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Abstract

The application and use of robots in various areas of human life have been growing since

the advent of robotics, and as a result, an increasing number of collaboration tasks are

taking place. During a collaboration, humans and robots typically interact through a phys-

ical medium and it is likely that as more interactions occur, the possibility for humans to

experience pain will increase. It is therefore of primary importance that robots should be

capable of understanding the human concept of pain and to react to that understanding.

However, studies reveal that the concept of human pain is strongly related to the complex

structure of the human nervous system and the concept of Mind which includes concepts

of Self-Awareness and Consciousness. Thus, developing an appropriate concept of pain for

robots must incorporate the concepts of Self-Awareness and Consciousness.

Our approach is firstly to acquire an appropriate concept of self-awareness as the basis for

a robot framework. Secondly, it is to develop an internal capability for a framework for the

the internal state of the mechanism by inferring information captured through internal and

external perceptions. Thirdly, to conceptualise an artificially created pain classification in the

form of synthetic pain which mimics the human concept of pain. Fourthly, to demonstrate the

implementation of synthetic pain activation on top of the robot framework, using a reasoning

approach in relation to past, current and future predicted conditions. Lastly, our aim is to

develop and demonstrate an empathy function as a counter action to the kinds of synthetic

pain being generated.

The framework allows robots to develop "self-consciousness" by focusing attention

on two primary levels of self, namely subjective and objective. Once implemented, we

report the results and provide insights from novel experiments designed to measure whether

a robot is capable of shifting its "self-consciousness" using information obtained from

exteroceptive and proprioceptive sensory perceptions. We consider whether the framework

can support reasoning skills that allow the robot to predict and generate an accurate "pain"

acknowledgement, and at the same time, develop appropriate counter responses.

Our experiments are designed to evaluate synthetic pain classification, and the results

show that the robot is aware of its internal state through the ability to predict its joint

motion and produce appropriate artificial pain generation. The robot is also capable of



x

alerting humans when a task will generate artificial pain, and if this fails, the robot can take

considerable preventive actions through joint stiffness adjustment. In addition, an experiment

scenario also includes the projection of another robot as an object of observation into an

observer robot. The main condition to be met for this scenario is that the two robots must

share a similar shoulder structure. The results suggest that the observer robot is capable

of reacting to any detected synthetic pain occurring in the other robot, which is captured

through visual perception. We find that integrating this awareness conceptualisation into a

robot architecture will enhance the robot’s performance, and at the same time, develop a

self-awareness capability which is highly advantageous in human-robot interaction.

Building on this implementation and proof-of-concept work, future research will extend

the pain acknowledgement and responses by integrating sensor data across more than one

sensor using more sophisticated sensory mechanisms. In addition, the reasoning will be

developed further by utilising and comparing the performance with different learning ap-

proaches and different collaboration tasks. The evaluation concept also needs to be extended

to incorporate human-centred experiments. A major possible application of the proposal to

be put forward in this thesis is in the area of assistive care robots, particularly robots which

are used for the purpose of shoulder therapy.
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Chapter 1

Introduction

This chapter presents an overview of the background to the study followed by the currently

identified issues in the field of human-robot interactions and related fields. The chapter then

provides a brief introduction to the proposed means of addressing these issues, together

with the experimental setup, followed by the analysis and outcomes of the findings. The

significance and contribution of the work are given, together with a short description of future

related work, followed by the overall structure of the thesis.

1.1 Overview of the Study Background

As the number of robots applications in various areas of human life increases, it is inevitable

that more collaborative tasks will take place. During an interaction, humans and robots

commonly utilise a physical medium to engage, and the more physical the interaction is, the

greater the possibility that robots will cause humans to experience pain. This possibility may

arise from human fatigue, robot failure, the working environment or other contingencies that

may contribute to accidents. For instance, take the scenario in which robots and humans work

together to lift a heavy cinder block. Humans may experience fatigue due to constraints placed

on certain body muscles, and over time, this muscle constraint may extend beyond its limit.

An overload constraint on muscle degrades the muscle strength and in time introduces damage

to internal tissue, leading to the experience of pain. Humans occasionally communicate

this internal state verbally or through facial expression. It is of primary importance for

robots to consider these sophisticated social cues, capture them and translate them into

useful information. Robots can then provide appropriate counter-responses that will prevent

humans from experiencing an increase in the severity of pain. Furthermore, robots may play

a significant role in anticipating and preventing work accidents from happening.
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Having the capability to acknowledge pain and develop appropriate counter responses to

the pain experience by the human peer will improve the success of the collaboration. Failure

to acknowledge this important human social cue may cause the quality of the interaction to

deteriorate and negatively affect the acceptance of future robot applications in the human

environment.

1.2 Current Issues

Literature studies show that there are a considerable number of works that have investigated

the emergence of robot cognition and have proposed concepts of the creation of conscious

robots. However, there are very few studies that acknowledge pain and those studies only

use the terminology to refer to robot hardware failure without real conceptualisation of pain.

The studies do not correlate the importance of evolving a concept of pain within the robot

framework with developing reactions in response to the identified pain. At lower levels of

perception, robots rely only on their proprioceptive and exteroceptive sensors, which are

limited to building their external and internal representations. Not all robots have uniform

sensory and body mechanisms, which consequently, it affects the quality of pain information

retrieval and processing. In contrast, humans have a rich and complex sensory system which

allows robust pain recognition and the generation of empathic responses. Studies reveal that

concepts of self-awareness, pain identification and empathy with pain are strongly attached

to the cognitive aspect of humans, who have vast and complex nerve mechanisms (Goubert

et al., 2005; Hsu et al., 2010; Lamm et al., 2011; Steen and Haugli, 2001).

These factors present huge challenges to the notion of developing robots with social skills

that can recognise human pain and develop empathic responses. Thus, it is of key importance

to develop an appropriate concept of self and pain to incorporate in a robot’s framework that

will allow the development of human pain recognition.

1.3 Description of Proposed Approach

There are five main objectives of this work. The first is to develop an appropriate concept

of self-awareness as the basis of a robot framework. The proposed robot self-awareness

framework is implemented on robot cognition, which focuses attention on the two primary

levels of self, namely subjectivity and objectivity, derived from the human concept of self

proposed by Lewis (1991). It should be pointed out that robot cognition in this work refers

to the change in the focus of attention between these levels, and does not necessarily refer

to ‘human consciousness’. The second is to develop the internal state of the mechanism
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over time by inferring information captured through internal and external perceptions. The

construction of internal process is based on current and future predicted states of the robot that

are captured through the robot’s proprioceptive perception. When an interaction takes place,

the information captured by the robot’s exteroceptive perception is also used to determine

the internal state. The third is to conceptualise artificial pain for the robot through a set

of synthetic pain categories, mimicking human conceptualisation of pain. Fault detection

provides the stimulus function and defines classified magnitude values which constitute the

generation of artificial pain, which is recorded in a dictionary of synthetic pain. The fourth is

to demonstrate the generation of synthetic pain through a reasoning process of the robot’s

internal state with respect to the current and predicted robot information captured from

proprioceptive perception and the aim of the overall task. The final objective is to develop an

appropriate counter-response, mimicking the empathy function, to the generated synthetic

pain experienced by the robot.

To briefly describe how the robot mind functions: the framework develops a planning

scheme by reasoning the correlation of the robot’s current internal states with the robot’s

belief, desire and intention framework. The robot framework determines the type of synthetic

pain to be generated, which the robot experiences. Whenever the pain intensity increases,

the framework switches its attention to the subjective level, giving priority to the generation

of empathy responses to the synthetic pain and disregarding the objective level of the task.

In other words, the robot framework manifests the concept of self by actively monitoring

its internal states and external world, while awareness is implemented by shifting the focus

of attention to either the subjective or the objective level. At the same time, the reasoning

process analyses the information captured by the robot’s perceptions with respect to the

dictionary of synthetic pain embedded in the framework.

Embedding this ability into the robot’s mechanism will enhance the robot’s understanding

of pain, which will be a useful stepping stone in developing the robot’s social skills for

recognising human pain. This ability will allow robots to work robustly to understand human

expressions during collaborative tasks, particularly when the interaction might lead to painful

experiences. This framework will equip the robot with the ability to reconfigure its focus of

attention during collaboration, while actively monitoring the condition of its internal state.

At the same time, the robot will be capable of generating appropriate synthetic pain and

generating associated empathic responses. These empathic responses are designed to prevent

robots from suffering catastrophic hardware failure, which is equivalent to an increase in the

intensity of the pain level.
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1.4 Brief Description of Experiments

Two types of experiment are designed to demonstrate the performance of the robot framework.

The first involves one robot and a human partner interacting with each other in a hand pushing

task which produces a sequence of arm joint motion data. This type has two scenarios, namely,

offline and online scenarios. In the offline scenario, two experiments are carried out in which

the first stage is dedicated to recording the arm joint motion data, which will be going to be

stored in a database. In the second stage, the data are taken from the database and fed into

the robot’s mind in the second stage (i.e., as a simulation in the robot’s mind). In the online

scenario, the data are obtained directly from the hand pushing task and fed to the robot’s

mind for further processing.

The second type of experiment involves two robots and a human partner. An observer

robot is assigned a task to observe another robot, acting as a mediator robot, which is involved

in an interaction with the human partner. There are two stages in this experiment: stage one

serves as an initiation or calibration stage, and stage two is the interaction stage. The initiation

stage sets the awareness region of the mind of the observer robot and the joint restriction

regions for both robots that should be avoided. These joint restriction regions contain robot

joint position values which correspond to the faulty joint settings. This stage is also dedicated

to calibrating the camera position of the observer robot towards the right arm position of the

mediator robot. A red circular shape attached to the back of the right hand of the mediator

robot is used as a marker throughout the experiments. The second stage comprises two

experiments, robot self-reflection and robot empathy. During the self-reflection experiment,

both robots are equipped with an awareness framework, with the exception that the mediator

robot does not have an activated consciousness direction function. The final experiment

applies the same settings, with the addition of the activation of counter-response actions that

simulate the function of the empathy response.

1.5 Contributions and Significance

There are a minimum of four contributions identified by this study:

1. The conceptualisation of robot self-awareness by shifting the focus of attention between

two levels of self, namely subjective and objective.

2. A dictionary of artificial robot pain containing a set of synthetic pain class categories.

3. The integration of high reasoning skills within the internal state framework of the

robot.
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4. The derivation of a novel concept of empathy responses towards synthetic pain for a

robot, which is essential for engaging in collaborative tasks with humans.

The significance of the study is that it mostly affects the creation of a cognitive robot and the

future coexistence of humans and robots through:

1. Proposing a concept of robot self-awareness, by utilising a high reasoning-based

framework.

2. Promoting the importance of self-development within robot internal state representa-

tion.

3. Promote a better acceptance of robots in a human-friendly environment, particularly in

collaborative tasks.

1.6 Future Development

Four aspects of development will be addressed in respect of current achievements. The first is

various sensor utilization which provides complex information for the framework to handle,

and the implementation of machine learning approaches to increase the framework reasoning

capability. The second addresses awareness regions of the framework and other kinds of

synthetic pain, which have not previously been explored. The third highlights the proof-

of-concept with the focus on human-centred experiments which serve as task performance

assessment. The assessment sets a predefined scenario of human-robot interaction, and

human volunteers are involved in assessing the robot’s performance. The last aspect is to

look into possible real implementation in health care services.

1.7 Structure of Thesis

The structure of the thesis is as follows: Chapter 2 presents a review of the literature that

forms the foundation of the work, divided into two main categories. Literature in the the first

category discusses motion planning for robots, which focuses on lower level planning and

higher level planning. Studies in the second category deal with the metaphysical aspect of

the robot, which centres on human cognition, covering the concept of mind, self-awareness,

pain and empathy, and the development of the robot empathy concept.

The conceptual foundation of the proposal, which discusses the elements of perception,

artificial pain and empathic response, is presented in Chapter 3. The description of perception

is divided according to the origin of the sensory data followed by the artificial pain proposal
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for robots. This chapter also presents how pain levels can be designed, along with the activa-

tion procedures and mathematical representation, regardless of whether a simplified method

or a more complex approach is used. The concept of robot empathy generation is presented

and includes details of how this approach can be implemented, and the mathematical analysis.

Chapter 4 discusses the Adaptive Self-Awareness Framework for Robot, together with

several key elements of the framework. The discussion covers a wide range of aspects of

each element, including the mathematical representations of retrieved perception data which

are arranged into pattern data sequences.

A practical implementation as a proof of concept is highlighted in Chapter 5 which

focuses on description of the robot hardware and experimental settings. A humanoid-based

robot is used as the experiment platform and a human-robot-interaction as the medium for

assessing the technical performance of the robot system.

Chapter 6 provides the outcomes of the experiments conducted in the previous chapter,

followed by analysis and discussion of the results. All data are obtained from the module

in the framework which is responsible for retaining all incoming data from the sensory

mechanisms, pre-recorded synthetic pain values, processed data and output of the robot mind

analyses.

Chapter 7 concludes the thesis. It highlights the fundamental achievements of the

experiments. It also previews future work, which might include such aspects as more

sophisticated data integration from different sensors and possible future implementation in

assistive care robots for aiding people with disability.



Chapter 2

Robot Planning and Robot Cognition

This chapter discusses two aspects of robot development covered in the literature in the

field of robot planning, particularly in motion planning, and robot cognition, and presents a

thorough discussion of the cognitive element of the robot.

2.1 Motion Planning

The discussion of robot motion planning falls into two major categories, stimulus-based

planning and reasoning-based planning. Stimulus-based planning concerns planning ap-

proaches that originate from the stimulus generated at the low level of robot hardware, while

reasoning-based planning focuses on the higher level of data processing.

2.1.1 Stimulus-based Planning

Stimulus-based planning centres on fault detection in robot hardware, which utilises robot

proprioceptive and exteroceptive sensors to detect and localise a fault when it occurs. Early

studies reported in Elliott Fahlman (1974), Firby (1987), Koditschek (1992) promote the

importance of incorporating a failure recovery detection system into robot planning mech-

anisms. Firby (1987) proposed the very first planner for a robot, embedded in the reactive

action package. The proposal does not give an adequate representation of the robot’s internal

state; rather, the planner centres more on the stimuli from the robot’s environment or reactive

basis. Further study on failure recovery planning is reported in Tosunoglu (1995); however,

this work proposes a planning scheme that relies only on the stimuli received from fault

tolerant architecture, which is still a reaction-based approach. A small development was then

proposed by Paredis and Khosla (1995). The authors developed a manipulator trajectory plan

for the global detection of kinematic fault tolerance which is capable of avoiding violations
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of secondary kinematics requirements. The planning algorithm is designed to eliminate

unfavourable joint positions. However, it is a pre-defined plan and does not include the cur-

rent state of the manipulator. Ralph and Pai (1997) proposed fault tolerant motion planning

utilising the least constraints approach, which measures motion performance based on given

faults obtained from sensor readings. The proposal is processed when a fault is detected and

the longevity measure constructs a recovery action based on feasible configurations. Soika

(1997) further examined the feasibility of sensor failure, which may impair a robot’s ability

to accurately develop a world model of the environment.

In terms of multi-robot cooperation, addressing the issues mentioned above are extremely

important. If the internal robot states are not monitored and are disregarded in the process of

adjusting robot actions for given task, replanning when faults occur will result in time delay.

This situation will eventually raise issues which may deter robot coordination. A multi-robot

cooperation in Alami et al. (1998) failed to consider this problem. According to Kaminka and

Tambe (1998), any failure in multi-agent cooperation will cause a complex explosion of state

space. Planning and coordination will be severely affected by countless possibilities of failure.

Studies conducted in Hashimoto et al. (2001) and Jung-Min (2003) focus on the reactive level;

the former authors address fault detection and identification, while the latter stresses the need

for recovery action after a locked joint failure occurs. Another work reported in Hummel

et al. (2006) also focuses on building robot planning on vision sensors, to develop a world

model of the robot environment. Fagiolini et al. (2007) in multi-agent systems-based studies

proposed a decentralised intrusion approach to identify possible robot misbehaviour by using

local information obtained from each robot, and reacted to this information by proposing

a new shared cooperation protocol. The physical aspect of human-robot interaction is very

important as it concerns safety procedures. A review by De Santis et al. (2008) mentions that

safety is a predominant factor that should be considered in building physical human-robot

interaction. Monitoring possible hardware failure is made achieveable by the ability of

the planning process to integrate the proprioceptive state of robots during interactions. By

having updated information, robots are able to accurately configure and adjust their actions

in given tasks, and at the same time, to communicate adjustment actions to their human

counterparts. Hence, both parties are aware of the progress of the interaction. A study by

Scheutz and Kramer (2007) proposed a robust architecture for human-robot interaction. This

study signifies the importance of detecting hardware failure and immediately generating

post recovery actions. A probabilistic reasoning for robot capabilities was proposed in Jain

et al. (2009). The proposal targeted the achievement of capability to anticipate possible

failures and generate a set of plausible actions which would have a greater chance of success.

Ehrenfeld and Butz (2012) discussed sensor management in the sensor fusion area in relation



2.1 Motion Planning 9

to fusion detection. Their paper focuses on detecting sensor failure that is due to hardware

problems or changes within the environment. A recent study reported by Yi et al. (2012)

proposes a geometric planner which focuses on detecting failure and replanning online. The

planner functionality is still a reaction-based failure detection.

2.1.2 Reasoning-based Planning

Reasoning-based planning is higher level planning. In this sub-section, we discuss the

internal state representation of robots and artificial intelligence planning in general.

Internal State Representation Framework

In higher level planning, robots are considered to be agents, and to represent an agent’s

internal state requires rationality. One of the most well-recognised approaches to representing

an agent’s internal is the Belief (B), Desire (D) and Intention (I) framework. Georgeff et al.

(1999) refer to Belief as the agent’s knowledge which contains information about the world,

Desire sets the goals that the agent wants to achieve, and Intention represents a set of

executable actions. According to Rao and Georgeff (1991), the Belief-Desire-intention (BDI)

architecture has been developed since 1987 by the work of Bratman (1987), Bratman et al.

(1988) and Georgeff and Pell (1989). The latter’s paper presents the formalised theory of

BDI semantics by utilising the Computation Tree Logic form proposed by Emerson and

Srinivasan (1988). However, this earlier development of intelligence has received criticism

as reported in Kowalski and Sadri (1996) which quotes the argument by Brooks (1991)

that an agent needs to react to the changes within that agent’s environment. Kowalski and

Sadri (1996) proposed a unification approach which incorporates elements of rationality

and reactivity into the agent architecture. Busetta et al. (1999) proposed an intelligent agent

framework based on the BDI model JACK, which integrates reactive behaviours such as

failure management into its modular-based mechanism. Braubach et al. (2005) claimed that

the available BDI platforms tend only to abstract the goal without explicit representation. The

authors point out several key points that are not well addressed in BDI architecture planning,

which is the explicit mapping of a goal from analysis and design to the implementation

stage. The important feature of the proposal is the creation of context which determines

whether a goal action is to be adopted or suspended. In the same year, Padgham and Lambrix

(2005) formalised the BDI framework with the ability to influence the intentions element

of the agent. This extension of the BDI theoretical framework has been implemented in the

updated version of the JACK framework. Another development platform, named JASON,

presented in Bordini and Hübner (2006), utilises an extended version of agent-oriented logic
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programming language inspired by the BDI architecture. The paper provides an overview of

several features of JASON, one of which is failure handling. However, it does not involve

the semantics implementation of a failure recovery system. Still within the same BDI agent

framework, Sudeikat et al. (2007) highlighted the validation criterion for BDI-based agents

and proposed an evaluation mechanism for asserting the internal action of an agent and

the communication of events between the involved agents. The assertion of internal action

of an agent relies only on agent performance. Gottifredi et al. (2008, 2010) reported an

implementation of BDI architecture on the robot soccer platform. The authors addressed

the importance of a recovery failure capability integrated into their BDI-based high level

mobile robot control system to tackle adverse situations. Error recovery planning was further

investigated by Zhao and Son (2008) who proposed an extended BDI framework. This

framework was developed to mitigate improper corrective actions proposed by humans as a

result of inconsistency in human cognitive functions resulting from increased automation

that introduces complexity into tracking activity. An intelligent agent should have learning

capabilities and this is not addressed in the BDI paradigm. Singh et al. (2010) conducted

a study, later known to be the earliest study to address the issue, that introduced decision

tree-based learning into the BDI framework. This proposal targeted planning selection,

which is influenced by the success probability of executed experiences. Any failure is

recorded and used to shape the confidence level of the agent within its planning selection. A

further study in Singh et al. (2011) integrates dynamic aspects of the environment into the

plan-selection learning of a BDI agent. The study demonstrates the implementation of the

proposed dynamic confidence measure in plan-selection learning on an embedded battery

system control mechanism which monitors changes in battery performance. A recent study

carried out by Thangarajah et al. (2011) focuses on the behaviour analysis of the BDI-based

framework. This analysis considers the execution, suspension and abortion of goal behaviour

which have been addressed in the earlier study reported in Braubach et al. (2005). Cossentino

et al. (2012) developed a notation which covers the whole cycle process from analysis to

implementation by utilising the Jason interpreter for agent model development. The proposed

notation does not address issues of failure recovery; rather, it focuses on the meta-level of

agent modelling.

Artificial Intelligent - AI Planning

According to McDermott (1992), robot planning consists of three major elements, namely

automatic robot plan generation, the debugging process and planning optimisation. The

author points out that constraints play an important role by actively acting as violation

monitoring agents during execution. Planning transformation and learning are also crucial
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elements to include in robot planning. Two of the earliest studies conducted on AI-based task

planning, which have become the best-known methods, are reported in Fikes and Nilsson

(1972) and Erol et al. (1994). Fikes and Nilsson (1972) proposed the STandford Research

Institute Problem Solver (STRIPS) and the study reported in Erol et al. (1994) classifies

several different works as the Hierarchical Task Network (HTN), which is decomposition-

based. The STRIPS develops its planning linearly with respect to the distance measurement

of the current world model from the target. The drawback of this method is that state

space explosions occur as more complicated tasks are involved, which is counter-productive.

Sacerdoti (1975) argued that regardless of the linearity of execution, the plan itself by nature

has a non-linear aspect. The author instead proposed the Nets of Action Hierarchies (NOAH),

which are categorised according to the family of HTN-based approaches. The development of

a plan in NOAH keeps repeating in the simulation phase in order to generate a more detailed

plan, and is followed by a criticising or reassesment phase through processes of reordering or

eliminating redundant operations. This work is an advancement of the work on the HACKER

model, developed by Sussman (1973), which replaces destructive criticism with constructive

criticism to remove the constraints on plan development. Another comparison made by Erol

et al. (1996) points out that STRIP-based planners maximise the search of action sequences to

produce a world state that satisfies the required conditions. As a result, actions are considered

as a set of state transition mapping. HTN planners, in contrast, consider actions as primitive

tasks and optimise the network task through task decomposition and conflict resolution. The

HTN-style planner NONLIN introduced by Tate (1977) incorporates a task formalism that

allows descriptive details to be added during node linking and expansions. In contrast to

NOAH, the NONLIN planner has the ability to perform backtracking operations.

Current advancement in AI planning has been directed towards utilisation of proportional

methods (Weld, 1999), which generalizes the classical AI planning into three descriptions:

1. Descriptions of initial states

2. Descriptions of goals

3. Descriptions of possible available actions - domain theory

One major AI planning achievement was a proposal made by Blum and Furst (1997), the

two-phase GRAPHPLAN planning algorithm, which is a planning method in STRIPS-like

domains. The GRAPHPLAN approaches a planning problem by alternating graph expansion

and solution extraction. When solution extraction occurs, it performs a backtracking search

on the graph until it finds a solution to the problem, otherwise, the cycle of expanding the

existing graph is repeated. An extension to this planner was proposed by Koehler et al.

(1997), IPP with three main features which differ from the original GRAPHPLAN approach.
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1. The input is a form of a pair of sets;

2. The selection procedure for actions takes into consideration that an action can obtain

the same goal atom even under different effect conditions;

3. The resolution of conflicts occurs as a result of conditional effects.

In similar STRIP-based domain, Long and Fox (1999) developed a GRAPHPLAN-style

planner, STAN, which performs a number of preprocessing analyses on the domain before

executing planning processes. The approach firstly observes pre- and post-conditions of

actions and represent those actions bit vectors form. Logical operators are applied on these

bit vectors in order to check mutual exclusion between pairs of actions which directly interact.

Similarly, mutual exclusion (mutex relations) is implemented between facts. A two-layer

graph construction (spike) is used to represent the best exploited bit vector, which is useful

to avoid unnecessary copying of data and to allow a clear separation on layer-dependent

information about a node. The spike construction allow mutex relations recording for efficient

mutex testing in indirect interactions. Secondly, there is no advantage in explicit construction

of the graph beyond the stage at which the fix point is reached. Overall, the plan graph

maintains a wave front which keeps track of all of the goal sets remaining to be considered

during search.

A study reported in Kautz and Selman (1992) proposes a SAT-based plan (SATPLAN),

which considers planning as satisfiability. The planning is further developed to BLACKBOX

planner, which is a unification of SATPLAN and GRAPHPLAN (Kautz and Selman, 1999).

The BLACKBOX planner solves a planning problem by translating the plan graph into

SAT and applying a general SAT solver to boost the performance. A report in Silva et al.

(2000) further develops the GRAPHPLAN-style by translating the plan graph obtained in

the first phase of Graphplan into an acyclic Petrinet. Kautz and Selman (2006) later develop

SATPLAN04 planner, which shares a unified framework with the old version of SATPLAN.

The SATPLAN04 requires several stages when solving planning problems, which can be

described as follows:

• Generating planning graph in a graphplan-style;

• Generating a set of clauses which derived from constraints implied by the graph, where

each specific instance of an action or fact at a point in time is a proposition;

• Finding a satisfying truth assignment for the formula by utilizing general SAT problem

solver;
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• Extending the graph if there is no satisfactory solution or it reaches a time-out, other-

wise, translating the solution to the SAT problem to a solution to the original planning

problem;

• Post processing to remove unnecessary actions. actions.

Another planner such as HSP, which was developed by Bonet and Geffner (1999, 2001),

is built based on the ideas of heuristic search. Vidal (2004) proposes a lookahead strategy

for extracting information from generated plan in heuristic search domain. A later study by

Vidal and Geffner (2006) further develop a branching and pruning method to optimise the

heuristic search planning approach. The method allows the reasoning supports, precedences,

and causal links involving actions that are not in the plan. Similar author later proposes an

approach to automate planning which utilises a Fast-Downward approach as the base planner

in exploring a plan tree. This approach estimates which propositions are more likely to be

obtained together with some solution plans and uses that estimation as a bias, to sample more

relevant intermediates states. A message passing algorithm is applied on the planning graph

with landmark support in order to compute the bias (Vidal, 2011).

A different approach proposed in AI planning domain theory utilises heuristic pattern

databases (PDBs), for example a study reported in Edelkamp (2000, 2002, 2014). Sievers

et al. (2010) further assess that PDBs is lack of efficient implementation as the construction

time must be amortized within a single planner run, which requires separate evaluation

according to its own state space, set of actions and goal. Hence, it is impossible to perform

computation processes at one time and reuse it for multiple inputs. The authors propose

and efficient way to implement pattern database heuristics by utilising the Fast Downward

planner (Helmert, 2006).

2.2 Robot Cognition

Studies by Franklin and Graesser (1997) and Barandiaran et al. (2009) point out that robots

are real world agents, and consequently, the terms ‘robot’and ‘agent’are used interchangeably

throughout this thesis.

Discussions on robot cognition can be traced back to the early development of human

mind and consciousness theories. A study by Shear (1995) suggests that there is a direct

correspondence between consciousness and awareness. We elaborate on these notions of

consciousness and awareness in the following subsections.
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2.2.1 Discussion on Theories of Mind

The mind is a collection of concepts that cover aspects of cognition which may or may

not refer to an existing single entity or substance (Haikonen, 2012). In other words, the

discussion of mind is restricted to perceptions, thoughts, feelings and memories within the

framework of self. A large number of studies have addressed this field, and there are several

important theories, described as follows:

• Traditional Approach

A number of theoretical approaches identified throughout the history of human mind

studies and their key points are described below.

– Cartesian Dualism

This theory, proposed by Rene Descartes, is based on the work of the Greek

philosopher Plato (Descartes and Olscamp, 2001). The theory divides existence

into two distinct worlds: the body, which is a material world, and the soul, which

is an immaterial world. Descartes claimed that the body as a material machine

follows the laws of physics, while the mind as an immaterial thing connected to

the brain does not follow physical law. However, they interact with each other;

the mind is capable of controlling the body but at the same time, the body may

influence the mind.

– Property Dualism

This theory counters the Cartesian Dualism theory by suggesting that the world

consists of only one physical material but that it has two different kinds of

properties, physical and mental. Mental properties may emerge from physical

properties, and can change whenever a change occurs in the physical properties,

but mental properties may not be present all the time (Haikonen, 2012).

– Identity Theory

This theory is based on the concept of human nerve mechanisms which contain

the various actions of nerve cells and their connections which structurise the

neural process of the brain. Crick (1994) concluded that the human mind is the

result of the behaviour of human nerve cells.

• Modern Studies

Currently, studies of the mind focus on the neural pathways inside the human brain.

A vast assembly of neurons, synapses and glial cells in the brain allow subjective

experiences to take place (Haikonen, 2012, p.12). Studies on the nerve cells have led
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to neural network and mirror neuron investigations, and these studies have made a

large contribution to the concept of human mind and consciousness.

Consciousness

Since the early studies of consciousness, there has been no unanimous and uniform definition

of consciousness. This thesis highlights a few important studies related to consciousness and

robot cognition.

According to Gamez (2008), various terms are used to refer to the studies on conscious-

ness theories using computer models to create intelligent machines, and the term ‘machine

consciousness’, is typically the standardised terminology used in this field. According to

Chalmers (1995), the consciousness problem can be divided into easy problems and hard

problems. The easy problems assume that this consciousness phenomenon is directly suscep-

tible to standardised explanation methods, which focus on computational or neural-based

mechanisms ( a functional explanation). In contrast, hard problems are related to experience,

and appear to oppose the approaches used in the easy problems to explain consciousness.

The author lists the phenomena associated with the consciousness notion as follows:

• Ability to discriminate, categorise and react to external stimuli

• Information integration by a cognitive system

• Reportability of mental states

• Ability to access one’s own internal state

• Focus of attention

• Deliberate control of behaviour

• Differentiation between wakefulness and sleep

Several studies have attempted to derive machine consciousness by capturing the phenomenal

aspects of consciousness. Husserlian phenomenology refers to consciousness giving meaning

to an object through feedback processes (Kitamura et al., 2000, p.265). Any system to be

considered conscious should be assessed through the nine features of consciousness functions

and Kitamura et al. (2000) further developed these nine characteristics form a technical view

point as listed below:

1. First person preference: self-preference
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2. Feedback process: shift attention until the essence of the object and its connection are

obtained

3. Intentionality: directing self towards an object

4. Anticipation: a reference is derived for which objective meaning is to be discarded, and

it becomes a belief with the property of an abstract object whenever the anticipation is

unsatisfied.

5. Embodiment: related to the consciousness of events, which are the inhibition of

perception and body action

6. Certainty: the degree of certainty in each feedback process of understanding

7. Consciousness of others: the belief that others have similar beliefs to our own

8. Emotion: qualia of consciousness which relies on elements of perception and corpore-

ality

9. Chaotic performance: an unbalanced situation resulting from randomly generated

mental events, which perturb the feedback process and intentionality.

Based on these features, Kitamura (1998) and Kitamura et al. (2000) proposed Consciousness-

based Architecture (CBA) which is a software architecture with an evolutionary hierarchy to

map animal-like behaviours to symbolic behaviours. These symbolic behaviours are a reduced

model of the mind-behaviour relationship of the human. The architecture deploys a five-

layer-hierarchy principle, which corresponds to the relationship between consciousness and

behaviour. The foundation of the work is built on the principle of the conceptual hierarchical

model proposed by Tran (1951, cited in Kitamura, 1998, pp.291-292) which is shown in Table

2.1. In a similar approach, Takeno (2012) proposed a new architecture which originated from

Table 2.1 Hierarchical Model of Consciousness and Behaviour

Level Subjective Field Category of Behaviours

0 Basic consciousness of awakening Basic reaction of survival

1 Primitive sensation - likes and dislikes Reflective actions, displacement and feeding

2 Valued sensation field of likes and dislikes (two dimensional environment) Body localisation

3 Temporary emotions of likes and dislikes Capture, approach, attack, posture, escape

4 Stable emotions towards present and unrepresented objects Detour, search, body manipulation, pursuit, evasion

5 Temporal and spatial-based symbolic relation Media usage, geography, mates, motion, ambush

Husserlian phenomenology and Minsky’s idea which postulates that there are higher-level

areas that constitute newly evolved areas which supervise the functionality of the old areas.
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This new architecture conceptualisation of robot consciousness is achieved through a model-

based computation that utilises a complex structure of artificial neural networks, named

MoNAD. However, this model only conceptualises the functional consciousness category

and studies have shown that understanding conciousness also involves the explanation of

feeling, which is known as qualia. It is a physical subjective experience and, since it is a

cognitive ability, its study can only be investigated through indirect observation (Haikonen,

2012, p.17).

