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Abstract. We study the nonlinear dynamics of torsional meta-molecules—sub-
wavelength resonators with strong coupling between electromagnetic excitation
and rotational deformation—and show that such structures may undergo
self-oscillations. We develop a semi-analytical model to evaluate the
electromagnetic–elastic coupling in such structures. By analysing the local
stability of the system, we reveal two different mechanisms leading to self-
oscillations. Contrary to many previously studied optomechanical systems,
self-oscillations of torsional meta-molecules can be extremely robust against
mechanical damping. Due to the chiral nature of the structure, a consequence
of self-oscillations in this system is dynamic nonlinear optical activity, which
can be actively controlled by a range of parameters such as the field strength and
polarization of the incident wave.
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1. Introduction

The field of metamaterials has demonstrated rapid development over the past decade, and
many exotic properties including negative refraction, sub-diffraction imaging and cloaking
have been predicted and verified, which show the great flexibility of metamaterials in
manipulating electromagnetic (EM) waves [1–4]. More recently, studies are focusing on
functionalizing metamaterials and creating metadevices [5, 6]. One of the most promising ways
to achieve useful functionality is by making nonlinear, tunable or active metamaterials [7–9].
A well-established method for designing nonlinear metamaterials [10–12] is to combine
metamaterials with nonlinear inclusions, such as varactor diodes, nonlinear dielectrics or
semiconductors [13–16]. Such hybridization introduces new physics, and it enables active
control of EM waves via resonantly enhanced nonlinear effects in metamaterials, such as large
self-tuning, highly efficient harmonic generation, giant nonlinear optical activity and other
enhanced phenomena [17–22].

Recently, the concept of ‘magnetoelastic metamaterials’ was proposed as a novel method
for creating nonlinear metamaterials based on the coupling between the EM and elastic
properties of the structure [23]. This concept was extended to chiral metamaterials by exploiting
torsion [24] or structural compression [25] of meta-molecules, and a nonlinear response from
self-tuning to bistability was experimentally demonstrated [24, 26].

While previous studies of magnetoelastic and torsional metamaterials mainly focused on
the nonlinear stationary properties, we expect that their nonlinear dynamic behaviour should
also be non-trivial, introducing a new bridge between the spectral domain and time domain
properties.

We recall that nonlinear dynamic phenomena, such as self-oscillations and chaos,
have been widely studied in different types of systems [27, 28]. Recent research in
optomechanics also demonstrated exotic coupling effects between optical resonance and
mechanical vibration [29–32]. In optomechanical systems, the excitation of self-oscillation
requires a phase lag between the optical force and mechanical vibration. This phase lag can
be introduced by either retarded radiation pressure or bolometric force [33–35]; the former
mechanism requires the spectral linewidth of the optical resonance to be comparable with the
mechanical oscillation frequency; while the latter arises from the photo-thermal effect, with
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Figure 1. (a) Schematic diagram of the torsional metamaterials and (b) the
three eigenfrequencies supported by the hybridized meta-molecule. Each meta-
molecule consists of three coaxial split-ring resonators (SRRs) connected
elastically. The first ring is fixed, while the second and the third rings are free
to rotate about the common axis z. The twist angles θ strongly modify the
eigenfrequencies and are defined as the angle between the slit and the y-axis.

a typical response time at the sub-millisecond scale, which can be significant for micro-nano
mechanical oscillators [34, 36].

In this paper, we present a theoretical study of the nonlinear dynamical properties of
torsional meta-molecules and demonstrate how to realize and actively control novel effects
such as self-oscillations and dynamic nonlinear optical activity. Contrary to most previously
studied optomechanical systems, our structure can support self-oscillations in a highly damped
environment (e.g. in a viscous liquid), and its behaviour can be sensitively manipulated by the
polarization of EM waves.

This paper is organized as follows. In section 2, we introduce a semi-analytical model
that quantitatively predicts the torques experienced by the meta-molecules; in section 3, we
describe the emergence of self-oscillation and analyse the mechanisms leading to such effects;
in section 4, we show that self-oscillations lead to dynamic nonlinear optical activity, which
can be controlled by various parameters; and in section 5, we analyse the effect of the mutual
interaction in a two-dimensional array.

