
Towards Effective Spatial Data
Mining: Uncertainty, Condensity

and Privacy

Bozhong Liu
Faculty of Engineering and Information Technology

University of Technology, Sydney

A thesis submitted for the degree of

Doctor of Philosophy

April 2017

Certificate of Original Authorship

I certify that the work in this thesis has not previously been sub-
mitted for a degree nor has it been submitted as part of require-
ments for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help
that I have received in my research work and the preparation
of the thesis itself has been acknowledged. In addition, I certify
that all information sources and literature used are indicated in
the thesis.

Student: Bozhong Liu

Date: 04/21/2017

Acknowledgements

Firstly, I would like to express my sincere gratitude to my princi-
pal supervisor, Dr. Ling Chen, for her continuous support of my
Ph.D study and related research, for her patience, kindly support
and inspiring motivation. She is always supportive when I feel
frustrated or despairing. Her guidance helps me in all the time
of my research life. Also, I am very thankful to Prof. Zhu, for
his immense knowledge and wonderful advices. Without their
guidance, my research life would be much more difficult. I am
also grateful to my supervisor in Shanghai Jiao Tong University,
Prof. Qiu, for his grate support and encouragement. Without his
effort, I might have lost this precious opportunity of studying in
UTS.

Secondly, I would like to thank my fellow students for their sug-
gestion, discussion, cooperation and of course friendship. Their
patience and support help me in overcoming numerous obsta-
cles I have been facing through my research. Especially, I am
grateful to Chunyang Liu, Meng Fang, Zhe Xu, Zhibin Hong
and Shirui Pan for their kindness and sincerity. They not only
help me a lot when I came to Sydney, but also provide many
nice advices for my research work. They make my Ph.D study
more colorful and wonderful.

Last but not the least, I would like to thank my parents for sup-
porting me spiritually throughout writing this thesis and my life
in general.

Abstract

Spatial data mining (SDM) is a process of knowledge discovery that the
observing data is related to geographical information. It has become an
important data mining task due to the explosive growth and pervasive use
of spatial data. It is more difficult to extract interesting and useful patterns
from spatial datasets due to the complexity of spatial data types, spatial
relationships, and spatial autocorrelation. Although existing methods can
handle the spatial mining task properly, as the arrival of the big data era,
new challenges for SDM are arising.

Firstly, traditional SDM methods usually focus on deterministic datasets,
where spatial events occur affirmatively at precise locations. However, the
inherent uncertainty of spatial data makes the mining process more diffi-
cult. Classical spatial data mining algorithms are no longer applicable or
need delicate modification. Secondly, traditional SDM frameworks produce
an exponential number of patterns, which makes it hard for users to under-
stand or apply. To solve the condensity issue, novel techniques such as
summarization or representation must be carefully investigated. Thirdly,
spatial data usually involves an individual’s location information, which
incurs location privacy problem. It would be a challenge to protect location
privacy with enhanced data security and improved resulting accuracy.

To address the uncertainty issue, we study the problem of discover-
ing co-location patterns in the context of continuously distributed uncer-
tain data, namely Probabilistic Co-location Patterns Mining (PCPM). We
develop an effective probabilistic co-location mining framework integrated
with optimization strategies to address the challenges.

To address the condensity issue, we investigate the problem of Repre-
sentative Co-location Patterns Mining (RCPM). We define a new measure
to quantify the distance between co-location patterns, and develop two ef-
ficient algorithms for summarization.

To address the privacy issue, we solve the problem of protecting Loca-
tion Privacy in Spatial Crowdsourcing (LPSC). We propose a secure spatial
crowdsourcing framework based on encryption, and devise a novel secure
indexing technique for efficient querying.

The experimental results demonstrate the effectiveness and efficiency
of our proposed solutions. The methods and techniques used in solving
concrete SDM tasks can also be applied or extended to other SDM scenarios.

8

Contents

1 Introduction 1

2 Mining Co-location Patterns from Uncertain Data 7

2.1 Introduction . 8
2.2 Related Works . 10
2.3 Problem Definitions . 11

2.3.1 Co-location Patterns in Deterministic Data 11
2.3.2 Co-location Patterns in Gaussian-based Data 13

2.4 Probabilistic Participation Ratio Computation 15
2.5 Probabilistic Co-location Mining Framework 18
2.6 Finding Probabilistic Neighbors 20

2.6.1 Minimum Bounding Sphere 21
2.6.2 The filtering . 22

2.7 Performance Study . 23
2.7.1 Experiment Setup . 23
2.7.2 Comparisons with other methods 24
2.7.3 Efficiency of Filtering . 26
2.7.4 Parameter Evaluation 27

2.8 Conclusion . 28

3 Summarizing Spatial Co-location Patterns 29

3.1 Introduction . 30
3.2 Related Works . 33
3.3 Preliminary . 35

3.3.1 Co-location Patterns . 35
3.3.2 Co-location Distance Measure 36

i

Contents

3.3.3 Problem Statement . 38
3.4 The RCPFast Algorithm . 40
3.5 The RCPMS Algorithm . 42

3.5.1 Optimization Strategy 45
3.5.2 Approximation Strategy 49
3.5.3 The gen cover set() Function 51

3.6 Experimental Study . 52
3.6.1 Experiments on Synthetic Data 52
3.6.2 Experiments on Real Data 59

3.7 Conclusions . 62

4 Protecting Location Privacy in Spatial Crowdsourcing 63

4.1 Introduction . 64
4.2 Related Works . 66

4.2.1 Location Privacy . 66
4.2.2 Secure Index . 67
4.2.3 Task Assignment in SC 68

4.3 Preliminariy . 69
4.3.1 Spatial Crowdsourcing Model 69
4.3.2 Threat Model . 70
4.3.3 Paillier Cryptosystem 70

4.4 The HESI Framework . 71
4.4.1 The Dual-Server Architecture 71
4.4.2 The System Workflow 72

4.5 Secure Distance Computation 75
4.6 Secure Indexing . 78

4.6.1 SKD-tree . 78
4.6.2 Fast Pruning . 82

4.7 Secure Task Assignment . 86
4.7.1 Assignment Strategy . 86
4.7.2 Secure Assignment . 89

4.8 Analysis . 90
4.8.1 Security Analysis . 91
4.8.2 Complexity Analysis . 93

ii

Contents

4.9 Performance Evaluation . 95
4.9.1 Benchmark Data . 95
4.9.2 Experimental Results . 96

4.10 Conclusions . 101

5 Conclusion 103

References 105

iii

Contents

iv

List of Tables

1.1 Relationships among non-spatial and spatial data [1]. 2

2.1 Determinization method vs. our method on EPA data. 26
2.2 Discretization method vs. our method on ITF data. 27

3.1 Prevalent patterns in the example. 32
3.2 Parameters used in synthetic data generation. 52

4.1 The outline of the secure protocols. 75
4.2 Potential assignments for each task. 88
4.3 Complexity summary. 94
4.4 Performance of distance computation for different location

distribution. 99
4.5 Communication cost. 100
4.6 Task assignment evaluation on Yelp. 101
4.7 Task assignment evaluation on Gowalla. 101

v

List of Tables

vi

List of Figures

2.1 An example of deterministic spatial data. 12
2.2 An example of an uncertain spatial data. 16
2.3 Using Minimum Bounding Spheres to bound ρ-regions. 22
2.4 Evaluation of filtering technique. 27
2.5 Parameter evaluation. 28

