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Abstract— Daily physical activities monitoring is benefiting 
the health care field in several ways, in particular with the 
development of the wearable sensors. This paper adopts 
effective ways to calculate the optimal number of the necessary 
sensors and to build a reliable and a high accuracy monitoring 
system. Three data mining algorithms, namely Decision Tree, 
Random Forest and PART Algorithm, have been applied for 
the sensors selection process. Furthermore, the deep belief 
network (DBN) has been investigated to recognise 33 physical 
activities effectively. The results indicated that the proposed 
method is reliable with an overall accuracy of 96.52% and the 
number of sensors is minimised from nine to six sensors.  

Keywords—Monitoring Physical activities, Deep Belief Network, 
Data mining. Features selection, Decision Tree, PART algorithm, 
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I. INTRODUCTION 

Recently, several research studies highlighted the 
significance of monitoring human physical activities on 
improving the healthcare and treatment processes. Some 
diseases require continuous monitoring for the patient's 
activities to measure their reflections on the health status. For 
example, observing physical activities of the patients with the 
obstructive pulmonary disease has a benefit of knowing their 
lifestyle continuously and measuring the impact of each 
activity on their health [1].  Moreover, studies show that there 
is a significant relationship between the percentage of 
mortality and daily exercises [2],[3]. The death rate is lower 
in these people who are more active in their leisure time [4].  
Dementia is another example of the diseases that are affected 
by the daily physical activities [5]. Thus, measuring these 
activities is a step in the treatment procedure [6].  

Monitoring daily exercises of people and notifying them 
regarding their activities can save their life and improving 
their health care. The technology of wearable devices makes 
this idea more applicable and flexible. Apart from its benefits 
in health applications, recognition of the human physical 
activities by the wearable sensors can serve various kinds of 
sectors. It can support types of extreme sports and 
entertainment activities such as the Taekwondo [7], "Dance-
Dance-Revolution" game [7] and gym exercises [8]. The 
human-computer-interface (HCI) is another application for 
the technology of the wearable sensors. For example, an 
independent Gestor controller for home appliances can be 
built based on that concept to make the control process easier 
and flexible [9]. Multiple wearable sensors are needed to 
detect the body's physical motions. These sensors should be 
carefully positions in order to get meaningful signals.  

In this paper, data mining algorithms are applied to 
determine the impact of feature of sensors on the 
classification process. By examining this effect on identifying 
the activities, the number of used sensors can be reduced and 
classification performance is retained. Three data mining 
algorithms: Decision Tree, Random Forest and PART 
Algorithm, are applied to assess the significance of each 
input on the decision of the classifier. Furthermore, a deep 
belief network (DBN) is developed to classify each activity 
based on the reduced number of features. The DBN has been 
used because of its capability in classifying many classes (33 
activities in the proposed system) with higher efficiency. The 
deep generative model of the DBN allows to process 
nonlinear dimensionality in two processing levels.  

II. METHODOLOGY 
In this paper, the main purpose is hybridising the data 

mining algorithms and DBN to monitor 33 daily human 
physical activities by using an optimised number of wearable 
sensors. Figure1 demonstrates the flow of the signals through 
the processing stages that are required to build an efficient 
system able to identify the activities with high accuracy rate.  

 
Figure 1.  Processing Stages of the System 

A. Data description and normalisation  
The first process is to extract and present the features of 

the collected raw data. Then data normalisation is processed 
to reduce data redundancy and improve data integrity. For 
this normalisation operation, "mean zero standard derivation 
one" method has been applied and given below: 
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x is the original inputs and S is the normalised input vectors 
respectively, and n is the number of the elements in the input 
vector. 

B. Feature Selection process 
For the feature selection task, three data-mining 

algorithms (Decision Tree, Random Forest and PART 
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Algorithm) are applied. The sensors generate signals in 
responding to each activity, and these signals will be 
transmitted to the processor which may be smartphones, 
tablets or computers. 

Selection of an optimal subset of features is an elementary 
and efficient task which precedes classification. It aims to 
reduce the dimensionality (features) of data and then the 
required resources to perform the classification will be 
reduced. 