2. Semi-analytical model

The torsional meta-molecules studied in this work are shown in figure 1(a). Each meta-molecule
consists of three coaxial SRRs connected by elastic wires; the twist angles with respect to the
y-axis are θm , m ∈ [1, 2, 3]. We assume that the first ring is fixed at θ1 = 0◦ to prevent the whole
structure from rotating [37], while the second and third rings are free to rotate about the common
axis z.

When the meta-molecule is illuminated with a linearly polarized plane wave propagating
in the z-direction, three hybrid resonances with different mode symmetries can be excited due to
near-field interaction, as shown in figure 1(b). The eigenmodes in figure 1(b) are calculated with
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Figure 2. EM torques MEM experienced by the three rings with configuration
(θ1, θ2, θ3) = (0◦, 30◦, −30◦). The incident wave propagates along the z-
direction, with its electric field component in the x-direction (8 = 0◦). The
torques are normalized to a power density of 1 mW mm−2. Inset on the right
magnifies the details within the dashed rectangle, and the green shading shows
the regime where self-oscillations can exist.

our semi-analytical model (see the appendix for details), which shows the change of resonances
with respect to the two twist angles θ2 and θ3. We choose the radii of thin SRRs as 6 mm,
slit width 1 mm, and inter-ring distance 3 mm in the calculation, and we will use the same
parameters for SRRs and inter-ring distance in all the calculation shown below.

The charges and currents induced in the SRRs produce EM forces acting on each SRR. We
restrict the allowed movement in our design to azimuthal rotation, where movement in the lateral
and axial directions is usually negligible in comparison [24], and may be explicitly suppressed
by the design if required. For simplicity, we use perfect electric conductor as the material for the
SRRs in the simulation, so only the radiative component of the EM force is taken into account.

The mechanical response time of our design (of the order of 1 s) is much slower than the
lifetime of the EM resonances (of the order of 10−7–10−8 s), thus the resonant EM torques
experienced by the rings can be considered as instantaneous and are determined by the twist
angles. For systems with only one degree of freedom, such ‘displacement-determined’ force
means that the net work done in each oscillation cycle is zero, and the system will become stable
after undergoing damped oscillation. However, in our system where two degrees of freedom
are involved, it is possible to achieve self-oscillations when there is a time delay between
the movements of the two rotatable rings. Such delays produce loop trajectories in the phase
diagram, introducing non-zero work done by the EM torques to compensate the mechanical
damping.

To provide a quantitative evaluation of the EM torques MEM experienced by the torsional
meta-molecules, we develop a semi-analytical model based on near-field interaction [38, 39],
and take into account the contribution from higher order eigenmodes. The details of the model
can be found in the appendix.

As an example, we model the EM torque experienced by a torsional meta-molecule, with
the radii of thin SRRs as 6 mm, inter-ring distance 3 mm, slit width 1 mm and twist angles
(θ1, θ2, θ3) = (0◦, 30◦, −30◦) (see figure 2). Compared with the full wave simulation results

New Journal of Physics 15 (2013) 073036 (http://www.njp.org/)

http://www.njp.org/


5

(not shown here) based on the Maxwell stress tensor [40], quantitatively good agreement can be
found even though we use a line-current approximation in the analytical model.

In our analysis of dimer meta-molecules [24], the EM torques experienced by the rings
are dominated by the internal part Mint (see the appendix), whose directions are determined
by the mode symmetry. However, in trimer or oligomer meta-molecules, the situation is more
complicated. Since the EM torque experienced by an SRR is the sum of the effect from all
other rings, its direction depends not only on the mode symmetry but the relative amplitude
of resonance on each ring as well. Therefore, the direction of EM torque on the red side and
blue side of a resonance can become opposite due to the change of relative amplitude, showing
highly asymmetric Fano line-shapes, as can be seen from the inset of figure 2.