Gamez (2008) divided studies on machine consciousness into four major categories:

1. External behaviour of machines that are associated with consciousness

2. Cognitive characteristics of machines that are associated with consciousness

3. An architecture of machines that is considered to be associated with human conscious-

ness

4. Phenomenal experience of machines which are conscious by themselves

External behaviour, cognitive characteristics and machine architecture, associated with con-

sciousness, are areas about which there is no controversy. Phenomenally conscious machines,

on the the other hand, that have real phenomenal experiences, have been philosophically

problematic. However, Reggia (2013) points out that computational modelling has been

scientifically well accepted in consciousness studies involving cognitive science and neu-

roscience. Furthermore, computer modelling has successfully captured several conscious

forms of information processing in the form of machine simulations, such as neurobiological,

cognitive, and behavioural information.

2.2.2 Self-Awareness

In broad terminology, self-awareness can be defined as the state of being alert and knowledge-

able about one’s personality, including characteristics, feelings and desires (Dictionary.com

Online Dictionary, 2015; Merriam-Webster Online Dictionary, 2015; Oxford Online Dictio-

nary, 2015). In the field of developmental study, a report by Lewis (1991) postulates that

there are two primary elements of self-awareness: subjective self-awareness, i.e. concerning

the machinery of the body, and objective self-awareness, i.e. concerning the focus of attention

on one’s own self, thoughts, actions and feelings.

In order to be aware, particularly at the body level, sensory perception plays an important

role in determining the state of self. This perception involves two different kinds of sensory

mechanisms: proprioceptive sensors, which function to monitor the internal state, and
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exteroceptive sensors, which are used to sense the outside environment. Numerous studies

on this sensory perception level have been carried out, and the earliest paper (Siegel, 2001)

discusses the dimension aspect of the sensors to be incorporated into the robot. The author

states that proprioception allows the robot to sense its personal configuration associated with

the surrounding environment. Scassellati (2002) further correlates self-awareness with a

framework of beliefs, goals and percepts attributes which refer to a mind theory. Within

a goal-directed framework, this mind theory enables a person to understand the actions

and expressions of others. The study implements animate and inanimate motion models

together with gaze direction identification. A study conducted by Michel et al. (2004)

reports the implementation of self-recognition onto a robot mechanism named NICO. The

authors present a self-recognition mechanism through a visual field that utilises a learning

approach to identify the characteristic time delay inherent in the action-perception loop.

The learning observes the robot arm motion through visual detection within a designated

time marked by timestamps. Two timestamp markings are initiated; one at the state when

movement commands are sent to the arm motors, and one at the state in which no motion is

detected. Within the same robot platform and research topic, a study was carried out by Gold

and Scassellati (2009) which utilises Bayesian network-based probabilistic approach. The

approach compares three models of every object that exists in the visual field of the robot. It

then determines whether the object is the robot itself (self model), another object (animate

model), or something else (inanimate model) which is possibly caused by sensor noise or a

falling object. The likelihood calculation involves the given evidence for each of these objects

and models. Within the same stochastic optimisation-based approach, a study conducted

by Bongard et al. (2006) proposed a continuous monitoring system to generate the current

self-modelling of the robot. The system is capable of generating compensatory behaviours

for any morphological alterations due to the impact of damage, the introduction of new tools

or environmental changes. On a lesser conceptual level, a study presented in Jaerock and

Yoonsuck (2008) proposed prediction of the dynamic internal state of an agent through neuron

activities. Each neuron prediction process is handled by a supervised learning predictor

that utilises previous activation values for quantification purposes. Novianto and Williams

(2009) proposed a robot architecture which focuses on attention as an important aspect of

robot self-awareness. The study proposes an architecture in which all requests compete and

the winning request takes control of the robot’s attention for further precessing. Further

research was conducted in Zagal and Lipson (2009), who proposed an approach which

minimises physical exploration to achieve resilient adaptation. The minimisation of physical

exploration is obtained by implementing a self-reflection method that consists of an innate

controller for lower level control and a meta-controller, which governs the innate controller’s
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activities. Golombek et al. (2010) proposed fault detection based on the self-awareness

model. The authors focused on is the internal exchange of the system and the inter-correlative

communication between inherent dynamics detected through anomalies generated as a result

of environmental changes caused by system failures. At a meta-cognitive level, Birlo and

Tapus (2011) presented their preliminary study which reflects a robot’s awareness of object

preference based on its available information in the context of human and robot interaction.

Their meta-concept regenerates the robot’s attention behaviour based on the robot’s reflection

of what the human counterpart is referring to during collaboration. The implementation of

self-awareness in other areas, such as health services, has been highlighted in Marier et al.

(2013), who proposed an additional method to their earlier study which adapts coverage

to variable sensor health by adjusting the cells online. The objective is to achieve equal

cost across all cells by adding an algorithm that detects the active state of the vehicless as

the mission unfolds. Agha-Mohammad et al. (2014) also proposed a framework that has a

health-aware planning capability. The framework is capable of minimising the computational

cost of the online forward search by decreasing the dimension of the belief subset of the

potential solution that requires an online forward search.

Much of the literature also identifies the lack of a concept of ‘self’. This paper proposes

a self-awareness framework for robots which uses a concept of self-awareness as proposed

by Lewis (1991). The author postulates that in self-awareness, the concept of self is divided

into two levels, subjective awareness and objective awareness. The author shows that human

adults have the ability to function at both levels, under certain conditions, and that human

adults utilise one level of self-awareness at a time. It can be inferred, however, that these

two primary levels of self-awareness coexist and that human adults utilise them by switching

the focus of attention between them. The change of direction in robot awareness mimics the

principle of attention, which corresponds to processes of mental selection. During switching

time, the attention process occurs in three phase sequences: the engagement phase, the

sustainment phase and the disengagement phase (Haikonen, 2012). Haikonen (2012) also

mentions two types of attention: inner attention and sensory attention. Sensory attention

refers specifically to a sensor mechanism, which is designated to monitor a specific part of

the body, such as joint attention or visual attention. We utilise this insight, particularly the

ability to switch between both levels via attention phases, and through this action, a new

framework can be used to change the robot’s awareness from subjective to objective, and vice

versa. In this framework, we refer to the physical parts of a robot, such as motors and joints

(joint attention) as the subjective element, and the metaphysical aspects of the robot, such

as the robot’s representation of its position in relation to the external object or the robot’s

success in task performances (inner attention) as the objective elements.
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2.2.3 Empathy with the Experience of Pain

This subsection comprehensively reviews literature studies on pain, the correlation of pain

with self-awareness, the concept of empathy with pain and the evolving concept of robot

empathy.

Pain

Various definitions have appeared throughout the history of human pain, such as the belief in

early civilisations that pain is a penalty for sin and the correlation in the first century CE of the

four humors and pain in Galen’s theory (Finger, 1994). In the second century CE, Avicenna’s

postulate on a sudden change in stimulus for pain or pleasure generation was formulated

(Tashani and Johnson, 2010). In modern times, concepts of pain are framed within the

theory of functional neuroanatomy and the notion that pain is a somatic sensation transmitted

through neural pathways (Perl, 2007). The culmination of the enormous number of works that

have explored the concept of pain is the establishment of the following definition of pain as

"an unpleasant sensory and emotional experience associated with actual or potential tissue
damage, or described in terms of tissue damage or both" (The International Association for

the Study of Pain, IASP 1986, cited in Harold Merskey and Bogduk, 1994).

Pain plays a pivotal role in the lives of humans, serving as an early sensory-based detection

system and also facilitating the healing of injuries (Chen, 2011). In general, there are four

theories of pain perception that have been most influential throughout history, reported in

Moayedi and Davis (2013):

1. Specificity Pain Theory. This theory acknowledges that each somatosensory modality

has its own dedicated pathway. Somatosensory systems are part of human sensory

systems that provide information about objects that exist in the external environment

through physical contact with the skin. They also identify the position and motion of

body parts through the stimulation of muscles and joints, and at the same time, monitor

body temperature (Byrne and Dafny, 1997). Details of the modalities are shown in

Table 2.2.

2. Intensity Pain Theory. This theory develops the notion that pain results from the

detection of the intense application of stimuli, and occurs when an intensity threshold

is reached. Woolf and Ma (2007) proposed a framework for the specificity theory

for pain and postulated that noxious stimuli respond to sensory perceptors known as

nociceptors. When the intensity of the nociceptive information exceeds the inhibition

threshold, the gate switches to open, allowing the activation of pathways and leading
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Table 2.2 Modalities of Somatosensory Systems

(Source: Byrne and Dafny, 1997)

Modality Sub Modality Sub-Sub Modality

Pain

Sharp cutting pain

dull burning pain

deep aching pain

Temperature
warm/hot

cool/cold

Touch

itch/tickle & crude touch

Discriminative Touch

Touch

Pressure

Flutter

Vibration

Proprioception

Position:Static Forces

Muscle Length

Muscle Tension

Joint Pressure

Movement: Dynamic Forces

Muscle Length

Muscle Tension

Joint Pressure

Joint Angle

to the generation of the pain experience and associated response behaviours. Studies

related to noxious stimulus and nociceptor are presented in Cervero and Merskey

(1996) and Moseley and Arntz (2007).

3. Pattern Pain Theory. This theory postulates that somaesthetic sensation takes place as

the result of a neural firing pattern of the spatial and temporal peripheral nerves, which

are encoded in stimulus type and intensity. Garcia-Larrea and Peyron (2013) provided

a review on pain matrices which asserts that painful stimuli activate parts of the brain’s

structure.

4. Gate Control Pain Theory. This theory, proposed by Melzack and Wall (1996), pos-

tulates that whenever stimulation is applied on the skin, it generates signals that are

transmitted through a gate which is controlled by the activity of large and small fibres.

It can be seen that humans possess a complex structure of interconnected networks within the

nervous system which permits a number of robust pain mechanisms, from detection, signal

activation, and transmission to the inhibition of behaviours. However as Haikonen (2012)

points out, artificial pain can be generated on a machine without involving any real feeling of

pain. In other words, artificial pain can be evolved by realising the functional aspects of pain

which is focused on a technical and practical way on how pain works and operates.
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Pain and Self-Awareness Association in Human and Robot

Evolving pain mechanisms as an integrated element of awareness within a robot is a topic

that has barely been addressed. One key reason is that self-awareness is a new area of

research in human health, so few insights have been translated into the robot realm. A small

number of papers have correlated pain with the self-awareness concept in robots and humans.

The earliest study, conducted by Steen and Haugli (2001), investigates the correlation of

musculoskeletal pain and the increase in self-awareness in people. This study suggests

that awareness of the internal relationship between body, mind and emotions enables a

person to understand and respond to neurological messages generated by the perception of

musculoskeletal pain. A different study carried out by Hsu et al. (2010) investigates the

correlation between self-awareness and pain, and proposes that the development of affective

self-awareness has a strong association with the severity level of pain. The study utilises

a self-reporting assessment mechanism in which reports were collected from people who

suffer from fibromyalgia1. Steen and Haugli (2001) used pain acknowledgement to generate

self-awareness, while Hsu et al. (2010) focused on the opposite phenomenon, namely, the

measurement of affective self-awareness to accurately acknowledge pain. A recent study

on self-awareness in robotics in relation to pain has been reported in Koos et al. (2013);

this study uses the concept of pain to develop a fast recovery approach from physical robot

damage. This work was also used in earlier studies including those of Bongard et al. (2006)

and Jain et al. (2009). The study by Koos et al. (2013) is extended in Ackerman (2013) to

produce a recovery model which does not require any information about hardware faults or

malfunctioning parts. In fact, this approach demonstrates that the recovery model proposal

disregards the importance of acquiring self-awareness in detecting pain that results from the

faults generated by robot joints.

Empathy

The term empathy was introduced by the psychologist Edward Titchener in 1909 and is a

translation of the German word Einfühlung (Stueber, 2014). Notwithstanding the extensive

studies on empathy, the definition of this notion has remained ambigous since its introduction,

and there is no consensus on how this phenomenon exists. Preston and De Waal (2002)

mention that early definitions tend to be abstract and do not include an understanding of the

neuronal systems that instantiate empathy. For instance, Goldie (1999) defines empathy as

a process whereby the narrative of another person is centrally imagined by projecting that

1widespread pain and tenderness in the human body, sometimes accompanied by fatigue, cognitive distur-

bance and emotional distress.



2.2 Robot Cognition 23

narrative onto oneself. The author specifies that it is necessary for the individual to have the

awareness that they are distinct from the other person. It is important to acquire substantial

characterization which is derivable and necessary to build an appropriate narrative. Preston

and De Waal (2002) discuss discrepancies in the literature and present an overview of the

Perception-Action Model (PAM) of empathy, which focuses on how empathy is processed.

The PAM states that attending to perception of oneself activates a subjective representation

of the other person, which includes the state of the person, the situation, and the object.

This subjective representation, if not controlled, creates correlated autonomic and somatic

responses. A discussion of the functional architecture of human empathy presented by

Decety and Jackson (2004) mentions that empathy is not only about inferring another’s

emotional state through the cognitive process, known as cognitive empathy, but is also about

the recognition and understanding of another’s emotional state, which is known as affective

empathy. This is verified by the work in Cuff et al. (2014) in a review of the empathy concept,

which discusses differences in the conceptualisation of empathy and proposes a summary of

the empathy concept formulation as follows:

Empathy is an emotional response (affective), dependent upon the interaction be-
tween trait capacities and state influences. The processes are elicited automatically,
and at the same time, shaped by top-down control processes. The resulting emotion
is similar to one’s perception (directly experienced or imagined). In other words, the
understanding (cognitive empathy) of stimulus emotion, with the recognition of the
emotion source, is not from one’s own. (Cuff et al., 2014, p.7 )

Two common approaches are used to study human brain function: functional magnetic

resonance imaging (fMRI) and transcranial magnetic stimulation (TMS). After Rizzolatti

et al. (1996) introduced the mirror neuron concept, studies on empathy focused on the neural

basis of the human brain structure and testing using fMRI and TMS. Discussions on the fMRI

approach are presented in Jackson et al. (2005) and Banissy et al. (2012), and on TMS in

Avenanti et al. (2006). Krings et al. (1997) mention that both fMRI and TMS are used to map

the motor cortex which functions to generate nerve impulses for the initiation of muscular

activities. The authors identify that fMRI is specifically utilised for identifying hemodynamic

areas, which change during an action, while TMS is used for collecting information about

the localisation and density of motoneurons, which are efferent neurons responsible for

conveying impulses. De Vignemont and Singer (2006) remark on the common suggestion

that shared affective neural networks exist that affect the reflection of emotional feelings of

oneself towards others. According to the authors, these networks are automatically triggered

whenever the other objects being observed deliver emotional displays. The authors propose

two major functions of empathy:



24 Robot Planning and Robot Cognition

1. Epistemology role. This means that empathy is used as an indicator to detect increased

accuracy in the future prediction of the actions of the other people that are being

observed. It serves to share emotional networks, which provides the associated motiva-

tion for others to perform actions. It also functions as a source of information about

environmental properties.

2. Social role. This provides a basis for cooperation and prosocial behaviour motivation,

and at the same time, promotes effective social communication.

An experimental work by Lamm et al. (2011) presents more quantitative evidence for the

neural structures in the brain, involving the elicitation of pain experiences that originate

either from direct experiences or indirect or empathic experiences. The study corroborates

the findings in the literature mentioned earlier, that is, that there are shared neural structures

and an overlapping activation between direct pain experiences and empathic pain experiences.

The results also indicate that these shared neural structures overlap each other.

Empathy with Pain

A characteristic of human empathy is the ability to experience the feelings of others when they

suffer (Singer et al., 2004). Singer et al. (2004) conducted an experiment on pain empathy

by imaging the neural stimulation of the brain using fMRI. The authors reported that some

regions of the brain form a pain-related network, known as a pain matrix. The study confirms

that only that region of the pain matrix which is associated with the affective dimension is

activated during the expression of an empathic pain experience. It also mentions that an

empathic response can still be elicited in the absence of facial expression. These findings

were confirmed by Jackson et al. (2005), who investigated perceptions of the pain of others

through the medium of photographs. The study’s experiment focused on the hemodynamic2

changes in the cerebral network related to the pain matrix. Goubert et al. (2005) asserted

that the following important points need to be considered:(i) The experience of pain distress

captured by the observer may be related to contextual factors, such as an interpersonal

relationship. (ii) The level of empathy is affected by bottom-up or stimulus-based processes

and by top-down processes or observer knowledge and disposition. The common media

used to communicate a distress level in bottom-up processes are social cues such as facial

expressions, verbal or non-verbal behaviours and involuntary actions. In top-down processes,

personal and interpersonal knowledge may affect the elicited pain response. Observer

judgement, which includes beliefs and the context of others’ pain experiences, also affect

the empathic experience. (iii) Empathic accuracy, which concerns the problem of correctly

2factors involved in the circulation of blood, including pressure, flow and resistance.
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estimating risk, plays an important role in the care of people who suffer from pain. If a

situation is underestimated, people receive inadequate treatment, while overestimation may

elicit a false diagnosis, leading to over-treatment. All these factors may have a devastating

impact on a person’s health. A topical review presented in Jackson et al. (2006) reports

that mental representation is used as a medium to relate one’s own pain experiences to the

perception of the pain of others. The authors remark that experience of one’s pain may

be prolonged as one’s self-persepection influences internal pain elicitation regardless of

the absence of nociceptive invocation. The authors corroborate the work of Goubert et al.

(2005) which suggests that the interpretation of pain representation, captured through pain

communication, may not overlap with the exact pain experienced by the other person. This

argument reflects the incompleteness of the mapping of the pain of others to oneself. In

other words, the perception of one’s own pain in relation to the pain of another shares only a

limited level of similarity, and this enables the generation of controlled empathic responses.

Loggia et al. (2008) extended this study and proposed that a compassionate interpersonal

relationship between oneself and others affects the perception of pain. With the element of

compassion, empathy-evoked activation tends to increase the magnitude of the empathic

response. Hence, one’s perception of pain in relation to other can be over-estimated regardless

of the observation of pain behaviours. Another technique that has been utilised to disclose

aspects that underlie human thought and behaviour, such as sensory, cognitive, and motor

processes, is the event-related potential (ERP) technique, as described in Kappenman and

Luck (2011). This technique, combined with a photograph-based experiment, was used in a

study conducted by Meng et al. (2013). The authors investigated whether priming an external

heat stimulus on oneself would affect one’s perception in relation to another’s pain. The

paper concludes that a shared-representation of a pain model is affected by painful primes

through an increased response in reaction time (RT).

2.2.4 Robot Empathy

This subsection reviews the literature that focuses on how the empathic element can be

assessed and the possibility of its successful implementation in robot applications.

Empathic Robot Assessment

To justify the extent to which the empathic robot has been successfully achieved, it is impor-

tant to establish measurement and assessment criteria. The assessment process can be divided

into two major categories: robot-centred experiments and human-centred experiments.
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In robot-centred experiments, robot performance is assessed by the robot’s ability to

function according to a predetermined empathic criterion, such as the ability to monitor its

internal state by identifying body parts, the ability to direct its attention between the two

levels of self, subjective awareness and objective awareness, and the ability to communicate

through either verbal or pysical gestures (hand movements or facial expression) with its robot

peers. Assessment is generally conducted according to machine performance, such as the

speed of the robot’s joints, the accuracy and effectiveness of the medium of communication

being used, and response times. Gold and Scassellati (2009) carried out an assessment

of their robot experimentations by measuring the time basis of the robot arm movements.

Specific time allocations were determined to measure the robot’s performance by observation

of the robot’s own unreflected arm. Time basis assessment was also used in a study on the

self-awareness model proposed by Golombek et al. (2010). This study detects data pattern

anomalies by generating training data models for anomaly threshold and training purposes.

The approach splits all data into data sequences with a unified time length, and when an

error occurs, an amount of time is dedicated to create the error plots for each occurence.

In an experiment conducted by Hart and Scassellati (2011), the distance of an end effector

of a robot right arm was measured from the predicted position to the recent position of the

end effector. A recent study in Anshar and Williams (2015) assessed the performance of a

robot awareness framework by measuring the predicted sequence of robot arm joint positions

with the joint sensor position reading. The overall performance of the robot framework was

reflected in low standard deviation values.

In contrast to the robot-centred experiments, where robot performance is measured ac-

cording to proprioceptive and exteroceptive sensor data, human-centred experiments are

concerned with task achievement from a human perspective. Humans are involved in assess-

ing the performance of the robot within a predefined series of human-robot collaboration

tasks. Several empathy measurement techniques are commonly used, such as the Hogan

Empathy Scale (HES), updated to the Balanced Empathy Emotional Scale (BEES), the

Interpersonal Reaction Index, the Basic Empathy Scale (BES) and the Barrett-Lennard Re-

lationship Inventory (BLRI). The HES technique proposed by Hogan (1969) is utilised to

measure cognitive elements, and its measurement process has evolved into four key stages.

First is the generation of criteria for the rating assessment, followed by the evaluation of

those rating criteria. The rating criteria are then used to define the highly empathic and

non-empathic groups. Lastly, analyses are carried out to select the items for each scale, which

function as discriminative tools between the nominated groups. The BEES was proposed by

Mehrabian (1996), and is an updated version of the Questionnaire Measure of Emotional

Empathy (QMEE) reported in Mehrabian and Epstein (1972). These techniques are designed
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to explore two social situations featuring emotional empathy, namely aggression and helping

behaviour. QMEE utilises a 33-item scale that contains intercorrelated subscales, mapping

the aspects of emotional empathy into a 4-point scale, while BEES utilises 30 items with a

9-point agreement-disagreement scale. In the IRI method, introduced by Davis (1983), the

rationality assessment of empathy is constructed according to four subscales. Each subscale

correlates to four constructs: Perspective Taking (PT), Fantasy Scale (FS), Empathic Con-

cern (ES) and Personal Distress (PD). This method is considered to evaluate both cognitive

and emotional empathy. A discussion of these three techniques is presented in Jolliffe and

Farrington (2006), in which the authors propose the BES approach. This technique maps the

empathy elements into 40 items which are used in the assessment of affective and cognitive

empathy. Barrett-Lennard (1986) proposed the BLRI technique, which is particularly used

in the study of interpersonal relationships, such as a helping relationship for therapeutic

purposes. This technique measures and represents aspects of experience in a relationship on

a quantity scale basis.

Current Achievement of Empathy Concept Implementation in the Field of Robotics

A report in Tapus and Mataric (2007) investigated the possible implementation of empathy

in socially assistive robotics. The study gave descriptions of a specific empathic modelling,

emulation and empathic measurement derived from the literature. The paper corroborates

the significance of emulating empathy into robotics, particularly in robot assistive care, as a

forward step towards the notion of the integration of robots into the daily lives of humans. A

case study by Leite et al. (2011) investigates scenario-dependent user affective states through

interaction between children and robots in a chess game. This study was extended by Pereira

et al. (2011) and involved two people in a chess game in which a robot functioned as a

companion robot to one player and remained neutral against the other player. The robot

communicated through facial expression on every movement of the player, whether it was

agreed, disagreed or was neutral. It was found that the user with whom the robot behaved

empathetically perceived the robot’s companionship as friendly.

An early study that investigated the neurological basis of human empathy in the field

of robotics was reported in Pütten et al. (2013). A human observer was shown videos of a

human actor treating a human participant, a robot and an inanimate object in affectionate

(positive) and violent (negative) ways. fMRI was used to monitor parts of the brain which

are active when an empathic response is elicited in humans. An important finding of this

study is that in positive interaction in particular, there are no significant differences in

the neural activation in the brain of the observer when empathic reactions are stimulated

during human-human interaction or during human-robot interactions, whereas in negative
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situations, neural activation towards humans is higher than it is towards robots. The study

was extended in Pütten et al. (2014), which investigates the emotional effect, the neural

basis of human empathy towards humans, and the neural basis of generating the notion of

human empathy towards robots. It was reported that the participants’ reactions included

emotional attitudes during positive and negative interactions. During positive interactions,

there was no differences in neural activation patterns were found in the human observer’s

reactions either during empathy towards human experiments or in empathy towards robots.

However, during negative interactions, when participants were shown abusive and violent

videos, neural activity increased, leading to more emotional distress for the participants and

a higher negative empathic concern for humans than for robots.

A new issue has arisen in the literature, which is the emerging notion of empathic care

robots. It is reported in Stahl et al. (2014) that such technology will potentially create

ethical problems, and there is a need to initiate a new scope of research to identify possible

challenges that will need to be addressed.



Chapter 3

Perceptions, Artificial Pain and the
Generation of Robot Empathy

This chapter discusses the elements that play a dominant role in artificial pain and the gener-

ation of empathic actions. Artificial pain generation is implemented in the pain activation

mechanisms that serve as a pain generator. This pain generator precipitates the kinds of

synthetic pain associated with the information obtained through the sensory mechanisms.

Empathic actions are then generated as counter reactions based on proposals made by the

pain generator.

Overall, there are few aspects derived from literature studies in Chapter 2 described as

follows.

1. At lower level, the proposal should cover the ability to monitor the internal state of the

robot by optimizing information derived from the robot perception. Robot perception

as the gateway to obtain information could be derived from proprioceptive sensors

(drawing information internally) and exteroceptive sensors (acquiring information from

surrounding). These stimulus are used as the main building block for the robot to build

and structure plans of actions, including anticipation possible failures.

2. At higher level, the proposal should consider the robot internal state representation in

building the planning mechanism. In terms of representation, a possible choice is by

looking into the BDI-based representation model, and for the planning itself should

include three major elements, which are:

• Automatic robot plan generation

• Debugging process

• Planning optimisation
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3. At cognitive level, the approach should utilises a model which is scientifically well

accepted, such as using computational modelling. Through computational modelling,

cognitive element is directed towards the element. The term of consciousness is to

signify the cognitive focus (the focus of attention), and should not be understood to

mean human consciousness.

4. Concept of self-awareness could be derived by switching focus of attention from

subjective elements to objective elements.

5. Proposed concept of artificial pain or synthetic pain could be originated from health

studies by considering appropriate mapping into the embodiment element of robot.

Identification process could be combined with the approach at Point 1 above. Pain

activation approach could utilise pain matrix

6. Decision approach which utilises reasoning mechanisms should allow robust analysis

within a shorter time.

7. Empathy concept could be generated by considering projection of another robot internal

state onto a robot which precipitates empathic actions.

The following sections cover more details on the aspects of perception, artificial pain

classification, pain activation and the implementation of the empathy concept in robots.

3.1 Perceptions

Perception, from the human perspective, concerns the ability to perceive objects through

the senses. As as result of this ability, humans build interpretation and understanding, and

later, become aware of the object of their senses. Mesulam (1998) points out that the

human central nervous system (CNS) is responsible for handling the link configuration

of sensory information to produce adaptive responses and meaningful experiences. In the

field of somatics 1, Hanna (1991) states that an internally perceived soma is an immediate

proprioception, which is unique data that originates at a sensory level. In terms of visual

perception, there are five kinds of visual difference that contribute to image segregation:

luminance, texture, motion, colour and binocular disparity, and visual perceivablity (Regan,

2000, p.3). Perception plays a crucial role in robotics and is one of the most important

and necessary abilities in human-robot interaction (HRI) for enabling intelligent behaviours

to emerge (Fitzpatrick, 2003; Yan et al., 2014). Yan et al. (2014) refer to perception as

1the field of study about the human body (soma) as it is perceived by the first person perception
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an acquisition function of environmental information and analysis modules. This function

divides robot perception into a lower level, concerned with the hardware and raw data,

and a higher level, which focuses on data acquisition and analysis. The authors list three

methods related to the perception in HRI, namely, feature extraction, dimensionality reduction

and semantic understanding. Feature extraction concerns the lower level while the other

two methods focus on the higher level of data extraction. Similarly, in the field of robot

fault detection, perception is associated with sensory mechanisms, which are of primary

importance as upfront error detection mechanisms. In other words, sensory mechanisms

function as the gateway for robots to capture and retrieve information about their environment.

3.1.1 Proprioception and Exteroception

Robots are enabled to capture information originating from their internal systems (propriocep-

tion) or external environment (exteroception). An early study by Watanabe and Yuta (1990)

presented the utilisation of proprioceptive and exteroceptive sensors to estimate mobile robot

positions. A self-reconfigurable robot presented in Jorgensen et al. (2004) utilises several

robot cells equipped with accelerometers and infrared sensors. The accelerometers are

responsible for monitoring the tilt angles of each robot cell while the infrared sensors gather

information about the connectivity and distance of neighbouring cells. Proprioceptive and

exteroceptive sensors were also introduced in an experimental robot used in a study reported

in Hyun et al. (2014). In this study, the external sensory information is obtained from the

feet force sensors, while the internal kinematic changes are monitored by the joint encoders.

A study by Salter et al. (2007) implemented accelerometers and tilt sensors as proprioceptive

sensors in their rolling robot experiment. Accelerometers handle robot acceleration while

tilt sensors detect the direction of tilt. Several other studies such as Anshar and Williams

(2007) and Ziemke et al. (2005) utilise exteroceptive sensors to detect the experimental

environments of robots, a vision sensor to detect environment landmarks, and a long-range

proximity sensor to detect an object on the robot pathway.

Similarly, our approach to sensory perception utilises the proprioceptive and exteroceptive

sensors which already exist in the robot mechanism. Each sensor category is used as a driving

source of pain activation, which will be further explained in the following sections.

3.2 Faulty Joint Setting Region and Artificial Pain

The literature-based study in Section 2.2.3 mentions that the thesis proposal on the evolution

of artificial pain for robots emphasises the aspect of functional pain. Stimuli are generated
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from the proprioceptive mechanisms of the robot body parts and this process mimics subjec-

tive awareness, which reflects the element of embodiment, known to be one of the features of

consciousness (Takeno, 2012). The proprioceptive mechanisms detect and capture any fault

occurrences, and then assign a specific intensity value to them to determine the level of pain

to be invoked. At the same time, these mechanisms generate a reactive behaviour as a counter

response which is relevant to the pain experience. Our artificial pain concept is inspired by

the definition of pain proposed by Woolf (2010), and our proposal for the classification of

artificial pain is developed accordingly. Three classifications of artificial pain are derived

from the pain definition in Woolf (2010), and for each class, we assign a designated pain

intensity level derived from Zhu (2014). The term synthetic pain is introduced whenever

the kinds of pain classification are referred to. Descriptions of the proposal are presented in

Table 3.1, and details of each category, which relates to the varieties of synthetic pain and

their causes, are discussed in the following subsections.

Table 3.1 Artificial Pain for Robots

Category Synthetic Pain Description Definition Intensity Level

1 Proprioceptive Pain 1.0 Potential hardware damage, as an alert signal "None", "Slight"

2 Inflammatory Pain
2.1 Predicted robot hardware damage "None", "Slight"

2.2 Real robot hardware damage "Moderate", "Severe"

3 Sensory Malfunction Pain
3.1 Abnormal function of internal sensors "None", "Slight"

3.2 Damage to internal sensors "Moderate", "Severe"

3.2.1 Proprioceptive Pain (PP)

This class of synthetic pain is instigated by stimuli from either internal proprioceptive sensors

or from exteroceptive sensors in the form of an empathic response. The pain serves as an alert

signal to plausible actual damage as a result of the stimuli received from the environment

where the body parts being monitored are involved in an interaction. The type of response to

be generated is associated with the sensitivity of the current stimuli and future prediction. It

may directly influence an element that will boost the activation process (booster), but it is

less likely to activate the pain generator. This kind of pain typically occurs as the robot mind

predicts changes in the environmental stimuli, and the robot is required to pay attention to

the possibility of future pain. Hence, no true counter actions result from the activation of this

type of pain. In other words, these counter reactions simply reside in the robot’s memory for

future reference.
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3.2.2 Inflammatory Pain (IP)

As the robot experiences the PP up to a level that the robot can endure, the robot mind

keeps the reasoning process going while continuing to monitor the affected joints. If there

is an increased level of stimulus and the alert signals do not subside, the robot evokes the

IP and triggers the generation of counter actions as a response to the IP. Counter responses

may involve the generation of new joint movements dedicated to alleviating or reducing the

severity of the pain’s impact. For example, a six-legged robot that suffers from a broken leg

could counteract by generating an alternative walking gait. Evoking this kind of pain will

directly overrule the booster and cause changes in the robot’s consciousness by switching

robot awareness into the subjective element. The selection of the region of awareness is

determined by the level of pain being evoked. Whenever the reasoning process predicts that

the proposed alternative actions could lead to further damage (the PP is activated), the robot

mind prepares counter reactions, such as stopping the robot from walking. However, if the

change in stimuli is very rapid, the robot immediately generates the IP without invoking the

PP.

