. As a prototype developed
to test transition kernels rather than for practical use, the current sts software implements only
the JC69 model and uses the stratified resampling technique (Kitagawa 1996) as implemented
in SMCTC (Johansen 2009). The current sts implementation can update an existing posterior
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Figure 2. Mean effective sample size (ESS) as a function of the particle factor
across every data set.

distribution produced by MrBayes with new sequences. sts is available from http://github.com/

OnlinePhylo/sts.
We evaluated the sequence addition proposals on datasets consisting of 10, 50, and 100 taxa

using a variety of proposal step combinations for the transition kernel. These proposal combinations
are indicated using a three letter code as described above. For example, in the following results

“ŨUP” denotes a transition kernel constructed by proposing a branch uniformly at random (Step

1 Ũ), then proposing an attachment location uniformly along this branch (Step 2 U), and finally
drawing a pendant branch length from the prior (Step 3 P).

In order to understand whether OPSMC is providing an accurate posterior approximation, we
compare the OPSMC results after the addition of 1, 2, and 5 sequences to what was obtained by
running MrBayes on the same datasets. In what follows we present the results based on data sets
D1T50 and D1T100 in detail. Analysis of the other data sets showed similar results and these are
provided as supplementary data.

Effective Sample Size (ESS) from OPSMC. The guided proposals showed clearly superior
ESS compared to the uniform proposal with any particle factor (Fig. 2). The ESS produced
by guided proposals also shows a strong linear relationship with the number of particles. This
relationship was predicted by Dinh et al. (2016), where the ESS of the sampler was bounded below
by a constant multiple of the number of particles. These linear regressions have different slopes,
suggesting that as the user targets higher ESSs the differences between proposals become more
important. In Figure 2 we find that proposals using likelihood to select an attachment branch
(Step 1 L) have higher ESS than parsimony, while use of lcfit to propose pendant branch lengths
(Step 3 F) yields a large advantage in ESS.
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As discussed further below, we unfortunately cannot always equate high ESS with good quality
posterior samples since ESS alone does not guarantee the OPSMC is sampling a high probability
region. Therefore we performed a detailed comparison with the MrBayes posteriors.

Comparison of posteriors from SMC and MrBayes MCMC. We measured the distance
between the maximum likelihood tree inferred with PhyML (Guindon et al. 2010) and each tree in
the MrBayes posterior samples and the OPSMC posterior samples using the weighted Robinson-
Foulds (L1-norm) distance (Robinson and Foulds 1981) calculated with the DendroPy library
(Sukumaran and Holder 2010). Under the assumption that the MCMC implemented in MrBayes
has been run long enough to accurately approximate the true posterior, the ability of each OPSMC
proposal scheme to approximate the true posterior distribution can be assessed by comparing the
distribution of their L1-norm distances to that produced by MrBayes.

The results indicate that guided proposals, especially PAF and LAF, yield superior posterior

approximations to those produced by ŨUP with the particle counts used here (Figs. 3, 4).

Measuring convergence with the Average Standard Deviation of Split Frequencies
(ASDSF). The average standard deviation of split frequencies (ASDSF) (Lakner et al. 2008;
Ronquist et al. 2012) is a widely employed statistic used to assess the convergence of independent
MCMC analyses. The ASDSF approaches zero when the set of topologies contained in the posterior
approximations of different Monte Carlo sampling runs have converged. We used this metric to
determine whether the posterior approximation produced by sequential taxon addition in sts is
similar to that which would have been produced by simply running MrBayes on the complete data
set. We calculated the ASDSF between the updated posterior distribution generated by sts and
an independent MrBayes analysis on the full data set. It is common practice to use ASDSF as a
convergence criterion, stopping Bayesian MCMC once the ASDSF is less than 0.01 (Lakner et al.
2008).

We find that that guided proposals can yield an ASDSF less than 0.01, even with relatively

small particle factors (Fig. 5). In contrast, unguided proposals such as ŨUP consistently yielded
posterior approximations with an ASDSF that was an order of magnitude higher (worse), even
when large particle systems were employed (particle factor 100, with 75000 particles). Also, the

simple likelihood-based guided proposals (Step 1 L̃) fail to yield posterior approximations that
meet the convergence criterion, whereas their heated relatives perform much better.