3.1 A motivating example. 31
3.2 An example illustrating RCPFast algorithm. 42
3.3 An illustration of the optimization strategy based on Theo-

rem 3.3. 48
3.4 Examples of the approximation strategy. 49
3.5 Compression rate tests on synthetic data sets. 54
3.6 Framework comparison on synthetic data sets. 56
3.7 Performance tests with minpi and ε on synthetic data sets. . . 58
3.8 Co-location distance computation analysis on synthetic data

sets. 59
3.9 Compression rate differences between RCPMS and RCPFast

on synthetic data sets. 60
3.10 Compression rate tests on EPA and POI data sets. 60
3.11 Performance on EPA and POI data sets. 61

4.1 The HESI framework. 73
4.2 A small spatial dataset. 76
4.3 An example of a normal KD-tree vs. an SKD-tree with refer-

ence to worker locations in Figure 4.2. 80
4.4 Evaluation of tree construction. 96

vii

List of Figures

4.5 Tree operation evaluation. 97
4.6 Overall Performance. 98
4.7 Performance Improvement. 99

viii

Chapter 1

Introduction

Spatial data mining (SDM) is a process of knowledge discovery that the ob-
serving data is related to geographical information. Its goal is to identify
spatial patterns, identify spatial objects that are potential generators of spa-
tial patterns, or identify the relevant information for explaining the spatial
patterns. In this chapter, we give a brief introduction about the character-
istic of SDM, address the challenges during the knowledge mining process
and investigate the methods of solving these challenges.

Spatial data mining (SDM) becomes an important data mining task due
to the explosive growth and pervasive use of spatial data [2]. It aims to dis-
cover interesting and potentially useful patterns from large spatial datasets
[3]. The primary data object of traditional data mining focuses on transac-
tional data records, with the purpose of identifying customer-buying pat-
terns in market basket data. Several general data mining tools, such as
See5/C5.0 and Enterprise Miner, are designed to analyze scientific data,
multi-media data, medical data and web data. However, due to the com-
plexity of spatial data types, spatial relationships, and spatial autocorre-
lation, mining interesting and useful knowledge from spatial datasets is
more difficult than extracting the corresponding patterns from traditional
numeric and categorical datasets [4].

The input data of SDM can be categorized into two types: non-spatial
attribute and spatial attribute. The first attribute refers to those attributes
indicating the object’s non-spatial features such as name, size, and popula-
tion of a city. Usually they are processed in the same way as that in classi-

1

Table 1.1: Relationships among non-spatial and spatial data [1].

Non-spatial relationship Spatial relationship
Arithmetic Set-oriented: union, intersection, membership, . . .
Ordering Topological: meet, within, overlap, . . .
Is instance of Directional: north, left, above, behind, . . .
Subcalss of Metric: distance, area, perimeter, . . .
Part of Dynamic: update, create, destroy, . . .
Membership of shape-based and visibility

cal data mining. Spatial attribute often includes location information (e.g.,
longitude, latitude and elevation), and other extended information such as
shape and covering area. More specifically, geographical data has the fol-
lowing specific features: (1) various data types, e.g., extended spatial objects
(points, lines, or polygons); (2) implicit spatial relationships among the spa-
tial objects, e.g., neighborhood; (3) dependent observations, e.g., spatial or
temporal co-located; and (4) spatial autocorrelation among spatial features.

Relationships among non-spatial data are explicit. Examples of relation-
ships are is member of, is subcalss of, is part of, and ordering. In contrast, rela-
tionships among spatial objects are often implicit, such as overlap, intersect,
behind and is neighbor of. The methods of processing relationships among
non-spatial data cannot be easily applied to the spatial scenario. For com-
parison, Table 1.1 summarizes some examples of relationships among non-
spatial and spatial data.

One possible way to deal with implicit spatial relationships is to materi-
alize the relationships into transactional data records and then apply tradi-
tional data mining techniques [5]. Though this method is simple and clear,
it will cause information loss and produce inaccurate result. Another way
to solve this problem is to develop algorithms to incorporate the relation-
ships information into the data mining process [6, 7]. In this way, not only
it is able to capture the implicit spatial relationships, but also the efficiency
of the mining process can be improved.

The output of SDM often includes spatial patterns that can deliver in-
teresting insight of the original data. Spatial patterns can be divided into
four important categories: location predictions, spatial outliers, spatial co-
location patterns, and spatial clustering. (1) A predictive model is able to

2

predict desired events occurring at particular geographic locations. Usually,
classification of spatial data in regional economics and natural resources
are studied. Two models, the spatial autoregressive model (SAR) [8] and
Markov random field (MRF)-based Bayesian classifiers [6] are proposed
for effective prediction. (2) A spatial outlier is defined as a spatial object
whose non-spatial attribute values differ significantly from those of other
spatial objects in its spatial neighborhood. Finding spatial outliers is use-
ful in many geographic information systems [9, 10]. (3) Co-location pattern
discovery is a process to identify spatial features (e.g., restaurants, schools)
whose instances usually locate in proximity [11]. The approach of mining
co-location patterns may look similar to, but, in fact, is quite different from
traditional association rule mining problem [5] due to the lack of transac-
tions. (4) Spatial clustering is a process of grouping a set of spatial objects
into clusters, so that objects within a cluster are similar with each other ac-
cording to some similarity measure, but are dissimilar to objects in other
clusters [12, 13].

Although existing methods can handle the spatial mining task properly,
as the arrival of the big data era, new challenges for SDM are arising.

Firstly, traditional SDM methods usually focus on deterministic datasets,
where spatial events occur affirmatively at precise locations. However, it is
not always the case in practice. On one hand, the data is inherently uncer-
tain in many applications, especially in sensor environments and moving
object applications [14]. On the other hand, artificial noise may be added
deliberately for privacy protection [15]. Moreover, considering the continu-
ous nature of spatial data, it is more reasonable to model the location of an
instance as a continuous variable (e.g., Gaussian distribution), instead of a
discrete one [16]. Hence, data uncertainty is ubiquitous in real world and
mining patterns from uncertain data has become an interesting and impor-
tant task in the literature [17, 18, 19, 20, 21].