3.2.3 Sensory Malfunction Pain (SMP)

This kind of pain is related to an internal sensor which may create alarm signals that are

false-positive or false-negative. A false-positive alarm means that the sensory malfunction

affects the mind and generates an overestimation of the incoming sensory information. This

situation may lead to the generation of an unnecessary counter response at the time of

detection. By contrast, false-negative alarms are generated as a result of underestimated

detections. This kind of pain is originated from physical damages to the internal hardware of

the robot’s sensory mechanism. The robot has a higher chance of suffering from an increase

in the severity of the pain as the robot mind does not produce appropriate counter responses

to the pain. A prolonged experience of this kind of pain may lead to a catastrophic impact

on the robot hardware. In this situation, the robot reasoning system plays a crucial role

in detecting and justifying any hardware issue related to the internal sensor functionalities.

Furthermore, the mind may provide a possible diagnosis if the abnormality function occurs

as the result of internal damage to the sensor.

The activation procedure for each synthetic pain category is depicted in Figure 3.1. The

horizontal axis represents the activation time measured in cycles of data sequence and the

vertical axis represents the pain level for each synthetic pain category with respect to the

time of activation. At time t1, the kind of PP is activated at the Slight level and as the level

increases to Moderate ( t2 == t5), the IP is evoked at the Slight level. In this situation,
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Fig. 3.1 Synthetic Pain Activation PP and IP
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robot reasoning can still follow the change in stimuli obtained from the sensory mechanisms.

However, if the change in stimuli occurs rapidly, to an extent that the mind cannot cope,

the IP will be generated regardless of the PP results (shown at time t5). In contrast, the

SMP activation occurs independently as the robot mind continues to monitor its own sensory

mechanisms (see Figure 3.2).

Fig. 3.2 Synthetic Pain Activation SMP

3.3 Pain Level Assignment

The region in which each body part motion occurs determines the pain level. The motion of

robot joints, typically, could be divided into two motions (Spong et al., 2006):
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1. Rotational where the motions are measured in radian or degree of revolution. This mo-

tions cover several types of robot joints, such as rotational (rotary), twisting, orthogonal

and revolving joints.

2. Lateral where the motions are measured in length of displacement. This motions refer

to the linear or prismatic joints

The pain level is assigned by measuring the distance between the position of the respective

body part in the region and the threshold values assigned by the robot awareness framework

(see Figure 3.3). The physical motions associated with the joint movements of the robot

hardware are actively monitored by the sensory mechanisms, which contain proprioceptive

and exteroceptive sensors. The further the distance from the threshold value, the higher the

pain level to be assigned. The threshold values can be manually designed by the human user

and placed in the database as a reference (static threshold), or they can be generated and

configured autonomously by the robot framework itself (self-generated).

Fig. 3.3 Pain Region Assignment

3.4 Synthetic Pain Activation in Robots

To generate synthetic pain in robots, we set the joint restriction regions to specified values and

each region determines the level of pain and the kinds of synthetic pain that the regions will

invoke. These joint restriction regions are referred to as threshold values, and represent the

areas in which the robot joints should not move. This concept simulates human movement;

for example, people who suffer from shoulder pain, in which the pain occurs when the

arm is moved into specific positions. Patients with this type of musculoskeletal problem

tend to avoid moving the arm attached to the affected shoulder into those positions. Hence,
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restrictions are introduced to the affordability space of the body part, such as the rotation of

the shoulder.

Two approaches are introduced in order to generate synthetic pain: a simplified fault

detection-based model (simplified pain detection) and a pain matrix model, as described in

the following subsections.

3.4.1 Simplified Pain Detection (SPD)

The assessment criterion for the Simplified Pain Detection (SPD) model is whether the

current arm position, which is obtained either from proprioceptive or from exteroceptive

sensors, is higher than any of the joint restriction values. If this condition is satisfied, the

SPD model generates a set of recommendations to the Robot Mind for further reasoning.

These recommendations are shown in Table 3.2.

Based on aspects derived from literature studies, as mentioned early in 3, Belief terminol-

ogy is used to represent the internal state of the Robot Mind. Details of all information that

form the Belief of the robot is explained in Chapter 4. For early development, the Belief is

divided into several states, which is called Belief State, as described below:

1. Current which refers to the result of the reasoning process of the Robot Mind with

information obtained from perception

2. Prediction which refers to the result of the reasoning process of the Robot Mind with

information derived internally from prediction processes

3. Special which refers to the result of the reasoning process of the Robot Mind with

special conditions, such as anomaly data from sensory system. The Robot Mind

should treat this information differently as it might cause the reasoning proposes a

false diagnosis. This state is strongly related to generation of the synthetic pain type

Sensory Malfunction Pain (SMP)

It can be seen that whenever the Belief State of the framework is Current, only one

recommendation is activated, namely whether the Mind State is Constrained, and other

recommendations are disabled. When the Belief State is Prediction, all the recommendation

elements are activated, giving more information about the occurrence of future pain. In the

SpecialCases condition, the reasoning process makes more critical analyses of the incoming

data and establishes whether the sensor has a temporary faulty function, which means there

is no problem with the sensor hardware, or that the fault readings have occurred as the result

of defective/broken sensor hardware which requires extra attention, such as the replacement

of permanent hardware.
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Table 3.2 SPD Recommendation

No Belief State Recommendation
Mind State Initiation time Alert time Data Alert Time Details

1 Current Constrained/ Unconstrained Disabled Disabled Disabled Disabled

2 Prediction Constrained/ Unconstrained Activated Activated Activated Activated

3 Special Cases Constrained/ Unconstrained Depend Dependent Dependent Dependent

Data Representation

The discussion of pain generation analysis is presented in a functional or mathematical

model, which is by nature a psychophysical model (Regan, 2000, pp.26-27). The functional

property of the model follows the assessment criteria mentioned previously (Subsection

3.4.1). The collection time of information from the sensory mechanism is represented as

T. The representation of data which is sampled at a time of ti is dti . This data originates

from proprioceptive or exteroceptive sensors. The whole collection of data sequences is

represented as

i<T

∏
ti,i=0

dti

The value of ti is collected from the initiation of the detection time, and the time span of the

data collection follows Criterion 1 below.

dti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i = m = 0, initiation of detection time

i < T, time span of data collection

i = m, sampling data length

The kinds of synthetic pain to be invoked are derived from the data obtained, whether

the Belief State categorises those data as Current, Prediction or SpecialCases, for which

sensory assessment is required. Whenever the Belief State is SpecialCases category, the data

is considered to be noisy, due to faulty readings or defective sensors. The pain assignment

guideline for each belief state category follows Criterion 2.

painclassbelie f state =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

belie f state = current, pain class: IP

belie f state = prediction, pain class: PP

belie f state = sensoryassessment, pain class: SMP
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The corresponding pain level to be generated follows Criterion 3, which is derived only from

the comparison between the assessed data and the joint restriction values jti.

painlevi(where:i<=3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dti < jt1, pain level: None

dti > jt1, pain level: Slight

dti > jt2, pain level: Moderate

dti > jt3, pain level: Severe

3.4.2 Pain Matrix (PM)

Unlike the pain activation mechanism in the previous model, the Pain Matrix (PM) model

uses a more sophisticated approach by introducing system properties which are formed by

the interconnectivity between several modules integrated into a matrix (as shown in Figure

3.4). Four major modules work together to form the framework of the Pain Matrix, described

Fig. 3.4 Pain Matrix Diagram

as follows:
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1. Pain Originator (PO). This module works by combining information derived from

external source, which is from sensory mechanism, and from internal source, which is

the Booster. Whenever value resulting from Pain Originator is higher than the internal

threshold value, which is set by the Robot Mind, then it will fire the next module,

Signal Distributor.

2. Signal Distributor (SD). Taking the firing data from the PO module and comparing

it with the data derived from the exteroceptive sensor, the Signal Distributor module

further modifies the Robot counter reactions whether internally or externally. Internal

reaction will affect the consciousness direction (through the medium of Consciousness

Modifier) and external reaction will activate the Response Modifier module. By taking

information from exteroceptive directly, the SD module has the ability to guarantee

that the recommendation for the PO module is proportional to the current situation

facing by the robot.

3. Booster (Bo). This module influences the PO module by taking recommendations

from the Robot Mind, whether the changes in Consciousness Direction directed by

the Consciousness Modifier module or by the reasoning process run internally by the

Robot Mind. This influence may further boost the generation of pain level or alleviate

pain generation.

4. Response Modifier (RM). This module selects the most appropriate actions taken with

respect to the kind of synthetic pain and the level of pain.

The robot awareness status plays a crucial role in determining the Pain Originator module

by influencing the activation of the Booster module. During empathic actions, the Pain

Originator disregards data from the proprioceptive sensor and sets the focus of attention

on the object of the robot’s exteroceptive sensors. When no information is retrieved from

the sensory mechanisms, the framework initiates internally, which means that no pain

is generated. Empathic actions are generated by taking only the information from the

exteroceptive sensors. The Consciousness Modifier and the Response Modifier modules

may affect the Consciousness Direction of the framework. The overall functionality of

the Pain Matrix is shown in Table 3.3. When the initiation of consciousness direction

occurs internally, only the Booster, as the element of the Pain Matrix, is activated, hence

the sensory mechanisms and other elements of the Pain Matrix are eliminated from taking

part in determining the internal state of the robot; that is, the Booster will not be activated.

In this situation, only information retrieved from the proprioceptive sensors drives the Pain

Originator module. If the signal from the Pain Originator is below a certain threshold defined



3.4 Synthetic Pain Activation in Robots 41

Table 3.3 Pain Matrix Functionality

Robot Mind Element Initiation Consciousness Direction
Internally Externally

Proprioceptive Exteroceptive

Awereness Framework
√ √

Paint Matrix ——————————— ——————————— ——————————— ——————————————

Booster
√ √ √

or ×
Pain Originator Ignored

√ √
or ×

Signal Distributor Ignored
√ √

or ×
Consciousness Modifier Ignored

√
or × √

or × Framework + Pain Matrix

Response Modifier Ignored
√

or × √
or × Framework + Pain Matrix

Activated Pain ——————————— ——————————— ——————————— ——————————————

Proprioceptive None
√ √

or ×
Inflammatory Reduction None

√
or × √

or ×
Sensory Malfunction None

√
or × √

or ×

Responses ——————————— ——————————— ——————————— ——————————————

Self Response
√ √

or ×

Empathy Response
√ √

or ×

by the Robot Mind, the Signal Distributor deactivates the Consciousness Modifier and the

Response Modifier. As the robot joint moves and is monitored by the awareness framework,

the Pain Originator accumulates information. If the information obtained contains false

information, the Consciousness Direction will activate the Booster and provide counter

feedback, reducing the values of the accumulated information in the Pain Originator. In

this way, the PM prevents the activation of the Consciousness Modifier and the Response

Modifier. The focus of attention is thus still fully governed by the internal awareness

framework with no influence from the PM, and the robot does not deliver and experience

any synthetic pain. When joint motions approach the faulty joint regions, the awareness

framework detects and predicts the incoming information. In this situation, the Booster is set

to activate and modify the accumulated information obtained from the proprioceptive sensors.

The pattern of the accumulation data changes may differ from time to time, producing either

a gradual or dramatic increase. The distance from the thresholds will justify the activation

of the Consciousness Modifier and the Response Modifier. Once the threshold values

have been exceeded, the two modifiers will play their roles in influencing the Robot Mind.

This action may change the focus of attention of the Robot Mind through Consciousness

Direction modification and the generation of action responses to the synthetic pain the robot

is experiencing. In the case of empathy generation, the robot’s exteroceptive sensors may

affect the accumulation values of the Pain Originator. Similarly, they may also modify the

accumulation values of the Signal Distributor to determine whether the Response Modifier
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should influence the Action Engine to provide empathy responses to the object of empathy.

These empathy responses may include approaching the object and providing assistance.

Pain Generation Analysis

The proposal contains functional system properties that are formed by the interconnectivity

between the elements of the Pain Matrix. The Pain Originator calculates the overall data of

the proprioceptive sensor and the Booster following Equation 3.1) below:

painorgti =
i<m<T

∑
ti,i=0

(prioti +(±boostti)) (3.1)

where prioti refers to data being collected from the proprioceptive sensor at a specified time

ti, and boostti represents the value of the Booster being injected into the Pain Originator at

the time of data being gathered from the proprioceptive sensor. The value of boostti could be

either to amplify or to attenuate the impact of data from proprioceptive sensor in the pain

level generation of the painorg.

The Pain Originator will only prime the Signal Distributor if the accumulated data is

greater than the threshold value assigned by the robot awareness framework (Criterion 4).

Δ painorgti > (painorgti − painorgthresholdti)

The higher the value of Δ painorgti the higher the pain level generated by the Pain Originator.

This value corresponds to the activation of the Consciousness Modifier as determined by

Criterion 5 below.

Δsigdistti > (Δ painorgti − sigdistthresholdti)

3.5 Generation of Robot Empathy

A key point in the realisation of robot empathy is the projection into the robot of the internal

state of an external object as an object of attention. This approach is inspired by the work of

Goldie (1999), which emphasises that the process of a centralised imagination of another

person’s narration occurs through the projection of an object into oneself, and that this

corresponds to the empathy process. Thus, there are three major aspects of our robot empathy

generation, which are:
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1. Robot Embodiment. Embodiment, which is considered to be a feature of consciousness,

will allow any physical part of the robot to be an object of the robot’s own attention.

This condition simulates the conceptualisation of the subjective element of robot

self-awareness. The state of the embodiment is actively monitored through the robot

proprioceptive sensor. When the focus of the robot’s attention is directed towards

a specific robot body part, the information retrieved from the proprioceptive sensor

becomes highly prioritised for thorough assessment.

2. Internal State Projection. By utilising its exteroceptive sensors, a robot observes the

body motion of another external object over time. The projection of the internal

state of the target object commences by capturing the body motion information of the

observed object. This information is assessed by projecting the motion data space into

a data coordinate space. This projection corresponds to the fusion process between the

observer robot and the object being observed.

3. Synthetic Pain Assessment. Conversion of the data coordinate space into a joint robot

space.

3.5.1 Empathy Analysis

During empathy activation, the Pain Originator includes the information from the exterocep-

tive sensor, and the result is Equation 3.1 modified to Equation 3.2.

painorgti =
i<m<T

∑
ti,i=0

(prioti +(±boostti)+(±exteroti)) (3.2)

where exteroti represents data being collected from the exteroceptive sensor at the time of

painorg generates pain level. Similar to the boostti , its value could be either amplify or to

reduce the effect of information gathered from the exteroceptive sensor.

It can be seen that information captured from the exteroceptive sensors of the observer

robot, such as the vision sensor, plays an active role in determining the internal projection of

the robot being observed into the observer robot. When this process yields to the generation

of synthetic pain, the priming of the Signal Distributor also considers the additional data

from the same external sensor. This mechanism is designed to keep the external source of

information as the basis of the Pain Matrix functionality (see Equation 4.1).

sigdistti =
i<m<T

∑
ti,i=0

(Δ painorgti +(±extero2ti)) (3.3)
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The value of Δ painorgti is derived from Criterion 4 and Consciousness Modifier activation

follows Criterion 5.



Chapter 4

Adaptive Self-Awareness Framework for
Robots

This chapter presents the proposed framework which is used as a benchmark for integrating

the conceptualisation of artificial pain and empathy generation with the robot mechanism.

An overview of the structure of the framework and outline of its key elements are discussed

in the sections that follow.

4.1 Overview of Adaptive Self-Awareness Framework for
Robots

The adaptive self-awareness framework for robots, known as ASAF, is comprised of several

elements, as shown in Figure 4.1. There are a number of predefined values which are constant

values determined by an expert user and these values remain the same throughout the applica-

tion. They are subject to redefinition by the expert user for different applications. Important

elements of the ASAF, that is, Consciousness Direction, Synthetic Pain Description, Robot

Mind, Action Execution and Database, are discussed briefly in the following subsections.

4.1.1 Consciousness Direction

We utilise the concept of consciousness as the ability to redirect attention between the two

levels of awareness, as proposed by Lewis (1991). Our robot consciousness, therefore, refers

to the cognitive aspect of the robot that is used to specifically signify the focus of the robot’s

attention. There are two predominant factors in directing robot consciousness:

(i) the ability to focus attention on a specified physical aspect of self, and
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Fig. 4.1 Adaptive Robot Self-Awareness Framework (ASAF)

(ii) the ability to foresee, and at the same time to be aware of the consequences of predicted

actions.

Our proposal formulates how to address these two aspects so that they can be developed and

built into a robot self-awareness framework, and so that the detection of synthetic pain can

be acknowledged and responded to in an appropriate way. Robot awareness is mapped to a

discrete range 1 - 3 for subjective elements and 4 - 6 for objective elements. In other words,

the robot’s cognitive focus is permutable around these predetermined regions. Changing

the value of Consciousness Direction (CDV) allows the exploration of these regions, and at

the same time, changes the focus of the robot’s attention. It is important to keep in mind

that our subjective elements specify the physical parts of a robot, such as robot motors and

joints, and that the objective elements signify the metaphysical aspects of the robot, such

as the robot’s representation of its position in relation to an external reference. The Robot

Mind sets the CDV and determines the conditions for the exploration of robot awareness

regions, whether these conditions are constrained or unconstrained. The structure of the

robot awareness regions and CDV are shown in Figure 4.2.

4.1.2 Synthetic Pain Description

To generate synthetic pain in the robot, we set the robot joint restriction regions that are to

be avoided. These joint restriction regions contain values of joint robot positions that are

considered to be faulty joint values. Synthetic pain can then be generated when the robot joint

moves into this region, as described in the previous chapter. Joint movement is monitored
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Fig. 4.2 Robot Awareness Region and CDV

by the proprioceptive sensor of the robot, and this information can subsequently be used

by the Robot Mind to reason and determine the kinds of pain to be evoked. The method

of determining the pain category to be evoked is implemented in the SPD and Pain Matrix

models.

4.1.3 Robot Mind

Once the reasoning of the Robot Mind indicates that the joint movements are tending towards,

or have fallen into, these restricted joint regions, the Robot Mind performs three consecutive

actions:

• Setting the robot awareness into a condition of constraint.

• Modifying the CDV, which will shift the robot’s focus of attention to the subjective

element of its awareness.

• Providing counter response actions by collecting available pre-defined sets of counter

response actions (Event-Goal Pairs stored in the Database), such as alerting human

peers through verbal expressions and increasing robot joint stiffness.

The components and pathways of the overall reasoning of the Robot Mind are illustrated

in Figure 4.3.

It can be seen from the figure that the Robot Mind is divided into two levels: (1) Body,

which concerns with physical elements; and (2) Mind, which lies on the meta-physical

level. The agent’s motoric and perceptive systems are the two main factors affecting the
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functionalities of the Body. These two factors serve as the gateway for the robot to interact

with the environment, either changing robot’s spatial positions with respect to its environment

(locomotion purposes) or to gather information from the environment(sensing purposes). On

the Mind level, several elements together form a framework which constitutes to the Mind’s

performances. A Belief set which contains current values of beliefs that the Mind have,

including conditions that satisfy each belief to occur. This Belief set is sent and stored as a

history in the Database along with associated conditions and other previous data. From the

current Belief set, the Mind originates the Event-Goal Pair Queue. A Plan Library is formed

by utilizing the data kept in the Database. Three data, Event Goal Pair Queue, Plan Library,

Database, are sent to the Causal Reasoning process for an assessment process. This reasoning

process analyses those three data and compared with the data from the Belief set. This phase

produces first level of recommendation and to be propagated back to the Event-Goal Pair

Queue and the Database for updating purposes. The first level recommendation sets the

goals of the Intention Engine, producing the second level of recommendation. The logic

engine which contains the AND - OR Functions further reformulate the recommendation and

send them to the Intention Execution Engine. This recommendation activates corresponding

Primitive Actions which affect the Motoric Systems of the robot. This cycle then repeats for

every new incoming Belief set.

Overall, the behaviour of the Robot Mind can be explained as the following: the values

of faulty joint settings and the limit of the consciousness region areas are defined and placed

in the Database. Once the collaborative task involving human and robot has taken place, the

Robot Mind sets the robot’s awareness to a random state. This means that the robot’s attention

may be focused in one of six regions by random selection of the CDV. Once selected, the

Robot Mind is set in an unconstrained condition, allowing task execution and collaboration

to proceed. Although the awareness is focused on the previously selected region, the Robot

Mind at the same time monitors its proprioceptive sensor, that is, the arm joint sensors

which are physically involved in the interaction with a human peer. Changes in the joint

sensor readings produce changes in the pattern, and these changes are captured and used

as the reasoning element of the Robot Mind. As the joint moves, the robot’s Belief, Desire
and Intention are subjected to change and the Action Executions transform the results into

primitive actions for execution. For every prediction that may introduce higher risk of the arm

joint experiencing faulty joint settings, the Robot Mind alters the CDV, causing awareness

to to be focused on the robot arm (Subjective Awareness) and at the same time, the robot’s

internal state is set to constrained. Once this situation has been reached, the robot’s joint

stiffness is set to a maximum value and the human peers are alerted by verbal notification.

As the Robot Mind’s working domain is part of the internal state of the robot, we utilise the
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terminologies Beliefs, Goals, and Intentions (BDI) to represent the internal processes of the

mind. All the elements in BDI reside in the database of the framework which are accessible

during the activation of framework.

A simple scenario when the robot moves and finds obstacle in its path. The robot

perception (Body level) senses the existence of external object in its path and forms the

current belief that obstacles is detected. The Mind also structures conditions that satisfy the

criteria as obstacles detected, such as the spatial information of the obstacle with respect to

the robot position or other information. Details of information gathered can be summarised

as the following:

• Spatial information:

– Distance to the current position of the robot.

– Position whether it is on the left or right side of the robot.

• Current states before obstacle detected:

– Beliefs state.

– Goals state.

– Intentions state.

– Logic state (AND - OR Functions).

– Active Plan Library.

– Active Event-Goal Pair Queue.

– First and second recommendation states.

– Current pointer of the Database which informs element of data being accessed.

• Miscellaneous information such as visual information captured at the time obstacle

being detected.

This set of information forms the current Belief state of the Mind which will be further

processed. The new Event-Goal Pair Queue is then constructed along with the Plan Library

which maps the manifestation of how the event-goal pairs are achieved (first recommendation).

The Causal Reasoning assesses the validity of the first recommendation whenever the Belief

state changes again. If there is no changes occurred, the Causal Reasoning proceeds the

reasoning process and produces the second recommendation to be passed to the Logic -

AND OR Functions and to the Intention Engine. The AND - OR Functions then govern the

Intention Execution Engine which activates the Primitive Actions to be executed to avoid the
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obstacle. If the Perception Systems detect that the changes occur instantly, then the Logic

element, AND-OR Function will over-write the reasoning process and decide the action of

the Intention Execution Engine by only analysing the current Belief state (obstacle detected)

and previous state of the Intentions. This situation occurs when the reasoning process could

cause the robot being late in taking proper and accurate actions which could lead the robot to

bump into the obstacle.

4.1.4 Database

The Robot Database contains a set of predefined Consciousness Regions, a set of faulty joint

settings corresponding to areas of joint pain, pre-recorded sequences of arm joint position

movements, Event-Goal pairs and temporary arm joint position readings. Elements of this

database are shown in Table 4.1.

Table 4.1 Elements of the Database

No
Elements

DescriptionsBelief

1 Pain Definition Pre defined joint values (Permanent)

2 Primitive Actions Predefined (Permanent)

3 Current Joint Values Subject to change (Temporary)

4 Time of Collection Subject to change (Temporary)

5 Predicted Joint Subject to change (Temporary)

6 Time of Occurrence Subject to change (Temporary)

7 Pain Classification Subject to change (Temporary)

Desires / Goals
8 Pain Evocation Subject to change (Temporary)

9 Empathy Activation Subject to change (Temporary)

10 Responses Subject to change - Event-Goal Pairs (Temporary)

Intentions
11 Verbal Warning Subject to change (Temporary)

12 Responses to Actions Subject to change (Temporary)

4.1.5 Atomic Actions

The Action Execution module is responsible for translating each decision into one of three

intentions: (i) Send alert, (ii) Shift the awareness level through CDV, or (iii) Modify joint
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stiffness values in the robot’s body. If the decision is to maximise joint stiffness, the robot

will disregard any external physical interaction, e.g., interaction with a human. By increasing

stiffness, the robot joint will resist any force generated by physical interaction, and as a result,

the robot will be prevented from experiencing the faulty joint settings. Sensing the resistance

of the robot joint, the human will realise that the robot is no longer willing to be involved in

the interaction.

4.2 Reasoning Mechanism

The Robot Mind can utilise causal reasoning, as reported in Morgenstern and Stein (1988),

Schwind (1999), and Stein and Morgenstern (1994), to draw conclusions from its perceptions.

Our idea of reasoning is derived from human cognitive competencies that incorporate the

cause and effect relationship (Reisberg, 2013). This enables our framework to allow robots

to adapt to the world by predicting their own future states through reasoning about perceived

or detected facts. We integrate our approach with sequential pattern prediction (Agrawal and

Srikant, 1995; Laird, 1993) to capture the behaviour of the observed facts and then use them

to predict possible future conditions.

In ASAF, a robot’s decision making is built on associative theory (Schwind, 1999), which

utilises covariance information obtained from data sequences to facilitate the causal reasoning

process. The Robot Mind analyses the relationships in the covariance of the data obtained

from the robot’s proprioceptive sensor, that is, the joint position sensor, and derives the

sequence data pattern. The prediction process only takes place after several sequences of

data have been generated to reduce analysis bias. Any decisions made as a result of previous

sequence predictions are reassessed according to the current state, and the results are either

kept as history for future prediction, or amendment actions are implemented before the

decision is executed. This cycle repeats only if the current data and predicted values in the

restricted region that refers to the painful joint settings are not classified.

4.2.1 Pattern Data Acquisition

Raw data from sensory mechanisms are collected and arranged according to retrieval time,

and these data are analysed to determine the covariance data. By substituting the data

covariance into the latest raw data obtained, the prediction data can obtained. This process

is discussed in the following subsubsections, and mathematical representations are derived

from the previous chapter, Chapter 3.
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Raw Proprioceptive Data

The interaction occurs within a specified constant time span, T. The representation of the

data collected at a specified time ti is ∏i<T
ti,i=0 dti , dti represents a joint value at a specified time

ti, where the value of ti is determined by:

ti =

⎧⎨
⎩

i = 0, initiating experiment

i < T, time span of experiment

Data Covariance

Data covariance is derived from the difference between the last joint values obtained and the

previous values, as depicted in Equation 4.1:

Δ int = dtT −dtT−1
(4.1)

Prediction Data

Data covariance is used during the process of analysis to formulate a sequence of prediction

data, allowing the system to reproduce a new set of prediction data sequences. By substituting

Equation 4.1 into the obtained data, dti , we can obtain the sequence of the prediction data

shown in Equation 4.2.
i<T̄

∏
ti,i=m

d̄ti =
i<T̄

∏
ti,i=m

(dti +Δ int) (4.2)

d̄ti represents the prediction data at sequence time ti, where the values of ti are determined by

(Criterion 6):

ti =

⎧⎨
⎩

i = m, data at time m analysing process is initiated

i < T̄ , discrete time of prediction

where T̄ refers to the total number of prediction sequences, and the value of m must satisfy

the following conditions (Criteria 7):

ti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cs > 0, total similarity of the obtained joint values reference

cd > 0, total difference of the obtained joint values reference

cu >> cd;cu >> cs,unique data
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4.2.2 Causal Reasoning

The overall decision-making process of a robot using the ASAF with the synthetic pain

activation mechanism is illustrated in Figure 4.4.

After prediction process takes place, the Mind originates the Event-Goal Pair Queue. A

Plan Library is formed by utilizing the data kept in the Database, then the Causal Reasoning

process further assesses the Event-Goal Pair Queue which produces first level of recommen-

dation and to be propagated back to the Event-Goal Pair Queue and the Database for updating

purposes. In a case of first level recommendation suggesting to modify consciousness level as

a result of violation to the restricted joint values, the Robot Mind will constrain the conditions

of the exploration of robot awareness regions followed by changing consciousness level to

the highest level of subjective awareness region. Updating consciousness is achieved by

changing the value of CDV which allows the exploration of these regions, and at the same

time, changes the focus of the robot’s attention.

Before running an experiment, an expert user sets the Robot Mind as online or offline

and specifies whether an SPD based-model or Pain Matrix-model is used. The Robot Mind

initially sets the CDV to a random state (this can also be pre-set by the user) enabling the

consciousness to select an awareness under unconstrained type. The incoming data from the

elbow joint of the robot feeds the reasoning process. The prediction process takes places

when the quantity of incoming data satisfies a minimum amount of data collected from the

sensory mechanism, which remains the same throughout the process.

Criterion 6 is followed, ti where i = m and m equals c− constant number o f data and

the value of c is a constant value defined by the expert user.

Once the quantity criterion has been met, the incoming data is assessed to determine

whether the pattern of the Joint Data is similar or different from the pattern of the previous

data, otherwise it is categorised as unique data. The reasoning and prediction processes then

take place by modifying the Beliefs and updating the Database for any changes. The Robot

Mind chooses the most suitable recommendation based on the current Beliefs and passes

this recommendation to the Goals. This recommendation covers the interval time of pain

occurrence, type of warning to be generated, the state of awareness and the kind of synthetic

pain to be evoked. Based on this recommendation, the Intentions are derived and sent to the

Action Execution Engine. There are three possible actions to be performed by the Action

Execution Engine: activating the alert system, setting the joint stiffness and updating the

consciousness region.



54 Adaptive Self-Awareness Framework for Robots

In practical, causal reasoning is performed in the following manner. As the robot hand

moves, the perception generates a sequence of joint positions and the total number of

sequences is set to a specific value. When this value is achieved, the reasoning process

proceeds by firstly determining the pattern of the joint position sequence data. There are

three types of pattern which are defined in this experiment:

1. Different values:

• Uniform increased values

• Uniform decreased values

2. Similar values

3. Unique values

In most cases, if the pattern is categorised as Similar values, then the reasoning process most

likely recommends that there is no changes occur in the robot hand position. This means that

the Robot Mind is aware that there is no physical pushing to the robot hand, and as a result,

there is no possibility that synthetic pain is generated. If the pattern matches the Different
values, the reasoning process commences only after awaiting another additional number of

sequence of joint position values. When this additional number of sequence is obtained, the

Mind starts generating a set of possible future joint position values by taking the different of

the current joint value and the previous joint value then accumulating them. From this set of

predicted joint position values, the reasoning process maps into the restricted joint values

and assesses the validity of the synthetic pain recommendation.
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Fig. 4.3 Robot Mind Structure
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Fig. 4.4 Robot Mind Reasoning Process



Chapter 5

Integration and Implementation

This chapter provides details of the integration of the proposal and the concept of synthetic

pain and empathy with pain into the Adaptive Self-Awareness Framework robot framework,

the Adaptive Self-Awareness Framework (ASAF).

5.1 Hardware Description

As a proof of concept, the experiment utilises a humanoid robot platform, NAO Aldebaran,

and the right arm joint is the preferred joint for artificial pain implementation (depicted in

Figure 5.1). Several important features are described in Appendix B and for the complete

description of the hardware, see Aldebaran (2006).

5.2 Experiment

The implementation of the ASAF, as mentioned in Chapter 4, is summarised in five key

issues as follows.

