

The Concept of Evolutionary Computing for Robust Surgical Endoscope Tracking and Navigation

Ying Wan

School of Computing and Communications University of Technology, Sydney

This dissertation is submitted for the degree of *Doctor of Philosophy in Computer Science*

Faculty of Engineering and Information Technology

April 2017

I would like to dedicate this thesis to my remarkable husband, my adorable son, my loving parents, and the memory of my grandmother who just passed away December, 2015.

Declaration

I hereby declare that except specific references, the content of this dissertation is original and has not been submitted in whole or in part for consideration for any other degree or qualification from any other universities. This dissertation contains nothing which is the outcome of work that has been done in collaboration with others, except as specified in the text and acknowledgments. In general, this dissertation totally consists of about 65,000 words including appendices, bibliography, footnotes, tables, equations, and 150 figures.

Ying Wan April 2017

Acknowledgements

I am using this opportunity to express my gratitude to thank Professors Xiangjian He and Xiongbiao Luo who are my principle and co-supervisors, respectively, for their many suggestions, constant encouragement, and support during my PhD candidature. Moreover, I am sincerely grateful to them for sharing their truthful and illuminating vision on my work and have the honor of studying and working with them in the past three years and six months.

I certainly appreciate the support of the International Research Scholarship (IRS) provided by the Faculty of Engineering and Information Technology (FEIT), University of Technology, Sydney (UTS). I absolutely appreciate the financial support for my living in the PhD study.

I wish to thank my fellow colleagues and the staffs of the faculty for providing various assistance for the completion of this research work. In particular, Qiang Wu, Wenjing Jia, Min Xu, Sheng Wang, Minqi Li, Tao Zeng, and David Du, for their invaluable supports.

Last but not least, I would like to thank my husband and my parents for their patient, understanding, and wide support. This PhD thesis could not have been available without their encouragements and financial assistance during the past three years and six months.

Abstract

Navigated endoscopy is generally agreed to be the next generation of interventional or surgical endoscopy. It usually combines pre- and intra-operative imaging information to guide physicians during endoscopic procedures. However, endoscope three-dimensional motion tracking that spatially and temporally synchronizes various sensory information still remains challenging for developing different endoscopic navigation systems. To navigate or track the surgical endoscope, three modalities of sensory information are utilized in endoscopic procedures: (1) preoperative images, i.e., three-dimensional CT images, (2) two-dimensional video sequences from the endoscopic camera, and (3) location measurements, attaching an electromagnetic sensor at the endoscope distal tip for measuring the temporal endoscope movement. In this respect, endoscope tracking and navigation aims to fuse these various modalities information to accurately and robustly locate or fly through the endoscope at any interest of regions. Unfortunately, fusing the multimodal information is still an open issue due to the information incompleteness, e.g., image artifacts, tissue deformation, and sensor output inaccuracy in computer assisted endoscopic interventions.

This thesis work focuses on fusing the multimodal information for accurate and robust endoscope tracking and navigation. A novel framework of multimodal information fusion is proposed to use evolutionary computing for endoscopic navigation systems. Several main contributions of this dissertation are clarified as follows. First, the concept of evolutionary computing was initially introduced to assist minimally invasive endoscopic surgery. Next, this work modified two evolutionary algorithms of particle swarm optimizer and differential evolution and proposed an enhanced particle swarm optimizer (EPSO) and observationdriven adaptive differential evolution (OADE). EPSO can adaptively update evolutionary parameters in accordance with spatial constraints and the current observation. OADE performs a new mutation operation for DE methods by integrating the current observation of sensor measurements and camera images, which can control the perturbation velocity and the direction of each individual during evolution, to enhance the DE performance. Additionally, the improved evolutionary computing algorithms are applicable to computer vision tasks, e.g., object tracking, motion estimation, and stochastic optimization. The experimental results demonstrate that the proposed evolutionarily computed endoscopic tracking and navigation approaches in this dissertation provide a more accurate and robust endoscopic guidance framework than state-of-the-art methods. Based static phantom data validation, the average guidance accuracy of the EPSO framework was about 3.0 mm, its average position smoothness was 1.0 mm, and its average visual quality was improved to 0.29. By evaluating on a dynamic phantom, the OADE approach reduces the tracking error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and increases the visual quality from 0.707 to 0.741.