I. Decision Tree: 
A decision tree is a simple and powerful form of data 

analysis which allows us to predict, explain, describe, or 
classify a target [11]. A decision tree consists of two types of 
nodes; non-terminal nodes and terminal nodes. A non-
terminal node denotes a condition based on a feature. This 
condition splits data records based on their characteristics. A 
terminal node, also it is called a leaf node, doesn’t have a 
condition because it is used to make a decision. Each branch 
of the decision tree represents the result of the conditions, 
while the leaf node holds a class label. According to the 
number of branches, the Decision tree can be either a binary 
or multi-branch tree. In the binary decision tree; each non-
terminal node branches to exactly only two other nodes  
[12]. However, in the multi-branch tree, more than two child 
nodes may be generated through the split operation. 
    The most critical issue during the building of the decision 
tree is evaluating of feature importance. In each non-
terminal node, the most relevant feature with the target must 
be selected. Then, from all values of that feature, the best 
split point should be chosen to divide instances of data in 
that node. For this task, statistical measures could be used 
such as Information Gain and Gain Ratio. The feature which 
produces a maximum reduction in impurity represents the 
best feature. Impurity could be measured using statistical 
randomness measurement such us Entropy. Therefore, 
Information Gain is the gain of splitting operation indicates 
by the impurity of the class before and after splitting. 
Information gain [13] is governed by eq. (2), 
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where IG(P) is the information gain of parent node before 
splitting, c is the number of feature’s values, NC is the 
number of data instances in parent node, NC(i) is the number 
of data instances in node i, IG(i) is the information gain of 
node i. Entropy measure is utilised by Information Gain to 
measure the impurity. It tends to select features with more 
distinct values. A large number of values led to creating 
more child nodes in each iteration. Thereby; the number of 
instances would be decreased as the prediction reliability. To 
overcome this problem, Gain Ratio can be used. It weighted 
the information gain of each test condition by its number of 
child nodes as shown in the eq. (3) [12], 
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where P(i) is the fraction of data instances in the node i to 
the number of data instances in the parent node.  

II. PART Rule Algorithm 
PART is a rule based data mining technique which builds 

the classification model in the form of “if - then” statements 
connected by conjunctions [14]. There are two methods for 
building PART rules model as follow (i) the direct method 
which uses data directly to generate rules like RIPPER and 
OneR algorithms; (ii) the indirect method which generates 
rules depending on the output of other classification 
techniques such as C4.5 rules. PART merges the two 
methods by using a partial decision tree [13]. 

Evaluating the quality of the rules could be performed by 
the two criterions: coverage and accuracy. The coverage 
represents the fraction of instances that matches conditions 
of the rule to the number of  data instances. The accuracy of 
the rule could be calculated by dividing the number of data 
instances that match both conditions and class of the rule, on 
the instances that match conditions of the rule [12]. From the 
current data, PART creates a partial decision tree that would 
be used to generate the rule. PART removes data instances 
that are covered by the rule and the partial decision tree. The 
whole procedure is repeated for each rule until stopping 
condition met [15] [16].  A rule in PART consists of one 
condition or more connected by “And”, and each condition 
is related to one feature. Evaluating the rule could be 
measured by some metrics such as FOIL’s Information gain, 
Laplace, and m-estimate. In this paper, FOIL’s Information 
gain is used to evaluate the rule by calculating the difference 
of accuracies before and after adding a new test [12]. 

III. Random Forest  
The methodology of an ensemble model is to combine a 

set of single models; each one tries to solve the same 
original task. It aims to obtain a better integrated global 
model [17] [18]. The size of the ensemble and the 
mechanism of combination among results of the trees should 
be taken into account when using ensembles [19]. Many 
techniques are developed for the ensemble model such as 
bagging, boosting, and stacking. The bagging combines the 
decisions of multiple trees by using the voting concept for 
both binary class and multi-class predictive tasks, and for the 
numerical predictive task, bagging calculates the average 
[19] [12]. Random Forest can be discriminated from other 
bagging techniques by choosing random subsets from 
features [13]. A subset would be used to select the best 
splitter feature for each node. Thereby, Random Forest uses 
randomness in the two steps: choose data instances for each 
single model and choose a subset of features for each node. 
The random forest has two parameters; the number of trees 
and the number of features in a subset [20].  