Compute time of OPSMC proposal schemes. In previous studies of phylogenetic sequential
Monte Carlo (Bouchard-Côté et al. 2012; Wang et al. 2015), the number of peeling recurrences
were used as a proxy to compare the running time of different proposals. Since some non-likelihood
aspects of our implementation (such as calculation of the parsimony score in the PAF proposal)
incur a non-negligible compute load, we directly investigated the wall clock time for each proposal
instead.

As expected, we find that uniform proposals are at least an order of magnitude faster per
proposal operation than the guided proposals (Supplementary Figs. S4,S5). The timing results also
suggest that in the current implementation, the lcfit approximation (Step 3 F) incurs a significant
cost in compute time relative to the other approaches.

However, when measured in terms of compute time required per unit of ESS in the resulting

sample, we find that the guided proposals outperform ŨUP by a large margin (Fig. 6). We note
that in SMC, a high ESS is necessary (but not sufficient) for an accurate posterior approximation.
Interestingly, the results show that the extra compute time used by the normal approximation in

step 2 and lcfit in step 3 may be justified since the L̃AF proposal has on average superior ESS per

unit time relative to L̃NM. For some replicates (e.g. D5T10) the runtime-to-ESS ratio is much

higher for the L̃NM and L̃AF proposals than for the heated proposals. The ESSs of those runs
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Figure 3. Posterior distribution of weighted Robinson-Foulds distances between
each tree generated by sts and the maximum likelihood tree inferred by PhyML.
These results are for data set D1T50. Labels on the right of the y axis indicate
which taxa were removed.

are extremely low (Supplementary Fig. S2), highlighting that some data sets are more difficult to
analyze.

Next, we evaluated compute time in a situation that commonly arises in genomic epidemiology,
where an updated phylogenetic posterior is desired every time a new sequence becomes available.
We thus simulated the sequential arrival of five taxa, comparing the time required for sts to update
posteriors against the approach of sampling each of the five posteriors from scratch with MCMC.
These new sequences are added to an existing data set containing 45 or 95 sequences. In an offline
setting, this is equivalent to running MrBayes once each on alignments containing 46 to 50 or 96
to 100 sequences. We compared the total amount of time for the five MrBayes runs to a single run
of sts with the same five sequences. For each method, we report the minimum time required to

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/145219doi: bioRxiv preprint first posted online Jun. 2, 2017; 

http://dx.doi.org/10.1101/145219
http://creativecommons.org/licenses/by-nc-nd/4.0/


U
~

UP L
~

NM L
~

AF LAF PAF
t1

t1
−

t2
t1

−
t2

−
t3

−
t4

−
t5

sts/1
sts/5

sts/10
sts/50

sts/100

MrBayes
sts/1

sts/5
sts/10

sts/50
sts/100

MrBayes
sts/1

sts/5
sts/10

sts/50
sts/100

MrBayes
sts/1

sts/5
sts/10

sts/50
sts/100

MrBayes
sts/1

sts/5
sts/10

sts/50
sts/100

MrBayes

1.6

1.8

2.0

2.2

2.4

1.75

2.00

2.25

2.50

1.50

1.75

2.00

2.25

Program/particle factor

L1
 d

is
ta

nc
e

Figure 4. Posterior distribution of weighted Robinson-Foulds distances between
each tree generated by sts and the maximum likelihood tree inferred by PhyML.
These results are for data set D1T100. Labels on the right of the y axis indicate
which taxa were removed.