1. The realisation of self-consciousness has two elements:

i. the ability to focus attention on specific physical aspects of self

ii. the ability to foresee and consequently, to generate, counter responses as empathic

actions.

2. The elements of the position of the right arm joint dti and time corresponding to the

collection time ti are obtained by the joint position sensor (proprioceptive). These two

data constitute the joint data and the time data.
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Fig. 5.1 NAO Humanoid Robot (Aldebaran, 2006)

3. The reasoning process produces response times which are derived from the time data

prediction for the data of a specified arm joint motion.

4. The Robot Mind states are divided into two conditions:

i. unconstrained, where the Robot Mind is allowed to explore its entire conscious-
ness region, e.g. Region 1 to Region 6. This condition occurs by default and it

may change throughout the interaction process.

ii. constrained, where the Robot Mind is limited to the highest level of subjective

consciousness, i.e. Region 1.

Overall, the change in the state of the Robot Mind, subsequently, affects the aware-

ness of the robot. Hence,the terms constrained and unconstrained also apply on the

Awareness Type of the robot.

5. Empathic experiments are specifically designed to evolve empathic reactions with

human shoulder pain as an object of observation.
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Two experimental set-ups are prepared which cover the implementation of a non-empathic

experiment and an empathic experiment, each of which involves SPD-based and Pain Matrix-

based pain activation methods.

5.2.1 Non-empathic Experiment

During the non-empathic experiment, two agents, the NAO robot and a human peer, interact

in a shared-task in a static environment; in this case, a hand pushing task and the experiment

are divided into offline and online scenarios (the robot set-up is shown in Figure 5.2). In the

Fig. 5.2 Non Empathic Experiment

offline scenario, the experiment has two stages. In stage one, the robot does not have the

awareness framework in the interaction between the robot and the human peer. The purpose

of the stage one experiment is to collect a set of elbow joint data - Joint Data and Time Data
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- and to place them in the robot database. Two types of action are used to collect the data

sets: (i) without physical interaction (phase 1), and (ii) with physical interaction (phase 2).

With physical interaction means that the human peer reacts by pushing the arm of the robot,

while without physical interaction means that the human peer remains standing in front of

the robot without performing a pushing action. Each phase contains five trials that make up

a set of ten data sets in total. In the next stage, only the robot with an activated awareness

framework performs the actions, without the involvement of a human peer. The experiment

is simulated in the robot’s mind, and the data for interaction is injected from the datasets

obtained from the previous stage and stored in the agent database. This experiment produces

an additional set of six datasets, containing data predictions. This stage is designed to first

evaluate the mind simulation of the robot’s reasoning performance through its ability to shift

its consciousness using pre-recorded elbow joint datasets. Second, it is designed to measure

the accuracy of the agent’s reasoning skills through the ability to predict and generate accurate

pain acknowledgement, and the counter-responses carried out by the intention execution

engine. In the online scenario, the robot and the human peer perform an interaction; however

this time, the robot performs with an activated self-awareness framework. The interaction

with the human peer therefore provides the joint data straight away for further processing.

This experiment is divided into two phases: phase one without physical interaction and phase

two with physical interaction. The objectives of this experiment scenario are to measure

the overall performance of the agent with the self-awareness framework embedded in its

mechanism, including the robustness of the framework in a real world environment. All

the data collected in these two scenarios were ordered according to their reading sequences

unless stated otherwise.

5.2.2 Empathic Experiment

The concept of empathy with pain is generated by the projection of the shoulder movements

of humans who suffer from a motor injury onto a robot observer’s shoulder. The observer

robot visually captures (exteroceptively) the shoulder motions and reflects them on its own

arm, while also analysing the kinds of of synthetic pain to generate. Three agents are involved:

two NAO robots and a human peer. One robot acts as an observer while the other acts as a

mediator and helps the human peer (see Figure 5.3 for the initial pose for the robots). The

pilot experiment only considers up- and down-rotational direction motions of the human

peer’s right shoulder. As the human peer shoulder dimension is different from that of the

NAO observer (Observer), another NAO robot is introduced as a mediator robot (Mediator).

Through the Mediator, the length of the rotation movement of the human shoulder is adjusted
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Fig. 5.3 Initial Pose for Robot Experiments

to the length of the shoulder rotation of the Mediator. A red circular mark is attached to the

back of the Mediator’s hand which will be recognised by the Observer via its camera sensor.

During the experiment, the human peer moves his hand in vertical up- and down-ward

motions. The human’s hand holds the finger tips of the Mediator’s hand which allows both

hands to move in parallel. Each hand motion of the Mediator’s shoulder joint produces

joint position values obtained from the joint position sensor. The Observer converts the

visual representation of the Mediator’s hand position using a standard geometric-based

transformation (see Figure 5.4).

5.3 Pre-defined Values

All the experiments require the interaction between robots and a human peers to take place

within a pre-defined environment setting. Several data are defined by an expert user and

placed in the Database (see Table 5.1 for the list of pre-defined values). For the SPD model,

the faulty joint settings that correspond to the pain region to be avoided have only three
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Table 5.1 Pre-Defined Values in the Database

No Data Details

1 Faulty Joint Setting - SPD Model Level
High Medium Low

1.5621 1.5521 1.5421

2 Faulty Joint Setting - Pain Matrix Model Level
Upward Downward

High Medium Low Low Medium High

-2.08313 -1.58313 -1.38313 1.385669 1.585669 2.085669

3 Awareness Regions Awareness Value Limit Region Width
Upper Subjective 1 -25

24

Lower Subjective 26 - 50

Left Subjective-Objective 51 - 75

Right Subjective-Objective 76 - 100

Lower Objective 101 - 125

Upper Objective 126 - 150

levels, while in the Pain Matrix model, there are three upward levels and three downward

levels. The width of the awareness region remains the same throughout the experiments. The

states of robot awareness during the non-empathic experiments are shown in Table 5.2 and

the actual kinds of pain to be generated are shown in Table 5.3.

Table 5.2 Awareness State

Consciousness Region
Robot Action During Visitation

Awareness Type: Unconstrained Awareness Type : Constrained

Subjective Awareness Upper Limit Low Stiffness on Arm Joint Increased Stiffness and Alert human peer

Lower Limit Not Modelled Not Available

Subjective-Objective Awareness Left Limit Not Modelled Not Available

Right Limit Not Modelled Not Available

Objective Awareness Lower Limit Not Modelled Not Available

Upper Limit Not Modelled Not Available
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Table 5.3 Synthetic Pain Experiment

Synthetic Pain Description Intensity Level
Experiments

SPD Model Pain Matrix Model

Proprioceptive 1.1 Slight Modelled Modelled

Inflammatory Reduction

2.0 None Modelled Modelled

2.1 Slight Modelled Modelled

2.2 Moderate - Modelled

2.3 Severe - -

Sensory Malfunctions

3.0 None - Modelled

3.1 Slight - Modelled

3.2 Moderate - Modelled

3.3 Severe - -
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Fig. 5.4 Geometrical Transformation



Chapter 6

Results, Analysis and Discussion

This chapter provides an overview of experiments, the results collected during the experiments

reported in Chapter 5 and presents analysis and discussion of the outcomes.

6.1 Experiment Overview

Two groups of experiments were carried out: non empathy-based experiments and empathy-

based experiments. The data are divided into the Joint Data, which refers to the current data

originating from the Sensory Mechanism, and the prediction data, which represents a set

of data predictions internally proposed by the reasoning process. We use the terminology

sequence when referring to the Joint Data originating from the sensor readings, and each

sequence contains four prediction cycles. Each prediction cycle predicts one future step

sequence of the Joint Data. The kinds of data to be collected for each experiment are shown in

Table 6.1 Experiment Overview

Experiments Pain Activation

Scenario
Offline Online

No Shared Task No Shared Task
Shared Task Hand Push Direction Shared Task Hand Push Direction

Non-empathy
SPD-based � Horizontal � Horizontal

Pain Matrix-based x x � Vertical

Empathy
SPD-based x x x Vertical

Pain Matrix-based x x x Vertical

Table 6.1 below. All important experiment results will be presented and discussed thoroughly

in this chapter; a number of supporting results are shown in Appendix C.

Overall, the experiments are classified according to Non-empathy based experiments and

Empathy-based experiments as described below.
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1. Non-empathy based experiments:

(a) SPD-based Model:

i. Offline pre-recorded without physical interaction

• Trial 1

• Trial 2

• Trial 3

• Trial 4

• Trial 5

ii. Offline pre-recorded with physical interaction

• Trial 1

• Trial 2

• Trial 3

• Trial 4

• Trial 5

iii. Online pre-recorded without physical interaction

• Trial 1

• Trial 2

• Trial 3

• Trial 4

• Trial 5

iv. Online pre-recorded with physical interaction

• Trial 1

• Trial 2

• Trial 3

• Trial 4

• Trial 5

(b) Pain Matrix-based Model:

i. Upward hand movement

ii. Downward hand movement

2. Empathy-based experiments:

(a) SPD-based Model:
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i. Upward hand movement

ii. Downward hand movement

(b) Pain Matrix-based Model:

i. Upward hand movement

ii. Downward hand movement

6.2 Non-empathy based Experiments

The experiment results and discussion are divided into two subsections: the SPD-based

model and the Pain Matrix-based model.

6.2.1 SPD-based Model

The sequence of joint positions data used in the offline scenario, without physical interaction

and with physical interaction, is shown in Table 6.2, Table 6.3, Table 6.4 and Table 6.5

respectively. The data used for the online scenario, without physical interaction and with

physical interaction, are shown in Table 6.6, Table 6.7, Table 6.8 and Table 6.9 respectively.

SPD General Discussion

During the offline scenario (without physical interaction) in Trial 1 to Trial 5, the Joint

Data is 0.00873 and this value remains uniform throughout the trials (each trial consists of

21th sequences). The Joint Data (similar to Elbow Data) is retrieved by the robot sensor

position at an average interval time of 0.56 across all 21 sequences. In the early sequences,

the interval time is 0.52 and lasts until the 4th sequence. From the 5th sequence to the 21st

sequence, the interval time is more or less the same, around 0.56. This small fluctuation

may introduce noise to the Joint Data and it will degrade the quality of prediction results.

The overall interval data retrieval time is shown in 6.10. Joint prediction and reasoning

reach the margin of zero per cent error, where the standard deviation (σ ) is zero, and the

standard deviation for time prediction reaches the maximum deviation at 0.05 (see Table

6.11). The robot commences its prediction at the fourth sequence and the reasoning is capable

of maintaining prediction accuracy, which allows the agent to identify the scenario. See the

graphical comparisons of the predication data for each trial in Figure 6.1, Figure 6.2, Figure

6.3, Figure 6.4 and Figure 6.5.

During the offline period without physical interaction, the hand interaction with the human

partner produces motions on the robot hand. These motions constitute different values in
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Table 6.2 Offline Pre-Recorded without Physical Interaction Trial 1 to Trial 3

No
Trial 1 Trial 2 Trial 3

Elbow Data Time ElbowData Time Elbow Data Time

1 0.00873 221.72 0.00873 316.95 0.00873 385.60

2 0.00873 222.24 0.00873 317.47 0.00873 386.12

3 0.00873 222.75 0.00873 317.98 0.00873 386.64

4 0.00873 223.28 0.00873 318.52 0.00873 387.16

5 0.00873 223.84 0.00873 319.07 0.00873 387.72

6 0.00873 224.40 0.00873 319.63 0.00873 388.30

7 0.00873 224.96 0.00873 320.19 0.00873 388.85

8 0.00873 225.51 0.00873 320.75 0.00873 389.41

9 0.00873 226.07 0.00873 321.31 0.00873 389.97

10 0.00873 226.63 0.00873 321.86 0.00873 390.54

11 0.00873 227.19 0.00873 322.42 0.00873 391.10

12 0.00873 227.76 0.00873 322.98 0.00873 391.66

13 0.00873 228.32 0.00873 323.54 0.00873 392.22

14 0.00873 228.88 0.00873 324.11 0.00873 392.78

15 0.00873 229.44 0.00873 324.67 0.00873 393.35

16 0.00873 230.01 0.00873 325.24 0.00873 393.92

17 0.00873 230.58 0.00873 325.80 0.00873 394.49

18 0.00873 231.14 0.00873 326.37 0.00873 395.05

19 0.00873 231.71 0.00873 326.95 0.00873 395.62

20 0.00873 232.28 0.00873 327.52 0.00873 396.19

21 0.00873 232.85 0.00873 328.10 0.00873 396.76

Fig. 6.1 Offline without Human Interaction Trial 1
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Table 6.3 Offline Pre-Recorded without Physical Interaction Trial 4 and Trial 5

No
Trial 4 Trial 5

Elbow Data Time Elbow Data Time

1 0.00873 449.60 0.00873 514.15

2 0.00873 450.12 0.00873 514.67

3 0.00873 450.64 0.00873 515.18

4 0.00873 451.16 0.00873 515.71

5 0.00873 451.72 0.00873 516.28

6 0.00873 452.28 0.00873 516.84

7 0.00873 452.84 0.00873 517.39

8 0.00873 453.40 0.00873 517.96

9 0.00873 453.95 0.00873 518.51

10 0.00873 454.51 0.00873 519.07

11 0.00873 455.08 0.00873 519.64

12 0.00873 455.65 0.00873 520.21

13 0.00873 456.21 0.00873 520.77

14 0.00873 456.78 0.00873 521.33

15 0.00873 457.35 0.00873 521.89

16 0.00873 457.91 0.00873 522.46

17 0.00873 458.48 0.00873 523.02

18 0.00873 459.04 0.00873 523.60

19 0.00873 459.60 0.00873 524.16

20 0.00873 460.18 0.00873 524.73

21 0.00873 460.74 0.00873 525.30

Fig. 6.2 Offline without Human Interaction Trial 2
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Table 6.4 Offline Pre-Recorded with Physical Interaction Trial 1 to Trial 3

No
Trial 1 Trial 2 Trial 3

Elbow Data Time Elbow Data Time Elbow Data Time

1 0.00873 583.66 0.02919 644.54 0.02919 726.37

2 0.02765 584.17 0.02919 645.05 0.02919 726.89

3 0.14884 584.69 0.03072 645.56 0.04606 727.40

4 0.34519 585.22 0.03072 646.09 0.22861 727.93

5 0.57836 585.76 0.13043 646.62 0.40348 728.46

6 0.78238 586.31 0.45871 647.14 0.60444 728.98

7 1.02782 586.85 0.73023 647.66 0.88669 729.50

8 1.30701 587.40 0.94959 648.19 1.08765 730.03

9 1.51870 587.94 1.14441 648.72 1.25485 730.55

10 1.56207 588.48 1.37297 649.25 1.42359 731.08

11 1.56207 589.03 1.53251 649.77 1.56012 731.60

12 1.56207 589.56 1.56207 650.30 1.56207 732.14

13 1.56207 590.08 1.56207 650.83 1.56207 732.66

14 1.56207 590.63 1.56207 651.38 1.56207 733.19

15 1.56207 591.18 1.56207 651.93 1.56207 733.74

16 1.56207 591.74 1.56207 652.48 1.56207 734.29

17 1.56207 592.30 1.56207 653.04 1.56207 734.85

18 1.56207 592.85 1.56207 653.59 1.56207 735.40

19 1.56207 593.40 1.56207 654.14 1.56207 735.96

20 1.56207 593.95 1.56207 654.70 1.56207 736.51

Fig. 6.3 Offline without Human Interaction Trial 3
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Table 6.5 Offline Pre-Recorded with Physical Interaction Trial 4 and Trial 5

No
Trial 4 Trial 5

Elbow Data Time Elbow Data Time

1 0.02919 773.30 0.02919 823.77

2 0.02765 773.82 0.02765 824.29

3 0.02919 774.34 0.03072 824.81

4 0.02919 774.86 0.14884 825.33

5 0.07214 775.38 0.28997 825.88

6 0.36974 775.92 0.44183 826.42

7 0.74096 776.44 0.59370 826.96

8 1.06924 776.96 0.73176 827.51

9 1.50643 777.49 0.87289 828.06

10 1.56207 778.02 1.01402 828.60

11 1.56207 778.54 1.13980 829.15

12 1.56207 779.07 1.27480 829.69

13 1.56207 779.62 1.39445 830.24

14 1.56207 780.17 1.50643 830.79

15 1.56207 780.72 1.56207 831.34

16 1.56207 781.28 1.56207 831.89

17 1.56207 781.83 1.56207 832.42

18 1.56207 782.38 1.56207 832.94

19 1.56207 782.93 1.56207 833.50

20 1.56207 783.49 1.56207 834.06

Table 6.6 Online without Physical Interaction Trial 1 to Trial 3

No
Trial 1 Trial 2 Trial 3

Elbow Data Time Elbow Data Time Elbow Data Time

1 0.02765 367.27 0.02765 551.84 0.02765 793.73

2 0.02765 367.79 0.02765 552.36 0.02765 794.25

3 0.02765 368.30 0.02612 552.87 0.02765 794.76

4 0.02765 368.83 0.02765 553.4 0.02765 795.28

5 0.02765 369.38 0.02765 553.93 0.02612 795.84

6 0.02765 369.94 0.02765 554.46 0.02765 796.38

7 0.02612 796.94
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Table 6.7 Online without Physical Interaction Trial 4 and Trial 5

No
Trial 4 Trial 5

Elbow Data Time Elbow Data Time

1 0.02765 971.52 0.02612 354.21

2 0.02765 972.04 0.02612 354.73

3 0.02765 972.55 0.02765 355.24

4 0.02765 973.08 0.02765 355.77

5 0.02765 973.64 0.02612 356.3

6 0.02765 974.2 0.02612 356.82

7 0.02612 357.38

Table 6.8 Online with Physical Interaction Trial 1 to Trial 3

No
Trial 1 Trial 2 Trial 3

Elbow Data Time Elbow Data Time Elbow Data Time

1 0.22247 38.88 0.02765 776.46 0.02765 267.12

2 0.26696 39.40 0.02765 776.98 0.02765 267.64

3 0.37127 39.91 0.02919 777.49 0.02765 268.15

4 0.49246 40.44 0.21940 778.01 0.06907 268.68

5 0.63205 41.00 0.39735 778.54 0.29917 269.20

6 0.78852 41.54 0.68421 779.11 0.52774 269.73

7 0.95572 42.10 1.30548 781.36 0.71642 270.28

8 1.32695 44.37 0.87902 270.84

9 1.04470 271.39

10 1.41132 273.68

Table 6.9 Online with Physical Interaction Trial 4 and Trial 5

No
Trial 4 Trial 5

Elbow Data Time Elbow Data Time

1 0.02612 550.05 0.02765 855.20

2 0.02765 550.57 0.03839 856.34

3 0.02919 551.08 0.29150 856.86

4 0.22861 551.61 0.53234 857.39

5 0.46945 552.16 0.74403 857.94

6 0.69188 552.71 1.25639 860.23

7 1.22878 554.99
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Table 6.10 Offline without Physical Interaction - Interval Time

No
Interval Time

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

1 - - - - -

2 0.52 0.52 0.52 0.52 0.52

3 0.51 0.51 0.52 0.52 0.51

4 0.53 0.54 0.52 0.52 0.53

5 0.56 0.55 0.56 0.56 0.57

6 0.56 0.56 0.58 0.56 0.56

7 0.56 0.56 0.55 0.56 0.55

8 0.55 0.56 0.56 0.56 0.57

9 0.56 0.56 0.56 0.55 0.55

10 0.56 0.55 0.57 0.56 0.56

11 0.56 0.56 0.56 0.57 0.57

12 0.57 0.56 0.56 0.57 0.57

13 0.56 0.56 0.56 0.56 0.56

14 0.56 0.57 0.56 0.57 0.56

15 0.56 0.56 0.57 0.57 0.56

16 0.57 0.57 0.57 0.56 0.57

17 0.57 0.56 0.57 0.57 0.56

18 0.56 0.57 0.56 0.56 0.58

19 0.57 0.58 0.57 0.56 0.56

20 0.57 0.57 0.57 0.58 0.57

21 0.57 0.58 0.57 0.56 0.57

Average 0.56 0.56 0.56 0.56 0.56

Table 6.11 Prediction Error - Offline No Interaction

Data Prediction Cycles Std D(σ ) Time

4 5 6 7 8 9 Std D(σ )

4 0.00%

5 0.00% 0.00% 0.00 0.02

6 0.00% 0.00% 0.00% 0.00 0.03

7 0.00% 0.00% 0.00% 0.00% 0.00 0.05

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.05

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.01

10 0.00% 0.00% 0.00% 0.00% 0.00 0.01

11 0.00% 0.00% 0.00% 0.00 0.02
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Fig. 6.4 Offline without Human Interaction Trial 4

Fig. 6.5 Offline without Human Interaction Trial 5
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the Joint Data (refer to Table 6.4 and Table 6.5). In Trial 1, the 1st sequence obtain a Joint

Data value of 0.00873. There is a slight increase in this value in each sequence as the human

partner pushes the robot’s hand: the value in the 2nd is 0.02 and in the 3rd is 0.012. From

the 4th sequence to the 9th sequence, there is a similar slight increase of 0.2. At the 10th

sequence, the value decreases as the joint movement approaches the faulty joint regions, and

the Joint Data value halts at 1.56207 in the 11th sequence. From the 12th sequence to the

20th sequence, the value remains the same, which indicates that the robot has increased its

joint stiffness to counteract the force on the robot’s hand. The interval time of the sensor

data readings is largely the same throughout the sequences at 0.5. In Trial 2, the motions are

detected in the 5th sequence with an increase of 0.10, from 0.03072 to 0.12043. A variable

increase occurs in the Joint Data from the 5th sequence to the 10th sequence and slowly

drops to 0.03 in the 12th sequence. The Joint Data remains the same in the 13th sequence as

the robot increases the stiffness of its arm joint. The interval times of sensor readings are

the same as those in Trial 1, and are relatively stable at 0.5, which is the same as in Trial 3.

However, the Joint Data in Trial 3 fluctuates and halts at the 12th sequence (the joint stiffness

is activated). Details of the interval Joint Data and Time for Trials 1 to 3 are depicted in

Table 6.12. In Trial 4, the changes in the Joint Data occur abruptly. From the 1st sequence to

the 5th sequence, the value of the Joint Data is less than 0.075, which increases to 1.06924

in only two sequences of data. The robot activates its stiffness on the arm joint at the 10th

sequence. By contrast, Trial 5 produces a slow increase in the Joint Data with an interval

change of around 0.1. This situation lasts until the 14th sequence when the Joint Data starts

to reach the maximum value, which triggers the robot to maximise its arm joint stiffness. The

interval times of the sensor readings in both trials share the same pattern, with an interval of

change around 0.5. Table 6.13 depicts the overall interval values of the Joint Data and sensor

reading times.

An analysis of prediction accuracy follows in respect of the offline experiment with phys-

ical interaction involving a human partner, online experiment without physical interaction,

and online with physical interaction. Each Joint Data sequence contains a minimum of 4

prediction cycles, but in some cases we disregard some cycles as they do not influence the

process.

During the offline experiment with physical interaction, Trial 1, the robot deciphers the

incoming interaction data at the 4th sequence, with a standard deviation that is relatively low,

0.03 at the 5th sequence of Joint Data. The first prediction at the 4th sequence of Joint Data

generates a low prediction error, less than 10%, while the fourth sequence produces a slightly

higher prediction error, 17.64%. At the 5th sequence of Joint Data, the prediction error

remains very low: the first prediction error is 2.92%, and the fourth prediction error decreases
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Table 6.12 Interval Joint Data and Time Offline with Physical Interaction Trial 1 to Trial 3

No
Trial 1 Trial 2 Trial 3

Elbow Data Time Elbow Data Time Elbow Data Time

1 - - - - - -

2 0.02 0.51 0.00 0.51 0.00 0.52

3 0.12 0.52 0.00 0.51 0.02 0.51

4 0.20 0.53 0.00 0.53 0.18 0.53

5 0.23 0.54 0.10 0.53 0.17 0.53

6 0.20 0.55 0.33 0.52 0.20 0.52

7 0.25 0.54 0.27 0.52 0.28 0.52

8 0.28 0.55 0.22 0.53 0.20 0.53

9 0.21 0.54 0.19 0.53 0.17 0.52

10 0.04 0.54 0.23 0.53 0.17 0.53

11 0.00 0.55 0.16 0.52 0.14 0.52

12 0.00 0.53 0.03 0.53 0.00 0.54

13 0.00 0.52 0.00 0.53 0.00 0.52

14 0.00 0.55 0.00 0.55 0.00 0.53

15 0.00 0.55 0.00 0.55 0.00 0.55

16 0.00 0.56 0.00 0.55 0.00 0.55

17 0.00 0.56 0.00 0.56 0.00 0.56

18 0.00 0.55 0.00 0.55 0.00 0.55

19 0.00 0.55 0.00 0.55 0.00 0.56

20 0.00 0.55 0.00 0.56 0.00 0.55
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Table 6.13 Interval Joint Data and Time Offline with Physical Interaction Trial 4 and Trial 5

No
Trial 4 Trial 5

Elbow Data Time Elbow Data Time

1 - - - -

2 0.00 0.52 0.00 0.52

3 0.00 0.52 0.00 0.52

4 0.00 0.52 0.12 0.52

5 0.04 0.52 0.14 0.55

6 0.30 0.54 0.15 0.54

7 0.37 0.52 0.15 0.54

8 0.33 0.52 0.14 0.55

9 0.44 0.53 0.14 0.55

10 0.06 0.53 0.14 0.54

11 0.00 0.52 0.13 0.55

12 0.00 0.53 0.14 0.54

13 0.00 0.55 0.12 0.55

14 0.00 0.55 0.11 0.55

15 0.00 0.55 0.06 0.55

16 0.00 0.56 0.00 0.55

17 0.00 0.55 0.00 0.53

18 0.00 0.55 0.00 0.52

19 0.00 0.55 0.00 0.56

20 0.00 0.56 0.00 0.56
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to 0.77%. In the 6th sequence, the prediction error at the second and the third cycles are

relatively high, 11.66% and 12.43% respectively. However, it drops dramatically to 3.64% on

the final prediction. In the 7th and 8th sequences, prediction error is low, 3.37% and 6.75%

respectively, but produces the highest error rate at 20.21% and 30.33% respectively. The 9th

sequence produces a relatively high prediction error which of 16.83%. Hence, it can be seen

that the 5th sequence of Joint Data, prediction error is the lowest throughout Trial 1, while

the highest prediction error occurs in the second cycle of prediction during the 8th Joint Data

sequence. In spite of the high prediction error, the overall standard deviation remains low at

0.11 (see Table 6.14). A graphical comparison is shown in Figure 6.6.

Table 6.14 Prediction Error - Offline Physical Interaction Trial 1

Data
Prediction Cycles

Std D(σ )4 5 6 7 8 9

4 0.00%

5 3.68% 0.00% 0.03

6 4.45% 2.92% 0.00% 0.04

7 9.36% 1.69% 4.14% 0.00% 0.05

8 17.64% 2.91% 11.66% 3.37% 0.00% 0.07

9 0.77% 12.43% 0.00% 6.75% 0.00% 0.07

10 3.64% 20.21% 30.33% 16.83% 0.11

In Trial 2, the process of deciphering incoming data commences at the 6th sequence when

the first prediction error is 5.68%. During this sequence, the prediction error increases to

39.89% at the fourth prediction, which is considerably higher. Similarly, the 7th sequence

produces a relatively high prediction error with slightly lower error values compared to

the previous sequence: 5.22% in first prediction, which increases to 28.38% in the fourth

prediction. Three prediction values remain low in the 8th sequence. However, the fourth

value still generates a high prediction error of 26.50%. This situation also occurs in the next

sequence with a low prediction error in the first and the second values, 3.37% and 0.15%

respectively. The third prediction error increases dramatically to 16.68%. The 10th sequence

generates a considerably higher prediction error in the final value at 26.80%. During this

trial, the overall prediction error results in higher prediction error on the final prediction

value throughout the Joint Data sequences, producing the highest error of 39.89% in the

6th sequence. Table 6.15 and Figure 6.7 show the overall data comparisons. Table 6.16

and Figure 6.8 depict the prediction error of Joint Data obtained during the offline physical

interaction Trial 3. It can be seen that the first data prediction process occurs in 5th sequence

with a low prediction error, 2.61%. The next three prediction values increase and are relatively
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Fig. 6.6 Offline with Human Interaction Trial 1
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Table 6.15 Prediction Error - Offline Physical Interaction Trial 2

Data
Prediction Cycles

Std D(σ )6 7 8 9 10 11

6 0.00%

7 5.68% 0.00% 0.04

8 16.57% 5.22% 0.00% 0.08

9 29.91% 12.89% 2.45% 0.00% 0.07

10 39.89% 17.18% 1.53% 3.37% 0.00% 0.03

11 28.38% 7.52% 0.15% 6.90% 0.00% 0.12

12 26.50% 16.68% 26.80% 13.00% 0.07

Fig. 6.7 Offline with Human Interaction Trial 2
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Table 6.16 Prediction Error - Offline Physical Interaction Trial 3

Data
Prediction Cycles

Std D(σ )5 6 7 8 9 10

5 0.00%

6 2.61% 0.00% 0.02

7 13.35% 8.13% 0.00% 0.07

8 15.96% 8.13% 8.13% 0.00% 0.10

9 15.19% 4.75% 19.63% 3.38% 0.00% 0.11

10 1.53% 30.98% 6.60% 0.15% 0.00% 0.15

11 45.56% 13.04% 2.91% 3.22% 0.20

Fig. 6.8 Offline with Human Interaction Trial 3
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high at 13.35%, 15.96% and 15.19%. The 6th sequence produces the first prediction error

of 8.13% which drops to 1.53% in the final prediction. The highest prediction error occurs

in the 7th sequence, 8.13% in the first prediction, and increases dramatically to 45.56% in

the final prediction. The 8th sequences produces low prediction error early in the process,

with 3.38% for the first prediction and 6.60% for the third prediction. The final prediction

increases the error value to 13.04%. Prediction error values remain low, under 5% in two

sequences of Joint Data: 0.15% and 2.91% for the 9th sequence and 3.22% for the 10th

sequence.

In Trial 4, the prediction process is initiated at the 5th sequence with very high error values.

The first prediction has a 25.47% error value which increases throughout the prediction cycles,

reaching a final prediction error of 126.25%. The first prediction error value in the next

sequence of Joint Data drops to 7.36%. It then increases throughout the next two prediction

values: 10.43% for the second prediction and 24.39% for the third. The fourth prediction

error drops dramatically to 0.19%. The first and the second prediction error remains low,

under 5% during the 7th sequence. The error increases outstandingly in the final prediction,

29.25%. The last two sequences of Joint Data unfortunately suffer relatively high prediction

error values: 10.89% and 16.37% in the 8th sequence; and 38.16% in the 9th sequence

(see Table 6.17 and Figure 6.9). Table 6.18 and Figure 6.10 show the overall prediction

Table 6.17 Prediction Error - Offline Physical Interaction Trial 4

Data
Prediction Cycles

Std D(σ )5 6 7 8 9 10

5 0.00%

6 25.47% 0.00% 0.18

7 58.29% 7.36% 0.00% 0.32

8 86.83% 10.43% 4.29% 0.00% 0.43

9 126.25% 24.39% 2.30% 10.89% 0.00% 0.53

10 0.19% 29.25% 16.37% 38.16% 0.17

error incurred throughout Trial 5. It can be seen that the robot starts to decipher incoming

Joint Data at the 4th sequence with the first prediction error of 2.30%. The second and third

prediction error values remain below 10% and the final prediction error increases slightly

to 11.04%. These prediction error values drop considerably below 3% in the 5th sequence

with 1.07% in the first prediction. The second prediction error increases, doubles the first

prediction error, then drops back to 1.84% in the third and fourth predictions. In the 6th

sequence, no prediction error occurs in the first prediction, but there is a subsequent regular

increases to 1.38%, 2.45%, and 3.53% in the final prediction. The same occurs in the 7th
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Fig. 6.9 Offline with Human Interaction Trial 4
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Table 6.18 Prediction Error - Offline Physical Interaction Trial 5

Data
Prediction Cycles

Std D(σ )4 5 6 7 8 9 10 11 12 13 14

4 0.00%

5 2.30% 0.00% 0.02

6 5.68% 1.07% 0.00% 0.03

7 9.05% 2.15% 0.00% 0.00% 0.04

8 11.04% 1.84% 1.38% 1.38% 0.00% 0.05

9 1.84% 2.45% 2.46% 0.31% 0.00% 0.02

10 3.53% 3.53% 0.61% 0.00% 0.00% 0.02

11 6.14% 0.61% 1.54% 1.54% 0.00% 0.02

12 0.92% 2.15% 2.15% 0.92% 0.00% 0.01

13 4.30% 4.30% 0.31% 1.54% 0.00% 0.02

14 7.21% 1.07% 3.84% 0.77% 0.00% 0.03

15 8.08% 11.77% 7.17% 5.63% 0.03
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Fig. 6.10 Offline with Human Interaction Trial 5
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sequence, with the exception that the final prediction error is double that of the previous

sequence at 6.14%. The 8th sequence produces the lowest prediction error, and the highest

error value of 0.92% in the final prediction cycle. Prediction error increases slightly in the

next sequence with the highest prediction error of 4.30% in the fourth prediction cycle. This

slight increase remains in the 10th sequence, staring with a first prediction error of 1.54%

and ending with an error of 7.21%. In the 11th sequence, three prediction cycles produce

lower prediction error values, 0.92%, 0.31% and 1.07%; the prediction error value then

increases to 8.08%. Similarly, prediction error values in the 12th cycle remain low in first

two cycles of prediction, 1.54% and 3.84%, then increase to 11.77%. The last two Joint

Data sequences, 13th and 14th, produce prediction error values of 7.17% and 5.63% in

the final prediction cycles. The final sequence, trial data 14, serves as the primary source

for determining the robot’s decision, that is, whether to proceed to the next sequence or to

constrain robot awareness through joint stiffness, resulting in resistance in the robot’s elbow.