3. Self-oscillations and stability analysis

Our model provides a powerful tool to study the dynamics of meta-molecules with multiple
degrees of freedom. By solving the coupled equations, we can study the dynamics of the system
under different pump frequencies and power densities ( fP, PI ). In the calculation, we further
assumed that each SRR is encapsulated within a thin polyurethane foam disc (permittivity
ε ≈ 1). The moment of inertia of each encapsulated SRR is estimated as I ≈ 3.755 ×

10−10 kg m2. The radius and shear modulus of elastic wires are chosen to be 50 µm and 1 MPa,
respectively, similar to the ones used in earlier research [24]. For each pump frequency, the
power density is increased from zero to the maximum (60 mW mm−2) and then decreased back
to zero, with 1 mW mm−2 steps.

The mutual twist angles θ2 and θ3 change under the effect of EM torques. Generally,
the structure can become stable after undergoing damped oscillation, and strong nonlinear
stationary responses such as self-tuning, bistability or even tristability can be found near the
resonances. However, a distinct feature of the trimer meta-molecules as compared with dimer
meta-molecules, is that the trimer system can become unstable and exhibit self-oscillations.

As a typical example, figures 3(a) and (b) depict the nonlinear response of a meta-
molecule for different values of mechanical damping. The initial twist angles are the same
as in figure 2. The regime and amplitude of self-oscillation are denoted with the colour scale.
This regime is located on the red side of the hybrid resonance (↑ ↓↑) (see green shading in
figure 2), which shows a strong dependence on both pump frequency and power density. As
the mechanical damping is increased, self-oscillations quench quickly in the range from 4.12
to 4.14 GHz, and it finally reduces to a purely stationary bistable response, with the threshold
power densities of bistable hopping shown by orange circles. On the contrary, the regime of
self-oscillation observed between 4.14 and 4.16 GHz shows only a small decrease even when
the mechanical damping is considerably large (note that the mechanical damping 0 = 1.42 Hz
used in figure 3(b) is calculated based on the viscosity of water).

To better understand these intriguing phenomena, we analyse the local stability around the
equilibria. Since the torque experienced by SRR m (m = 2, 3) is simultaneously determined
by θ2 and θ3, the equilibrium positions of the trimer meta-molecule are the crossovers of two
curves: M2(θ2, θ3, fP, PI ) = 0 and M3(θ2, θ3, fP, PI ) = 0. With the semi-analytical model, we
can calculate the torque Mm for a given pump frequency as a function of the two twist angles,
and study the evolution of equilibria with respect to the power density PI . Accordingly, the
phase diagram of the system (θ2, θ3, θ̇2, θ̇3) can be projected on the (θ2, θ3) plane to show the
dynamic trajectory.
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Figure 3. Nonlinear behaviour as a function of pump frequency and power
density. Regime and amplitude of self-oscillations are denoted with colour scale.
A3 is defined as the peak amplitude of the oscillations of θ3. The arrows denote
the direction of power change, which increases from 0 to 60 mW mm−2 and then
decreases back to zero. The orange circles show the threshold power densities
of bistable hopping. Results with different damping coefficients are compared:
(a) 0 = 0.71 Hz and (b) 0 = 1.42 Hz.

The local stability of the system is estimated by analysing the eigenvalues of its linear
variational dynamic equations [28] (see the appendix for more details). According to our
calculation, as long as mechanical damping exists, all four eigenvalues have non-zero real
parts, i.e. the equilibria are hyperbolic and thus the linear variational equations can correctly
represent our nonlinear system locally [28]. When all four eigenvalues have negative real parts,
the equilibrium point is locally stable; otherwise, the equilibrium is unstable.

By analysing the evolution of the equilibria, we found that the distinct behaviour of self-
oscillations shown above corresponds to two different mechanisms. To better demonstrate them,
we depict the nonlinear regimes for two different frequencies 4.134 and 4.15 GHz in figures 4(a)
and (b), respectively. For clarity, we only show the evolution of θ3. Red and blue colours
represent increasing and decreasing power density, respectively. The red solid circles and blue
empty circles denote the stable positions of the system, while the dashed and dotted lines show
the boundaries of self-oscillations when the damping coefficient 0 = 0.71 Hz.