compute a posterior approximation that meets the widely used Monte Carlo convergence criterion
of an ASDSF lower than 0.01 (Fig. 7). The plot shows the results based on ten data sets (D1T50-
D5T50 and D1T100-D5T100) that we described above and for each replicate the five sequences
were sequentially added in three different orders across three runs. Runs from sts that do not reach
an ASDSF below 0.01 are not included in the plots, therefore each panel contains at most 15 points
for sts. We find that sts is faster than MrBayes and that PAF and LAF required a particle factor
of only one in 11 and 14 cases, respectively, for data sets containing 50 sequences. LAF performed
marginally better than PAF for the larger 100 taxon data set, wherein the LAF proposal reached

the target ASDSF 12 times while PAF only reached it 3 times (See Table S1). In contrast, ŨUP
was not able to sample trees that would meet the convergence criterion.
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Figure 5. Average standard deviation of split frequencies (ASDSF) between sts
and MrBayes posterior samples. These results are for the three data sets D1T10,
D1T50, D1T100 and include several particle factors. The horizontal line represents
the ASDSF calculated using two chains in MrBayes. The horizontal dashed line
marks 0.01, a common convergence criterion.

The other non-heated methods provide intermediate results. We note that opportunities exist
for further reduction of compute time required for sts (see Discussion), and that more significant
efforts have been made to optimise MrBayes 3.2 (Ronquist et al. 2012), so the results here could be
interpreted as a rough lower bound for the speed advantage that OPSMC may have over sequential
runs of MCMC.

Discussion

Here we have implemented the Online Phylogenetic Sequential Monte Carlo (OPSMC) frame-
work described by Dinh et al. (2016) and evaluated how several alternative proposal schemes
behave on synthetic data sets.

Related work. Everitt et al. (2016) have also developed theory and an implementation for SMC
on phylogenies. In their case they are focused on inferring ultrametric trees in a coalescent frame-
work, whereas OPSMC as described here is for unrooted trees. Their clever attachment proposal
is described in terms of lineage (path from tip to leaf) and branching time. They use proposals
choosing lineage based on differences from the leaf to be attached and the existing leaves using
a distribution based on Ewens’ sampling formula (Ewens 1972), and a branching time which also
uses pairwise differences. They also make an interesting suggestion to ease the transition between
the different posterior distributions by using “intermediate distributions.” However, they do not
compare their output to samples from an existing MCMC phylogenetics package and they have
not yet provided an open source implementation that would allow others to do so.
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Figure 6. Running time in minutes per effective sample size (ESS) unit for each
proposal method. These results are for every data set and include all five particle
factors. Numerical labels on top of each subplot give the number of taxa in each
data set.

Guided proposals work. In contrast with previous suggestions (Bouchard-Côté et al. 2012),
we show that guided proposal schemes can greatly improve both the computational efficiency and
the accuracy of a phylogenetic posterior approximation over simple uniform proposal schemes.
When quality of posterior approximation is measured by either L1-norm (Figs. 3, 4) or ASDSF
(Fig. 5), the LAF and PAF proposals clearly outperform the other schemes. Both LAF and PAF
are able to achieve ASDSF below the 0.01 threshold that is typically used as an indicator of
MCMC convergence, and can do so even with relatively small particle system sizes. This finding is
especially important for the future application of SMC to phylogenetics, suggesting that proposal
efficiency matters much more for SMC than MCMC.

High ESS does not imply accurate posterior approximation. On the other hand the L̃AF
proposal provides the highest ESSs among any of the various proposal schemes, yet fails to achieve
a low ASDSF, suggesting a poor posterior approximation. Detailed inspection of the behavior

of L̃AF reveals that, without heating the likelihoods, the highest scoring attachment branch can
be several log units above the others (including the correct branch), resulting in a multinomial

weight close to 1 while the others are close to zero. The bias leads L̃AF to always propose the
same attachment branch even when a large particle system is employed, causing it to sample a
narrow region of the tree space. The subsequent Step 2 and 3 proposals yield a large number of
configurations with similar weights, resulting in a high ESS.
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Figure 7. Running time in minutes (on a log scale) to sequentially add five new
sequences to a data set of 45 or 95 sequences with MrBayes and sts. Here sts is
run with particle factors ranging from 1 to 100 and the lowest time reported that
achieved an ASDSF less than 0.010. Runs for which no particle factors resulted
in an ASDSF less than 0.010 are not shown on the plot. Results are based on five
data sets in which the taxa were added in three different orders, resulting in at
most 15 data points. For example, the LAF plots contain 14 and 12 data points
for data sets consisting of 50 and 100 sequences respectively (See supplementary
table 1 for a full description of the other proposals).