With a prediction error of 7.17%, the robot is able to deliver accurate decisions in the given

situation and predict the consequences of the data in a timely manner. Overall, the 5th to final

sequences of the Joint Data produce relatively low prediction error values, and the lowest

prediction error on average occurs in the 8th sequence, in which the error values are less than

1%. In addition, there are more sequences of Joint Data to be processed in Trial 5 compared

to those of other trials.

In contrast to the offline scenario, the experiment cycles in the online scenario experiments

are much shorter. For example, in two trials (without physical interaction), the data sequence

in the robot’s arm resulting from the hand pushing interaction with the human peer in Trial

1 and Trial 5 takes place in a strikingly short time. The decisions made by Agent 1 were

reliable with a very low standard deviation of 0.00146, where the highest prediction error

was 0.31% and the deviation level of the prediction time was very low at 0.01 (see Table

6.19). In Trial 2, by contrast, the joint sensor readings were volatile even though they were

Table 6.19 Prediction Error - Online without Physical Interaction

Data Prediction Cycles Std D(σ ) Time

4 5 6 Std D(σ )

4 0.00% 0.01

5 0.00% 0.00% 0.00 0.03

6 0.00% 0.00% 0.00% 0.00 0.04

supposed to remain steady for each specific data reading. The robot is capable of identifying

this anomalous situation and correctly maps the behaviour of the robot’s arm. It can be seen

that the standard deviation for elbow joint prediction remains very low at 0.00146 by the end
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of the experiment. Details of the prediction data for each experiment are explained in this

section.

Table 6.20 and Figure 6.11 depict the prediction error which occurs during Trial 1 of the

online experiment without physical interaction. It can be inferred that the robot deciphers

Table 6.20 Prediction Error - Online without Physical Interaction Trial 1

Data
Prediction Cycles

Std D(σ )4 5 6

4 0.00%

5 0.00% 0.00% 0.00

6 0.00% 0.00% 0.00% 0.00

Fig. 6.11 Online without Human Interaction Trial 1

the incoming Joint Data at the 4th sequence and the prediction data accurately converges to

the Joint Data. Trial 1 lasts for six Joint Data sequences, and overall, prediction error values

remain at 0%. Similarly, the prediction error remains zero and the prediction process takes

place in a single prediction sequence, which is in the 5th sequence. All the predictions cycles

converge to an accurate Joint Data prediction, 0.02765 without generating any deviation value.

Data analyses of the prediction data during Trial 2 of the online experiment without physical

interaction are shown in Table 6.21 and the results are illustrated in Figure 6.12. In Trial 3,
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Table 6.21 Prediction Error - Online without Physical Interaction Trial 2

Data
Prediction Cycles

Std D(σ )5 6

5 0.00%

6 0.00% -

7

Fig. 6.12 Online without Human Interaction Trial 2
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the process lasts longer than the previous trial and the robot deciphers the incoming data in

the 4th Joint Data sequence. Prediction error strikingly occurs during this trial at 0.15% for

the second and fourth predictions. During the 5th sequence, prediction error of 0.31% occurs

in the third prediction. The same prediction error, 0.31%, occurs in the second prediction of

the 6th sequence. It can be seen that no changes in the Joint Data could be detected during the

non-interaction experiment, and as a result this noisy data could deteriorate the accuracy of

the prediction. However, the prediction error remains low throughout the trial (see Table 6.22

and Figure 6.13). Table 6.23 and Figure 6.14 show prediction error of the online experiment

Table 6.22 Prediction Error - Online without Physical Interaction Trial 3

Data
Prediction Cycles

Std D(σ )4 5 6 7

4 0.00%

5 0.15% 0.00% 0.00108

6 0.00% 0.00% 0.00% 0.00000

7 0.15% 0.31% 0.31% 0.00% 0.00146

8 0.00177

Fig. 6.13 Online without Human Interaction Trial 3

without physical interaction, Trial 4. It can be seen from the table that the robot commences
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Table 6.23 Prediction Error - Online without Physical Interaction Trial 4

Data
Prediction Cycles

Std D(σ )1 2 3

4 0.00%

5 0.00% 0.00% 0.00

6 0.00% 0.00% 0.00% 0.00

7

Fig. 6.14 Online without Human Interaction Trial 4
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its prediction at the 4th sequence and all Joint Data prediction results converge at 0.02765.

Prediction cycles occur until the 6th sequence with an overall prediction error of 0%. The

figure depicts the situation during Trial 4 in a straight line along the Cycles axis.

In Trial 5 prediction process occurs in three cycles, as shown in Table 6.24 and Figure

6.15. The first cycle takes place in the 5th sequence, followed by the second in the 6th

sequence, and the final cycle occurs in the 7th Joint Data sequence. All Joint Data prediction

results converge at 0.02612. This pattern is similar to that in Trial 4 and is illustrated in the

figure by a straight line.

Table 6.24 Prediction Error - Online without Physical Interaction Trial 5

Data
Prediction Cycles

Std D(σ )1 2 3

5 0.00%

6 0.00% 0.00% 0.00

7 0.00% 0.00% 0.00% 0.00

Fig. 6.15 Online without Human Interaction Trial 5

Discussions on the prediction error for the online experiment with physical interaction

covering Trial 1 to Trial 5 will be presented below.
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Table 6.25 and Figure 6.16 show the results of the prediction error during the online

experiment with physical interaction Trial 1. The prediction process commences in the 4th

Table 6.25 Prediction Error - Online with Physical Interaction Trial 1

Data
Prediction Cycles

Std D(σ )1 2 3 4 5 6

4 0.00%

5 1.84% 0.00% 0.01

6 5.37% 1.69% 0.00% 0.03

7 9.97% 4.45% 1.07% 0.00% 0.04

8 34.97% 27.61% 22.55% 20.40% 0.00% 0.13

9

Fig. 6.16 Online with Human Interaction Trial 1

Joint Data sequence with a low prediction error in the first prediction of 1.84% (the data

prediction is 0.61365) which increases to 5.37% (data prediction is 0.73484) in the second

prediction. The prediction error increases to 9.97% (data prediction is 0.85603) and the

final prediction produces a relatively high prediction error at 34.97% (the data prediction is

0.97722 while the real Joint Data at 8th sequence is 1.32695). In the 5th sequence, prediction

error values are lower than those in the previous sequence. The first cycle produces 1.69%

prediction error (0.77164) and increases to 4.45% (0.91123). The final prediction cycle still

produces a high prediction error of 27.61% (1.05802) is slightly lower than the previous

sequence. The prediction error during the 6th Joint Data sequence decreases with the final

prediction error to 22.55% (the data prediction for the 8th sequence is 1.10146). In the 7th

sequence, the prediction error remains slightly high at 20.40% (the joint data prediction is
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1.12292 for the next sequence). As this prediction is still below the restricted joint value, the

robot continues to process incoming data. In the 8th sequence, the first cycle predicts that the

9th Joint Data sequence will be 1.69818. This suggests that the robot should halt the process

and increase the arm joint stiffness to prevent the possibility of the robot experiencing pain.

From the figure, it can be seen that the deviation values of the prediction data compared to

the real Joint Data throughout the trial are relatively low. The prediction process still allows

the robot to interact with the human partner while accurately generating counter actions, as

the joint prediction suggests the possibility of a pain experience to the robot.

Trial 2 lasts for seven Joint Data sequences, and the robot starts to decipher incoming data

at the 5th sequence. The first and second prediction error values are relatively high, 10.98%

and 55.22% respectively. This means that by prediction, the Joint Data at the 6th sequence

should be 0.57530 and 0.75325 at the 7th sequence, whereas in fact, the Joint Data at the 6th

and 7th sequences are 0.68421 and 1.030548 respectively. The next sequence produces a

lesser prediction error 33.44% with a Joint Data prediction value of 0.97107. The process

repeats as the predicted Joint Data remains outside the faulty joint region, and at the 7th Joint

Data sequence, the robot predicts that the Joint Data will be 1.92675, which is well into the

faulty joint region. Hence, the robot stops the interaction and sends out counter actions by

alerting the human partner and increasing the arm joint stiffness value. Table 6.26 shows the

overall prediction error throughout the trial along with the standard deviation values for each

data prediction. Figure 6.17 illustrates each data prediction compared to the real Joint Data

Table 6.26 Prediction Error - Online with Physical Interaction Trial 2

Data
Prediction Cycles

Std D(σ )1 2 3

5 0.00%

6 10.89% 0.00% 0.08

7 55.22% 33.44% 0.00% 0.28

8

originating from the robot’s arm joint sensor.

Table 6.27 and Figure 6.18 show prediction error of the online with physical interaction

Trial 3 which lasts for 10 sequences.// The robot initiates its data prediction at the 6th

Joint Data sequence with 3.99% prediction error of 0.75631, which increases gradually in

the next two prediction cycles: 10.50% for the 7th sequence prediction and 16.87% for

the 8th sequence prediction. In the final prediction cycle constitutes the 10th sequence,

the prediction error drops to 3.07% (the Joint Data is 1.44202). When the 7th Joint Data

sequence arrives, the robot predicts the next three Joint Data sequences. The first prediction
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Fig. 6.17 Online with Human Interaction Trial 2

Table 6.27 Prediction Error - Online with Physical Interaction Trial 3

Data
Prediction Cycles

Std D(σ )1 2 3 4 5 6

6 0.00%

7 3.99% 0.00% 0.03

8 10.59% 2.61% 0.00% 0.06

9 16.87% 4.91% 0.31% 0.00% 0.08

10 3.07% 12.89% 20.71% 20.09% 0.00% 0.11

11
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Fig. 6.18 Online with Human Interaction Trial 3

cycle constitutes the 8th sequence with a relatively low prediction error of 2.62% (0.90510)

and the second prediction cycle constitutes the 9th sequence and produces prediction error of

4.91% (1.09378). Prediction error increases for the final prediction cycle which relates to the

10th Joint Data sequence at 12.89% (1.28246). During the next data sequence, first cycle of

prediction error is relatively very low, 0.31% but it increases dramatically to 20.71% in the

next sequence. In the 9th Joint Data sequence, the prediction error is considerably higher at

20.09% and the robot halts the process in the 10th Joint Data sequence. The robot decides

to stop the process as a result of the prediction data, which exceeds the faulty joint values

with a value of 1.77794. Overall, the prediction data of the 7th sequence produces the lowest

prediction error with a standard deviation of 0.03 while the highest prediction error occurs

in the 10th Joint Data sequence and has a standard deviation of 0.11. It can be seen from

Figure 6.18 that the data moves in a vertical direction, which means that the robot’s hand

moves towards its chest. Stopping the movement before the hand collides with the robot’s

own physical limb is therefore of primary importance to prevent possible hardware damage.

Trial 4, as depicted in Table 6.28, lasts for seven Joint Data sequences. The prediction

process commences in the 4th Joint Data sequence with prediction error for the next sequence

data is 4.14% (0.42803). The second prediction, which constitutes the 6th sequence, produces

a prediction error of 6.44%. The final prediction for the 7th sequence is 0.826878 (40.19%)

which is far lower than the exact value of the Joint Data in the same sequence. When the

5th Joint Data sequence arrives, the prediction error drops to 1.84% for the predicted Joint
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Data on the 6th sequence. However, the prediction error for the 7th sequence increases

dramatically to 27.77%. During the 6th data sequence, the prediction value for the 7th Joint

Data sequence is relatively high at 31.45%, but is lower than the exact value of the Joint Data

in the 7th sequence. However, the robot manages to decipher the incoming data at the 7th

sequence and predicts that the future sequence will be higher than the limit of the joint faulty

region, 1.76568. This prediction result recommends that the robot should halt the interaction

and that the joint stiffness of the robot’s arm should be activated. Figure 6.19 shows that the

majority of prediction processes generate lower Joint Data predictions. However, in the 7th

Joint Data sequence, the prediction process recovers and suggests that in the future sequence,

the Joint Data will exceed the faulty joint limit.

Table 6.28 Prediction Error - Online with Physical Interaction Trial 4

Data
Prediction Cycles

Std D(σ )1 2 3 4

4 0.00%

5 4.14% 0.00% 0.03

6 6.44% 1.84% 0.00% 0.04

7 40.19% 27.77% 31.45% 0.00 0.17

8

The prediction data for the final trial of the online experiment with physical interaction is

shown in Table 6.29 and the graphical analysis is depicted in Figure 6.20.

It can be seen that in Trial 5, the robot commences data prediction in the 4th Joint Data

Table 6.29 Prediction Error - Online with Physical Interaction Trial 5

Data
Prediction Cycles

Std D(σ )1 2 3 4

4 0.00%

5 2.92% 0.00% 0.02

6 24.24% 30.07% 0.00% 0.16

7

sequence. The first prediction constitute the 5th sequence with a prediction error of 2.92%

then increases in the 6th sequence to 24.24%. In the 5th sequence, the first prediction

produces the highest prediction error, 30.07%. The final sequence, with the real Joint Data

figure of 1.25639, generates prediction data which falls into the faulty joint region. As a

result, the robot halts the process and commences the routine to increase joint stiffness in the
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Fig. 6.19 Online with Human Interaction Trial 4

Fig. 6.20 Online with Human Interaction Trial 5
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robot’s arm. The figure clearly shows that the Joint Data prediction inclines gradually until

the 6th data sequence. It then increases dramatically in the 7th sequence with the predicted

Joint Data at 1.76875, which forces the robot to stop.

It can be seen that the reasoning behaviour of the robot for the experiments in the online

scenario with physical interaction has a similar pattern of error predictions, and the Robot

Mind manages to accurately predict the elbow data from the pattern of the robot’s arm

movement. For instance, in Trial 1, the prediction error made in the first cycle is relatively

high at 34.97%. The standard deviation prediction for the eight sequences of data reading,

however, is still relatively small at 0.13, and at the same time, prediction reaches its highest

standard deviation value at 1.33. Overall, the agent is still capable of identifying future

consequences and preventing the agent from experiencing synthetic pain.

Awareness during the early stage is freely explored, but the attention to awareness is

subject to change at the Robot Mind’s recommendation. The various states of robot awareness

during the experiment are shown in Table 6.30. The offline experiments equate to Internal

States 1 to 10, and the online experiments equate to Internal States 11 to 20. When no

interaction is involved, the robot’s early awareness type remains the same throughout the

experiments (Internal State 1 to Internal State 5 during the offline experiment and Internal

State 11 to Internal State 15 during the online experiment). In contrast, when any physical

interaction is involved, the Robot Mind alters the awareness type, resulting in the final

awareness being High Priority Subjective Awareness in constrained type (Internal State 6

to Internal States 10 during the offline experiment and Internal State 16 to Internal State 20

during the online experiment).

The robot’s internal states following the reasoning process are shown in Table 6.31. It can

be seen that the Robot Mind generates the PP, which according to our definition functions as

an alert signal. Apart from sending a voice alert to its human partner, the robot also takes

preventive action by increasing its elbow joint stiffness to such a degree that the human

partner can detect resistance. The robot is still capable of identifying future consequences,

thus preventing it from entering the faulty joint region. During Internal States 1 to 5, the

real Joint Data and prediction data converge, inferring that the proprioceptive sensor of the

robot is reliable which reads the joint arm position at 0.00873. The reasoning process can

accurately reasons this Joint Data and produces a uniform Joint Data prediction of 0.00873.

As no movement is detected on the robot arm, no change occurs in the awareness type; hence

no pain is generated throughout these states. This situation should also occur during Internal

States 11 to 15, but data discrepancies are obtained from the proprioceptive sensor. For

instance, in Internal State 13, the real Joint Data being processed is 0.02612 and prediction

produces 0.02765, which is higher than the real data. However, prediction Internal State 14
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Table 6.30 State of Awareness

Feeding Data Experiment Data Early Awareness Type Final Awareness Type CDV Value Awareness Region Internal States

Offline

No Physical Interaction

1 High Priority Objective

Constrained High Priority Subjective

131 6 1

2 Low Priority Subjective 33 2 2

3 High Priority Subjective 17 1 3

4 Left Border Subjective-Objective 55 3 4

5 Right Border Subjective-Objective 93 4 5

Pushing Arm

1 Right Border Subjective-Objective 80 4 6

2 Low Priority Objective 110 5 7

3 High Priority Subjective 3 1 8

4 Low Priority Subjective 38 2 9

5 Low Priority Objective 105 5 10

On Robot

No Physical Interaction

1 High Priority Subjective

Constrained High Priority Subjective

14 1 11

2 Left Border Subjective-Objective 62 3 12

3 Low Priority Objective 116 5 13

4 High Priority Objective 144 6 14

5 Low Priority Objective 111 5 15

Pushing Arm

1 High Priority Subjective 6 1 16

2 High Priority Objective 126 6 17

3 High Priority Objective 138 6 18

4 Left Border Subjective-Objective 65 3 19

5 High Priority Objective 109 5 20
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Table 6.31 Internal States after Reasoning Process

After Reasoning

Internal Joint Data Awareness Synthetic Pain
State Real Data Final Prediction Type Categories Intensity

1 0.00873 0.00873

Unconstrained No Pain -

2 0.00873 0.00873

3 0.00873 0.00873

4 0.00873 0.00873

5 0.00873 0.00873

6 1.51870 1.73039

Constrained 1:0 Proprioceptive (PP)

Slight

7 1.53251 1.69205 Slight

8 1.42359 1.59233 Slight

9 1.50643 1.94362 Slight

10 1.50643 1.61841 Slight

11 0.02765 0.02765

Un constrained No Pain -

12 0.02765 0.02765

13 0.02612 0.02765

14 0.02765 0.02765

15 0.02612 0.02612

16 1.32695 1.69818

Constrained 1:0 Proprioceptive (PP)

Slight

17 1.30548 1.92675

Slight

18 1.41132 1.77794

19 1.22878 1.76568

20 1.25639 1.76875
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achieves 100% accuracy, 0.02765. Similarly, accurate prediction occurs for Internal State 15,

with predicted Joint Data 0.02765 while the real Joint Data is 0.02612. It can be inferred

that the Joint Data should remain the same throughout the experiment as a result of the

non-physical interaction. Regardless of the noisy data occurring in Internal State 13 and

Internal State 15, the robot awareness still accurately converges to the unconstrained type

without pain invocation. The awareness is constrained only during the Internal States 6 to 10

(offline experiment) and Internal States 16 to 20 (online experiment). During Internal State 6,

the prediction data suggests that the next incoming data will cause the joint to move into the

faulty joint region, and as a result, the mind constrains the awareness type and invokes the PP

type whose Intensity is Slight. This intensity is measured from the distance of the Joint Data

to the faulty joint reference and in this case, it is a slightly further from the limit value of

1.5621. A similar situation occurs in other Internal States, such as Internal States 7, 8 and 10.

For Internal State 9, the distance prediction for the faulty joint limit is the furthest, however,

our approach only defines the intensity at two levels: None and Slight. We will include the

possible development of this approach in our future work to increase the robustness of our

synthetic pain definition. A similar situation also appears in Internal States 16 to 20. In all

Internal States, the Joint Data prediction values fall into the faulty joint region, resulting in

the Robot Mind invoking the PP type with Slight intensity. Internal State 17 produces the

highest Joint Data prediction, 1.92675, and it evokes the PP type with the Intensity level

Slight.
In the early stages, the Robot Mind is at an unconstrained state which indicates that no

synthetic pain has been generated. The awareness is forced to switch to a High Priority

Subjective type once the reasoning process predicts that the arm joint will move into the

faulty joint region. In addition, the High Priority Subjective awareness type may be revisited

at a constrained state without generating any synthetic pain (Intensity is None).

SPD Synthetic Pain Activation

The Joint Data and prediction data Trial 1 for the SPD-based model can be seen in Table 6.32.

This table shows that the Robot Mind deciphers incoming information at sequence 4, when

the real Joint Data is 0.49246. First prediction constitutes the 5th sequence, 0.61365; second

prediction constitutes the 6th sequence, 0,73484; the third prediction for the 7th sequence

is 0.85603 and the fourth prediction for the 8th sequence is 0.97722. The first prediction

produces a relatively low prediction error of 1.84%, which then increases gradually to 5.37%

for the second prediction and 9.97% for the third prediction. The final prediction generates a

considerably high prediction error of 34.97%. However, the prediction error in this sequence

remains low overall with a standard deviation of 0.01. (see Table 6.33 for prediction error
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Table 6.32 Joint Data and Prediction Data SPD-based Model Trial 1

No Data
Prediction Data

4 5 6 7 8

1 0.22247

2 0.26696

3 0.37127

4 0.49246

5 0.63205 0.61365

6 0.78852 0.73484 0.77164

7 0.95572 0.85603 0.91123 0.94499

8 1.32695 0.97722 1.05082 1.10146 1.12292

1.19041 1.25793 1.29012 1.69818

1.41440 1.45732 2.06941

1.62452 2.44064

2.81187

during the SPD-based model Trial 1 experiment). When the robot processes the incoming

data in the 5th sequence, the prediction error of the first cycle is 1.69% and of the second

one is 4.45% (Joint Data predictions being 0.77164 and 0.91123 respectively). The final

prediction error is high at 27.61% (Joint Data prediction is 1.05082). A similar pattern occurs

in the next two sequences, 6 and 7, with prediction error values for the final cycles for each

sequence being 22.55% and 20.40% respectively. In the 8th sequence, the first prediction

suggests that the 9th sequence obtains the Joint Data of 1.69818 which recommends that the

robot should halt the experiment for Trial 1 as it will exceed the faulty joint value limit. Figure

6.21 depicts the prediction data pattern of the SPD-based model Trial 1 experiment. The

Joint Data prediction inclines vertically, with the final prediction data during 8th sequence

forcing the robot to halt.

Table 6.34, Table 6.35 and Table 6.36 show the initial state of the Robot Mind, the pain

activation and the Robot Mind recommendation during Trial 1. In all situations, the robot’s

consciousness state is unconstrained and the awareness level is High Subjective, which is

located in Region 1 (CDV is 6).

It can be seen from the tables that no SPD recommendation passes to the Robot Mind

during the 1st to 4th sequences. As a result, the Mind State remains unconstrained and no

action is taken by the Engine-Intention. A similar situation occurs in the next two sequences

and the SPD start suggesting pain activation in 6th sequence. In this sequence, the prediction

for the 10th sequence (four interval) suggests the kind of PP to be activated and the Robot

Mind sends out a warning about future pain. However, a counter-physical action is sent to
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Table 6.33 Prediction Error SPD-based Model Trial 1

Data
Prediction Cycles

Std D(σ )4 5 6 7 8

4 0.00%

5 1.84% 0.00% 0.01

6 5.37% 1.69% 0.00% 0.03

7 9.97% 4.45% 1.07% 0.00% 0.04

8 34.97% 27.61% 22.55% 20.40% 0.00% 0.06

9

Table 6.34 SPD Initial State Trial 1

No Data CDV Region Incoming Awareness Consciousness
Sensory Internally Belief State

1 0.22247 6 1 Current High Subjective Unconstrained

2 0.26696 6 1 Current High Subjective Unconstrained

3 0.37127 6 1 Current High Subjective Unconstrained

4 0.49246 6 1 Current High Subjective Unconstrained

0.61365 6 1 Prediction High Subjective Unconstrained

0.73484 6 1 Prediction High Subjective Unconstrained

0.85603 6 1 Prediction High Subjective Unconstrained

0.97722 6 1 Prediction High Subjective Unconstrained

5 0.63205 6 1 Current High Subjective Unconstrained

0.77164 6 1 Prediction High Subjective Unconstrained

0.91123 6 1 Prediction High Subjective Unconstrained

1.05082 6 1 Prediction High Subjective Unconstrained

1.19041 6 1 Prediction High Subjective Unconstrained

6 0.78852 6 1 Current High Subjective Unconstrained

0.94499 6 1 Prediction High Subjective Unconstrained

1.10146 6 1 Prediction High Subjective Unconstrained

1.25793 6 1 Prediction High Subjective Unconstrained

1.41440 6 1 Prediction High Subjective Unconstrained

7 0.95572 6 1 Current High Subjective Unconstrained

1.12292 6 1 Prediction High Subjective Unconstrained

1.29012 6 1 Prediction High Subjective Unconstrained

1.45732 6 1 Prediction High Subjective Unconstrained

1.62452 6 1 Prediction High Subjective Unconstrained

8 1.32695 6 1 Current High Subjective Unconstrained

1.69818 6 1 Prediction High Subjective Unconstrained

2.06941 6 1 Prediction High Subjective Unconstrained

2.44064 6 1 Prediction High Subjective Unconstrained

2.81187 6 1 Prediction High Subjective Unconstrained
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Fig. 6.21 Prediction Data SPD-based Model Trial 1
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Table 6.35 SPD Pain Activation Trial 1

SPD Recommendation - Region Mapping
Current Prediction

Pain (Predefined) Pain Region Pain (Predefined) Pain Region Danger Interval Consciousness State Warning

None

None

None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A Proprioceptive 3 4 Constrained Future Pain

None 1 N/A N/A N/A None None

N/A N/A Proprioceptive 3 1 Constrained Next Pain

N/A N/A Proprioceptive 3 2 Constrained Next Pain

N/A N/A Proprioceptive 3 3 Constrained Next Pain

N/A N/A Proprioceptive 3 4 Constrained Next Pain
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Table 6.36 Robot Mind Recommendation Trial 1

Mind Recommendation - Goals Action
Awareness Consciousness State Warning Engine-Intention

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None No danger None

None None Future Pain Alert Future

None None No danger None

None None No danger None

None None No danger None

None None No danger None

High Subjective Constrained Stop Now Arm Resist
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the Engine-Intention. The situation changes when the 7th Joint Data sequence is executed,

in which all prediction cycles suggest that the predicted Joint Data will fall into faulty joint

regions. SPD recommends the Robot Mind to exercise constraint after the final prediction

has been processed. The Robot Mind then interprets this recommendation and constrains the

Mind State, forces the Awareness to High Subjective type, sends out a warning to stop the

process, and activates a counter action in the Engine-Intention to resist the robot arm.

The Joint Data and prediction data Trial 2 for the SPD-based model can be seen in Table

6.37, and Figure 6.22 depicts data pattern prediction of the experiment. Table 6.37 shows

Table 6.37 Joint Data and Prediction Data SPD-based Model Trial 2

No Data
Prediction Data

5 6 7

1 0.02765

2 0.02765

3 0.02919

4 0.2194

5 0.39735 0.3974

6 0.68421 0.57530 0.6842

7 1.30548 0.75325 0.9711 1.30548

0.93120 1.2579 1.92675

1.1091 1.5448 2.54802

1.8317 3.16929

3.79056

Table 6.38 Prediction Error SPD-based Model Trial 2

Data
Prediction Cycles

Std D(σ )

5 0.00%

6 10.89% 0.00% 0.08

7 55.22% 33.44% 0.00% 0.28

that the Robot Mind deciphers incoming information at sequence 4, with the real Joint Data

being 0.2194. The first prediction constitutes the 5th sequence, 0.3974; the second prediction

constitutes to the 6th sequence, 0.57530 and the third prediction for the 7th sequence is

0.75325. The first prediction produces a relatively high prediction error of 10.89%, which

increases dramatically to 55.22% in the final prediction. However, the overall prediction
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Fig. 6.22 Prediction Data SPD-based Model Trial 2
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error in this sequence remains low, with a standard deviation of 0.08 (see Table 6.38 for

prediction error during the SPD-based model Trial 2 experiment). When the robot processes

the incoming data in the 6th sequence, the prediction error of the next sequence, 7th sequence,

is high, 33.44% (Joint Data prediction is 0.9711). This process recommends that the robot

should halt the experiment for Trial 2 as the predicted Joint Data will exceed the faulty joint

value limit. Figure 6.22 depicts the prediction data pattern of the SPD-based model Trial 2

experiment. The Joint Data prediction inclines vertically with the final prediction data during

the 7th sequence forcing the robot to stop. Table 6.40 and Table 6.41 show the pain activation

and the Robot Mind recommendation during Trial 2. The initial state of the Robot Mind

obtains consciousness in the unconstrained state and the awareness level is High Objective in

Region 6 (CDV is 126).

Table 6.39 SPD Initial State Trial 2

No Data CDV Region Incoming Awareness Consciousness
Sensory Internally Belief State

1 0.02765 126 6 Current High Objective Unconstrained

2 0.02765 126 6 Current High Objective Unconstrained

3 0.02919 126 6 Current High Objective Unconstrained

4 0.2194 126 6 Current High Objective Unconstrained

5 0.39735 126 6 Current High Objective Unconstrained

0.57530 126 6 Predict High Objective Unconstrained

0.75325 126 6 Predict High Objective Unconstrained

0.93120 126 6 Predict High Objective Unconstrained

1.10915 126 6 Predict High Objective Unconstrained

6 0.68421 126 6 Current High Objective Unconstrained

0.97107 126 6 Predict High Objective Unconstrained

1.25793 126 6 Predict High Objective Unconstrained

1.54479 126 6 Predict High Objective Unconstrained

1.83165 126 6 Predict High Objective Unconstrained

7 1.30548 126 6 Current High Objective Unconstrained

1.92675 126 6 Predict High Objective Unconstrained

2.54802 126 6 Predict High Objective Unconstrained

3.16929 126 6 Predict High Objective Unconstrained

3.79056 126 6 Predict High Objective Unconstrained

It can be seen from Table 6.40 and Table 6.41 that the state of the Robot Mind during

Trial 2 is similar to that in Trial 1, where no SPD recommendation passes to the Robot Mind

during the 1st to 4th sequences. As a result, the Mind State remains unconstrained and no

action is taken by the Engine-Intention. A similar situation occurs in the next two sequences

and the SPD start to suggest pain activation in the 6th sequence, with the prediction for

the 10th sequence (four interval) giving the kind of PP to be activated. The Robot Mind
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Table 6.40 SPD Pain Activation Trial 2

SPD Recommendation - Region Mapping
Current Prediction

Pain (Predefined) Pain Region Pain (Predefined) Pain Region Danger Interval Consciousness State Warning

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A Proprioceptive 3 4 None Future Pain

None 1 N/A N/A N/A None None

N/A N/A Proprioceptive 3 1 Constrained Next Pain

N/A N/A Proprioceptive 3 2 Constrained Next Pain

N/A N/A Proprioceptive 3 3 Constrained Next Pain

N/A N/A Proprioceptive 3 4 Constrained Next Pain

Table 6.41 Robot Mind Recommendation Trial 2

Mind Recommendation - Goals Action
Awareness Consciousness State Warning Engine-Intention

Unconstrained No Danger None

None None None

None None None

None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None Future Pain Alert Future

None None None None

None None None None

None None None None

None None None None

High Subjective Constrained Stop Now Arm Resist
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then sends out a warning about future pain; however, a counter-physical action is sent to

the Engine-Intention. The situation changes when the 7th Joint Data sequence is executed,

in which all prediction cycles suggest that the predicted Joint Data is going to fall into

the faulty joint regions. SPD recommends the Robot Mind to exercise constraint after the

final prediction has been processed. The Robot Mind interprets this recommendation and

constrains the Mind State, forces the Awareness to High Subjective type, sends out a warning

to stop the process and activates a counter action in the Engine-Intention which is to resist

the robot arm.