In conclusion, the concept of evolutionary computation is a promising strategy to improve endoscopic tracking and navigation for minimally invasive surgery. The validation demonstrated its effectiveness to improve the guidance accuracy, visual quality, and tracking smoothness during endoscopic surgery. Future work includes surgical data validation, realtime processing, and translation to clinical applications.

Keywords

Minimally invasive surgery — Bronchoscope — Endoscopy — Endoscopic navigation — Endoscopic video processing — Computer-assisted intervention — 2D/3D registration — Pre- and intra-operative imaging — Electromagnetic tracking — Evolutionary computing — Particle swarm optimizer — Differential evolution

Table of contents

Lis	List of figures			
Lis	st of t	ables	xxi	
1	Mini	nimally invasive endoscopic surgery		
	1.1	Minimally invasive surgery	2	
	1.2	Surgical endoscopy	3	
		1.2.1 Diagnosis and Staging	3	
		1.2.2 Therapy and Treatment	4	
	1.3	Navigated Bronchoscopy Overview	5	
	1.4	Related research field	6	
	1.5	Dissertation organization	6	
2	Ende	oscope tracking and navigation	9	
	2.1	State of the art	9	
	2.2	Current problems and challenge	10	
	2.3	New concept: Evolutionary computing	11	
	2.4	Definition and formulation	12	
		2.4.1 Endoscopic camera geometry	13	
		2.4.2 Parameterization	13	
	2.5	Multimodal information fusion	14	
3	Calil	bration and registration	21	
	3.1	Coordinate Definitions	21	
		3.1.1 Bronchoscopic Camera Geometry	22	
	3.2	Hand-eye calibration	25	
		3.2.1 Tsai's method	25	
	3.3	EM-CT registration	26	
		3.3.1 Adaptive marker-free registration	27	

		3.3.2	Experiments	37
		3.3.3	Result	39
		3.3.4	Discussion	41
		3.3.5	Conclusions	43
4	Enh	anced p	particle swarm optimization	53
	4.1	Metho	ods and Materials	53
		4.1.1	Multimodal information	55
		4.1.2	Particle Swarm Optimization	55
		4.1.3	Enhanced particle swarm optimization	56
		4.1.4	Application to endoscopic guidance	59
		4.1.5	Validation	62
	4.2	Result	t s	64
	4.3	Discus	ssion	66
		4.3.1	Effectiveness	66
		4.3.2	Potential Limitations	66
	4.4	Conclu	usions	67
5	Obs	ervatio	n-driven differential evolution	75
	5.1	Purpos	se	76
		5.1.1	Camera 3-D Motion Representation	77
		5.1.2	3-D Virtual Bronchial Tree Model	79
	5.2	Differe	ential Evolution	80
		5.2.1	Mutation	80
		5.2.2	Crossover	81
		5.2.3	Selection	81
		5.2.4	Remarks on DEs	82
	5.3	Observ	vation-Driven Adaptive Differential Evolution	83
		5.3.1	Method Overview	83
		5.3.2	Preprocessing	84
		5.3.3	Initialization and Randomization	85
		5.3.4	New Mutation Operation	85
		5.3.5	Fitness Computation	88
		5.3.6	Camera Pose Determination	89
	5.4	Experi	iments	90
	5.5	Result	t s	91
	5.6	Discus	ssion	93

		5.6.1 Effectiveness	93
		5.6.2 Limitations	94
	5.7	Conclusion	95
6	Con	clusions and open remarks	113
	6.1	Conclusions	113
	6.2	Benefits to other fields	115
	6.3	Potential limitations	115
	6.4	Promising directions	116
	6.5	Closing remarks	118
References			121
Ap	Appendix A List of publications 12		

