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Abstract

Navigated endoscopy is generally agreed to be the next generation of interventional or

surgical endoscopy. It usually combines pre- and intra-operative imaging information to

guide physicians during endoscopic procedures. However, endoscope three-dimensional

motion tracking that spatially and temporally synchronizes various sensory information still

remains challenging for developing different endoscopic navigation systems. To navigate

or track the surgical endoscope, three modalities of sensory information are utilized in

endoscopic procedures: (1) preoperative images, i.e., three-dimensional CT images, (2) two-

dimensional video sequences from the endoscopic camera, and (3) location measurements,

attaching an electromagnetic sensor at the endoscope distal tip for measuring the temporal

endoscope movement. In this respect, endoscope tracking and navigation aims to fuse these

various modalities information to accurately and robustly locate or fly through the endoscope

at any interest of regions. Unfortunately, fusing the multimodal information is still an open

issue due to the information incompleteness, e.g., image artifacts, tissue deformation, and

sensor output inaccuracy in computer assisted endoscopic interventions.

This thesis work focuses on fusing the multimodal information for accurate and robust

endoscope tracking and navigation. A novel framework of multimodal information fusion is

proposed to use evolutionary computing for endoscopic navigation systems. Several main

contributions of this dissertation are clarified as follows. First, the concept of evolutionary

computing was initially introduced to assist minimally invasive endoscopic surgery. Next,

this work modified two evolutionary algorithms of particle swarm optimizer and differential

evolution and proposed an enhanced particle swarm optimizer (EPSO) and observation-

driven adaptive differential evolution (OADE). EPSO can adaptively update evolutionary

parameters in accordance with spatial constraints and the current observation. OADE

performs a new mutation operation for DE methods by integrating the current observation of

sensor measurements and camera images, which can control the perturbation velocity and the

direction of each individual during evolution, to enhance the DE performance. Additionally,

the improved evolutionary computing algorithms are applicable to computer vision tasks,

e.g., object tracking, motion estimation, and stochastic optimization.
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The experimental results demonstrate that the proposed evolutionarily computed endo-

scopic tracking and navigation approaches in this dissertation provide a more accurate and

robust endoscopic guidance framework than state-of-the-art methods. Based static phantom

data validation, the average guidance accuracy of the EPSO framework was about 3.0 mm,

its average position smoothness was 1.0 mm, and its average visual quality was improved

to 0.29. By evaluating on a dynamic phantom, the OADE approach reduces the tracking

error from 3.96 to 2.89 mm, improves the tracking smoothness from 4.08 to 1.62 mm, and

increases the visual quality from 0.707 to 0.741.

In conclusion, the concept of evolutionary computation is a promising strategy to im-

prove endoscopic tracking and navigation for minimally invasive surgery. The validation

demonstrated its effectiveness to improve the guidance accuracy, visual quality, and tracking

smoothness during endoscopic surgery. Future work includes surgical data validation, real-

time processing, and translation to clinical applications.
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