The base model of Random Forest is mostly one of 
decision tree algorithms. Therefore, the best feature could be 
chosen from the random subset of features by using one of 
the metrics that explained in the previous section. 

C. Classification: Deep Belief Network 
For the classification process, a deep belief network 

(DBN) has been built to handling the nonlinearity of the 
selected features. DBN is a feed-forward neural network that 



  

has a stack of Restricted Boltzmann machines [21]. The real 
values of this application require using Gaussian-Bernoulli 
Restricted Boltzmann machines (GBRBM). Therefore, the 
classifier combines two GBRBM, an input layer and an 
output layer. The model of the RBM is indicated in (4) 
where the energy function of the GBRBM [22] is defined as: 
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where ௜ܾ 		and	c௛୨	are biases corresponding to hidden and 

visible neurones, respectively, ݓ௜௝ is the connection weight 
between visible and hidden neuron, and ߪ௜ is the standard 
deviation of a Gaussian visible unit ݒ௜. 

Finally, for the fine tuning operation, the Backpropagation 
algorithm needs to be applied as a final training stage. The 
equation (5) and (6) identify the formula of the model [23], 
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where f() refers to the activation function of the neurones,  
bଵ	and ܾଶ are the weights of the bias in the visible and 
hidden layer respectively; x and z are the input and the 
output vectors respectively; vs, n and p are number of the 
elements in input, hidden and output layers respectively. By 
applying the feature selection algorithms, different numbers 
of features have been considered to feed the visible nodes of 
the network. The output layer represents the classes (the 
activities) that the system is designed to recognise. The 
binary coding representation [24] has been utilised to 
identify these classes in the output layer. 

III. EXPERIMENT AND RESULTS 
A. Experiment setup 

This paper uses the Realistic Sensor Displacement 
(REALDISP) dataset [10]. The REALDISP includes data for 
33 of daily human activities such as running, jump up, 
walking and cycling. Each sample contains 117 real-valued 
features extracted from nine wearable sensors. Table I 
specifies the positions of the wearable sensors in the human 
body. Each subject has three sets of data based on the 
displacement conditions as follows: ideal-placement, self-
placement and mutual-displacement. In this paper, all of 
these subjects has been considered, and the dataset has been 
divided into training and testing sets.  

TABLE I.  THE POSITIONS OF THE WEARABLE SENSORS 
Symbol Position  Symbol Position  Symbol Position 

S1 left calf  S5 back  S9 right upper 
armS2 left thigh  S6 left lower arm  

S3 right calf  S7 left upper arm   
S4 right thigh  S8 right lower arm   

B. Features Selection results 
Reducing the required sensors could be performing by 

selecting the most important features and exclude the non-
significant features. In this paper, multi data mining 
techniques are used rather than typical feature selection 
methods. All features of the nine sensors have been tested 

using three methods; Decision Tree, PART, and Random 
Forest. Evaluation the feature importance is performed by 
using two metrics: Information Gain and Gain ratio.  

TABLE II.  THE IMPORTANCE OF SENSORS ACCORDING TO 
TOTAL INFORMATION GAIN AND GAIN RATIO OF ITS FEATURES 

Sensor
Decision Tree PART Random Forest 

Info. Gain Gain Ratio Info. Gain Gain Ratio Info. Gain Gain Ratio
S1 5.881 1.042 5.421 1.042 5.421 1.042
S2 5.673 1.1214 5.742 1.1214 5.742 1.1214
S3 6.002 1.1298 6.06 1.1298 6.06 1.1298
S4 5.685 1.1065 5.617 1.1065 5.022 1.1065
S5 5.587 1.0443 5.492 1.0443 5.587 1.0443
S6 6.177 1.089 6.335 1.089 6.177 1.089
S7 6.737 1.042 6.844 1.2463 6.737 1.2463
S8 6.868 1.1214 6.836 1.2334 6.836 1.2334
S9 7.329 1.1298 6.596 1.2024 6.596 1.2024

The result of the evaluation shows that PART and 
Random forest agrees that the sensors S1, S4 & S5 have the 
lowest importance based on their Gain Ratio and 
Information Gain metric. The results of the Decision tree 
partially agrees with this decision, as shown in Table II. 
Therefore, the selected sensors are S2, S3, S6, S7, S8 and 
S9. 