List of figures

1.1	Examples of diagnostic and therapeutic ancillary tools usually used during	
	interventional bronchoscopy (Images courtesy of Olympus, Europe)	4
2.1	Composite view of an endoscope tracking and navigation system that con-	
	tains four windows providing with useful information: Endoscopic video	
	sequences (upper left), 2D virtual rendering images (lower left) generated	
	from previously acquired CT data and corresponding to video images, a	
	bird's view (upper right) displaying the endoscope trajectory, and a slice	
	view (lower right) showing an axial slice, in which a cross cursor marks	
	the current endoscope location. All windows were synchronized to provide	
	critical visual and structural information during endoscopic intervention	15
2.2	Camera geometry with three coordinate systems	16
2.3	Various spatial transformations among different coordinate systems involved	
	in endoscopic navigation systems	17
2.4	General flowchart of evolutionary computing	18
2.5	Multimodal information including the CT images used to generate 2D virtual	
	rendering images, endoscopic video images, and positional sensor measure-	
	ments involved in an electromagnetically guided endoscopic procedure	19
2.6	Relationships of different coordinate systems in electromagnetically navi-	
	gated endoscopic procedures	19
3.1	Several coordinate systems are defined when using EMT-based methods	
	during bronchoscopic navigation	22
3.2	Pinhole camera model in the camera coordinate system. C denotes the	
	camera center and is the coordinate origin. The principal point (p_x, p_y) is the	
	intersection of the principal axis and the image plane that is located in front	
	of the focal length.	23
3.3	Relationship between the world and camera coordinate systems	24

3.4	Hand-eye calibration setup from camera pose estimation and EM sensor	
	outputs	26
3.5	CT images for the airway tree voume segmentation	28
3.6	Automatically segmented airway volume from CT images	29
3.7	Extracted airway centerlines from the segmented airway	30
3.8	The model drawing for calibrating the spatial relationship between the ET	
	sensor and the endoscope tip center	31
3.9	The calibration model was produced by using a 3-D printer	32
3.10	Insert the endoscope with an integrated ET sensor into the calibration model	33
3.11	Attached an ET sensor at the endoscope distal tip and calibrate the endoscope	
	tip center	34
3.12	Generated multiple points on basis of sensor measurement \mathbf{p}_i and endoscope	
	tip center $\hat{\mathbf{p}}_i$, and assign centerline \mathbf{c}_k to transformed point ${}^{ct}\mathcal{T}_{et}\mathbf{p}_i$	35
3.13	Obtained projected point \mathbf{q}_i in terms of distance $d({}^{ct}\mathcal{T}_{et}\mathbf{p}_i,\mathbf{c}_k)$	36
3.14	Static phantom (a) and endobronchial ultrasound endoscope with an ET	
	(AURORA) sensor fixed at its distal tip (b).	44
3.15	Dynamic phantom (a) and endoscope with an ET (Ascension) sensor fixed at	
	its distal tip (b)	45
3.16	Plotted fiducial registration error f_e in static phantom validation (Experiment 6)	46
3.17	Plotted distance to centerlines in static phantom validation (Experiment 4) .	46
3.18	Plotted target tracking error t_e in static phantom validation (Experiment 3) .	47
3.19	Transformed points were plotted along assigned centerlines in static phantom	
	validation (Experiment 14). Points (green) transformed by our method were	
	closer to assigned centerlines (blue) than points (red) transformed by Deguchi	
	et al. [1]	47
3.20	Comparison of positions estimated by Deguchi et al. [1] and our method	
	in static phantom validation (Experiment 2). Positions at <i>blue</i> points were	
	obtained using marker-based ET-CT transformation ${}^{ct}\mathcal{T}_{et}^*$, whose fiducial	
	error was about 0.81 mm. Positions at green points estimated by our method	
	were almost overlapping <i>blue</i> points which were far from positions at <i>red</i>	
	points tracked by Deguchi et al. [1]. The tracking accuracy of our method is	10
	significantly better than Deguchi et al. [1].	48
3.21	Plotted fiducial registration error f_e in dynamic phantom validation (Experi-	10
0.5-	ment /)	48
3.22	Plotted distance to centerlines in dynamic phantom validation (Experiment 15)	49
3.23	Plotted target tracking error t_e (Experiment 12) in dynamic phantom validation	49