Opportunities for computational optimisation. Particle degeneracy is a well known draw-
back of SMC algorithms, characterized by a large number of identical particles after the resampling
step. However, particle degeneracy offers an opportunity for computational optimisation of guided
proposals. The Step 1 proposal distributions for identical particles can be computed once and
then reused. Similarly, Step 2 involves repeatedly calculating maximum likelihood estimates of the
distal and pendant branch lengths, which are identical for identical trees. For the cost of a modest
amount of bookkeeping, those estimates can be computed just once for each tree in the particle
system, rather than once for each particle, yielding a significant speedup.

Limitations.

Limitations: OPSMC proposals. A common feature of the proposals we evaluated are that they
consist of 3 steps: (1) selection of an attachment branch, (2) selection of an attachment point
on the attachment branch, and (3) selection of a pendant branch length. However, the three
step structure imposes some potentially undesirable restrictions on the resulting trees. One such
restriction is that the length of the attachment branch selected in Step 1 is fixed, and is not
adjusted in steps 2 or 3. Another potential issue is that the length of two adjacent branches in a
phylogenetic tree can be strongly correlated. The current 3 step proposal scheme does not account
for this correlation structure. The efficiency of the sampler could in principle be increased by
combining the proposals in steps 2 and 3 to account for the dependency in lengths of the three
branches incident to the attachment point. The branch lengths could be modeled as a multivariate
truncated normal distribution where the covariance matrix captures correlations across branches.
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Alternatively, an extension of the surrogate function described in the lcfit algorithm to multiple
branches could improve the proposal.

Limitations: computational complexity. The computational complexity of choosing the attachment
branch (i.e. Step 1) grows linearly with the number of taxa in the tree. Profiling of our imple-
mentation indicates that at the data set sizes we evaluated, Step 1 consumes less than 5% of total
compute time. Nevertheless, scaling our approach to thousands of sequences or beyond is likely
to require new heuristics or other techniques to reduce the time complexity of branch selection in
Step 1. This is in contrast with drawing branch lengths in the other steps, which has a constant
complexity with respect to the number of taxa. As in other standard SMCs, the memory require-
ment of sts scales linearly with the number of particles. The development of memory-efficient (Jun
and Bouchard-Côté 2014) and highly-parallel (Paige et al. 2014) variants would be an essential
step for scaling to large data sets.

Limitations: evolutionary models. The present work has focused on updating the tree topology and
branch lengths in the very simple JC69 model of sequence evolution. In practice, richer phylogenetic
models will almost always be preferred as they can provide a better fit to the sequence data, for
example by modeling unequal rates of nucleotide substitution or clade-specific evolutionary rates.
These additional model parameters are often continuous real-valued parameters. One way to
sample these parameters was described and implemented by Bouchard and colleagues (Wang et al.
2015) who developed a method based on particle MCMC (Andrieu et al. 2010). Particle MCMC
uses SMC on the tree topology and branch lengths to approximate the marginal likelihood of
the remaining continuous parameters, which are sampled using MCMC moves. A similar particle
MCMC approach, or another means to sample the evolutionary model parameters has yet to be
developed in the context of online phylogenetic SMC.

Limitations: path degeneracy. OPSMC, like all SMC algorithms, is prone to path degeneracy, espe-
cially when the sampler iterates through generations with low ESS. As previously suggested (Dinh
et al. 2016; Bouchard-Côté et al. 2012), the use of MCMC moves between iterations of an SMC
can help alleviate the path degeneracy problem. Although some simple MCMC moves have been
implemented in sts, preliminary results suggest that such a large number of these simple moves
would be required to address the path degeneracy problem that a better result can be achieved
by simply using a larger particle system. Dinh et al. (2016) suggest a valid sampler could be con-
structed using any mix of MCMC and SMC moves, ranging from entirely SMC to almost entirely
MCMC, but a thorough investigation of the optimal blend, incorporating known advanced MCMC
proposals (Ronquist et al. 2012), is yet to be done.