Secondly, traditional SDM frameworks produce an exponential num-
ber of patterns, which makes it hard for users to understand or apply. For
example, in terms of spatial co-location pattern mining, it requires a user-
specified minimum threshold to find interesting patterns [22]. If the thresh-
old is high, the framework may generate commonsense patterns. How-

3

ever, with a low threshold, a great number of patterns will be found. Con-
sequently, a huge pattern number will jeopardize the usability of resulted
patterns, as it demands great efforts to understand or examine the discov-
ered knowledge. Therefore, it is important to address the condensity prob-
lem. One key idea of solving this problem is to find an effective way to
summarize the resulting patterns, e.g., to find a high-quality representation
that describes the complete set of resulted patterns precisely and concisely.
Two types of compressed co-location patterns have been explored in the
literature: maximal co-location patterns (MCP) [23] and closed co-location
patterns (CCP) [24]. However, MCP is a lossy approximation that fails to
preserve the prevalence information, and CCP emphasizes the prevalence
information too much, which limits the compression power. Therefore, how
to summarize co-location patterns effectively and efficiently is a challenge.

Thirdly, spatial data usually involves an individual’s location informa-
tion. However, disclosing individual locations may lead to serious privacy
implications. For example, with the leakage of location information, an ad-
versary may invoke a broad spectrum of attacks such as physical stalking,
identity theft, and breach of sensitive information including an individual’s
health status, political and religious views [25]. Therefore, location privacy

is a critical security issue and it is important to develop secure methods to
protect location privacy when learning and using the spatial data. Tradi-
tional solutions use randomization perturbation techniques to disturb the
location data [26]. However, data perturbation cannot protect data privacy
sufficiently, and the randomized data may also deteriorate the mining qual-
ity and result in inaccurate models. Therefore, it would be a challenge to
protect location privacy with enhanced data security and improved result-
ing accuracy.

In this thesis, we intend to address these issues by investigating concrete
spatial data mining tasks and applications as follows.

To address the uncertainty issue, we study the problem of discovering
co-location patterns in the context of continuously distributed uncertain
data. In particular, we aim to discover co-location patterns from uncertain
spatial data where locations of spatial instances are represented as multi-
variate Gaussian distributions. We first formulate the problem of Proba-

4

bilistic Co-location Pattern Mining (PCPM) based on newly defined preva-
lence measures. When the locations of instances are represented as contin-
uous variables, the major challenges of probabilistic co-location mining lie
in the efficient computation of prevalence measures and the verification of
the probabilistic neighborhood relationship between instances. We develop
an effective probabilistic co-location mining framework integrated with op-
timization strategies to address the challenges.

To address the condensity issue, we study the problem of Representa-
tive Co-location Patterns Mining (RCPM). We first define a covering rela-
tionship between two co-location patterns by finding a new measure to ap-
propriately quantify the distance between patterns in terms of their preva-
lence, based on which the RCPM problem is formally formulated. To solve
the problem, we first propose an algorithm called RCPFast, adopting the
post-mining framework that is commonly used by existing distance-based
pattern summarization techniques. To address the peculiar challenge in
spatial data mining, we further propose another algorithm, RCPMS, which
employs the mine-and-summarize framework that pushes pattern summa-
rization into the co-location mining process. Optimization strategies are
also designed to further improve the performance of RCPMS.

To address the privacy issue, we study the problem of protecting Lo-
cation Privacy in Spatial Crowdsourcing (LPSC). The objective of spatial
crowdsourcing is to outsource a set of spatio-temporal tasks to a set of in-
dividual workers who will perform the tasks by physically traveling to the
locations of interest. We propose a secure spatial crowdsourcing framework
based on encryption, which ensures that all location information will not
be released to any party. We solve the challenge of assigning tasks on en-
crypted data by using homomorphic encryption. Moreover, to overcome
the efficiency issue, we propose a novel secure indexing technique with a
newly devised SKD-tree to index encrypted worker locations.

The remainder of this thesis is as follows. Chapter 2 investigates the
methods of discovering co-location patterns in the context of continuously
distributed uncertain data. Chapter 3 discusses the challenges of mining
representative co-location patterns and proposes effective solutions. Chap-
ter 4 studies the spatial data application, spatial crowdsourcing, in the privacy-

5

preserving scenario. Chapter 5 concludes the thesis.

6

Chapter 2

Mining Co-location Patterns from

Uncertain Data

A co-location pattern is a special type of pattern that describes the proximity
of spatial features, and is able to provide interesting insights for knowledge
discovery. Traditional co-location pattern mining focuses on discovering
co-location patterns from deterministic spatial data sets. However, in real
world data collected from various sources tend to be uncertain due to mea-
surement noises and errors. It is more appropriate to consider uncertain
data. In this chapter, we study the problem in the context of continuously
distributed uncertain data. In particular, we aim to discover co-location
patterns from uncertain spatial data where locations of spatial instances
are represented as multivariate Gaussian distributions. We first formulate
the problem of probabilistic co-location mining based on newly defined preva-
lence measures. When the locations of instances are represented as continu-
ous variables, the major challenges of probabilistic co-location mining lie in
the efficient computation of prevalence measures and the verification of the
probabilistic neighborhood relationship between instances. We develop an
effective probabilistic co-location mining framework integrated with opti-
mization strategies to address the challenges. Our experiments on multiple
datasets demonstrate the effectiveness of the proposed algorithm.

7

2.1. Introduction

2.1 Introduction

Co-location mining is an important application in spatial data sets. A co-
location pattern is a subset of spatial features whose instances are frequently
located close to each other [11]. Spatial co-location patterns yield valuable
knowledge for various applications. In Epidemiology, for example, differ-
ent incidents of diseases may exhibit co-location patterns such that one type
of disease tends to occur in spatial proximity of another. In Ecology, differ-
ent types of animals may behave co-location patterns such as symbiotic re-
lationship and predator-prey relationship [22]. In E-commerce, companies
may be interested in discovering types of services (e.g., weather, timetabling
and ticketing queries) that are requested by geographically neighboring
users, so that they can provide location-sensitive recommendations [27].
Due to its importance, the problem of finding prevalent co-location patterns
from spatial data sets has been explored extensively [11, 28, 29, 30, 31, 32,
33].

Traditional co-location pattern mining usually focuses on deterministic
data sets, where instances of spatial features occur affirmatively at precise
locations. However, it is not always the case in practice. On one hand, the
data is inherently uncertain in many applications, especially in sensor envi-
ronments and moving object applications [34]. On the other hand, artificial
noise may be added deliberately for privacy protection [15]. Hence, data
uncertainty is ubiquitous in real world and mining patterns from uncertain
data has become an interesting and important task in the literature [35].