C. Classification results 
The feature selection process results in specifying the 

sensors that do not have a considerable consequence on the 
recognition rate. These sensors are S1, S4 and S5. Therefore, 
eight classifiers have been designed and optimised to 
examine the five selected cases that are shown in TABLE 
III. The table compares the performance of the clarified 
cases and the number of features in each case by using the 
Ideal-displacement data. First DBN is optimised to present a 
recognition system for the 33 activities by using the nine 
sensors (117 features). It achieves high overall recognition 
rate at 97%. Similar results have been achieved by 
eliminating the sensor S4 and keeping the other eight 
sensors. Removing the sensor S5 decrease the accuracy of 
the classification but with an acceptable range. This paper 
introduces an efficient classifier with an optimal number of 
sensors. The sufficient sensors that are required to monitor 
the 33 activities are six sensors (S2, S3, S6, S7, S8, and S9). 
By using the selected sensors only, the overall accuracy of 
the system is 96.52% with the ideal placement data.  

TABLE III.  CLASSIFICATION RESULTS FOR THE CONSIDERED CASES 

Case 
# 

Considered
Features 

# 
Test 

Samples 

Classification 
Results 

Accuracy
(%) 

Corrected Fail
Nine sensors (S1 to S9) 117 32891 32042 849 97%

Without S1 104 32891 32072 819 97.51%
Without S4 104 32891 32003 888 97.30%
Without S5 104 32891 31753 1138 96.54 %

Without S1 & S4 & S5 78 32891 31904 987 96.52%

D. Comparison with other works 
Several researchers used this benchmark to evaluate their 

methods and approaches. [1], [2], [3] introduced their 
classifiers to recognize the activities with the following 
machine learning methods: (i) K-nearest neighbors (KNN), 
(ii) C4.5 decision trees (DT), (iii) nearest centroid classifier 
(NCC), (iv) Feature fusion, (v) Metal learner, (vi) 
hierarchical weighted classifier (HWC). Based on the results 



  

of those papers, the KNN outperformed the two other 
methods in classifying the 33 activities for the three sets of 
the data: ideal-placement, self-placement and mutual-
displacement. Table IV compares the classification accuracy 
of these works with the results of the proposed classifier that 
has been built by using the DBN based on features of nine 
sensors. The table shows that the DBN offers high-accuracy 
classifiers capable to recognise the data with different 
conditions of placements. 

TABLE IV.  COMPARISON OF THE ACCURACY WITH RELATED WORKS. 

Reference Sensors Placement Method Accuracy (%)

[10] 

 
Ideal 

KNN 96%
NCC 90%
DT 89%

 
Self-Displacement 

KNN 76%
NCC 72%
DT 32%

 
Mutual 

KNN 40%
NCC 38%
DT 17%

[25] 

 
Ideal 

KNN 95%
NCC 91%
DT 70%

 
Self-Displacement 

KNN 88%
NCC 77.5%
DT 64%

 
Mutual 

KNN 71%
NCC 61%
DT 60%

[26] Ideal 
Metal learner 93%
Feature fusion 89%

HWC 79%

The proposed 
classifier with 
nine sensors 

Ideal  
DBN 

97% 

Self-Displacement 88% 
Mutual 88% 

IV. CONCLUSION 
This paper presents an efficient classifier to classify and 

monitor 33 daily physical activities by using optimized 
number of wearable sensors (six sensors). It aims to achieve 
two objectives. The first objective is to reduce the number of 
the required devices to recognise the activities. This can 
contribute to saving costs and make the system more 
applicable and flexible. Three data mining algorithms have 
been applied to calculate the optimal number of the 
necessary sensors and their positions by selecting only the 
features that have a significant impact on the recognition 
rate. DBN is used as a classifier to classify each activity. 
Various configurations have been applied to achieve the 
maximum possible accuracy. By reducing the three sensors 
using data mining algorithm, the overall accuracy of the 
proposed system is 96.52%. With this result, this paper 
presents a reliable system with a lowest possible number of 
sensors and higher accuracy rate. 
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