3.1. Self-oscillations resulting from limited local stability

For the case of 4.134 GHz, self-oscillations occur due to the limited local stability of the
equilibria. As shown in figure 4(a), when the power density increases and surpasses the threshold
value around PI = 25 mW mm−2, the first branch of stable equilibria ends. The system then
starts to ‘wander’ until it reaches a new state. We notice that there exists another branch of
locally stable equilibria nearby, which the system could reach after damped oscillation. This is
exactly what we found in figure 3(b), where the system shows only a stationary bistable response
at this frequency. This process is further shown with the dashed trajectory in figure 4(c), where
the stable equilibria SA and SB correspond to the ones shown in figure 4(a).
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Figure 4. Evolution of the system at two different pump frequencies:
(a) 4.134 GHz and (b) 4.15 GHz. The red solid circles and blue empty circles
denote the stable equilibria during the process of increasing and decreasing
power density, respectively. Green squares are the unstable equilibria. The red
dashed curves and blue dotted curves show the boundaries of self-oscillation
under the damping factor 0 = 0.71 Hz. The trajectories at the threshold power
density of transition: (c) 4.134 GHz, PI = 25 mW mm−2 and (d) 4.15 GHz, PI =

9 mW mm−2. Damping factor 0 = 1.42 Hz is calculated based on the viscosity
of water. SA, SB and U correspond to the equilibria denoted in (a) and (b). (e) The
diagram of torque M = M2êθ2 + M3êθ3 near the equilibrium U shown in (d). The
vectors show the direction of M.

However, for smaller damping, the trajectory does not end at stable equilibrium SB but
develops into a limit cycle, as denoted by the black curve in figure 4(c). This is because the
equilibria are only locally stable. For smaller damping, the system can accumulate enough
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kinetic energy during the transition process to escape from the attraction of the stable equilibria.
A limit cycle finally forms when the network done by the EM torque over an oscillation period
is balanced by the mechanical damping. The self-oscillation ends as power further increases to
such an extent that the equilibria have enough attraction power. Then the trajectory falls into
the second branch of stable equilibria. As the power decreases from maximum to minimum,
the system shows only a stationary nonlinear response since it does not posses enough kinetic
energy to excite self-oscillations. The trajectory then follows the second branch of stable
equilibria, until it reaches the bistable hopping threshold (the end of the second brand of stable
equilibria) around PI = 18 mW mm−2 and jumps back to the first branch of stable equilibria, as
shown by the blue empty circles. This explains the asymmetric feature shown in figure 3.

3.2. Self-oscillations due to the local instability

In the situation of 4.15 GHz, there are also two branches of stable equilibria, directly
corresponding to the stationary nonlinear response of the system. But the mechanism of self-
oscillation is very different. As shown in figure 4(b), when the first branch of stable equilibria
ends at around PI = 9 mW mm−2, the system falls into a nearby branch of equilibria which is
locally unstable, as denoted by the green squares. The system develops limit cycles until the
second branch of stable equilibria is reached at around PI = 17 mW mm−2. In this case, since
the excitation of self-oscillation is due to local instability and does not require any initial kinetic
energy, it reoccurs within the same range when power decreases from maximum to minimum.

One important feature of this mechanism is that the local instability is extremely
robust against damping. Both local stability analysis and dynamic calculation show that self-
oscillations remain even when the mechanical damping is further increased by orders of
magnitude, as shown in figure 4 (d), dotted line. We found that the projected trajectories
gradually converge to the blue-dotted one (0 = 142 Hz) as 0 increases, even though the
frequency of oscillation decreases significantly. This intriguing property can be visualized
by plotting the torques M2 and M3 in a two dimensional vector form: M = M2êθ2 + M3êθ3,
where êθ2 and êθ3 denote the unit vectors in the directions of θ2 and θ3, respectively. This two
dimensional distribution around the unstable equilibrium (marked as U in figure 4 (d)) is shown
in figure 4(e). The spiral-like outward flow of vectors indicates that the system will always
be driven away from the equilibrium point and develops a limit cycle around it as long as
there is no additional stable equilibrium. This feature is distinct from many previously studied
optomechanical systems, in which self-oscillations cannot survive strong damping.