A few works on mining co-locations from uncertain spatial data have
emerged recently, which consider data uncertainty from different aspects.
Wang et al. [36] study mining co-location patterns from uncertain spatial
data where instances are associated with existential probabilities. That is,
whether an instance occurs or not is uncertain. However, if it occurs, its
location is assumed to be deterministic. In contrast, Liu and Huang [37]
explore the problem of co-location mining from uncertain data by recog-
nizing the location probabilities of instances. Given an instance, their work
considers several (typically 3-5) possible locations within a bounded range
and assigns probabilities to indicate how likely the instance occurs at one

8

2.1. Introduction

of the locations. That is, the location of an instance is modeled as a discrete
variable.

Considering the arrival of big data era, coupled with the continuous na-
ture of spatial data, it is very likely that for each instance, a collection of
possible locations may be gathered. For example, in the application of in-
teresting constellation discovery in astrophysics, it is common to record the
locations of stars in a long time period while the locations may vary ev-
ery time the stars are observed. In this case, it is more reasonable to model
the location of an instance as a continuous variable, instead of a discrete
one. Moreover, existing method [37] models the location of an instance as
a discrete variable within a bounded range, which may cause loss of informa-
tion. In fact, many practical applications are essentially unbounded, such as
RFID positions [16], GSM phone positioning [38] and GPS logs [39]. In these
scenarios, the location of an instance is usually represented as a continuous
Gaussian distribution. Therefore, in this chapter, we focus on the problem of
mining co-locations from uncertain spatial data where location of each in-
stance is modeled as a continuous multivariate Gaussian distribution, which
is widely used in modeling location uncertainty such as in spatial range
querying [40] and localization in robotics [41]. To the best of our knowledge,
this is the first work that mines co-locations from Gaussian-based uncertain
spatial data.

Mining co-location patterns from uncertain spatial data where locations
are continuous variables is a challenging problem. Firstly, the existing frame-
work of problem definition cannot be adopted directly because the exist-
ing interestingness measures cannot deal with locations modeled as proba-
bilistic distributions. Secondly, the mining process will be computationally
expensive and complicated. For example, when locations of instances are
represented as probabilistic distributions, expensive integration will be in-
volved to examine whether two instances are probabilistic neighbors.

To address the challenges, we first re-define the interestingness mea-
sures to cope with continuously distributed spatial data, based on which
the problem of probabilistic co-location mining is formulated (Section 2.3).
To compute the newly defined prevalence measure, it is essential to find
out the probability that an instance supports/participates a feature set. We

9

2.2. Related Works

propose proper and effective schemes to compute the probability efficiently
(Section 2.4). After handling the definition and computation of interest-
ingness measures, a framework for probabilistic co-location mining is put
forward (Section 2.5). Observing the bottleneck of the mining process lies
in the discovery of probabilistic neighbors of instances, we further devise
an optimization strategy to skip verifying the neighborhood relationship
between particular instance pairs (Section 2.6).

The main contributions of this chapter are summarized as follows.

• We have formulated the problem of probabilistic co-location mining from
Gaussian-based uncertain spatial data, based on newly defined preva-
lence measures.

• We have developed a framework for mining probabilistic co-locations
from Gaussian-based spatial data, with effective strategies to address
the computation of prevalence and the verification of probabilistic
neighborhood relations.

• We have conducted experiments on multiple data sets to examine the
effectiveness of the proposed methodologies.

2.2 Related Works

The problem of frequent co-location mining from spatial databases is first
introduced by Morimoto [42]. A support metric, which is defined as the
number of instances of a co-location, is used to measure the prevalence
of a co-location pattern. However, the metric does not possess the anti-
monotonic property. Shekhar and Huang [11] propose to use participation
ratio and minimum participation index as the interestingness measures that
are more statistically meaningful. Various algorithms have been developed
to mine prevalent co-location patterns based on the two measures, such as
the Apriori-like algorithm [22], the fast algorithm combining the discovery
of neighbors with the mining process [27], the join-based algorithm [22],
the partial-join algorithm [43], the join-less algorithm [29] and the CPI-tree-
based algorithm [44]. Other interestingness measures have also been ex-

10

2.3. Problem Definitions

plored, such as mining confident co-locations using the maximum partici-
pation ratio [45] and mining co-locations based on statistic hypothesis [32].
Recently, Qian et al. [46] proposes the distance variation coefficient as a new
measure to discover regional co-locations.

There are other extensions of co-location mining. Xiong et al. [28] mine
co-location patterns from data sets with extended spatial objects such as
ling-strings and polygons. Complex co-location pattern mining is stud-
ied by Munro and Sun [47] to find negative co-locations. Celik, Kang and
Shekhar [31] explore the problem of finding zonal co-locations with dy-
namic parameters, i.e., repeated specification of zone and interestingness
measure values preferred by users. Qian et al. [33] address the problem of
mining co-locations without specifying thresholds. Yang et al. studies the
high utility co-locoation patterns [48]. There are other studies focusing on
real-word applications such as medical cases [49], road networks [50].

Data mining over uncertain data has become an active research area re-
cently [51]. Many research efforts have been devoted to mining frequent
patterns from uncertain data [52, 53, 35, 54, 55, 18]. As aforementioned,
there are also works on mining co-locations from uncertain data [36, 37].
Our work is different from Wang et. al [36] because we consider location
probability instead of existential probability. Our work is different from Liu
and Huang [37] since we model location information as continuous vari-
ables rather than discrete variables.

2.3 Problem Definitions

In this section, we first review definitions related to co-location mining from
deterministic data. Next, we formally define our problem based on rede-
fined prevalence measures in the context of Gaussian-based uncertain spa-
tial data.

2.3.1 Co-location Patterns in Deterministic Data

Given a set of spatial features F = { f1, f2, . . . , fK}, a deterministic spatial
data set is a collection of instances/events E = {e1, e2, . . . , eN}. Each ei ∈ E

11

2.3. Problem Definitions

A1

A2

A3

A4

A5

B1

B2 B3

B4

B5

C1

C2

C3

D1
D2

D3

—A—
—B—
—C—
—D—

Figure 2.1: An example of deterministic spatial data.

is a vector 〈event identity, spatial f eature, location〉, indicating its identity,
feature type and occurrence location in a spatial framework S. An example
of a deterministic spatial data set is given in Figure 2.1, where each symbol
represents an event of a specific spatial feature. For simplicity, we use capi-
tal letters to denote features, and subscripts to denote event identities. Two
events are connected if they belong to different features and if their spatial
distance is less than a specified distance threshold τ. Given a deterministic
spatial data set, measures related to characterizing the interestingness of a
subset of features F ⊆ F have been defined by Sheckhar and Huang [11].