The Joint Data and prediction data for the SPD-based model Trial 3 experiment can be

seen in Table 6.42, Table 6.43 and Figure 6.23 depicts the prediction data pattern of the

experiment. During Trial 3, 10 sequences of Joint Data are obtained and the robot deciphers

Table 6.42 Joint Data and Prediction Data SPD-based Model Trial 3

No Data Prediction Data
6 7 8 9 10

1 0.02765

2 0.02765

3 0.02765

4 0.06907

5 0.29917

6 0.52774 0.52774

7 0.71642 0.75631 0.71642

8 0.87902 0.98488 0.9051 0.87902

9 1.0447 1.21345 1.09378 1.04162 1.0447

10 1.41132 1.44202 1.28246 1.20422 1.21038 1.41132

1.47114 1.20422 1.37606 1.77794

1.52942 1.54174 2.14456

1.70742 2.51118

2.8778

the incoming data in the 6th Joint Data sequence. The first prediction cycle constitutes the

7th sequence, the second prediction constitutes the 8th sequence, the third constitutes the 9th

sequence and the fourth constitutes the 10th sequence. All prediction values obtained during

the 6th sequence are over-estimated predictions. The first three prediction cycles have an

upward trend with the highest prediction error being for the 9th sequence, 16.87%. However,

the error drops dramatically to 3.07%, with the predicted Joint Data being higher than the real

Joint Data. In the 7th sequence, the first prediction error is 2.62% and increases to 12.89%

in the final prediction. The 8th sequence has the highest prediction error, 20.71%, which

is predicted for the 10th sequence and drops slightly to 20.09% during the 9th Joint Data
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Table 6.43 Prediction Error SPD-based Model Trial 3

Data
Prediction Cycles

Std D(σ )6 7 8 9 10

6 0.00%

7 -3.99% 0.00% 0.03

8 -10.59% 2.61% 0.00% 0.06

9 -16.87% 4.91% 0.31% 0.00% 0.08

10 -3.07% 12.89% 20.71% 20.09% 0.00% 0.11

11

Fig. 6.23 Prediction Data SPD-based Model Trial 3



6.2 Non-empathy based Experiments 113

sequence. The pattern of the predicted Joint Data moves vertically and in the 10th sequence,

the robot predicts that with the incoming next sequence, the Joint Data will fall into the faulty

joint region.

Table 6.44 shows the initial state of the Robot Mind during the early stage of Trial 3. The

prediction process commences in the 6th Joint Data sequence, and the states of the awareness

is High Priority, the consciousness state is unconstrained and in Region 6 (CDV is 138).

As can be seen from the table, all the elements of the Robot Mind remain the same. Pain

activation also remains the same until the 9th Joint Data sequence is processed, where the

final prediction suggests the kind of PP that should be invoked, the pain region is 3 and the

pain is likely to occur in the 13th Joint Data sequence. However, the SPD suggests that

the consciousness state should remain unconstrained with the warning signal of future pain.

When the next sequence commences, the SPD predicts that the danger intervals consistently

appear in all prediction cycles. As a result, the recommendation to be sent to the Robot Mind

is that the consciousness state should be altered to the constrained state with the warning of

pain evoked in the next sequence (see Table 6.45). The Goals are then modified, the robot

awareness is forced to be in High Subjective condition under constraint, and the warning

to be sent out is to stop straight away. The Engine-Intention executes a counter action by

resisting the robot’s arm, which is achieved by maximising the motor stiffness of the arm

joint (see Table 6.46).

Table 6.47 shows the overall Joint Data being processed in Trial 4 along with the predic-

tion data for each sequence of data, which lasts for seven sequences. Over four prediction

cycles, three prediction data are taken into consideration. The first cycle of prediction, which

constitutes the 5th sequence, predicts the Joint Data to be 0.42803 with prediction error

4.14%. The second cycle, which determines the predicted value of the 6th sequence, suggests

a prediction error of 6.44%. The final prediction cycle generates a relatively high prediction

error, 40.19% (predicted Joint Data is 0.82687 while the real Joint Data at predicted 7th

sequence is 1.22878). The prediction error values for the next sequence of data decrease to

1.84% for the first prediction (under-estimated prediction) and 27.77% for the final prediction

value, which drops slightly from the earlier prediction. In the 6th sequence of incoming Joint

Data, 1.22878, the error value of the first prediction cycle increases to 31.45% (predicted

Joint Data is 0.91431). In the last sequence of incoming data, the robot predicts that the Joint

Data will be 1.76568 in the next sequence, which falls into the faulty joint region. As a result,

the robot halts at the 7th Joint Data sequence (see Table 6.48 for prediction error Trial 4).

Figure 6.24 depicts the graphical-based analysis of the Joint Data and data prediction.

It can be seen that from sequence 1 to sequence 3, the Joint Data remains the same, and in

the 4th sequence, it starts to incline gradually as the prediction process takes place. In the
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Table 6.44 SPD Initial State Trial 3

No Data CDV Region Incoming Awareness Consciousness
Sensory Internally Belief State

1 0.02765 138 6 Current High Objective Unconstrained

2 0.02765 138 6 Current High Objective Unconstrained

3 0.02765 138 6 Current High Objective Unconstrained

4 0.06907 138 6 Current High Objective Unconstrained

5 0.29917 138 6 Current High Objective Unconstrained

6 0.52774 138 6 Current High Objective Unconstrained

0.75631 138 6 Prediction High Objective Unconstrained

0.98488 138 6 Prediction High Objective Unconstrained

1.21345 138 6 Prediction High Objective Unconstrained

1.44202 138 6 Prediction High Objective Unconstrained

7 0.71642 138 6 Current High Objective Unconstrained

0.9051 138 6 Prediction High Objective Unconstrained

1.09378 138 6 Prediction High Objective Unconstrained

1.28246 138 6 Prediction High Objective Unconstrained

1.47114 138 6 Prediction High Objective Unconstrained

8 0.87902 138 6 Current High Objective Unconstrained

1.04162 138 6 Prediction High Objective Unconstrained

1.20422 138 6 Prediction High Objective Unconstrained

1.20422 138 6 Prediction High Objective Unconstrained

1.52942 138 6 Prediction High Objective Unconstrained

9 1.0447 138 6 Current High Objective Unconstrained

1.21038 138 6 Prediction High Objective Unconstrained

1.37606 138 6 Prediction High Objective Unconstrained

1.54174 138 6 Prediction High Objective Unconstrained

1.70742 138 6 Prediction High Objective Unconstrained

10 1.41132 138 6 Current High Objective Unconstrained

1.77794 138 6 Prediction High Objective Unconstrained

2.14456 138 6 Prediction High Objective Unconstrained

2.51118 138 6 Prediction High Objective Unconstrained

2.8778 138 6 Prediction High Objective Unconstrained
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Table 6.45 SPD Pain Activation Trial 3

SPD Recommendation - Region Mapping
Current Prediction

Pain (Predefined) Pain Region Pain (Predefined) Pain Region Danger Interval Consciousness State Warning

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A Proprioceptive 3 4 Unconstrained Future Pain

None 1 N/A N/A N/A None None

N/A N/A Proprioceptive 3 1 Constrained Next Pain

N/A N/A Proprioceptive 3 2 Constrained Next Pain

N/A N/A Proprioceptive 3 3 Constrained Next Pain

N/A N/A Proprioceptive 3 4 Constrained Next Pain
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Table 6.46 Robot Mind Recommendation Trial 3

Mind Recommendation - Goals Action
Awareness Consciousness State Warning Engine-Intention

Unconstrained No Danger None

None None None

None None None

None None None

None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None Future Pain Alert Future

None None None None

None None None None

None None None None

None None None None

High Subjective Constrained Stop Now Arm Resist
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Table 6.47 Joint Data and Prediction Data SPD-based Model Trial 4

No Data Prediction Data
4 5 6 7

1 0.02612

2 0.02765

3 0.02919

4 0.22861 0.22861

5 0.46945 0.42803 0.46945

6 0.69188 0.62745 0.71029 0.69188

7 1.22878 0.82687 0.95113 0.91431 1.22878

1.02629 1.19197 1.13674 1.76568

1.43281 1.35917 2.30258

1.5816 2.83948

0.46945 3.37638

Table 6.48 Prediction Error SPD-based Model Trial 4

Data
Prediction Cycles

Std D(σ )4 5 6 7

4 0.00%

5 4.14% 0.00% 0.03

6 6.44% -1.84% 0.00% 0.04

7 40.19% 27.77% 31.45% 0.00% 0.17
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5th and 6th sequences, the prediction data almost converges to the real Joint Data, and in the

7th sequence, all prediction data are under-estimated. However, the prediction data for the

8th sequence is capable of preventing the robot from experiencing higher pain intensity and

forcing the robot to execute a counter action by increasing joint stiffness of the motor of the

arm joint.

Fig. 6.24 Prediction Data SPD-based Model Trial 4

The initial state of the Robot Mind is shown in Table 6.49. The state of consciousness

remains unconstrained from the 1st sequence to the 7th sequence. Similarly, the awareness

state is Left Subjective, the activated Region is 3 and the CDV is 65. From the initial state, the
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Table 6.49 SPD Initial State Trial 4

No Data Internally CDV Region Incoming Awareness Consciousness
Sensory Belief State

1 0.02612 65 3 Current Left Subjective Unconstrained

2 0.02765 65 3 Current Left Subjective Unconstrained

3 0.02919 65 3 Current Left Subjective Unconstrained

4 0.22861 65 3 Current Left Subjective Unconstrained

0.42803 65 3 Predict Left Subjective Unconstrained

0.62745 65 3 Predict Left Subjective Unconstrained

0.82687 65 3 Predict Left Subjective Unconstrained

1.02629 65 3 Predict Left Subjective Unconstrained

5 0.46945 65 3 Current Left Subjective Unconstrained

0.71029 65 3 Predict Left Subjective Unconstrained

0.95113 65 3 Predict Left Subjective Unconstrained

1.19197 65 3 Predict Left Subjective Unconstrained

1.43281 65 3 Predict Left Subjective Unconstrained

6 0.69188 65 3 Current Left Subjective Unconstrained

0.91431 65 3 Predict Left Subjective Unconstrained

1.13674 65 3 Predict Left Subjective Unconstrained

1.35917 65 3 Predict Left Subjective Unconstrained

1.5816 65 3 Predict Left Subjective Unconstrained

7 1.22878 65 3 Current Left Subjective Unconstrained

1.76568 65 3 Predict Left Subjective Unconstrained

2.30258 65 3 Predict Left Subjective Unconstrained

2.83948 65 3 Predict Left Subjective Unconstrained

3.37638 65 3 Predict Left Subjective Unconstrained
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Robot Mind with SPD-based model sets the default values and deciphers the incoming data,

which does not recommend that any changes should take place. Similarly, the Goals remain

the same as the Robot Mind has not received a new recommendation. These conditions last

until the 6th Joint Data sequence has been processed, particularly in the final prediction cycle.

The SPD suggests that the kind of PP is generated and the pain region is 3 which will occur

in the 4th interval. Since the interval is still far from taking place, the SPD recommends that

the state of consciousness should continue to be unconstrained with a future pain warning.

This recommendation is passed to the Goals and a warning is generated that this type PP

will occur as future pain. The Engine-Intention then executes a counter response by sending

out an alert about the future pain. When the 7th sequence is processed, the kind of IP is

assessed, but there is no indication that the current Joint Data will fall into the faulty joint

region. As a result, there is no recommendation to be passed to the Robot Mind’s Goals.

The kind of PP, however, is generated in all four prediction cycles when the pain prediction

region is 3. Hence, the SPD Pain Activation mechanism generates recommendations that

the state of the consciousness should be constrained with the next warning to indicate pain.

The Goals then capture these recommendations, constraint the consciousness state and force

the awareness to change to High Subjective with a warning to stop. At the same time, the

Engine-Intention is activated which causes the counter action to be executed by increasing

the robot joint stiffness (resistance on the robot’s arm). Table 6.50 and Table 6.51 show the

SPD-based pain activation and the Goals of the Robot Mind respectively.

In Trial 5, the experiment only lasts for 6 sequences, and the robot commences deciphering

incoming data in the 4th Joint Data sequence. Table 6.52 shows the results obtained for

the prediction data and Table 6.53 depicts the prediction error for each sequence and the

deviation values. The robot starts prediction processes in the 4th Joint Data sequence; the

first prediction cycle constitutes the 5th sequence and the final prediction is for the 6th

sequence. The first prediction obtains an over-estimated prediction, resulting a higher value

in the predicted Joint Data at 0.77318, while the real Joint Data is 0.74403 with a relatively

low prediction error of 2.92%. The final prediction, however, has higher prediction error of

24.24%. In the 5th sequence, the prediction error of the first prediction cycle increases to

30.07%. The 6th sequence, which generates prediction data for the 7th sequence, obtains

Joint Data of 1.76875. The Robot Mind then halts the experiment as the predicted Joint Data

falls into the faulty joint region. The Joint Data remain the same in the 1st and 2nd sequences,

and starts to incline in the 3rd sequence until the end of experiment Trial 5. The prediction

data in the 6th sequence increases dramatically and peaks at 1.76875, which predicts that the

7th sequence will cause the robot to experience pain. This situation suggests that the Robot

Mind should take preventive action by increasing its arm joint stiffness and discontinuing the
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Table 6.50 SPD Pain Activation Trial 4

SPD Recommendation - Region Mapping
Current Prediction

Pain (Predefined) Pain Region Pain (Predefined) Pain Region Danger Interval Consciousness State Warning

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A Proprioceptive 3 4 Unconstrained Future Pain

None 1 N/A N/A N/A None None

N/A N/A Proprioceptive 3 1 Constrained Next Pain

N/A N/A Proprioceptive 3 2 Constrained Next Pain

N/A N/A Proprioceptive 3 3 Constrained Next Pain

N/A N/A Proprioceptive 3 4 Constrained Next Pain

experiment (see Figure 6.25). Table 6.54 shows the initial state of the Robot Mind with the

state of consciousness remaining unconstrained from the 1st sequence to the 6th sequence.

Similarly, the awareness state is Low Objective; the activated Region is 5 and the CDV is

105.

Table 6.55 and Table 6.56 show the SPD-based pain activation and the Goals of the Robot

Mind respectively. The anaylsis of Trial 5 is similar to that of Trial 4 as their internal states

are uniform. The Robot Mind with SPD-based model sets the default values and deciphers the

incoming data, which does not recommend that any change should be processed. Similarly,

the Goals remain the same as the Robot Mind has not received a new recommendation. These

conditions last until the 6th Joint Data sequence has been processed, particularly in the final

prediction cycle. The SPD suggests that the kind of PP is generated; the pain region is 3 and

the pain will occur in the 4th interval. Since the interval is still far from occurring, the SPD

recommends that the state of consciousness should remain unconstrained with a future pain

warning. This recommendation is passed to the Goals and the warning is generated that this

kind of PP will occur in the future. The Engine-Intention then executes a counter response

by sending out an alert about the future pain. When the 7th sequence is processed, the kind

of IP is assessed, but there is no indication that the current Joint Data will fall into the faulty

joint region. As a result, there is no recommendation to be passed into the Robot Mind’s
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Table 6.51 Robot Mind Recommendation Trial 4

Mind Recommendation - Goals Action
Awareness Consciousness State Warning Engine-Intention

Unconstrained No Danger None

None None None

None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None Future Pain Alert Future

None None None None

None None None None

None None None None

None None None None

High Subjective Constrained Stop Now Arm Resist

Table 6.52 Joint Data and Prediction Data SPD-based Model Trial 5

No Data Prediction Data
4 5 6

1 0.02765

2 0.03839

3 0.2915

4 0.53234 0.53234

5 0.74403 0.77318 0.74403

6 1.25639 1.01402 0.95572 1.25639

1.25486 1.16741 1.76875

1.4957 1.3791 2.28111

1.59079 2.79347

3.30583
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Table 6.53 Prediction Error SPD-based Model Trial 5

Data
Prediction Cycles

Std D(σ )4 5 6

4 0.00%

5 -2.92% 0.00% 0.02

6 24.24% 30.07% 0.00% 0.16

Fig. 6.25 Prediction Data SPD-based Model Trial 5
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Table 6.54 SPD Initial State Trial 5

No Data Internally CDV Region Incoming Awareness Consciousness
Sensory Belief State

1 0.02765 105 5 Current Low Objective Unconstrained

2 0.03839 105 5 Current Low Objective Unconstrained

3 0.2915 105 5 Current Low Objective Unconstrained

4 0.53234 105 5 Current Low Objective Unconstrained

0.77318 105 5 Predict Low Objective Unconstrained

1.01402 105 5 Predict Low Objective Unconstrained

1.25486 105 5 Predict Low Objective Unconstrained

1.4957 105 5 Predict Low Objective Unconstrained

5 0.74403 105 5 Current Low Objective Unconstrained

0.95572 105 5 Predict Low Objective Unconstrained

1.16741 105 5 Predict Low Objective Unconstrained

1.3791 105 5 Predict Low Objective Unconstrained

1.59079 105 5 Predict Low Objective Unconstrained

6 1.25639 105 5 Current Low Objective Unconstrained

1.76875 105 5 Predict Low Objective Unconstrained

2.28111 105 5 Predict Low Objective Unconstrained

2.79347 105 5 Predict Low Objective Unconstrained

3.30583 105 5 Predict Low Objective Unconstrained

Goals (the kind of PP, however, is generated in all four prediction cycles). Hence, the SPD

Pain Activation mechanism generates recommendations that the state of the consciousness is

to be constrained and a warning that the pain will occur in the next sequence. The Goals then

capture these recommendations, constrain the consciousness state and force the awareness to

change to High Subjective with the warning to stop. At the same time, the Engine-Intention

is activated which causes the counter action to be executed by increasing the robot joint

stiffness (resistance on the robot’s arm).

The results of the average SPD pain activation and the Robot Mind’s recommendations

are shown in Tables 6.57 and 6.58 respectively (the data is obtained from the second online

experiment with physical interaction). It can be seen that the SPD activation system does not

make any recommendation for four data cycles, hence, the Goals do not change the condition

of the robot awareness. No pain is generated until the sixth data cycle is processed, which

produces the kind of PP for which the warning recommendation is Future Pain. However,

the Goals remain None, preventing the Intentions from making counter responses. As

the next incoming data analysis predicts that the type of PP will persist throughout the

prediction cycles, the Goals now constrain the state of the Robot Mind and recommend that

the Intentions should take action by increasing the stiffness of the joint (Arm Resist).
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Table 6.55 SPD Pain Activation Trial 5

SPD Recommendation - Region Mapping
Current Prediction

Pain (Predefined) Pain Region Pain (Predefined) Pain Region Danger Interval Consciousness State Warning

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

None 1 N/A N/A N/A None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A None 1 None None None

N/A N/A Proprioceptive 3 4 Unconstrained Future Pain

None 1 N/A N/A N/A None None

N/A N/A Proprioceptive 3 1 Constrained Next Pain

N/A N/A Proprioceptive 3 2 Constrained Next Pain

N/A N/A Proprioceptive 3 3 Constrained Next Pain

N/A N/A Proprioceptive 3 4 Constrained Next Pain

Table 6.56 Robot Mind Recommendation Trial 5

Mind Recommendation - Goals Action
Awareness Consciousness State Warning Engine-Intention

Unconstrained No Danger None

None None None

None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None None None

None None Future Pain Alert Future

None None None None

None None None None

None None None None

None None None None

High Subjective Constrained Stop Now Arm Resist
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Table 6.57 SPD Pain Activation - Average

No Data SPD Recommendation - Region Mapping
Sensory Internally Current Prediction

Pain Pain Region Pain Pain Region Interval Mind State Warning

1 0.02765

2 0.02765

3 0.02919

4 0.2194

5 0.39735 None 1 N/A N/A N/A None None

0.57530 N/A N/A None 1 None None None

0.75325 N/A N/A None 1 None None None

0.93120 N/A N/A None 1 None None None

1.10915 N/A N/A None 1 None None None

6 0.68421 None 1 N/A N/A N/A None None

0.97107 N/A N/A None 1 None None None

1.25793 N/A N/A None 1 None None None

1.54479 N/A N/A None 1 None None None

1.83165 N/A N/A Proprioceptive 3 4 None Future Pain

7 1.30548 None 1 N/A N/A N/A None None

1.92675 N/A N/A Proprioceptive 3 1 Constrained Next Pain

2.54802 N/A N/A Proprioceptive 3 2 Constrained Next Pain

3.16929 N/A N/A Proprioceptive 3 3 Constrained Next Pain

3.79056 N/A N/A Proprioceptive 3 4 Constrained Next Pain

Table 6.58 Robot Mind Recommendations

No Data
Mind Recommendation - Goals ActionSensory Internally

Awareness Mind State Warning Engine-Intention

1 0.02765 Unconstrained No Danger None

2 0.02765 None None None

3 0.02919 None None None

4 0.2194 None None None

5 0.39735 None None None None

0.57530 None None None None

0.75325 None None None None

0.93120 None None None None

1.10915 None None None None

6 0.68421 None None None None

0.97107 None None None None

1.25793 None None None None

1.54479 None None None None

1.83165 None None Future Pain Alert Future

7 1.30548 None None None None

1.92675 None None None None

2.54802 None None None None

3.16929 None None None None

3.79056 High Subjective Constrained Stop Now Arm Resist
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6.2.2 Pain Matrix-based Model

The data collected during the upward and downward hand movement direction experiments

are shown in Tables 6.59 and 6.60 respectively.

Table 6.59 Upward Hand Movement Direction

No Data
Prediction Data

4 5 6 7 8 9 10 11 12 13

1 -0.0153

2 -0.03064

3 -0.11501

4 -0.26534

5 -0.44328 -0.416

6 -0.50464 -0.566 -0.621

7 -0.50464 -0.716 -0.799 -0.566

8 -0.71787 -0.867 -0.977 -0.627 -0.505

9 -0.96331 -1.155 -0.689 -0.505 -0.931

10 -1.13052 -0.750 -0.505 -1.144 -1.209

11 -1.27164 -0.505 -1.358 -1.454 -1.298

12 -1.4772 -1.571 -1.700 -1.465 -1.413

13 -1.61526 -1.945 -1.632 -1.554 -1.683

-1.799 -1.695 -1.888 -1.753

-1.836 -2.094 -1.891

-2.299 -2.029

-2.167

Table 6.60 Downward Hand Movement Direction

No Data
Prediction Data

4 5 6 7 8 9

1 0.05527

2 0.08901

3 0.31758

4 0.5937

5 0.87749 0.86982

6 1.14594 1.14594 1.16128

7 1.38678 1.42206 1.44507 1.41439

8 1.54478 1.69818 1.72886 1.68284 1.62762

9 1.68284 2.01265 1.95129 1.86846 1.70278

2.21974 2.1093 1.86078 1.8209

2.35014 2.01878 1.95896

2.17678 2.09702

2.23508

Pain Matrix-based Model Data Analysis

The two kinds of hand movement experiments have the same results and the Robot Mind

produces data predictions at the 4th data cycle obtained from the joint position sensor of

the robot. Because of this similarity, the discussion of the results is limited to one typical

experiment, which is the Upward hand movement direction experiment.
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We divided the data into prediction cycles, each of which contains of four time predictions.

We obtained the highest error prediction occurring in the seventh data cycle with a standard

deviation of about 0.5. The overall error prediction is shown in Table 6.61).

Table 6.61 Upward Hand Movement Prediction

No Data
Prediction Data

4 5 6 7 8 9 10 11 12 13

1 -0.0153

2 -0.03064

3 -0.11501

4 -0.26534 0.000

5 -0.44328 0.020 0.000

6 -0.50464 0.043 0.082 0.000

7 -0.50464 0.150 0.208 0.043 0.000

8 -0.71787 0.105 0.183 0.064 0.151 0.000

9 -0.96331 0.136 0.194 0.324 0.023 0.000

10 -1.13052 0.269 0.443 0.010 0.055 0.000

11 -1.27164 0.542 0.061 0.129 0.018 0.000

12 -1.4772 0.066 0.157 0.009 0.046 0.000

13 -1.61526 0.233 0.012 0.043 0.048 0.000

Pain Matrix-based Model Activation

The state of the Belief, the pain activation, and the Goals and Intentions are shown in

Table 6.62, Table 6.63, and Table 6.65 respectively. The state of the Belief of the robot is

Table 6.62 Belief State During Non-Empathy Experiment Using Pain Matrix Model

No
Data

CDV Region
Incoming

Awareness
Mind Extero Proprio-

Sensory Internally Belief State ceptive ceptive

1 -0.0153

119 5

Current

FALSE TRUE

2 -0.0306

3 -0.115

4 to 11

-0.2653

-0.41567

Prediction

-0.566

-0.71633 Un

-0.86666 constrained

12 -1.4772 Current Lower

-1.68276

Prediction

Objective

-1.88832

-2.09388

-2.29944

13 -1.61526 Current

-1.75332

Prediction

-1.89138

-2.02944

-2.1675

comprised of several elements such as the data originating from the Sensory Mechanisms



6.2 Non-empathy based Experiments 129

Table 6.63 Pain Activation During Non-Empathy Experiment Using Pain Matrix Model

No Activation

Booster Pain Init Cons Modifier
1 N/A N/A N/A

2 N/A N/A N/A

3 N/A N/A N/A

4 to 11

0.000856642 0.266197 FALSE

0 0.41567 FALSE

0 0.566 FALSE

0 0.71633 FALSE

0 0.86666 FALSE

12 0.000856642 1.4780566 FALSE

0 1.68276 FALSE

0 1.88832 FALSE

0 2.09388 FALSE

0 2.29944 FALSE

13 0.000856642 1.6161166 TRUE

0 1.75332 FALSE

0 1.89138 FALSE

0 2.02944 FALSE

0 2.1675 FALSE

(either exteroception or ‘proprioception’, the CDV, the values that correspond to the region of

robot awareness, and the condition of the Robot Mind. During the experiment, which lasts for

13 cycles, the knowledge of the robot remains the same. The Consciousness Modifier remains

inactive throughout out the experiment cycles. When the Incoming Belief data is Current,

the Booster affects the functionality of the Pain Matrix, whereas when it is Prediction, the

Booster is not allowed to affect the Pain Matrix.

From the 4th cycle to the 11th cycle, the Pain Matrix recommendations are uniform, and

the kind of pain to be originated is the IP at pain level None. At the 12th cycle, the Current

analysis does not recommend an increase in the level of detection, but the Prediction analysis

estimates that the robot is suffering from PP and should take different preventive actions over

the next four cycles of data. For the 13th and 14th cycles, the level of preventive actions is

Low; for the 15th and 16th cycles, the level is Medium. It is also recommended that the state

of Robot Mind should be altered to Constrained and that the Warning to be invoked should

be Future Pain. The Robot Mind assesses this recommendation and concludes that there is no

need to make any change to the state of the Robot Mind, and that this is the Goal to achieve

at this stage.

In cycle 13, the Consciousness Modifier is set to TRUE allowing the Pain Matrix to

influence the robot’s awareness framework at the Standard level of influence. When the data

is at Current level, the IP level increases to Moderate and the level of response action is

Medium. The Prediction analysis suggests that the level of pain will increase to Slight as the

predicted response actions increase through four of the subsequent data cycles (14th, 15th,
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Table 6.64 Pain Matrix Output During Non-Empathy Experiment

No Current

Consc Modifier Pain Dist Kind of Pain Pain level empathised actions self actions
1 N/A N/A N/A N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A

4 to 11

- 0.267053284 Inflammatory None N/A None

- 0.41567 Proprioceptive N/A N/A N/A

- 0.566 Proprioceptive N/A N/A N/A

- 0.71633 Proprioceptive N/A N/A N/A

- 0.86666 Proprioceptive N/A N/A N/A

12 - 1.478913284 Inflammatory None N/A None

- 1.68276 Proprioceptive N/A N/A N/A

- 1.88832 Proprioceptive N/A N/A N/A

- 2.09388 Proprioceptive N/A N/A N/A

- 2.29944 Proprioceptive N/A N/A N/A

13 Standard 1.616973284 Inflammatory Moderate N/A Medium

- 1.75332 Proprioceptive N/A N/A N/A

- 1.89138 Proprioceptive N/A N/A N/A

- 2.02944 Proprioceptive N/A N/A N/A

- 2.1675 Proprioceptive N/A N/A N/A

Prediction Output
pain level empathy action self action danger low danger medium Mind State Warning

1 N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A

4 to 11

N/A N/A N/A N/A N/A None None

None - - - - None None

None - - - - None None

None - - - - None None

None - - - - None None

12 N/A N/A N/A N/A N/A None None

None - Low 1 - None None

None - Low 2 - None None

None - Medium - 3 Constrained Future Pain

None - Medium - 4 Constrained Future Pain

13 N/A N/A N/A N/A N/A Constrained Next Pain

None - Low 1 - None None

None - Low 2 - None None

None - Low 3 - None None

Slight - Medium - 4 Constrained Future Pain
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Table 6.65 Goals - Intentions During Non-Empathy Experiment Using Pain Matrix Model

No Mind Recommendation - Goals Action Engine-Intention
CDV Region Awareness Mind State Warning

1 N/A N/A N/A N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A

4 to 11

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

None None None None No Danger None

12 N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A

55 1 None None N/A None

13 55 1 Left Subjective Constrained Next Pain N/A

None None N/A N/A N/A N/A

None None N/A N/A N/A N/A

None None N/A N/A N/A N/A

55 1 High Subject Constrained Future Pain Resist Now

17th, and 18th). Hence, the Pain Matrix converges to a recommendation that the Mind State

should be changed to Constrained and the Warning to Next Pain. The Robot Mind then sets

the Goal to modify the CDV value (the new CDV is 55 and the region is 1) which will force

the Awareness to change to Left Subjective Awareness and the Mind State to Constrained.

Based on these Goals, the robot’s Intentions function executes a counter reaction, which is

Arm Resistance achieved by increasing the stiffness of the shoulder joint of the robot.

6.3 Empathy-based Experiments

Two phases of experiments are carried out in which the SPD model and the Pain Matrix model

are implemented into the framework. The faulty joint regions throughout these experiments

remain the same, as shown in Table 6.66.

Table 6.66 Faulty Joint Regions

Element Region/Ordinate Values

Faulty Joint Region

1 Upper High -2.08313

2 Upper Medium -1.58313

3 Upper Low -1.38313

4 Lower Low 1.385669

5 Lower Medium 1.585669

6 Lower High 2.085669
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6.3.1 SPD Model

Two kinds of data are obtained during this phase of experimentation as shown in Table

6.67. As the Upward and Downward hand movement experiments share the same results,

Table 6.67 Observer Data with SPD Model in Empathy Experiments

No
Upward Downward

Data
Prediction

Data
Prediction

4 4

1 1.214 0.242

2 -0.291 1.186

3 -0.777 1.805

4 -1.165 2.105

-1.553 2.405

-1.941 2.705

-2.329 3.005

-2.717 3.305

the discussion will present only one of the hand movement experiments, the Upward hand

movement. However, for data that differs during the experiments, the discussion will present

both results.

SPD-based Model Analysis

The Robot Mind starts the reasoning process, predicts the data and establishes Goals and

Intentions about the future at the 4th cycle (see Figure 6.26). The internal state of the Robot

Mind from which the Belief State is derived is shown in Table 6.68 below.