Although the regime of self-oscillation varies when the configuration changes, the two
mechanisms shown above are general. For meta-molecules with more than three rings, self-
oscillations can also be observed.

4. Dynamic nonlinear optical activity

Except for a few high-symmetry configurations, the three SRRs which are twisted with respect
to each other form a chiral object. Chiral materials cause polarization rotation of transmitted
EM waves, exhibiting optical activity. In nonlinear chiral metamaterials, optical activity also
shows nonlinear features, which can be orders of magnitude stronger than the effect in natural
chiral molecules [21, 22]. Therefore, it is particularly interesting to study the optical rotation
effect of our meta-molecules.
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We calculate the far-field scattering with a multipole expansion [40], taking into account
the contribution from all three eigenmodes. The results show excellent agreement with full
wave simulation (not shown here), validating our calculation of polarization states. As expected,
in the regime of strong stationary nonlinear response, giant nonlinear optical activity can be
found.

The self-oscillation of meta-molecules consequently leads to dynamic optical activity. For
a given pump power density, a slight change in the pump frequency or the initial twist angles
can lead to a very different dynamic response. Similarly, for a given configuration of meta-
molecules, the dynamic optical activity is also strongly dependent on the pump frequency and
power density. Figure 5 depicts the dynamic optical activity with pump frequency 4.16 GHz,
under different power levels. For clarity, we only show the polarization rotation angle and
ellipticity of the scattered wave in the +z-direction. The time evolution of optical activity
is sensitive to the change of power density, demonstrating the oscillation of polarization
rotation angle with a non-monotonic variation of the period of oscillation, denoted by Tc in
figure 5.

The dynamic nonlinear optical activity is also dramatically sensitive to a change in the input
polarization angle 8. We found that even with a slight variation of the input polarization angle,
say 8 = ±1◦, the regime of self-oscillation can be modified dramatically (see figure 5(e)). Thus,
for a given pump frequency and power density, the dynamic optical activity can be switched on
and off with a small change in polarization. Such ultra-high polarization sensitivity appears to
be unique for nonlinear torsional meta-molecules.

The above features connect the time domain response and the spectral domain nonlinear
properties, and thus provide new possibilities for active control and detection based on time-
resolved nonlinear spectroscopy of torsional meta-molecules.

5. Influence of an array

The above sections demonstrated the rich nonlinear dynamic properties of a single torsional
meta-molecule. In metamaterials, however, mutual interaction is known to strongly affect the
macroscopic properties in the bulk [41–45], and has even more dramatic consequences in arrays
of finite size [46]. Below, we briefly assess the influence of mutual interaction when such meta-
molecules are assembled into a two dimensional array.

In the ideal situation of periodic infinite array, the EM torque experienced by the meta-
molecule shows no qualitative difference as long as the distance between neighbouring units is
sufficiently larger than the inter-ring separation within a meta-molecule. This is confirmed with
full-wave simulation based on the Maxwell stress tensor, and the example of an infinite array
with 30 mm lattice constant is shown in figure 6(a).

In practice, an array always has a finite size, which can lead to stronger array effects due
to the excitation of multiple collective resonances. To check these effects, we calculate the
torque experienced by the meta-molecule positioned at the centre of a finite square array. As
an example, we depict the situation in which 12 nearest neighbours are taken into account, as
shown from figures 6(b)–(d), where the circles in the inset show the lattice structure.

Due to the interaction of all units, the initial three hybrid modes further split when the
lattice constant is relatively small, as shown in figure 6(b). Such splitting will dramatically
influence the dynamic properties of the system and introduce much more complicated oscillation
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Figure 5. (a)–(d) Dynamic nonlinear optical activity at 4.16 GHz, with
(a) PI = 4 mW mm−2, (b) PI = 5 mW mm−2, (c) PI = 6 mW mm−2 and (d) PI =

7 mW mm−2. Tc is the period of self-oscillation. (e) Regimes of self-oscillations
under different input polarization angles 8, with 0 = 1.42 Hz. The top inset is a
general schematic of how the polarization evolves dynamically in time.

behaviour. Nevertheless, the directions of torques are still the same, because the mode symmetry
within each meta-molecule remains unchanged.