Definition 2.1. Given a subset of features F = { f1, f2, . . . , fk} ⊆ F , E =

{e1, e2, . . . , ek} ⊆ E is a Row Instance (RI) of F, denoted as RI(F), if ∀i ∈ [1, k],
ei is an instance of fi and ∀i, j ∈ [1, k], ||ei − ej|| ≤ τ, where ||ei − ej|| refers to
the distance between two events.

For example, in Figure 2.1, {A1, C2} is a row instance of {A, C}. Simi-
larly, {A1, C2, D2} and {A3, C1, D1} are row instances of {A, C, D}.

Definition 2.2. The Table Instance (TI) of a subset of features F ⊆ F , denoted
as TI(F), is the collection of all its row instances {RI1(F), . . . , RIm(F)}.

Consider Figure 2.1. TI({A, C}) = {{A1, C2}, {A2, C2}, {A3, C1}}, and
TI({A, C, D}) = {{A1, C2, D2}, {A3, C1, D1}}.

Definition 2.3. Given a subset of features F = { f1, . . . , fk}, the Participation
Ratio of a feature fi ∈ F, denoted as PR(fi, F), is the fraction of events of feature

12

2.3. Problem Definitions

fi that participate in the table instance of F. That is,

PR(fi, F) =
|{ej|ej ∈ T̂ I({ fi}), ej ∈ T̂ I(F)}|

|{ej|ej ∈ T̂ I({ fi})}|
, (2.1)

where T̂I(·) is the union of elements in TI set. Hence, the denominator refers to the
total number of events of feature fi and the numerator refers to the distinct number
of events of feature fi that appear in the table instance of F.

For example, consider TI({A, C}) = {{A1, C2}, {A2, C2}, {A3, C1}} in
Figure 2.1. We have PR(A, {A, C}) = 3

5 , since among the five distinct events
of feature A, three of them participate in the table instance of {A, C}. Like-
wise, we have PR(C, {A, C}) = 2

3 .

Definition 2.4. The Participation Index of a subset of features F = { f1, . . . , fk},
denoted as PI(F), is defined as

PI(F) = min
i∈[1,k]

PR(fi, F). (2.2)

For example, consider {A, C} in Figure 2.1 again. Since PR(A, {A, C}) =
3
5 and PR(C, {A, C}) = 2

3 , then PI({A, C}) = min(3
5 , 2

3) =
3
5 .

Definition 2.5. Given a user-specified threshold minPI, a subset of features F ⊆ F
is a prevalent Co-location Pattern if PI(F) ≥ minPI.

For instance, suppose the prevalent threshold minPI is 0.5. Then {A, C}
in Figure 2.1 is a prevalent co-location pattern.

2.3.2 Co-location Patterns in Gaussian-based Data

In this subsection, we model the location of an event as a continuous vari-
able. In particular, given an event ei, the location of ei is represented as
a d-dimensional Gaussian distribution, ei = (x(1)i , x(2)i , . . . , x(d)i)T, with its
mean location center μi and the corresponding covariance matrix Σi. The
probability distribution function is given by

Pei(x) =
1

(2π)
d
2 |Σi|

1
2

exp
[
−1

2
(x− μi)

TΣi
−1(x− μi)

]
, (2.3)

13

2.3. Problem Definitions

where Σi
−1 is the inverse matrix and |Σi| refers to the determinant of the

matrix.
In the context of uncertain data, the distance between two events be-

comes a probabilistic distribution. Therefore, we define the probabilistic
neighborhood relationship between a pair of events as follows.

Definition 2.6. Given a distance threshold τ (τ ≥ 0) and a probabilistic neighbor-
hood threshold θ (0 < θ < 1), two events ei and ej are probabilistic neighbors if
the probability that the distance between them is no greater than τ is no less than
θ. That is,

Pr[||ei − ej|| ≤ τ] ≥ θ, (2.4)

where || • || denotes the distance between two d-dimensional objects. If two events
are probabilistic neighbors, we denote Rτ,θ(ei, ej) = 1.

Based on the definition of probabilistic neighbors, we can define a clique
instance of a co-location as follows, corresponding to the concept of row
instance in the context of deterministic data.

Definition 2.7. Given a subset of features F = { f1, . . . , fk}, a set of events E =

{e1, . . . , ek} is a Clique Instance of F, denoted as CI(F), if ∀i ∈ [1, k], ei is an
event of fi, and ∀i, j ∈ [1, k], Rτ,θ(ei, ej) = 1.

Given a subset of features, we can find a collection of clique instances
from the input spatial data. We record the set of clique instances, {CI1(F),
CI2(F), . . . , CIm(F)}, in a clique instance table, denoted as CIT(F).

Recall that in deterministic data, the participation ratio of a feature in a
subset of features is computed as the fraction of events of this feature that
participate in the collection of row instances of the feature set. However,
in the context of uncertain data, whether an event participates in a clique
instance is probabilistic. Let PR(fi.ej, F) be the probability that the jth event
of feature fi participates in the collection of clique instances of F (we will ex-
plain how to compute this value in the next section). Then, the probabilistic
participation ratio of a feature in a feature set can be defined as follows.

Definition 2.8. Given a subset of features F = { f1, . . . , fk}, the Probabilistic
Participation Ratio of a feature fi ∈ F, denoted as PPR(fi, F), is defined as:

14

2.4. Probabilistic Participation Ratio Computation

PPR(fi, F) =
1
| fi|

| fi|
∑
j=1

PR(fi.ej, F), (2.5)

where | fi| refers to the number of events of fi.

Then, a probabilistic participation index can be defined similarly as in
deterministic data.

Definition 2.9. The Probabilistic Participation Index of a subset of features
F = { f1, . . . , fk} is defined as

PPI(F) = min
i∈[1,k]

PPR(fi, F). (2.6)

Based on the newly defined concepts and measures, we formalize the
problem of probabilistic co-location mining from Gaussian-based uncertain
spatial data as follows:

Definition 2.10 (Problem Definition). Given a set of spatial features F , a set
of events E on F where each event is associated with a location random variable
represented as a d-dimensional Gaussian distribution, a distance threshold τ, a
neighborhood probability threshold θ, and a minimal probabilistic participation in-
dex threshold minPPI, the objective is to discover the complete set of probabilistic
co-location patterns where for each pattern F ⊆ F ,

PPI(F) ≥ minPPI . (2.7)

2.4 Probabilistic Participation Ratio Computation

In this section, we discuss how to compute the probabilistic participation
ratio of an event of a feature in a feature set, i.e., PR(fi.ej, F).

Note that, since the neighborhood relationship between two events is
probabilistic, each clique instance of a feature set is also associated with
a probability representing how likely the set of events constitutes a clique
instance.