3.24	Examples of comparison of tracking results of using different methods on Experiments 5 and 8 during dynamic phantom validation: Plotted endoscope	
	positions estimated by Deguchi et al. [1] (<i>rea</i> points) and our method (<i>green</i>	50
	points) against marker-based estimations (<i>blue</i> points).	50
3.25	Examples of comparison of tracking results of using different methods on Experiments 5 during dynamic phantom validation. First column show frame	
	numbers selected uniformly every 100 frames, and second column displays	
	corresponding videos images, and other columns show virtual images gener- ated from tracking results using different methods of Klein et al. [2], Deguchi	
	et al. [1], and ours. The proposed method performs much better than other	
3.26	two approaches	51
	Experiments 5 during dynamic phantom validation. TThe first column show	
	frame numbers selected uniformly every 100 frames, and the second column	
	displays corresponding videos images, and other rows show virtual images	
	generated from tracking results using different methods of Klein et al. [2].	
	Deguchi et al. [1], and ours. The proposed method performs much better	
	than other two approaches.	52
		0 -
4.1	Multimodal information including the CT images used to generate 2-D	
	virtual rendering images, endoscopic video images, and positional sensor	
	measurements involved in an electromagnetically guided endoscopic procedure	
	incustrements involved in an electromagneticarry guided endoscopie procedure.	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash	54
4.2	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4).	54
4.24.3	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4) Our endoscopic guidance framework using EPSO for the multimodal infor-	54
4.24.3	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration.	54 57 60
4.24.34.4	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration.	54 57 60
4.24.34.4	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration.	54 57 60
4.24.34.4	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration. Detect image patches with specific structures from camera image \mathbf{I}_k for the similarity or the fitness computation. A <i>yellow</i> square denotes a selected patch with its center (<i>green</i> dot).	54 57 60 68
4.24.34.44.5	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration. $\boldsymbol{\omega}$ patches with specific structures from camera image \mathbf{I}_k for the similarity or the fitness computation. A <i>yellow</i> square denotes a selected patch with its center (<i>green</i> dot). $\boldsymbol{\omega} = 0$ and $N = 8$.	54 57 60 68 69
 4.2 4.3 4.4 4.5 4.6 	Population propagation to obtain new particle states. The <i>red</i> , <i>green</i> , and <i>blue</i> points (or solid lines) denote the current particle $\mathbf{x}_{i,j}$, the local individual best particle $\mathbf{p}_{i,j}$, and the global all best $\mathbf{g}_{i,j}$ at iteration <i>j</i> , respectively. The <i>red</i> , <i>green</i> , and <i>blue</i> dash lines display vectors $\boldsymbol{\omega}\mathbf{v}_{i,j}$, $\lambda_1\eta_1(\mathbf{p}_{i,j} - \mathbf{x}_{i,j})$, and $\lambda_2\eta_2(\mathbf{g}_{i,j} - \mathbf{x}_{i,j})$ (Eq. 4.2) to determine vector $\mathbf{v}_{i,j+1}$ (the short <i>white</i> dash line) combined with $\mathbf{x}_{i,j}$ to compute new particle $\mathbf{x}_{i,j+1}$ (the long <i>white</i> dash line) in Eq. 4.3. Vector $\boldsymbol{\omega}\mathbf{v}_{i,j}$ depends on the current observation (Eq. 4.4). Our endoscopic guidance framework using EPSO for the multimodal information integration. \dots Detect image patches with specific structures from camera image \mathbf{I}_k for the similarity or the fitness computation. A <i>yellow</i> square denotes a selected patch with its center (<i>green</i> dot). \dots Experimentally determined particle and iteration numbers: $M = 20$ and $N = 8$. Plotted the guidance accuracy of the five methods on Data 3. \dots	 54 57 60 68 69 70

4.8	Comparison of visual quality and computational time of the five methods.	72
4.9	Visualized video and virtual images to investigate the visual quality of different methods. First column shows frame numbers selected uniformly at every 100 frames, and second column shows their corresponding real images. Other columns display virtual images generated from tracking results using the methods discussed above. Our method displays much better quality	73
5.1	CT image segmentation for obtaining a 3-D bronchial tree model where a virtual camera flies through and generates 2 D virtual images by different	
	camera poses.	78
5.2	Illustration of crossover step in DE.	81
5.3	Processing flowchart of our OADE tracking method.	84
5.4	Illustration of our mutation strategy to generate mutant vector $\mathbf{V}_{i,j}^k$ in accordance with three perturbations including observation $\Omega_i \left(\mathbf{E}^k - \mathbf{E}^{k-1}\right)$ and	
	two difference vectors of $F_i^{\nu} \left(\mathbf{X}_{best,j}^{\kappa} - \mathbf{X}_{i,j}^{\kappa} \right)$ and $F_i^{\prime} \left(\mathbf{X}_{r_i^1,j}^{\kappa} - \mathbf{X}_{r_i^2,j}^{\kappa} \right)$	86
5.5	An example of one bronchoscopic image with structural information	87
5.6	Extract structural regions in one bronchoscopic image to calculate similarity during fitness computation step. One <i>yellow</i> square denotes one patch and a <i>green</i> point is its center.	97
5.7	Experimentally determined population size: $P = 25$	99
5.8	Experimentally determined generation number $G = 2$ or 3	100
5.9	Plotted tracking error of six methods evaluated in Experiment 20	102
5.10	Plotted tracking smoothness of six methods evaluated in Experiment 6	103
5.11	Plotted visual quality of six methods evaluated in Experiments 8 and 14	104
5.12	Comparison of different similarity measures and optimization frameworks for 3-D bronchoscope motion estimation in Experiment 9. Tracking er- ror of the MoMSE+SMC method [3] was 3.95 mm and 9.99° while the MoMSE+OADE approach was 3.50 mm and 9.58°. Our method shows best performance with 2.69 mm and 8.09°.	105
5.13	Comparison of tracking (position and orientation) smoothnesses of six meth- ods during 21 experiments.	106
5.14	Visual quality of six methods during 21 experiments and computational time of five methods	107