Such splitting gradually disappears as the lattice constant further increases to more than
half of the resonant wavelength (see figures 6(c) and (d)), and the line-shapes of resonant
torques become qualitatively the same as those of a single meta-molecule shown in figure 2.
The resonant torques exhibit noticeable enhancement, accompanied with the narrowing of the
resonant linewidth, which shows the collective nature of the enhancement. Such enhancement
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Figure 6. (a) EM torque experienced by the meta-molecule in an infinite square
array with 30 mm lattice constant. (b)–(d) Torque experienced by the meta-
molecule at the centre of a finite square array. The meta-molecule at the centre
is surrounded by 12 neighbouring identical meta-molecules, as denoted by the
orange circle in the inset. Lattice constant (b) 30 mm, (c) 45 mm, (d) 60 mm.
Insets on the right magnify the details within dashed rectangles. The EM torques
are normalized to the power density of 1 mW mm−2.

can be made more prominent by increasing the number of neighbouring units. Interestingly,
the enhancement factor of the symmetric mode (↑ ↑↑) is much larger than the other two
hybrid modes. This difference could be attributed to the radiative nature of this mode, in which
neighbouring units interact more strongly.

When the lattice constant increases further beyond the metamaterial limit to more than
one resonant wavelength, the interaction becomes weak and the line-shapes of the resonant
torques revert to the case of single meta-molecule shown in figure 2. We therefore expect that
the effects, reported for a single meta-molecule, will be qualitatively similar to those observable
when torsional meta-molecules form a dilute array.
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6. Conclusion

We have studied the nonlinear dynamic properties of torsional meta-molecules. By employing
a semi-analytical model based on near-field interaction, we are able to evaluate the internal EM
torque experienced by the meta-molecule efficiently and accurately. This enables us to model the
complicated dynamical behaviour of meta-molecules with two (or more) degrees of freedom.

We found that the torsional meta-molecules support self-oscillations. By analysing the local
stability of the system, we revealed two different mechanisms leading to self-oscillations. The
first mechanism relies on the limited local stability of equilibria: self-oscillations based on this
mechanism can be triggered during bistable hopping but is quenched quickly as the mechanical
damping increases. The second mechanism is due to the local instability of equilibria: in this
case, self-oscillations do not rely on initial kinetic energy and is extremely robust against
mechanical damping.

A direct consequence of self-oscillations in torsional meta-molecules is the dynamic
nonlinear optical activity. The dynamic evolution of the optical rotation is sensitive to the change
in a range of parameters including power density and incident polarization, which offers new
possibilities for active control and detection.

Our design therefore provides an unusual and novel system with intriguing physics,
and similar or even more complicated effects could also be found in coupled structures
working in higher frequencies, such as chiral plasmonic molecules synthesized based on DNA
templates [47, 48]. We expect that this study will inspire a fruitful development of nonlinear
optomechanics of metamaterials and its potential novel application.
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Appendix

The coupled mode equation of the system can be expressed in a compact form∑
q,n

Z (p,q)
m,n Q(q)

n = E (p)
m , (A.1)

where Z is the impedance, Q is the mode amplitude and E is the effective voltage applied by the
external fields. The upper scripts denote the pth and qth eigenmodes and the lower scripts denote
the mth and nth SRRs. In our structure, we have three rings and take into account the first three
eigenmodes (magnetic dipole, electric dipole and quadrupole) [49], so m, n, p, q ∈ [1, 2, 3].
The above equation describe the global interaction of the pth order mode in SRR m and all
modes in all SRRs (m = n and p = q corresponds to the self-interaction term).