Definition 2.11. Let CI(F) = {e1, . . . , ek} be a clique instance of a subset of
features F = { f1, . . . , fk}. Then, we associate a probability with the clique instance

15

2.4. Probabilistic Participation Ratio Computation

A1 A2

A3

B1

B3
B4

B2

B5C4
C3

C1C2

A B C P[CI(F)]

0.79
0.72
0.85

A1
A2
A3

B1
B1
B5

C2
C1
C3

Figure 2.2: An example of an uncertain spatial data.

as

Pr[CI(F)] =
�

. . .
∫

︸ ︷︷ ︸
k

Ψ(x1, . . . , xk) · Pe1(x1) . . . Pek(xk)dx1 . . . dxk, (2.8)

where Ψ(x1, . . . , xk) =

{
1 if ∀xi, xj, ||xi − xj|| ≤ τ

0 otherwise

Since this numerical integration cannot be calculated analytically, the
Monte Carlo method can be adopted with a sufficient number of samplings.

Then, given a collection of uncertain spatial data, each feature set F can
be associated with a clique instance table CIT(F) where each clique instance
is accompanied with a probability obtained by Eq. (2.8). For example, Fig-
ure 2.2 shows a toy example of an uncertain spatial data set, and a clique
instance table of the feature set F = {A, B, C}. The dashed ellipse represents
the location of an event is a Gaussian distribution with standard covariance
10. The probability of each clique instance is computed using the example
data as specified in Definition 10.

To find the probability of an event of a feature fi.ej participates a feature
set F, we consider the following two situations. If the event participates
in only one clique instance of the feature set (e.g., CI(F)), the probability
PR(fi.ej, F) equals to the existence probability of the clique instance (e.g.,
Pr[CI(F)]). For example, in Figure 2.2, PR(A3, {A, B, C}) = 0.85. If the
event participates in more than one clique instance, then we can’t simply

16

2.4. Probabilistic Participation Ratio Computation

add the probabilities of all involved clique instances. For example, consider
the event B1 in Figure 2.2. Since B1 participates in two clique instances of
the feature set {A, B, C}, adding the probabilities of the two clique instances
will result in PR(B1, {A, B, C}) = (0.79 + 0.72) > 1, which is incorrect. The
reason is that the clique instances of a feature set are not independent. To
address the issue, the following lemma gives the correct computation of
PR(fi.ej, F).

Lemma 2.1. Let CIT
′
(F) = {CI1, CI2, . . . , CIm} ⊆ CIT(F) be the set of clique

instances of feature set F that an event fi.ej participates in. The event participation
ratio, PR(fi.ej, F), can be given by:

PR(fi.ej, F) = ∑
CIi∈CIT′

Pr[CIi]− ∑
CIi,CIj∈CIT′

Pr[CIi, CIj] + · · ·+

(−1)m−1Pr[CI1, . . . , CIm].

(2.9)

The lemma can be proved based on the inclusion-exclusion principle
in combinatorial mathematics [56]. As a result, in the example in Figure
2.2, since Pr[{A1, B1, C2}, {A2, B1, C1}] = 0.53, we have PR(B1, {A, B, C}) =
0.79 + 0.72− 0.53 = 0.98.

Although Lemma 2.1 provides a proper solution to calculate PR(fi.ej, F),
it suffers the computation efficiency problem, especially when an event par-
ticipates in a large number of clique instances. That is, when m is large. This
is because the number of terms in Eq. (2.9) is proportional to 2m. Moreover,
each Pr[CIi, . . . , CIj] has to be obtained by sufficient number of samplings,
which consumes considerable time.

In fact, since PR(fi.ej, F) is the probability that fi.ej participates in one of
the clique instances in CIT(F), we can skip calculating Pr[CI(F)] and deal
with PR(fi.ej, F) directly by using the Monte Carlo method.

Definition 2.12. Let CIT
′
(F) = {CI1, CI2, . . . , CIm} ⊆ CIT(F) be the set of

clique instances of feature set F that event fi.ej participates in. Let W denote the

set of all samples and CI(w)
i represents a certain clique instance exists in the sample

17

2.5. Probabilistic Co-location Mining Framework

w. The event participation ratio, PR(fi.ej, F), can be given by:

PR(fi.ej, F) =
∑w∈W |CI(w)

1 or CI(w)
2 , . . . , or CI(w)

m |
|W| . (2.10)

The Monte Carlo method indicates that, by sampling the data set W
times, the probability PR(fi.ej, F) can be obtained as the fraction of data
samples where any clique instance involving the event fi.ej exists.

2.5 Probabilistic Co-location Mining Framework

In this section we propose the framework for probabilistic co-location pat-
tern mining from Gaussian-based uncertain spatial data.

Before presenting the framework, we first prove that the anti-monotonic
property holds for the newly defined measure of probabilistic participation
index.

Property 2.1. (Anti-monotonicity) The probabilistic participation index of a subset
of features is monotonically non-increasing with respect to the number of features
in the set.

Proof. Without loss of generality, we consider two feature sets F2 = { f1, f2}
and F3 = { f1, f2, f3}. The objective is to prove PPI(F2) ≥ PPI(F3). The two
probabilistic participation indexes are given by

PPI(F2) =min(PPR(f1, F2), PPR(f2, F2)),

PPI(F3) =min(PPR(f1, F3), PPR(f2, F3), PPR(f3, F3))

The key point is then to prove PPR(fi, F2) ≥ PPR(fi, F3). This is because:
(1) If PPR(f3, F3) is larger than PPR(f1, F3) or PPR(f2, F3), then it can be
ignored due to the min operation and PPR(fi, F2) ≥ PPR(fi, F3) leads to
the result. (2) If PPR(f3, F3) is smaller than PPR(f1, F3) and PPR(f2, F3),
then if PPR(fi, F2) ≥ PPR(fi, F3) holds, then PPI(F3) = PPR(f3, F3) <

PPR(fi, F3) ≤ PPR(fi, F2).
To prove PPR(fi, F2) ≥ PPR(fi, F3), according to Eq. (2.5), we need to

prove PR(fi.ej, F2) ≥ PR(fi.ej, F3). Let X (resp. X′) be a random variable

18

2.5. Probabilistic Co-location Mining Framework

that indicates whether the event fi.ej ∈ CIT(F2) (resp. fi.ej ∈ CIT(F3))
occurs. Then PR(fi.ej, F2) = Pr[X] and PR(fi.ej, F3) = Pr[X′]. Since F2 ⊂ F3,
we have a conclusion that if X′ occurs, X must also occur. Hence Pr[X] ≥
Pr[X′].

Algorithm 2.1 Probabilistic Co-location Mining

Input: A set of events of different features F with their locations repre-
sented as Gaussian distributions, a distance threshold τ, a probabilistic
neighborhood threshold θ, a probabilistic participation index threshold
minPPI .