There are two kinds of raw data; Current data, which originates from the Sensory Mechanism,

Table 6.68 Belief State of the Observer in SPD Model

No Data CDV Region Incoming Belief Awareness Mind State
Sensory Internally

1 1.214 2 1 Current Upper Subjective Unconstrained

2 -0.291 2 1 Current Upper Subjective Unconstrained

3 -0.777 2 1 Current Upper Subjective Unconstrained

4 -1.165 2 1 Current Upper Subjective Unconstrained

-1.553 2 1 Prediction Upper Subjective Unconstrained

-1.941 2 1 Prediction Upper Subjective Unconstrained

-2.329 2 1 Prediction Upper Subjective Unconstrained

-2.717 2 1 Prediction Upper Subjective Unconstrained

and Prediction data, which is generated internally. The CDV, in particular, can be generated
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Fig. 6.26 Observer Data

either internally or externally. Manually predefining the CDV, however, is only available

at the initiation stage, and during the process, it is governed by the Robot Mind. The CDV

determines the active Region, the initial state of Awareness and the Mind State, while the

Incoming Belief, which refers to whether the data classification is Current or Prediction,

is obtained after the Robot Mind has reasoned about the incoming data from the Sensory

Mechanism. The comparison of the Observer and Mediator data is shown Tables 6.69 and

6.70. It can be seen that the data cycles of the Observer and the Mediator differ significantly.

Table 6.69 Observer and Mediator Data During Upward Experiment

No
Mediator Observer

Data Cycle Data Data Cycle Data Prediction

1 1 0.01845 1 1.214

2 2643 -0.29449 2 -0.291

3 3244 -0.77923 3 -0.777

4 3695 -1.16273 4 -1.165

5 4214 -1.5493 -1.553

6 4695 -1.94354 -1.941

7 5595 -2.08567 -2.329

8 -2.08567 -2.717

During the Upward experiment, for instance, the total number of data occurrences in the

Mediator are 5595 cycles while in the Observer, they are only four cycles. A similar pattern

also occurs in the Downward experiment, with fewer data occurrences in the Mediator

(469 cycles), while those in the Observer remain the same at four cycles. Both Observer
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Table 6.70 Observer and Mediator Data During Downward Experiment

No
Mediator Observer

Data Cycle Data Data Cycle Data Prediction

1 75 0.23474 1 0.242

2 227 1.18429 2 1.186

3 379 1.80556 3 1.805

4 415 1.93902 4 2.105

5 437 2.01112 2.405

6 450 2.04026 2.705

7 469 2.08567 3.005

8 2.08567 3.305

experiments halt at the 4th cycle and the Observer follows up with the execution of empathic

action. However, from the Mediator’s perspective, the process continues and stops in a later

data cycles. This shows that the Observer does not perform empathic reactions immediately

as the robot requires additional time to execute the action; for example, approaching the

scene of interaction. The Robot Mind of the Observer additionally performs more complex

data analysis, which increases the execution time.

SPD-based Model Activation

The kinds of synthetic pain to be evoked by the SPD model are predefined prior to experiments

and the kinds of pain to be modelled are the PP and IP, mentioned in Chapter 5.

The SPD Model recommendations are different during the Upward and Downward

experiments, as shown in Table 6.71 and Table 6.72 respectively. During the Upward Hand

Table 6.71 SPD Recommendations - Upward Experiment

No

Data SPD Recommendation - Region Mapping

Sensory Internally

Current Prediction

Mind State WarningPain
Pain

Pain
Pain Danger

Region Region Interval

1 1.214 N/A N/A N/A N/A N/A N/A N/A

2 -0.291 N/A N/A N/A N/A N/A N/A N/A

3 -0.777 N/A N/A N/A N/A N/A N/A N/A

4 -1.165 None 1 N/A N/A N/A None None

-1.553 N/A N/A Proprioceptive 2 1 Constrained Next Pain

-1.941 N/A N/A Proprioceptive 3 2 Constrained Next Pain

-2.329 N/A N/A Proprioceptive 3 3 Constrained Next Pain

-2.717 N/A N/A Proprioceptive 3 4 Constrained Next Pain

Movement experiment, the first prediction cycle recommends that the robot should experience

no pain at the joint value of −1.553, hence, the Mind State and the Warning recommendation

do not produce any new amendment. However, the SPD suggests that the future incoming
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Table 6.72 SPD Recommendations - Downward Experiment

No

Data SPD Recommendation - Region Mapping

Sensory Internally

Current Prediction

Mind State WarningPain
Pain

Pain
Pain Danger

Region Region Interval

1 0.242 N/A N/A N/A N/A N/A N/A N/A

2 1.186 N/A N/A N/A N/A N/A N/A N/A

3 1.805 N/A N/A N/A N/A N/A N/A N/A

4 2.105 Inflammatory 3 N/A N/A N/A Constrained In Pain

2.405 N/A N/A Proprioceptive 3 1 Constrained Next Pain

2.705 N/A N/A Proprioceptive 3 2 Constrained Next Pain

3.005 N/A N/A Proprioceptive 3 3 Constrained Next Pain

3.305 N/A N/A Proprioceptive 3 4 Constrained Next Pain

data should be predicted to generate the kind of PP which is persistent throughout four

cycles of predictions. This suggests that the new recommendation for the Mind State will be

Constrained and the kind of Warning to be sent out is Next Pain. In contrast, the 4th data

cycle in the Downward experiment invokes the IP Pain Region 3. The SPD then recommends

that the Mind State should be Constrained, while the kind of Warning is In Pain, which means

that the robot has been suffering from the IP. This recommendation is halted until the Robot

Mind has processed the prediction analysis. Unfortunately, the SPD predicts that the PP type

will occur in the same region, Region3, and this pain will persist through all the prediction

cycles.

Based on these recommendations, the Robot Mind sets up new Goals and directs the

Intentions to generate the execution of empathic reactions by the Action Engine. In the

first data cycle, the Robot Mind establishes the state as Unconstrained and as this occurs

internally, there are no external actions to be executed. This internal state lasts until the

4th cycle of data occurs which allows the Robot Mind to reason and present four cycles

of data prediction. The difference between the Upward and Downward experiments is that

during the Upward experiment, there is no recommendation for the Goals for the Current

data, while in the Downward experiment, the Robot Mind makes recommendations and sets

up new Goals. In both cases, the Intentions execute empathic actions after the Prediction

data analysis has confirmed the recommendation of the SPD model. The final Awareness of

the robot is High Subjective, in which the Mind State is Constrained and the Warning to be

sent out is Stop Now, which forces the Intentions to execute the counter action Arm Resist.

As the counter action is in the form of an empathic action, the Observer alerts the human

peer to stop and alerts the Mediator to increase its joint stiffness. The Mediator follows up by

approaching the scene of the interaction to physically stop the interaction. The full range

of data analyses from the Upward and Downward experiments are shown in Table 6.73 and

Table 6.74 respectively.
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Table 6.73 Goals and Intentions - Upward Experiment

No
Data Mind Recommendation - Goals Action

Sensory Internally Awareness Mind State Warning Engine-Intention

1 1.214 N/A Unconstrained No Danger None

2 -0.291 N/A None None None

3 -0.777 N/A None None None

4

-1.165 N/A N/A N/A N/A

-1.553 N/A N/A N/A N/A

-1.941 N/A N/A N/A N/A

-2.329 N/A N/A N/A N/A

-2.717 N/A N/A N/A N/A

High Subjective Constrained Stop Now Arm Resist

Table 6.74 Goals and Intentions - Downward Experiment

No
Data Mind Recommendation - Goals Action

Sensory Internally Awareness Mind State Warning Engine-Intention

1 0.242 N/A Unconstrained No Danger None

2 1.186 N/A None None None

3 1.805 N/A None None None

4

2.105 None Constrained Stop Now None

2.405 N/A N/A N/A N/A

2.705 N/A N/A N/A N/A

3.005 N/A N/A N/A N/A

3.305 N/A N/A N/A N/A

High Subjective Constrained Stop Now Arm Resist
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6.3.2 Pain Matrix Model

Unlike the SPD Model, the Pain Matrix Model performs complex analyses in evoking the

synthetic pain, so for the purpose of clarity, the following discussions are grouped according

to the raw data analyses of the Joint Data and the pain activation analyses.

Raw Data Analyses

The results of the Observer data during the Upward and Downward experiments are shown

in Table 6.75 below. The Robot Mind processes the incoming data at the 4th cycle and

Table 6.75 Observer Data with Pain Matrix Model

No
Upward Downward

Data
Prediction Standard

Data
Prediction Standard

4 5 Deviation 4 5 Deviation

1 0.901 -0.015

2 -1.057 1.137

3 -2.047 2.376

4 -2.084 -2.084 0 2.504 2.504 0

5 -2.1 -2.121 -2.1 0.01485 2.507 2.632 2.507 0.088388

-2.158 -2.116 2.760 2.510

-2.195 -2.132 2.888 2.513

-2.232 -2.148 3.016 2.516

-2.164 2.519

halts at the next data cycle, and the Current and Prediction data evoke the generation of

synthetic pain. The results of the prediction are measurable only on the first cycle of the

Prediction data, as the Robot Mind still allows the execution of the next Joint Data, with a

standard deviation of 0.01485 for the Upward experiment and 0.088388 for the Downward

experiment, both of which are relatively low.

The overall data mapping of the Current and Prediction data in relation to the Faulty

Joint Region is shown in Figure 6.27 for the Upward experiment, and Figure 6.28 for the

Downward experiment. It can be seen from the Upward experiment figure, 6.27, that

the first two cycles of data are lower than the limit of the Lower Stage of the Faulty Joint

Region. In data cycle 3, the Robot Mind determines that the Current and Prediction data

have exceeded the Medium Stage. The critical analysis occurs at the 4th cycle when the

value of the Current data almost falls into the Upper High Stage and the Prediction produces

a consistent recommendation for the high possibility of pain invocation. A similar situation

occurs in the Downward experiment; however, the Current data in the 3rd cycle has violated

the High Stage of the Faulty Joint Region which causes the robot to experience a specific

kind of synthetic pain. As a result of the noisy data suggested by the Robot Mind, the process
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Fig. 6.27 Region Mapping of Joint Data - Upward Experiment

Fig. 6.28 Region Mapping of Joint Data - Downward Experiment
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continues to assess the incoming data. The Robot Mind eventually reaches the conclusion

that the incoming data is valid, supported by the Prediction data, which consistently shows

that the robot is experiencing a specific kind of synthetic pain which worsens if the process

is not forced to stop.

Pain Activation Analyses

The Belief State of the robot for the Upward experiment is summarised in Table 6.76. It

Table 6.76 Belief State During Upward Experiment

No
Data

CDV Region
Incoming

Awareness Mind State
Extero- Proprio-

Sensory Internally Belief ceptive ceptive

1 0.901 95 4 Current Low Objective Unconstrained TRUE FALSE

2 -1.057 95 4 Current Low Objective Unconstrained TRUE FALSE

3 -2.047 95 4 Current Low Objective Unconstrained TRUE FALSE

4 -2.084 95 4 Current Low Objective Unconstrained TRUE FALSE

-2.121 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.158 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.195 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.232 95 4 Prediction Low Objective Unconstrained TRUE FALSE

5 -2.1 95 4 Current Low Objective Unconstrained TRUE FALSE

-2.116 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.132 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.148 95 4 Prediction Low Objective Unconstrained TRUE FALSE

-2.164 95 4 Prediction Low Objective Unconstrained TRUE FALSE

Table 6.77 Belief State During Downward Experiment

No
Data

CDV Region
Incoming

Awareness Mind State
Extero- Proprio-

Sensory Internally Belief ceptive ceptive

1 -0.015 119 5 Current Right Objective Unconstrained TRUE FALSE

2 1.137 119 5 Current Right Objective Unconstrained TRUE FALSE

3 2.376 119 5 Current Right Objective Unconstrained TRUE FALSE

4 2.504 119 5 Current Right Objective Unconstrained TRUE FALSE

2.632 119 5 Prediction Right Objective Unconstrained TRUE FALSE

2.760 119 5 Prediction Right Objective Unconstrained TRUE FALSE

2.888 119 5 Prediction Right Objective Unconstrained TRUE FALSE

3.016 119 5 Prediction Right Objective Unconstrained TRUE FALSE

5 2.507 119 5 Current Right Objective Unconstrained TRUE FALSE

2.510 119 5 Prediction Right Objective Unconstrained TRUE FALSE

2.513 119 5 Prediction Right Objective Unconstrained TRUE FALSE

2.516 119 5 Prediction Right Objective Unconstrained TRUE FALSE

2.519 119 5 Prediction Right Objective Unconstrained TRUE FALSE

can be seen that the Exteroceptive values are TRUE and Proprioceptive values are FALSE

throughout the experiments, which means that the active robot is the Observer and its main

tasks are to observe and react empathically reactions towards the other robot (the Mediator).
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Information is extracted from the Belief State and utilised to derive a set of recommenda-

tions for the Pain Matrix model (see Table 6.78 for the Upward experiment and Table 6.79

for the Downward experiment). Both tables show that during the Current data analyses, the

Table 6.78 Belief State Recommendation During Upward Experiment

No
Data Belief Recommendations

Sensory Internally Booster Pain Init Consciousness
Modifier

1 0.901 N/A N/A N/A N/A

2 -1.057 N/A N/A N/A N/A

3 -2.047 N/A N/A N/A N/A

4 -2.084 N/A 0.000787 2.08434 TRUE

-2.121 0 2.121 FALSE

-2.158 0 2.158 FALSE

-2.195 0 2.195 FALSE

-2.232 0 2.232 FALSE

5 -2.1 N/A 0.000343 2.10034 TRUE

-2.116 0 2.116 FALSE

-2.132 0 2.132 FALSE

-2.148 0 2.148 FALSE

-2.164 0 2.164 FALSE

Table 6.79 Belief State Recommendation During Downward Experiment

No
Data Belief Recommendations

Sensory Internally Booster Pain Init Consciousness
Modifier

1 -0.015 N/A N/A N/A N/A

2 1.137 N/A N/A N/A N/A

3 2.376 N/A N/A N/A N/A

4 2.504 N/A 0.00078697 2.504 TRUE

2.632 0 2.632 FALSE

2.760 0 2.760 FALSE

2.888 0 2.888 FALSE

3.016 0 3.016 FALSE

5 2.507 N/A 0.000343067 2.100343067 TRUE

2.510 0 2.116 FALSE

2.513 0 2.132 FALSE

2.516 0 2.148 FALSE

2.519 0 2.164 FALSE

Pain Matrix has full authority to alter the Consciousness State of the robot throughout the

process, while in the Prediction data, the proposal made by the Pain Matrix is not allowed

(achieved by setting the value of the Consciousness Modifier to FALSE). Furthermore, the

Booster has no effect on the Prediction data because the value of the Booster is set to 0.

For the Downward experiment, the Pain Matrix Activation has similar results to the

Upward experiment. During the Current data, it can be seen that as the result of Belief
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Table 6.80 Pain Matrix Activation with Current Data - Upward Experiment

No

Current
Conscciousness Pain Kind of Pain Empathic Self

Modifier Distribution Pain Level Actions Actions

1 N/A N/A N/A N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A

4 Critical 0 Inflammatory Severe High None

2.121 N/A N/A N/A N/A

2.158 N/A N/A N/A N/A

2.195 N/A N/A N/A N/A

2.232 N/A N/A N/A N/A

5 Critical 0 Inflammatory Severe High None

2.116 N/A N/A N/A N/A

2.132 N/A N/A N/A N/A

2.148 N/A N/A N/A N/A

2.164 N/A N/A N/A N/A

Table 6.81 Pain Matrix Activation with Prediction Data - Upward Experiment

No
Prediction

Kind of Pain Empathic Self Danger Danger Mind WarningPain Level Actions Actions Low Medium State

1 N/A N/A N/A N/A N/A N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A N/A

4 N/A N/A N/A N/A N/A N/A Unconstrained No Danger

Proprioceptive Slight Medium N/A N/A 1 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 2 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 3 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 4 Constrained No Danger

5 N/A N/A N/A N/A N/A N/A Constrained Next Pain

Proprioceptive Slight Medium N/A N/A 1 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 2 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 3 Constrained No Danger

Proprioceptive Slight Medium N/A N/A 4 Constrained Future Pain
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recommendations, the Consciousness Modifier is set to the Critical level, which invokes the

kind of IP at a pain level of Severe with the Empathic Actions recommendation at High.

This situation occurs in the 4th cycle; however, the Pain Matrix assesses that the data is

noisy and suggests that no change is required for the Mind State regardless of the fact that

the Prediction data consistently predicts that the Mind State should be altered (Prediction

invokes the kind of IP at the level of Slight). When the 5th cycle is processed, the Current

data processing makes the same recommendation as in the previous cycle. The Pain Matrix

therefore recommends that the Mind State should be changed to Constrained, while the

Warning is at Next Pain. Based on these recommendations, the Robot Mind defines a set of

Goals to be achieved, and maps the Goals into Intentions for further follow-up. Table 6.82

and Table 6.83 respectively show the Goals and Intentions of the Robot Mind throughout

the experiments. The tables show that at the initial stage, the Goals focus on the Awareness

Table 6.82 Goals and Intentions of Observer During Upward Experiment

No
Mind Recommendation - Goals Intentions

CDV Region Awareness Mind State Warning Action Empathy Delay

1 95 4 Low Objective Unconstrained N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A

4 None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

5 N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

24 1 Upper Subject Constrained Next Pain Right Arm Resist 690.75

of the robot by setting the value of CDV to 95 during the Upward experiment and 119

during the Downward experiment. By doing this, the Robot Mind indirectly modifies the

Awareness Region while the Mind State is configured separately (Unconstrained for both

experiments). During this stage, there are no proposals for actions to be passed to the Action

Execution Engine module by the Intentions. This condition prevails until the final cycle

occurs, when the Goals are to alter the Awareness and the Mind State to the maximum level

of the subjective element, Upper Subjective Awareness, and to constrain the Robot Mind.

This situation modifies the Intentions and the Action Execution Engine modules and prompts

them to send out an alert with a message of Right Arm Resist. This message is designed to

alert the Mediator to increase the joint stiffness and the human peer to halt the interaction.

The Observer then approaches the scene to stop the interaction. The time delay of executing
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Table 6.83 Goals and Intentions of Observer During Downward Experiment

No
Mind Recommendation - Goals Intentions

CDV Region Awareness Mind State Warning Action Empathy Delay

1 119 5 Right Objective Unconstrained N/A N/A N/A

2 N/A N/A N/A N/A N/A N/A N/A

3 N/A N/A N/A N/A N/A N/A N/A

4 None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

None None None None None None N/A

5 N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A

24 1 Upper Subject Constrained Next Pain Right Arm Resist 894.23

empathic actions is 690.75 during the Upward experiment and 894.23 during the Downward

experiment.





Chapter 7

Conclusion and Future Work

This chapter summarises the overall presentation of the thesis and highlights the findings

obtained from the experiments as a proof-of-concept of the proposal of evolving robot

empathy through the creation of artificial pain in an Adaptive Self-Awareness Framework

(ASAF). The discussion also reveals possible future works that could be undertaken in

different implementation domains.

7.1 Outcomes

This section is divided into two subsections. The first subsection briefly presents important

discussion prompts and the second summarises the research findings obtained from the

experiments.

7.1.1 Discussion Prompts

Two major concepts have been raised in this thesis which stem from the biological mechanism

of humans. They are:

1. Self-Awareness and Consciousness

2. Pain and Empathy

From the first concept, we derive the Adaptive Robot Self-Awareness Framework (ASAF)

and utilise it as a framework for the robot mind. Robot consciousness is directed towards the

ability to focus a robot’s attention on two elements of self, namely Subjective and Objective,

which refer to the Awareness Region. The robot’s awareness elements refer to the body

parts as the Subjective element and the robot’s goals as the Objective elements. Directing
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attention is achievable through modification of the Consciousness Direction Value (CDV)

which results in the selection of a specific Awareness Region.

The second concept inspires the development of artificial pain, which consists of several

classes of synthetic pain. By implementing pain detection and activation mechanisms on the

ASAF, robot empathy can be realised. Changing the robot’s attention to focus on one specific

part of the awareness element, such as the arm joint, allows the robot to develop counter

reactions to pain activation. The terms Beliefs, Desires or Goals and Intentions are used to

communicate the internal state of the framework. The kinds of counter reactions produced

depend on the robot’s Beliefs, which inform whether the synthetic pain originates from the

robot’s own sensory mechanism or from another robot. The Goals are modified based on the

reasoning recommendation which uses a causal reasoning approach to analyse the current

Joint Data and predict the future data in the form of a sequential data pattern. In any situation

where synthetic pain is invoked, the Intentions generate actions that may involve physical

actions, which activate the Action Execution Engine or involve only changes in the state of

the Robot Mind.

7.1.2 Framework Performance

Using the Adaptive Robot Self-Awareness Framework (ASAF), we are able to demonstrate

that a robot is capable of developing accurate pain acknowledgements and appropriate

responses. The performance of the framework is measured during collaborative tasks which

involve one humanoid robot and one human peer for non-empathy based experiments and

two humanoid robots and one human peer for empathy-based experiments. The framework

utilises causal reasoning and is capable of analysing and producing reliable robot decisions

which embrace past, current and the future considerations. The experiments show that the

robot becomes aware of its body part by demonstrating the ability to foresee its future state

from the current state. The skills of predicting the consequences of its body behaviour

and making proper counter responses in a timely fashion are used to prevent the robot

from experiencing synthetic pain. In addition, the ASAF successfully disregards noisy

data from the robot’s sensory mechanism by proposing amendment data sequences derived

from previous data sequence prediction. This allows the robot to robustly generate accurate

alternatives to its decision based on self-awareness.

7.1.3 Synthetic Pain Activation

Synthetic pain is comprised of several kinds of pain and the activation for each kind of

synthetic pain is embedded in a group of faulty joint settings. If the body part moves into
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these designated faulty joint regions, the pain detection module captures this occurrence and

activates associated kinds of synthetic pain.

The proof-of-concept implements synthetic pain by directing the robot’s focus of attention

to the subjective elements of the robot’s awareness which are accessible in the Awareness

Region, and by embodying the consciousness feature through robot body part motions which

are integrated with the ASAF.

The experiments show that the robot is able to become aware of its body parts by

demonstrating the ability to foresee its future state from its current state. The skills of

predicting the consequences of its body behaviour and classifying these consequences

into appropriate synthetic pain categories, and at the same time making proper counter-

responses in a timely fashion, prevent the robot from experiencing other kinds of pain, such

as Inflammatory Pain at a higher level which could lead to significant hardware damage to the

robot. Also, the innovative ASAF successfully disregards noisy sensor data from the robot’s

physical body by proposing amended data sequences derived from previous data sequence

prediction. This allows the robot to generate robustly accurate alternatives to its decisions

based on self-awareness.

Two kinds of synthetic pain activation mechanisms, Simplified Pain Detection - SPD

and Pain Matrix models, were successfully implemented and were relatively accurate in

detecting faulty joint visitation occurrences and invoking appropriate kinds of synthetic

pain. The experiment results also indicate that the SPD model is more straightforward

in terms of synthetic pain generation than the Pain Matrix model, which requires more

recommendation data from the robot’s Beliefs. However, the Pain Matrix model offers a

great deal of functionality such as the empathy response, which is directly acknowledgeable

from the Sensory Mechanism. Our findings also suggest that when the Robot Mind explores

its High Priority Subjective Awareness region, the state of the Robot Mind does not have to

be at the Constrained level. In other words, even though the Robot Mind focuses attention

on a specified element of the body, such as the arm, this does not mean that the robot is

in a state of pain which requires an increase in the stiffness of the arm joint motor. This

finding demonstrates that the ASAF is capable of exploring any of its consciousness regions,

including focusing attention on its body parts even when synthetic pain is not being invoked.

7.1.4 Robot Empathy with Synthetic Pain

Our concept of empathy with pain is implemented in our proof-of-concept experiments in

which we project the internal state of the human peer into the internal state of the Observer.

As the sharing task focuses on the shoulder rotation of the human peer, the Mediator is

introduced as a medium that maps the human shoulder region onto the shoulder region of
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the robot (which shares a uniform physical design with the Observer). Having realised

this projection process, the Observer is able to infer what the other robot is experiencing,

which allows the robot to eventually produce an accurate description of pain and generate

appropriate empathy responses. Data transformation, which processes captured information

through robot vision, determines the quality of the projection. The causal reasoning through

sequential pattern prediction enables the robot’s decision making to embrace past, current

and future considerations. This ability allows the robot to build its expectations of the other

object’s internal state. The Observer’s focus of attention switches as the reasoning process

predicts the synthetic pain level experienced in the human shoulder.

The experiments show that the Observer is able to project the internal state of the

Mediator through the embodiment feature of consciousness, which is expressed by the arm

motions captured through the robot’s exteroceptive sensor. This projection generally takes

place accurately when both the Observer and the Mediator, share uniform internal states,

particularly during the upward trend motion in the SPD model. As the Observer’s mind

focuses on the faulty joint region, the computation time increases and as a result, introduces

data analysis discrepancies through the generation of a false alarm. However, the Observer

and the Mediator converge to the same result, where the final synthetic pain region is Region

3 and the pain category is Category 2.1. During the downward trend, the final projection

produces a significant difference when the Observer mis-projects the Mediator’s internal

state, as the pain region falls into Region 6 whereas in fact it is still in Region 4.

There are three main causes for this false projection: the limited amount of data to be

used in the sequence data prediction process decreases the quality of reasoning, the hardware

discrepancies of the arm joint motor motion areas, and the interactions with the human peer

which are not uniform throughout the experiments, resulting in a variable speed in hand

movement. The Pain Matrix model-based experiments identify that computational time

increases, as the model requires more data analyses from various elements of the Pain Matrix,

and this contributes to delays in performing empathy reactions. In other words, the Pain

Matrix model offers more functionality for the detection and activation of synthetic pain,

but its complex computation process causes an increase in the time response. Overall, the

SPD model allows the kind of Proprioceptive Pain to stop the flow of the interaction, while

in the Pain Matrix model, Proprioceptive Pain will not trigger the activation of the Action

Execution Engine; rather, it helps the reasoning process by providing this kind of pain to

the Robot Mind so that the Robot Mind can optimise its critical analysis concerning future

decision making.

Projection thus takes place accurately when both robots, the Observer and the Mediator,

share a unified internal state. As the Observer’s mind starts to visit the faulty joint region,
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the computation time increases and as a result, data analysis discrepancies are introduced

through the generation of a false alarm. This false projection has three main causes: (1)

the limited amount of data to be used in the sequence data prediction process decreases

the quality of the reasoning; (2) there are hardware discrepancies of the arm joint motor

motion areas; (3) there is variable speed in the hand movements of the human peer. The

experiment also shows that robot awareness may revisit any of its consciousness regions

under the Unconstrained condition unless the mind switches to the Constrained condition.

The research and experiments in this thesis demonstrate the strong potential of the Adaptive

Self-Awareness Framework to be implemented in assistive robot applications where an

empathic response generated by synthetic pain is desirable.

7.2 Future Works

Building on this implementation and proof-of-concept work, future research can be divided

into two major development projects: those related to the framework and those related to the

application domain.

7.2.1 Framework Development

Several possible improvements can be made to the ASAF and its integration into a robot

platform, and they are listed below:

1. Integration of various sensors using more sophisticated data integration.

2. Development of a reasoning mechanism that utilises different learning approaches.

3. Exploration of the objective awareness region of the framework to allow the robot to

perform a range of various tasks.

4. By manually designing a predetermined artificial dictionary in the framework, an

artificial pain dictionary can be captured via human facial expression, which will

increase the robustness of the framework.

5. Implementation in various robot joints which will increase the usability of the robot

framework.

6. As a proof-of-concept and future adoption for wider research groups, conducting an

evaluation of the awareness framework along with the synthetic pain categories in a

human-centred experiment.
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7.2.2 Application Domain

Having aware that the abilities of understanding pain and reacting with it carry a tremendous

advantageous, its realisation could bring a wide open potential applications in human-robot

interaction. Its potential applications could be identified as the following.

1. Search and rescue application area. When robots work under a human supervision,the

task is less challenging compared to robots work as human peers (proximity). The

use of robots in searching and rescuing victims of disasters, and recovering efforts is

known as the Urban Search And Rescue (USAR), and this research area is the most

prominent research profile of HRI in the United States (Casper and Murphy, 2003).

In an emergency search and rescue situation, robot peers should be able to assess the

current situation of the surrounding, including victims of a disaster that the robots

manage to rescue. The rescue robots should be able to detect and understand in advance

the kinds of pain that the human victims are experiencing, then to consider what are

the most appropriate reactions. Embedding the proposed self-awareness concept into

the robot’s framework allows the rescue robots to understand the pain of the victims

and develop the most suitable reactions or treatments to be delivered.

2. Military and police purposes. Working as a peer between robots and humans requires

a very sophisticated skills such as understanding the human peer when suffers from

pain as a result of a gun fire in a joint-patrol task. Accurate assessment of the human

peer condition is crucial in taking appropriate counter actions. The ASAF framework

could potentially be used to develop the robot’s understanding of pain. In addition to

that, delivering social cues skills could be equipped into the robot framework such as

showing empathy towards the wounded peer.

3. Educational robotics. Another potential application is in educational robotics in which

robots function as an assistance in classroom activities or laboratory experiments.

The notion of robots in providing educational services has been an active and rapid

growing research area in HRI and there have been several studies reported to conduct

research works related to the notion (Ahlgren, 2002; Fournier and Riopel, 2007; Jeong-

Hye et al., 2009; Kai-Yi et al., 2011; Karna-Lin et al., 2006; Stansbury, 2010). A

recent study by Serholt et al. (2014) investigates how empathic technologies could

be integrated into the robot tutor capabilities. The study further develops a scenario

for an empathic robot tutor which transforms high-level action specification into a

concrete set of words and behaviours for the robot to perform (Hall et al., 2016). The

proposed ASAF framework would be able to handle the empathic embodiment through

the initiation of the empathic actions on the lower level.
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4. Entertainment. This area covers different applications of robots, such as storyteller

robots (Duc-Minh et al., 2003; Miletitch et al., 2011), dance partner robots (Buondonno

et al., 2015; Granados and Kosuge, 2015; Liu et al., 2010), and pet robots (Bharatharaj

et al., 2015; Kubota et al., 2001; Toshimitsu et al., 2008). If all these robot types are

embedded with the ability to perform empathic reactions through the understanding of

pain, the acceptance of robots as partners will increase. As a result, robots may play

more roles in human social life.

5. Health care industry. Large amount of studies in the field of robot applications for

health care have been conducted and their applications can be classified into two major

groups, which is health care robots for children and elder people (Manti et al., 2016;

Sharkey and Sharkey, 2011), and assistive care robots for people with disabilities

(Khosla et al., 2015; Magnenat-Thalmann and Zhang, 2014; Ranasinghe et al., 2014).

These two major groups are in needs to have robots’ ability to understand pain and

react empathetically towards it. A possible major application of the framework and

the synthetic pain proposed in this thesis is in assistive care robots, particularly robots

which are used for therapy purposes. We present a brief overview of this potential

future application below.

Background

Studies in the field of assistive robotics have growned rapidly for three main reasons: ageing

populations, disability and factors related to independence (Mann, 2005). One area in

which assistive robotics has attracted attention in the last decade is that of rehabilitation

robotics. Until now, studies in rehabilitation robotics have focused on orthopaedic shoulder

rehabilitation, which concerns the prevention or correction of injuries or disorders of the

skeletal system and associated muscles, joints, and ligaments around the human shoulder.

Sicuri et al. (2014) classify rehabilitative robots into two categories, each of which is

comprised of the one or more of the groups described below:

1. Control Strategy is divided into:

• Passive, which means that the robot controls the motion of the patient’s arm.

• Active Unassisted, which means that the patient performs actions without the

robot’s help.

• Active Assisted which means that the patient performs actions with the assistance

of the robot (assistance is voluntarily but inadequate or limited).



152 Conclusion and Future Work

• Resistive, which requires the patient to exercise pressure against a force generated

by the robot.

2. Mechanical Characteristics are divided into:

• Exoskeletons, which are typically designed to align their mechanical joints to

human limbs so that an articular decoupling and a good coverage of the whole

arm can be achieved.

• End Effectors, which are designed to connect to the patient at a single point,

which restricts the patient-machine interaction at the end-effector level.

• Cable-driven, which is designed to use cables with an attached end-effector which

is held by a fixed frame support. This mechanism requires the patient’s forearm

to be fixed into a splint and the stimuli are sent through the upper limb by pulling

on the cables.

Possible Application

Given the current limited technology in rehabilitative robots, the current focus of studies is

only on the hardware design of the robot. During the therapy process, humans may suffer

from pain as a result of the motion of the shoulder in a specific area. By detecting the pain in

advance and generating preventive reactions, the robot would greatly reduce the possibility

of the patient experiencing pain during therapy exercises.

Implementation of the Proposal

The following are crucial points related to the implementation of the proposal:

• Customisation is required, in this case, in relation to the human shoulder area. This

stage is categorised as the teaching phase. A possible approach during this stage would

be to model the patient’s facial expressions when the shoulder motion provokes pain.

These sets of faulty joint region data are stored in the database of the robot framework

- ASAF.

• An improvement in the therapy is measured by the change in the faulty joint area which

is automatically monitored by the Robot Mind.