5.15	Plotted tracking results (Experiments 5 & 21) as camera motion paths on	
	pre-built 3-D bronchial tree model using the OADE method (blue dots) and	
	the method of Luo et al. [3] (green dots). Dots demonstrate that our method	
	overlaps more ground truth dots or follow longer camera movement paths	
	than Luo et al. [3] (cyan dots show ground truth). The errors of Luo et al. [3]	
	were about 3.92 mm (Experiment 5) and 4.23 mm (Experiment 21). However,	
	our method provided the tracking errors about 2.78 mm (Experiment 5) and	
	3.32 mm (Experiment 21). Dots in the <i>circle</i> marks further prove that our	
	method outperforms Luo et al. [3], since many green dots were located	
	outside the bronchial tree	108
5.16	Examples of visual comparison of tracking results of Experiment 18. First	
	column shows frame numbers selected uniformly every 200 frames, and	
	second column shows corresponding real images. Other columns (from third	
	to sixth) display virtual images generated from tracking results using methods	
	of [4], [5], [6], [3], [7], and ours, respectively. Our proposed framework	
	shows the best performance.	109
5.17	Continuous bronchoscopic video frames 420~489 (<i>left</i> \longrightarrow <i>right</i> , <i>top</i> \longrightarrow	
	<i>bottom</i>) of Experiment 7 for illustrating hat our method can tackle respiratory	
	motion and image artifacts. Image artifacts, such as illumination changes	
	(e.g., Frames 420, 421, and 422), collisions with bronchial walls (e.g., Frames	
	423 \sim 427), and jumps (e.g., Frames 428 and 49), occurred frequently	110
5.18	Virtual bronchoscopic images that were estimated from the method of Luo	
	et al. [3] correspond to bronchoscopic video images in Fig. 5.17	111
5.19	Virtual bronchoscopic images that were estimated from our proposed OADE	
	method correspond to bronchoscopic video images in Fig. 5.17. Our method	
	still tracks bronchoscope motions successfully and greatly outperforms the	
	method of Luo et al. [3] since these virtual images resemble video images	
	much better than in Fig. 5.18.	112

List of tables

3.1	Quantitative comparison of fiducial registration error f_e , target tracking error	
	t_e , and distance between transformed points and assigned centerlines on 15	
	experiments and their <i>p</i> -values during static phantom validation (Eqs. 3.23,	
	3.24, and 3.13) (unit: mm)	38
3.2	Quantitative comparison of fiducial registration error f_e , target tracking	
	error t_e , and distance between transformed points and assigned centerlines	
	on 15 experiments and their <i>p</i> -values during dynamic phantom validation	
	(Eqs. 3.23, 3.24, and 3.13) (unit: mm)	40
4.1	Comparison of guidance accuracy (position, orientation) in terms of the	
	ground truth datasets and the estimated results of using the five different	
	methods of M1 [4], M2 [5], M3 [8], M4 [9], and M5 (our EPSO-based method).	65
5.1	Comparatively quantified average accuracy, smoothness, and visual quality	
	of tracking results of six methods evaluated in six ground truth datasets. They	
	were calculated in terms of Eqs. 5.24~5.27. Our OADE outperformed other	
	methods	101