Output: A set of probabilistic co-locations P .
Variable: Sk: a set of CITs of size k.

Ck: a set of size k candidate probabilistic co-locations.
Pk: a set of size k probabilistic co-locations.

1: PNT = gen probabilistic neighborhood table(τ, θ)
2: P1 = F , k = 2
3: while (Pk−1 �= ∅) do
4: Ck = gen candidate co-locations (Pk−1)
5: if k = 2 then
6: CIT(Ck) = gen clique instance table (PNT)
7: add CIT(Ck) to S2
8: else
9: CIT(Ck) = gen clique instance table (Sk−1, PNT)

10: add CIT(Ck) to Sk
11: for all F ∈ Ck do
12: PPI(F) = cal ppi (F, CIT(F))
13: if PPI(F) ≥ minPPI then
14: add F to Pk
15: k = k + 1
16: return P = P2 ∪ P3 · · · ∪ Pk

According to the anti-monotonicity of probabilistic participation index,
if a co-location pattern is prevalent, then all its sub-patterns must also be
prevalent. Based on this property, an Apriori-like algorithm is developed
to discover probabilistic co-location patterns. The main idea is illustrated
in Algorithm 2.1. Given a set of Gaussian-based uncertain spatial data, we
first construct a probabilistic neighborhood table (PNT) based on Defini-
tion 2.6 (line 1). Each entry of PNT is a pair of events that are probabilistic
neighbors. Next, we generate size k candidate co-locations from those of

19

2.6. Finding Probabilistic Neighbors

size k− 1 using the Apriori-join method [22] (line 4). For each candidate co-
location pattern, we derive its clique instance table (CIT) correspondingly
(lines 5-8). Specifically, if the candidate co-location is of size 2, its CIT can
be retrieved directly from PNT. Otherwise, we can construct the CIT of size
k from CITs of size k − 1 and PNT. For example, the clique instance A1-
B1-C1-D1 may be obtained from clique instances A1-B1-C1 and A1-B1-D1,
by verifying whether C1 and D1 are probabilistic neighbors in PNT. After
CITs are generated, we examine whether a candidate is a valid probabilis-
tic co-location pattern by computing the probabilistic participation ratio of
each involved feature based on the generated CIT according to Definition
11 (line 12). An iterative loop is then carried out to generate co-locations of
size k + 1 from those of size k.

We observe that one of the major costs of the mining process come from
the generation of probabilistic neighborhood table (PNT), which verifies the
probabilistic neighbor relationship between a great amount of event pairs.
Therefore, in the next section, we address this issue by devising a filtering
technique to improve the efficiency of PNT generation.

2.6 Finding Probabilistic Neighbors

It is not an easy task to verify probabilistic neighborhood relationship be-
tween events because it involves numerical integration. The Monte Carlo
method is usually adopted, which obtains an approximate probability by
sufficient number of samplings. However, the sampling progress still en-
gages high computation complexity. We are thus motivated to improve the
efficiency by reducing the number of event pairs that need to be compared.

To this end, we propose an efficient filtering technique using Minimum
Bounding Sphere (MBS), based on the ρ-region defined in Dong et al. [40].

Definition 2.13. [40] Consider a Gaussian-based event location variable ei and
the integration of its probability density function Pei(x) over an ellipsoidal region
(x− μi)

TΣ−1
i (x− μi) ≤ r2. Let rρ be the value of r within which the result of the

20

2.6. Finding Probabilistic Neighbors

integration equals ρ, ∫
(x−μi)TΣ−1

i (x−μi)≤r2
ρ

Pei(x)dx = ρ, (2.11)

The ellipsoidal region (x− μi)
TΣ−1

i (x− μi) ≤ r2
ρ is called ρ-region of ei.

That is, the ρ-region represents an ellipsoidal region in which the proba-
bility that an event occurs is ρ. Given a specified probability ρ, the value of
rρ can be obtained based on the following property:

Property 2.2. [57] Given the normalized Gaussian distribution

Pnorm(x) = N (0, I) =
1

(2π)
d
2

exp
[
−1

2
||x||2

]
, (2.12)

consider the integration of Pnorm(x) over ||x||2 ≤ r̃2
ρ. For a given ρ (0 < ρ < 1),

let r̃ρ be the radius within which the integration becomes ρ:∫
||x||2≤r̃2

ρ

Pnorm(x)dx = ρ. (2.13)

Then rρ = r̃ρ holds.

Although this property specifies that we may obtain rρ from r̃ρ , there is
still no way to derive r̃ρ from ρ analytically with Eq. (2.13). Hence, we con-
struct a (r̃ρ, ρ) table in advance. Given a specified ρ, we return the matching
r̃ρ, or if not matched, return the r̃ρ corresponding to the smallest ρ

′
that is

greater than ρ to guarantee correctness.

2.6.1 Minimum Bounding Sphere

It is difficult to examine the probabilistic neighborhood relationship be-
tween two events with locations represented by ellipsoidal ρ-regions. Hence,
we adopt the Minimum Bounding Sphere (MBS) that tightly bounds the ρ-
region. Examples of MBS of ρ-regions in 2-D space are shown in Figure 2.3.
In order to bound the ellipsoid region, the radius of the sphere should be
the major axis, which is given by the following property.

21

2.6. Finding Probabilistic Neighbors

e1

MBS()

rMBS1

e2
rMBS2

MBS()

dmin

dmax

Figure 2.3: Using Minimum Bounding Spheres to bound ρ-regions.

Property 2.3. Given an ellipsoid (x− μi)
TΣi

−1(x− μi) ≤ r2
ρ, the radius rMBS of

its MBS can be calculated by

rMBS =

√
r2

ρ

ωmin
, (2.14)

where ωmin is the minimum eigenvalue of the covariance matrix Σi
−1.

Proof. According to [58], given an ellipsoidal distance d2
A(p, q) = (p −

q)T A(p− q), a sphere-shape distance function that tightly bounds d2
A(p, q)

can be obtained by d2
MBS(p, q) = ω2

min(p− q)2, where ωmin is the minimum
eigenvalue of matrix A. Moreover, it is also proved that given d2

MBS(p, q) ≤
ε, the radius of the sphere can be calculated by

√
ε

ωmin
. If we let A = Σi

−1 and

ε = rρ2 , then we have rMBS =

√
r2

ρ

ωmin
.