As we have shown in our previous studies [38, 39], the impedance Z (p,q)
m,n = −ω2L (p,q)

m,n +
1/C (p,q)

m,n can be calculated directly from the spatial distributions of current j (r) and charge q (r)
of the eigenmodes, where

L (p,q)
m,n =

∫∫
j∗(p)(rm) · j(q)(rn)

4πc2ε0

e jk0|rm−rn |

|rm−rn|
d3rm d3rn, (A.2)
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1

C (p,q)
m,n

=

∫∫
q∗(p)(rm)q (q)(rn)

4πε0

e jk0|rm−rn |

|rm−rn|
d3rm d3rn (A.3)

and the effective voltage under external EM fields

E (p)
m = −E · l(p)

m ϑm (A.4)

with l(p)
m being the normalized electric dipole moment and ϑm = e jk0zm is the retardation of the

mth SRR in the wave propagating direction.
The coefficients of the coupled mode equations can then be written in a 9 × 9 impedance

matrix, and the spectral response of mode amplitude Q(ω) can be solved numerically. In the
frequency regime of interest, the spectral response is dominated by the interaction of the first
order eigenmode (magnetic dipole), while higher order modes provide minor corrections and
enable more accurate evaluation.

The time averaged torque experienced by the mth SRR MEM,m can be decomposed into
external torque Mext,m and internal torque Mint,m [24, 37]: MEM,m = Mext,m + Mint,m , where

Mext,m = −
1

2
Re

[∑
p

Q∗(p)
m ϑmE · l(p)

m sin(8 + θ)

]
· ẑ, (A.5)

Mint,m =
1

2
Re

{∑
p,q,n

Q(q)
n Q∗(p)

m

4πε0

∫∫
q∗(p)(rm)e jk0|rm−rn |

|rm − rn|

×

[
1 − jk0|rm − rn|

|rm − rn|
2

q (q)(rn) rn × rm + k2
0rm × j(q)(rn)

]
d3rm d3rn

}
, (A.6)

8 is the incident polarization angle with respect to the x-axis.
In our design, the SRRs are connected with cylindrical thin elastic wires, and the

restoring torques are approximated by Hooke’s law: MR,2 = −κ[2(θ2 − θ0,2) − (θ3 − θ0,3)],
MR,3 = −κ[(θ3 − θ0,3) − (θ2 − θ0,2)], with κ = πa4G/(2d); a and d are the radius and the length
of the wires, respectively; G is the shear modulus and θ0 is the initial twist angle.

The dynamic equation of the mth SRR (m = 2, 3) can then be expressed as

θ̈m + 0θ̇m =
1

I
Mm. (A.7)

I is the moment of inertia and 0 is the damping coefficient. Mm = (MEM,m + MR,m) · ẑ is the
total torque experienced by the mth SRR.

The local stability of the system around equilibria is estimated by analysing the eigenvalues
of its linear variational dynamic equations [28], where the coefficients can be written in a
compact matrix form:

∂ F2
∂θ2

∂ F2
∂�2

∂ F2
∂θ3

∂ F2
∂�3

∂G2
∂θ2

∂G2
∂�2

∂G2
∂θ3

∂G2
∂�3

∂ F3
∂θ2

∂ F3
∂�2

∂ F3
∂θ3

∂ F3
∂�3

∂G3
∂θ2

∂G3
∂�2

∂G3
∂θ3

∂G3
∂�3

 =


0 1 0 0

C1 −0 C2 0

0 0 0 1

C3 0 C4 −0

 (A.8)
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with F2(3) = �2(3) = θ̇2(3), and G2(3) = �̇2(3) = θ̈2(3) = M2(3)/I − 0�2(3). The eigenvalues of the
matrix have explicit expressions

λ1,2 =
−0

2
±

{
(C1 + C4)

2
+

02

4
+

1

2

[
(C1 − C4)

2 + 4C2C3

]1/2
}1/2

,

λ3,4 =
−0

2
±

{
(C1 + C4)

2
+

02

4
−

1

2

[
(C1 − C4)

2 + 4C2C3

]1/2
}1/2

.

(A.9)

When all four eigenvalues have negative real parts, the equilibrium point is considered to be
locally stable; otherwise, the equilibrium is unstable. Note that the equilibrium point and its
local stability remain the same if MEM and MR are increased by the same factor; this indicates
that self-oscillations due to local instability shown in section 3 can still be observable at the
same regime of pump frequency and power density, and the speed of oscillation will increase
accordingly.
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