• The application is limited to shoulder rehabilitation, however the framework is recon-

figurable, which will possibly lead to the next step of improvement in the application

of the ASAF.
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Significance of the Outcomes

Our proposal makes the following significant contributions through the implementation of

the Adaptive Self-Awareness Framework into robot applications for rehabilitation purposes.

• It develops the Mind Infrastructure for robots used in rehabilitation, which is of great

assistance to healthcare providers

• It promotes a new approach to robot therapy in the way that robots interact with patients

during the rehabilitation process

• It emphasises the need to incorporate the awareness concept in robots used for reha-

bilitation so that when assistance is delivered, these robots can develop a sense of

awareness of the patient’s pain.
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Appendix A

Terminology

Qualia : The qualities of the world and body sensations which are obtained through percep-

tion (noun plural of quale).

Epiphenomenalism : The view that physical events cause mental events in the brain, although

these mental events have no effect upon physical events.

Artificial functional pain: The process of emulating the functional elements of pain.

Synthetic: Not natural or man-made.

Consciousness: Signifies the cognitive focus, or the focus of attention. It should not be

understood to mean human consciousness

Cognitive: Involving conscious mental activity such as thinking, learning, remembering, and

understanding.

Pain matrix: A collection of elements in the human brain that accommodate the cycle of

pain, from detection, recognition and acknowledgement to actions to counter the pain.

Proprioceptive: Perception which monitors and gathers information internally.

Exteroceptive: Perception which monitors and captures information from the external world.

Empathy: The ability to acknowledge, understand and share the internal state of others.

Stimulus: A thing or event that evokes a specific functional reaction.

Fault Tolerance: An area of robot control which focus on the continuation of system func-

tionality continue in the event of hardware failure.

Noxious stimuli: Actual or potential damage to tissue which is liable to cause pain.

Nociceptor: Sensory perceptors which are responsible for capturing noxious stimuli.

Fibromyalgia: A widespread pain and tenderness in the human body which is sometimes

accompanied by fatigue, cognitive disturbance and emotional distress.

Somatics: The field of study concerning the human body (soma) from self-perspective (the

first person view).

Static: A situation that lacks of action or is unchanged.
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Projection: The fusion of an observer’s internal state and the object of the observer’s percep-

tion, which occurs internally in the observer.



Appendix B

Documentation

This appendix presents the specifications of the NAO H25 robot, obtained from the official

website of NAO Aldebaran, http://doc.aldebaran.com/1-14/family/nao_h25/. It provides

descriptions of the hardware related to the experiments in Chapter 5 and Chapter 6.

B.1 Dimensions

Table B.1 Body Dimensions

Robot Version Height (mm) Depth (mm) Width (mm)

V3.2 573.2 290 273.3

V3.3 573 311 275

B.2 Links

The robot links contain several elements such as the head, arms and legs.

Table B.2 Link and Axis Definitions

Element Position

Torso - 126.50 Z (mm) from HeadYaw

X Axis Positive towards NAO’s Front

Y Axis From Right to Lelft

Z Axis Vertical
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Table B.3 Head Definition

From . . . To ...
V3.2. similar to V3.3

X (mm) Y (mm) Z (mm)

Torso HeadYaw 0 0 126.5

HeadYaw HeadPitch 0 0 0

Main length (mm)
NeckOffsetZ 126.5

Table B.4 Arm Definition

From ... To ... X (mm) Y (mm) Z (mm)
V3.2 V3.3 V3.2 V3.3 V3.2 V3.3

Torso LShoulderPitch 0 0 98 98 100 100

LShoulderPitch LShoulderRoll 0 0 0 0 0 0

LShoulderRoll LElbowYaw 90 105 0 15 0 0

LElbowYaw LElbowRoll 0 0 0 0 0 0

LElbowRoll LWristYaw 50.55 55.95 0 0 0 0

Main length (mm)
V3.2 V3.3

ShoulderOffsetY 98 98

ElbowOffsetY - 15

UpperArmLength 90 105

LowerArmLength 50.55 55.95

ShoulderOffsetZ 100 100

HandOffsetX 58 57.75

HandOffsetZ 15.9 12.31
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Table B.5 Leg Definition

From ... To ...
X (mm) Y (mm) Z (mm)

V3.2 V3.3 V3.2 V3.3 V3.2 V3.3

Torso LHipYawPitch 0 0 50 50 -85 -85

LHipYawPitch LHipRoll 0 0 0 0 0 0

LHipRoll LHipPitch 0 0 0 0 0 0

LHipPitch LKneePitch 0 0 0 0 -100 -100

LKneePitch LAnklePitch 0 0 0 0 -102.9 -102.9

LAnklePitch LAnkleRoll 0 0 0 0 0 0

Main length (mm)
V3.2 V3.3

HipOffsetZ 85 85

HipOffsetY 50 50

ThighLength 100 100

TibiaLength 102.9 102.9

FootHeight 45.11 45.19

B.3 Joints and Motors

The robot joints contain several elements such as the head joints, right arm and left arm

joints, pelvis joints, left leg and right leg joints. Each of these joints is driven by one motor.
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Table B.6 Head Joints

Motion range (V3.2 similar to V3.3)

Joint name Motion
Range

degrees radians

HeadYaw
Head joint -119.5 to -2.0857 to

twist (Z) 119.5 2.0857

HeadPitch
Head joint -38.5 to -0.6720 to

front and back (Y) 29.5 0.5149

Anti collision limitation

HeadYaw HeadPitch Min HeadPitch Max
V3.2 similar to V3.3 V3.2 similar to V3.3 V3.2 similar to V3.3
degrees radians degrees radians degrees radians

-119.52 -2.086017 -25.73 -0.4491 18.91 0.330041

-87.49 -1.526988 -18.91 -0.33 11.46 0.200015

-62.45 -1.089958 -24.64 -0.43 17.19 0.300022

-51.74 -0.903033 -27.5 -0.48 18.91 0.330041

-43.32 -0.756077 -31.4 -0.548 21.2 0.37001

-27.85 -0.486074 -38.5 -0.672 24.18 0.422021

0 0 -38.5 -0.672 29.51 0.515047

27.85 0.486074 -38.5 -0.672 24.18 0.422021

43.32 0.756077 -31.4 -0.548 21.2 0.37001

51.74 0.903033 -27.5 -0.48 18.91 0.330041

62.45 1.089958 -24.64 -0.43 17.19 0.300022

87.49 1.526988 -18.91 -0.33 11.46 0.200015

119.52 2.086017 -25.73 -0.4491 18.91 0.330041
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Table B.7 Left Arm Joints

Joint name Motion
Range (degrees) Range (radians)
V3.2 V3.3 V3.2 V3.3

LShoulderPitch
Left shoulder joint

-119.5 to 119.5 -2.0857 to 2.0857
front and back (Y)

LShoulderRoll
Left shoulder joint 0.5 to

-18 to 76
0.0087 to -0.3142 to

right and left (Z) 94.5 1.6494 1.3265

LElbowYaw
Left shoulder

-119.5 to 119.5 -2.0857 to 2.0857
joint twist (X)

LElbowRoll
Left elbow -89.5 to -88.5 to -1.5621 to -1.5446 to

joint (Z) -0.5 -2 -0.0087 -0.0349

LWristYaw
Left wrist

-104.5 to 104.5 -1.8238 to 1.8238
joint (X)

LHand Left hand Open and Close

Table B.8 Right Arm Joints

Joint name Motion
Range (degrees) Range (radians)
V3.2 V3.3 V3.2 V3.3

RShoulderPitch
Right shoulder joint

-119.5 to 119.5 -2.0857 to 2.0857
front and back (Y)

RShoulderRoll
Right shoulder joint -94.5 to

-76 to 18
-1.6494 to -1.3265 to

right and left (Z) -0.5 -0.0087 0.3142

RElbowYaw
Right shoulder joint

-119.5 to 119.5 -2.0857 to 2.0857
twist (X)

RElbowRoll
Right elbow 0.5 to 89.5

2 to 88.5
0.0087 to 0.0349 to

joint (Z) 89.5 1.5621 1.5446

RWristYaw
Right wrist

-104.5 to 104.5 -1.8238 to 1.8238
joint (X)

RHand Right hand Open and Close

Table B.9 Pelvis Joints

Joint name Motion (Y-Z 45°)
Range V3.2 Similar to V3.3

degrees radians

LHipYawPitch Left hip joint twist -65.62 to 42.44 -1.145303 to 0.740810

RHipYawPitch Right hip joint twist -65.62 to 42.44 -1.145303 to 0.740810

*LHipYawPitch and RHipYawPitch are physically just one motor so they cannot

be controlled independently.
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Table B.10 Left Leg Joints

Motion range (V3.2 similar to V3.3)

Joint name Motion
Range

degrees radians

LHipRoll
Left hip joint -21.74 to -0.379472 to

right and left (X) 45.29 0.790477

LHipPitch
Left hip joint -88.00 to -1.535889 to

front and back (Y) 27.73 0.48409

LKneePitch
Left knee -5.29 to -0.092346 to

joint (Y) 121.04 2.112528

LAnklePitch
Left ankle joint -68.15 to -1.189516 to

front and back (Y) 52.86 0.922747

LAnkleRoll
Left ankle joint -22.79 to -0.397880 to

right and left (X) 44.06 0.769001

Anti collision limitation
V3.2 similar to V3.3

LAnklePitch LAnkleRoll Min LAnkleRoll Max
degrees radians degrees radians degrees radians

-68.15 -1.189442 -2.86 -0.049916 4.3 0.075049

-48.13 -0.840027 -10.31 -0.179943 9.74 0.169995

-40.11 -0.700051 -22.8 -0.397935 12.61 0.220086

-25.78 -0.449946 -22.8 -0.397935 44.06 0.768992

5.73 0.100007 -22.8 -0.397935 44.06 0.768992

20.05 0.349938 -22.8 -0.397935 31.54 0.550477

52.87 0.922755 0 0 2.86 0.049916
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Table B.11 Right Leg Joints

Motion range (V3.2 similar to V3.3)

Joint name Motion
Range

degrees radians

RHipRoll
Right hip joint -45.29 to -0.790477 to

right and left (X) 21.74 0.379472

RHipPitch
Right hip joint -88.00 to -1.535889 to

front and back (Y) 27.73 0.484090

RKneePitch
Right knee -5.90 to -0.103083 to

joint (Y) 121.47 2.120198

RAnklePitch
Right ankle joint -67.97 to -1.186448 to

front and back (Y) 53.4 0.932056

RAnkleRoll
Right ankle joint -44.06 to -0.768992 to

right and left (X) 22.8 0.397935

Anti collision limitation
V3.2 similar to V3.3

RAnklePitch RAnkleRoll Min RAnkleRoll Max
degrees radians degrees radians degrees radians

-68.15 -1.189442 -4.3 -0.075049 2.86 0.049916

-48.13 -0.840027 -9.74 -0.169995 10.31 0.179943

-40.11 -0.700051 -12.61 -0.220086 22.8 0.397935

-25.78 -0.449946 -44.06 -0.768992 22.8 0.397935

5.73 0.100007 -44.06 -0.768992 22.8 0.397935

20.05 0.349938 -31.54 -0.550477 22.8 0.397935

52.87 0.922755 -2.86 -0.049916 0 0

Table B.12 Motors and Speed Ratio

Motors
Motor Type

1 2 3 4

Model RE-Max 24 RE-Max 17 A-max12 GM20

No load speed 8 000 rpm 11 900 rpm 12 300 rpm 13 206 rpm

Stall torque 59.5 mNm 15,1 mNm 1.52 mNm 0.08 mNm

Nominal
12.3 mNm 3.4 mNm 0.931 mNm 0.08 mNm

Torque

Speed Reduction ratio

Type A 201.3 150.27 800 372

Type B 130.85 173.22
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Table B.13 Head and Arms

Joints

Head

V3.2 V3.3
Motor Reduction ratio Motor Reduction ratio

HeadYaw Type 2 Type A Type 2 Type A

HeadPitch Type 2 Type B Type 2 Type B

Arms

ShoulderPitch Type 2 Type A Type 2 Type A

ShoulderRoll Type 2 Type B Type 2 Type B

ElbowYaw Type 2 Type A Type 2 Type A

ElbowRoll Type 2 Type B Type 2 Type B

Table B.14 Hands and Legs

Joints

Hands

V3.2 V3.3
Motor Reduction ratio Motor Reduction ratio

WristYaw Type 3 Type A Type 2 Type C

Hand Type 4 Type A Type 2 Type D

Legs

HipYawPitch Type 1 Type A Type 1 Type A

HipRoll Type 1 Type A Type 1 Type A

HipPitch Type 1 Type B Type 1 Type B

KneePitch Type 1 Type B Type 1 Type B

AnklePitch Type 1 Type B Type 1 Type B

AnkleRoll Type 1 Type A Type 1 Type A

Table B.15 Camera Resolution

Elements Specifications Resolution Output Format

Sensor Model OV7670

640 x 480

YUV422

Camera output
VGA@30fps

(YUV422 color space)

Field of view
58°DFOV

at 30 frame/s
(47.8°HFOV, 36.8°VFOV)

Focus range 30cm infinity

Focus type Fixed focus
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Table B.16 Camera Position

Head Camera V3.2 similar to V3.3

Camera name X(m) Y(m) Z(m) WX(rd) WY(rd) WZ(rd)
[deg]* [deg]* [deg]*

CameraTop 0.0539 0 0.0679 0 0 0

CameraBottom 0.0488 0 0.02381 0
0.6981

0
[40.0]

Table B.17 Joint Sensor and Processor

Elements Details

Joint Position Sensor
12 bit

4096/turn = 0.1 precicion

Processor
x86 AMD GEODE 500MHz CPU

256 MB SDRAM / 2 GB flash memory

Table B.18 Microphone and Loudspeaker

Microphone

Micro name
X(m) Y(m) Z(m)

V3.2 V3.3 V3.2 V3.3 V3.2 V3.3

MicroFront 0.041 0.0489 0 0 0.0915 0.076

MicroRear -0.0577 -0.046 0 0 0.0693 0.0814

MicroLeft -0.0195 -0.0195 0.0606 0.0606 0.0331 0.0331

MicroRight -0.0195 -0.0195 -0.0606 -0.0606 0.0331 0.0331

Electrical Bandpass : [ 300Hz - 8kHz ]

Loudspeaker

Left 0.0038 0.0453 0.0526

Right 0.0038 -0.0453 0.0526
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Experiment Results Appendix

This appendix presents the additional results of experiments which cover only the Non-

Empathy based Excperiment, particularly the SPD-based (see Table C.1 for the overall

experiment result classification).

Table C.1 Experiment Overview-Appendix

Experiments Pain Activation

Scenario
Offline Online

No Shared Task No Shared Task
Shared Task Hand Push Direction Shared Task Hand Push Direction

Non-empathy
SPD-based � Horizontal � Horizontal

Pain Matrix-based x x � Vertical

Empathy
SPD-based x x x Vertical

Pain Matrix-based x x x Vertical

C.1 Non-Empathy Appendix

Two sub experiments: SPD-based and Pain Matrix-based, each of which contains the online

and offline experiments.

******************************************************************************

C.1.1 SPD-based Appendix
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Table C.2 Offline without Human Interaction Trial 1 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th

1 0.00873 221.72

2 0.00873 222.24

3 0.00873 222.75

4 0.00873 223.28 0.00873

5 0.00873 223.84 0.00873 0.00873

6 0.00873 224.40 0.00873 0.00873 0.00873

7 0.00873 224.96 0.00873 0.00873 0.00873 0.00873

8 0.00873 225.51 0.00873 0.00873 0.00873 0.00873 0.00873

9 0.00873 226.07 0.00873 0.00873 0.00873 0.00873 0.00873

10 0.00873 226.63 0.00873 0.00873 0.00873 0.00873 0.00873

11 0.00873 227.19 0.00873 0.00873 0.00873 0.00873

12 0.00873 227.76 0.00873 0.00873 0.00873

13 0.00873 228.32 0.00873 0.00873

14 0.00873 228.88 0.00873

15 0.00873 229.44

16 0.00873 230.01

17 0.00873 230.58

18 0.00873 231.14

19 0.00873 231.71

20 0.00873 232.28

21 0.00873 232.85
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Table C.3 Offline without Human Interaction Trial 2 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th

1 0.00873 316.95

2 0.00873 317.47

3 0.00873 317.98

4 0.00873 318.52 0.00873

5 0.00873 319.07 0.00873 0.00873

6 0.00873 319.63 0.00873 0.00873 0.00873

7 0.00873 320.19 0.00873 0.00873 0.00873 0.00873

8 0.00873 320.75 0.00873 0.00873 0.00873 0.00873 0.00873

9 0.00873 321.31 0.00873 0.00873 0.00873 0.00873 0.00873

10 0.00873 321.86 0.00873 0.00873 0.00873 0.00873 0.00873

11 0.00873 322.42 0.00873 0.00873 0.00873 0.00873

12 0.00873 322.98 0.00873 0.00873 0.00873

13 0.00873 323.54 0.00873 0.00873

14 0.00873 324.11 0.00873

15 0.00873 324.67

16 0.00873 325.24

17 0.00873 325.80

18 0.00873 326.37

19 0.00873 326.95

20 0.00873 327.52

21 0.00873 328.10
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Table C.4 Offline without Human Interaction Trial 3 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th

1 0.00873 385.60

2 0.00873 386.12

3 0.00873 386.64

4 0.00873 387.16 0.00873

5 0.00873 387.72 0.00873 0.00873

6 0.00873 388.30 0.00873 0.00873 0.00873

7 0.00873 388.85 0.00873 0.00873 0.00873 0.00873

8 0.00873 389.41 0.00873 0.00873 0.00873 0.00873 0.00873

9 0.00873 389.97 0.00873 0.00873 0.00873 0.00873 0.00873

10 0.00873 390.54 0.00873 0.00873 0.00873 0.00873 0.00873

11 0.00873 391.10 0.00873 0.00873 0.00873 0.00873

12 0.00873 391.66 0.00873 0.00873 0.00873

13 0.00873 392.22 0.00873 0.00873

14 0.00873 392.78 0.00873

15 0.00873 393.35

16 0.00873 393.92

17 0.00873 394.49

18 0.00873 395.05

19 0.00873 395.62

20 0.00873 396.19

21 0.00873 396.76
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Table C.5 Offline without Human Interaction Trial 4 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th

1 0.00873 449.60

2 0.00873 450.12

3 0.00873 450.64

4 0.00873 451.16 0.00873

5 0.00873 451.72 0.00873 0.00873

6 0.00873 452.28 0.00873 0.00873 0.00873

7 0.00873 452.84 0.00873 0.00873 0.00873 0.00873

8 0.00873 453.40 0.00873 0.00873 0.00873 0.00873 0.00873

9 0.00873 453.95 0.00873 0.00873 0.00873 0.00873 0.00873

10 0.00873 454.51 0.00873 0.00873 0.00873 0.00873 0.00873

11 0.00873 455.08 0.00873 0.00873 0.00873 0.00873

12 0.00873 455.65 0.00873 0.00873 0.00873

13 0.00873 456.21 0.00873 0.00873

14 0.00873 456.78 0.00873

15 0.00873 457.35

16 0.00873 457.91

17 0.00873 458.48

18 0.00873 459.04

19 0.00873 459.60

20 0.00873 460.18

21 0.00873 460.74
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Table C.6 Offline without Human Interaction Trial 5 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th

1 0.00873 514.15

2 0.00873 514.67

3 0.00873 515.18

4 0.00873 515.71 0.00873

5 0.00873 516.28 0.00873 0.00873

6 0.00873 516.84 0.00873 0.00873 0.00873

7 0.00873 517.39 0.00873 0.00873 0.00873 0.00873

8 0.00873 517.96 0.00873 0.00873 0.00873 0.00873 0.00873

9 0.00873 518.51 0.00873 0.00873 0.00873 0.00873 0.00873

10 0.00873 519.07 0.00873 0.00873 0.00873 0.00873 0.00873

11 0.00873 519.64 0.00873 0.00873 0.00873 0.00873

12 0.00873 520.21 0.00873 0.00873 0.00873

13 0.00873 520.77 0.00873 0.00873

14 0.00873 521.33 0.00873

15 0.00873 521.89

16 0.00873 522.46

17 0.00873 523.02

18 0.00873 523.60

19 0.00873 524.16

20 0.00873 524.73

21 0.00873 525.30
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Table C.7 Offline with Human Interaction Trial 1 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th

1 0.00873 583.66

2 0.02765 584.17

3 0.14884 584.69

4 0.34519 585.22 0.34519

5 0.57836 585.76 0.54154 0.57836

6 0.78238 586.31 0.73789 0.81153 0.78238

7 1.02782 586.85 0.93424 1.04470 0.98640 1.02782

8 1.30701 587.40 1.13059 1.27787 1.19042 1.27326 1.30701

9 1.51870 587.94 1.51104 1.39444 1.51870 1.58620 1.51870

10 1.56207 588.48 1.59846 1.76414 1.86539 1.73039

11 1.56207 589.03

12 1.56207 589.56

13 1.56207 590.08

14 1.56207 590.63

15 1.56207 591.18

16 1.56207 591.74

17 1.56207 592.30

18 1.56207 592.85

19 1.56207 593.40

20 1.56207 593.95
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Table C.8 Offline with Human Interaction Trial 2 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th

1 0.02919 644.54

2 0.02919 645.05

3 0.03072 645.56

4 0.03072 646.09

5 0.13043 646.62

6 0.45871 647.14 0.45871

7 0.73023 647.66 0.78699 0.73023

8 0.94959 648.19 1.11527 1.00175 0.94959

9 1.14441 648.72 1.44355 1.27327 1.16895 1.14441

10 1.37297 649.25 1.77183 1.54479 1.38831 1.33923 1.37297

11 1.53251 649.77 1.81631 1.60767 1.53405 1.60153 1.53251

12 1.56207 650.30 1.82703 1.72887 1.83009 1.69205

13 1.56207 650.83 1.92369 2.05865 1.85159

14 1.56207 651.38 2.28721 2.01113

15 1.56207 651.93 amend 2.17067

16 1.56207 652.48

17 1.56207 653.04

18 1.56207 653.59

19 1.56207 654.14

20 1.56207 654.70
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Table C.9 Offline with Human Interaction Trial 3 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th

1 0.02919 726.37

2 0.02919 726.89

3 0.04606 727.40

4 0.22861 727.93

5 0.40348 728.46 0.40348

6 0.60444 728.98 0.57835 0.60444

7 0.88669 729.50 0.75322 0.80540 0.88669

8 1.08765 730.03 0.92809 1.00636 1.16894 1.08765

9 1.25485 730.55 1.10296 1.20732 1.45119 1.28861 1.25485

10 1.42359 731.08 1.40828 1.73344 1.48957 1.42205 1.42359

11 1.56012 731.60 2.01569 1.69053 1.58925 1.59233

12 1.56207 732.14 1.89149 1.75645 1.76107

13 1.56207 732.66 1.92365 1.92981

14 1.56207 733.19 2.09855

15 1.56207 733.74

16 1.56207 734.29

17 1.56207 734.85

18 1.56207 735.40

19 1.56207 735.96

20 1.56207 736.51
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Table C.10 Offline with Human Interaction Trial 4 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th

1 0.02919 773.30

2 0.02765 773.82

3 0.02919 774.34

4 0.02919 774.86

5 0.07214 775.38 0.07214

6 0.36974 775.92 0.11509 0.36974

7 0.74096 776.44 0.15804 0.66734 0.74096

8 1.06924 776.96 0.20099 0.96494 1.11218 1.06924

9 1.50643 777.49 0.24394 1.26254 1.48340 1.39752 1.50643

10 1.56207 778.02 1.56014 1.85462 1.72580 1.94362

11 1.56207 778.54 2.22584 2.05408 2.38081

12 1.56207 779.07 2.38236 2.81800

13 1.56207 779.62 3.25519

14 1.56207 780.17

15 1.56207 780.72

16 1.56207 781.28

17 1.56207 781.83

18 1.56207 782.38

19 1.56207 782.93

20 1.56207 783.49
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Table C.11 Offline with Human Interaction Trial 4 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 11th 12th

1 0.02919 823.77

2 0.02765 824.29

3 0.03072 824.81

4 0.14884 825.33 0.14884

5 0.28997 825.88 0.26696 0.28997

6 0.44183 826.42 0.38508 0.43110 0.44183

7 0.59370 826.96 0.50320 0.57223 0.59369 0.59370

8 0.73176 827.51 0.62132 0.71336 0.74555 0.74557 0.73176

9 0.87289 828.06 0.85449 0.89741 0.89744 0.86982 0.87289

10 1.01402 828.60 1.04927 1.04931 1.00788 1.01402 1.01402

11 1.13980 829.15 1.20118 1.14594 1.15515 1.15515 1.13980

12 1.27480 829.69 1.28400 1.29628 1.29628 1.26558 1.27480

13 1.39445 830.24 1.43741 1.43741 1.39136 1.40980 1.39445

14 1.50643 830.79 1.57854 1.51714 1.54480 1.51410 1.50643

15 1.56207 831.34 1.64292 1.67980 1.63375 1.61841

16 1.56207 831.89 1.81480 1.75340 1.73039

17 1.56207 832.42 1.87305 1.84237

18 1.56207 832.94 1.95435

19 1.56207 833.50

20 1.56207 834.06
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Table C.12 Online without Human Interaction Trial 1 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd

1 0.02765 367.27

2 0.02765 367.79

3 0.02765 368.30

4 0.02765 368.83 0.02765

5 0.02765 369.38 0.02765 0.02765

6 0.02765 369.94 0.02765 0.02765 0.02765

0.02765 0.02765 0.02765

0.02765 0.02765 0.02765

0.02765 0.02765

0.02765

Table C.13 Online without Human Interaction Trial 2 with Prediction Data

No Elbow Data Time
Prediction Data

1st

1 0.02765 551.84

2 0.02765 552.36

3 0.02612 552.87

4 0.02765 553.4

5 0.02765 553.93

6 0.02765 554.46 0.02765

0.02765

0.02765

0.02765

0.02765
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Table C.14 Online without Human Interaction Trial 3 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th

1 0.02765 793.73

2 0.02765 794.25

3 0.02765 794.76

4 0.02765 795.28 0.02765

5 0.02612 795.84 0.02765 0.02612

6 0.02765 796.38 0.02765 0.02765 0.02765

7 0.02612 796.94 0.02765 0.02918 0.02918 0.02612

0.02765 0.03071 0.03071 0.02765

0.03224 0.03224 0.02918

0.03377 0.03071

0.03224

Table C.15 Online without Human Interaction Trial 4 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd

1 0.0277 971.52

2 0.0277 972.04

3 0.0277 972.55

4 0.0277 973.08 0.02765

5 0.0277 973.64 0.02765 0.02765

6 0.0277 974.2 0.02765 0.02765 0.02765

0.02765 0.02765 0.02765

0.02765 0.02765 0.02765

0.02765 0.02765

0.02765
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Table C.16 Online without Human Interaction Trial 5 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd

1 0.02612 354.21

2 0.02612 354.73

3 0.02765 355.24

4 0.02765 355.77

5 0.02612 356.3

6 0.02612 356.82 0.02612

7 0.02612 357.38 0.02612 0.02612

0.02612 0.02612

0.02612 0.02612

0.02612 0.02612

0.02612

Table C.17 Online with Human Interaction Trial 1 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th

1 0.22247 38.88

2 0.26696 39.40

3 0.37127 39.91

4 0.49246 40.44 0.49246

5 0.63205 41.00 0.61365 0.63205

6 0.78852 41.54 0.73484 0.77164 0.78852

7 0.95572 42.10 0.85603 0.91123 0.94499 0.95572

8 1.32695 44.37 0.97722 1.05082 1.10146 1.12292 1.32695

1.19041 1.25793 1.29012 1.69818

1.41440 1.45732 2.06941

1.62452 2.44064

2.81187
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Table C.18 Online with Human Interaction Trial 2 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd

1 0.02765 776.46

2 0.02765 776.98

3 0.02919 777.49

4 0.21940 778.01

5 0.39735 778.54 0.39735

6 0.68421 779.11 0.57530 0.68421

7 1.30548 781.36 0.75325 0.97107 1.30548

0.93120 1.25793 1.92675

1.10915 1.54479 2.54802

1.83165 3.16929

3.79056
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Table C.19 Online with Human Interaction Trial 3 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th 5th

1 0.02765 267.12

2 0.02765 267.64

3 0.02765 268.15

4 0.06907 268.68

5 0.29917 269.20

6 0.52774 269.73 0.52774

7 0.71642 270.28 0.75631 0.71642

8 0.87902 270.84 0.98488 0.90510 0.87902

9 1.04470 271.39 1.21345 1.09378 1.04162 1.04470

10 1.41132 273.68 1.44202 1.28246 1.20422 1.21038 1.41132

1.47114 1.36682 1.37606 1.77794

1.52942 1.54174 2.14456

1.70742 2.51118

2.87780

******************************************************************************

C.1.2 Pain Matrix-based Appendix
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Table C.20 Online with Human Interaction Trial 4 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd 4th

1 0.0261 550.05

2 0.0277 550.57

3 0.0292 551.08

4 0.2286 551.61 0.22861

5 0.4695 552.16 0.42803 0.46945

6 0.6919 552.71 0.62745 0.71029 0.69188

7 1.2288 554.99 0.82687 0.95113 0.91431 1.22878

1.02629 1.19197 1.13674 1.76568

1.43281 1.35917 2.30258

1.58160 2.83948

3.37638

Table C.21 Online with Human Interaction Trial 5 with Prediction Data

No Elbow Data Time
Prediction Data

1st 2nd 3rd

1 0.02765 855.20

2 0.03839 856.34

3 0.29150 856.86

4 0.53234 857.39 0.53234

5 0.74403 857.94 0.77318 0.74403

6 1.25639 860.23 1.01402 0.95572 1.25639

1.25486 1.16741 1.76875

1.49570 1.37910 2.28111

1.59079 2.79347

3.30583
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Table C.22 Pain Matrix Without Human Interaction Appendix

No Data
Prediction Data

4 5 - - 24 25 26

1 -0.0153

2 -0.0153

3 -0.0153

4 -0.0153 -0.0153

5 -0.0153 -0.0153 -0.0153

6 -0.0153 -0.0153

7 -0.0153 -0.0153

8 -0.0153

-

-

24 -0.0153

25 -0.0153 -0.0153

26 -0.0153 -0.0153 -0.0153

-0.0153 -0.0153 -0.0153

-0.0153 -0.0153

-0.0153
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Table C.23 Pain Matrix Without Human Interaction Incoming Belief Appendix

No Data CDV Region Incoming Belief Awareness Consciousness State Exteroceptive Proprioceptive

Sensory Internally

1 -0.0153 33 5 Current Lower Objective Unconstrained FALSE TRUE

2 -0.0153 33 5 Current Lower Objective Unconstrained FALSE TRUE

3 -0.0153 33 5 Current Lower Objective Unconstrained FALSE TRUE

4 -0.0153 33 5 Current Lower Objective Unconstrained FALSE TRUE

-0.0153 33 5 Prediction Lower Objective Unconstrained FALSE TRUE

-0.0153 33 5 Prediction Lower Objective Unconstrained FALSE TRUE

-0.0153 33 5 Prediction Lower Objective Unconstrained FALSE TRUE

-0.0153 33 5 Prediction Lower Objective Unconstrained FALSE TRUE
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Table C.24 Pain Matrix Without Human Interaction SPD Recommendation

Pain Matrix Recommendation

Activation Current
Booster Pain Init Cons Modifier Consc Modifier Pain Dist Kind of Pain Pain level empathised actions self actions

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A - N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A - N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A - N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A - N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A - N/A N/A N/A N/A N/A

Pain Matrix Recommendation
Activation Prediction

Booster Pain Init Cons Modifier pain level empathy action self action danger low danger medium Warning Consc State

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A N/A N/A N/A N/A N/A N/A

0.0010293 0.016329273 N/A N/A - - - - N/A N/A

0.0010293 0.016329273 N/A N/A - - - - N/A N/A

0.0010293 0.016329273 N/A N/A - - - - N/A N/A

0.0010293 0.016329273 N/A N/A - - - - N/A N/A
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Table C.25 Pain Matrix Without Human Interaction SPD Goals

Activation Mind Recommendation - Goals

Booster Pain Init Cons Modifier CDV Region Awareness Consciousness State Warning

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A

0.001029 0.016329 N/A N/A N/A N/A N/A N/A
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