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ABSTRACT

Energy storage systems (ESSs) play a critical role in plenty of applications including
renewable energy systems, power systems for electric vehicles (EVs) and hybrid electric
vehicles (HEVs), and electrical power grids for improving reliability and overall use of
the entire system. Currently, there are several types ESSs dominated the energy storage.
Each kind of ESSs has their own operation mechanism, energy efficiency, energy density,
power density, cycle life, charge and discharge capability, cost efficiency, operating
temperature. The common ESS is based on lead acid battery which stores electrical
energy in the form of chemical energy. However, if the batteries are overdischarged or
kept at a discharged state, its capability will be irreversibly undermined because the
sulfate crystals become larger and more difficult to break up during recharge. Since the
first NiCd battery was created by Waldemar Jungner in 1899, even though NiCd battery
technologies have experienced a series of evolutionary developments, its demerits are
obvious including 1) shorter life cycle; 2) memory effect; 3) toxicity of Cd; 4) lower
energy density; and 5) limited negative temperature coefficient. Based on the
development of NiCd battery technology, nickel metal hydride (NiMH) batteries was
proposed by researchers which possess better performance than NiCd batteries in cycle
life, energy density and charge&discharge rates. Lithium ion is the preferred chemistry,
having a superior specific energy and power density to nickel metal hydride. More lithium
per gram stored in the electrodes contributes to higher energy density and power density.
In addition to chemical battery system, researchers recently proposed some new sorts of
ESSs including flywheel, compressed air energy storage (CAES), superconductive
magnetic energy storage (SMES), etc. All of them can provide super energy density and

power density. But they are more or less blocked ether in complex mechanical
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construction or cooling device.

Supercapacitor has emerged to be an exciting energy storage device, which is able to
provide high specific power, charge and discharge up to million times, have long lifetime
and broad range of working temperature. Even though supercapacitor has been widely
seen as a promising energy storage candidate to replace the traditional chemical batteries,
it also suffer its drawback that the low energy density (the energy stored in per unit of
volume and weight), high equivalent series resistance (ESR) and its high cost associated

with its performance.

Therefore, this PHD thesis project aims to address these drawbacks of supercapacitor by
designing different nanotechnologies and fabrication methods to synthesize advance
materials with better performance than that of conventional supercapacitor. A Series of
designed structures and materials were fabricated by designed methods. All the materials
were also investigated by using X-ray diffraction, scanning electron microscopy (SEM),
transmission electron microscopy (TEM) observation techniques, Brunauer—Emmett—

Teller (BET) surface area measurement and electrochemical testing.

A facile and effective hydrothermal treatment that is able to control the condensation
speeds of precursors in the solution along the <010>, <100> and <001> directions was
designed to fabricate vanadium oxide nanoribbon used for the electrode of supercapacitor.
It was achieved by controlling the hydrothermal reaction time and the weight ratio to
synthesize the ultralong vanadium oxide nanoribbon with controlled width. It has high
specific capacitance of 453 F g! at the scam rate of 2 mV s™! in 2 M NaCl electrolyte, and
it still maintained a high capacitance of 201 F g!' at a higher scan rate of 50 mV s,
attributing to the easy ion insertion and electronic transport along the a-b plane rather

through the layers of the c-axis.
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Vanadium oxide nanotubes were synthesized by a revised hydrothermal treatment with
high-speed stirring. The preparation involved dissolution of V205 into H2O2 and high-
speed stirring (10000 r/min) with hexadecylamine. The product was characterized by
scanning electron microscopy, transmission electron microscope, X-ray diffraction and
thermogravimetric analysis. The electrochemical properties of the materials as electrodes
for electrochemical capacitors were evaluated by cyclic voltammetry in a three electrode
system consisting of a saturated calomel electrode as reference electrode, platinum as a
counter electrode and the active materials as the working electrode. A high capacitance
of 148.5 F g'! was obtained at a scan rate of 2 mV s™! in 2M KCI. The electrode maintained

a high capacitance of 105 F g! at a higher scan rate of 50 mV s! in 2M KClI electrolyte.

3D mesoporous hybrid NiCo204@graphene nanoarchitectures were successfully
synthesized by a combination of freeze drying and hydrothermal reaction. Field-emission
scanning electron microscopy (FESEM) and TEM analyses revealed that
NiCo204@graphene nanostructures consist of a hierarchical mesoporous sheet-on-sheet
nanoarchitecture with a high specific surface area of 194 m? g'!. Ultrathin NiC0204
nanosheets, with a thickness of a few nanometers and mesopores ranging from 2 to 5 nm,
were wrapped in graphene nanosheets and formed hybrid nanoarchitectures. When
applied as electrode materials in supercapacitors, hybrid NiCo20s@graphene nanosheets
exhibited a high capacitance of 778 F g'! at the current density of 1 A g}, and an excellent

cycling performance extending to 10000 cycles at the high current density of 10 A g™

We also presented a rational, large-scale and general method, called controllable freeze
casting (CFC), to fabricate a high-densely assembled and aligned free-standing
NiCo204@graphene 3D foam by vacuum filtration and air compress pressure assembly

method. In the designed method, the amount of water is controllable, therefore controlling
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the size and the shape of the ice when the material was introduced into freeze drying
system, finally achieving controllable pore size and aligned structure. This free-standing
foam retains the intrinsic properties of graphene sheet, such as high surface area and high
electrical conductivity. In the foam, the graphene sheets build the high conductive
skeletons. And the skeletons with high surface areas support the uniform distribution of
NiCo0204 nanoparticles on the graphene sheets. By controlling the amount of water in the
precursor, it is possible to fabricate 3D NiCo204@graphene foams with a wide range of
thickness and pore size. This dense NiCo204@graphene material exhibited a high
capacitance of 790 F g! at a current density of 2 A g, and an excellent cycling
performance at a high current density of 10 A g'!. The compression test revealed that the
3D NiCo20s@graphene foam exhibited strong mechanical property which is able to
support 20,000 times its own weight without structure collapsing. The novel synthesis
method of such 3D foam with excellent properties paves the way to explore the
application of lamellar materials like graphene in a self-supporting, metal oxide

deposition and 3D foam.
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