Limitations: convergence diagnostics. In the current work we have evaluated the accuracy of the
OPSMC’s posterior approximation by comparing the sample to a collection of MCMC samples
derived from MrBayes. This approach is inviable in practice, since an independent posterior
approximation derived from MCMC will not generally be available. Further work is needed to
develop and evaluate comparable approaches for convergence diagnostics to be used with OPSMC.

Conclusion. Phylogenetic inference is quickly becoming an essential tool in modern infectious
disease epidemiology. When sequence data arrives continuously, as in the case of an outbreak, it
would be preferable to simply update a previous analysis rather than recomputing results for all
sequences. We have presented the first investigation into the practical feasibility of online Bayesian
phylogenetics using Sequential Monte Carlo. Our findings suggest that the choice of proposal dis-
tribution is especially important for successful inference with OPSMC, and to this end we have
described several transition kernels and evaluated their strengths and weaknesses. We have also
found that simple likelihood-based proposals can strongly bias the proposal distribution away from
the posterior, and have shown that smoothing of these proposals can yield a posterior approxima-
tion that meets the de facto standard criteria for topological convergence in phylogenetic MCMC.
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The current sts implementation is limited to the simplest evolutionary models, and although our
initial findings are promising, significant future work will be required to integrate the approach into
the familiar software packages that implement the more complex evolutionary models in common
use today.
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SUPPLEMENTARY MATERIAL

Proposal 50 taxa 100 taxa

ŨUP 0 0

L̃NM 5 5

L̃AF 5 7
LAF 14 12
PAF 11 3

Table S1. A summary of the number of sts runs (out of 15 total) that that
reached an average standard deviation of split frequency (ASDSF) of less than
0.01.
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Figure S1. Effective sample size (ESS) as a function of the particle factor across
every data set of size 10. Labels on top of each subplot identify the taxa that were
removed. For subplots labeled t1-t2, taxa t1 and t2 were removed.
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Figure S2. Effective sample size (ESS) as a function of the particle factor across
every data set of size 50. Labels on top of each subplot identify the taxa that were
removed. For subplots labeled t1-t2, taxa t1 and t2 were removed.
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Figure S3. Effective sample size (ESS) as a function of the particle factor across
every data set of size 100. Labels on top of each subplot identify the taxa that
were removed. For subplots labeled t1-t2, taxa t1 and t2 were removed.
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Figure S4. Running time in minutes per effective sample size (ESS) unit for
each proposal method. across every data set of size 10.
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Figure S5. Running time in minutes per effective sample size (ESS) unit for
each proposal method. across every data set of size 50.
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Figure S6. Running time in minutes per effective sample size (ESS) unit for
each proposal method. across every data set of size 100.
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Figure S7. Average standard deviation of split frequencies (ASDSF) as a func-
tion of the particle factor across every data set of size 10.
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Figure S8. Average standard deviation of split frequencies (ASDSF) as a func-
tion of the particle factor across every data set of size 50.
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Figure S9. Average standard deviation of split frequencies (ASDSF) as a func-
tion of the particle factor across every data set of size 100.
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Figure S10. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D1T10 data set.
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Figure S11. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D2T10 data set.
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Figure S12. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D3T10 data set.
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Figure S13. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D4T10 data set.
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Figure S14. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D5T10 data set.
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Figure S15. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D1T50 data set.
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Figure S16. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D2T50 data set.
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Figure S17. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D3T50 data set.
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Figure S18. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D4T50 data set.
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Figure S19. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D5T50 data set.
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Figure S20. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D1T100 data set.
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Figure S21. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D2T100 data set.
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Figure S22. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D3T100 data set.
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Figure S23. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D4T100 data set.
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Figure S24. Posterior distribution of weighted Robinson-Foulds distances be-
tween each tree generated by stsand the maximum likelihood tree inferred by
PhyML using the D5T100 data set.
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