2.6.2 The filtering

We now explain how to quickly verify the probabilistic neighborhood rela-
tionship between two events based on MBS. Recall that, if two events e1 and
e2 are probabilistic neighbors, Pr[||e1 − e2|| ≤ τ] ≥ θ holds, where τ and θ

are user specified distance threshold and probabilistic neighborhood thresh-
old, respectively. Let d min be the minimum distance between two MBS as
illustrated in Figure 2.3. In this case, we have Pr[||e1 − e2|| > d min] > ρ2,
since the probability of an event in the ρ-region is ρ and the probability that
it occurs in the corresponding MBS is greater than ρ. That is, Pr[||e1− e2|| ≤

22

2.7. Performance Study

d min] ≤ 1− ρ2. Let 1− ρ2 = θ and consider the critical scenario d min = τ,
we have Pr[||e1 − e2|| ≤ τ] ≤ θ. In other words, if d min > τ, then the two
events are definitely not in a probabilistic neighborhood. We can then filter
the pair of events without calculating the numerical integration.

Similarly, we consider the maximum distance between two MBSs. In
this case, we have Pr[||e1 − e2|| ≤ d max] ≥ ρ2. Let ρ2 = θ. If d max ≤ τ,
Pr[||e1 − e2|| ≤ τ] ≥ θ holds. We can conclude that the two events are
probabilistic neighbors straightforwardly.

To sum up, given two events, we apply the following steps to filter event
pairs before calculating the numerical integration:

1. Let ρ =
√

θ and derive the d max = ||μ1 − μ2|| + rMBS1 + rMBS2.
If d max ≤ τ, these two events are directly labeled as probabilistic
neighbors.

2. Let ρ =
√

1− θ and derive the d min = ||μ1 − μ2|| − rMBS1 − rMBS2. If
d min > τ, the two events are not probabilistic neighbors.

2.7 Performance Study

We have conducted experiments to evaluate the proposed algorithm using
three real data sets. All the experiments are implemented using Python 2.7
on a PC with Intel Core i5 2.5 GHz CPU and 4 GB memory.

2.7.1 Experiment Setup

Three real data sets are used in our experiments. 1) The US National Trans-
portation Atlas Database with Intermodal Terminal Facilities (NTAD-ITF)
of 2013 1, in which every event is a facility with different types such as rail,
airport, track, port and inter port. It consists of 5 features and 3087 events in
total. 2) The EPA databases 2, which contain environmental activities that
affect air, land and water in United States. Different environmental inter-
est types are used as spatial features and each facility represents a spatial

1http://www.rita.dot.gov/
2http://www.epa.gov/

23

2.7. Performance Study

event. In our experiment, we use the EPA data of Allen Counties in Indiana
State, which consists of 23 features and 647 events in total. 3) The points of
interest (POI) in California 3 which was used in [59]. There are 63 category
types (e.g., dam, school, and bridge) and 104, 770 data points.

All the geographic coordinates are transformed to 2-dimensional Carte-
sian coordinates by Universal Transverse Mercator projection. The uncer-
tainty is generated synthetically by taking the coordinates as the mean val-
ues and assigning a covariance matrix to each event. By default, a covari-
ance matrix

(
1002 0

0 1002

)
is assigned each event. The default sampling times

employed by the Monte Carlo method is 1000.

2.7.2 Comparisons with other methods

We first compare our proposed method with other approaches that handle
location uncertainties. In particular, we compare our method with two ap-
proaches. One is the existing method [37], which considers several possible
locations of an event. Given an uncertain spatial data set where locations of
events are continuous variables, this method can be applied by randomly
sampling several possible location points for each event from its location
distribution. The other one simply determinize the data by considering the
expected locations of events. Then, traditional co-location mining can be
applied. We refer to the first method as the discretization method, and the
second one as the determinization method.

2.7.2.1 Comparison with the Determinization Method

As discussed above, one simple and straightforward approach to deal with
uncertain data is to remove data uncertainty by considering expected val-
ues. Therefore, it would be interesting to investigate the differences be-
tween our method that explicitly models the continuous distributions of
locations and this simple approach. We conduct experiments to compare
the two methods on the EPA data set, by varying the standard covariance σ

of location distributions. More precisely, we generate the data uncertainty
by using different standard covariances (σ = 10, 100, 300). We then compare

3http://www.usgs.gov/

24

2.7. Performance Study

the number of patterns discovered by the simple determinization approach
and our method respectively. Other parameters are τ = 1050, θ = 0.5
and minPPI = 0.4. Table 2.1 summarizes the experiment results. It can
be seen that when σ = 10, the number of patterns found by both meth-
ods are same, so are the particular patterns (shown in the fourth column).
As σ increases, the number of patterns output by our method decreases.
For example, when σ varies from 10 to 100, the pattern AirSyntheticMinor-
HazardousWasteBiennialReporter (boldtype in the table) will not be discov-
ered as a valid co-location by our method. When σ varies from 100 to 300,
even fewer number of patterns will be found by our method. This is be-
cause when σ increases, the location uncertainty of an event becomes more
significant, resulting in the lower probability of two events being neighbors.
However, the determinization method fails to recognize this and outputs the
same 8 patterns under different uncertainty degrees.

2.7.2.2 Comparison with the Discretization Method

We further compare our method with the discretization approach proposed
by Liu and Huang in [37]. In the discretization method, each event is asso-
ciated with several location instances within a region. In our experiment,
we model the discrete location uncertainties as follows. For each event, we
generate its location instances from its location distribution. The number
of location instances per event is decided by a Poisson distribution with
mean λ. We run the experiments on the ITF data set. The default parame-
ters are: τ = 10000, θ = 0.7 and minPPI = 0.3. By varying λ, we compare
the numbers of patterns found by the discretization method and our method
respectively. The results are shown in Table 2.2.

It can be observed that, when the density λ decreases, fewer number of
patterns are discovered by the discretization method. This is because when
λ gets smaller, fewer location instances will be sampled by the discretization
method, resulting in the missing of some valid pairs of neighboring events.
On the flip side, a large λ invokes more location instances being sampled,
so that the result of the discretization method will be similar to that of our
method. Our proposed method can thus be regarded as a generalization of
the discretization method.

25

2.7. Performance Study

Table 2.1: Determinization method vs. our method on EPA data.

σ
|P| by deter-
minization

|P| by our
method Patterns found by our method

10 8 8

CESQG-SQG, Enforcement-SQG,
ComplianceActivity-Enforcement,

CESQG-ComplianceActivity,
AirSyntheticMinor-

HazardousWasteBiennialReporter,
CESQG-Enforcement,

HazardousWasteBiennialReporter-
TRIReporter,

AirSyntheticMinor-CESQG

100 8 7

ComplianceActivity-Enforcement,
CESQG-ComplianceActivity,

CESQG-Enforcement,
HazardousWasteBiennialReporter-

TRIReporter, CESQG-SQG,
AirSyntheticMinor-CESQG,

Enforcement-SQG

300 8 2 CESQG-ComplianceActivity,
CESQG-Enforcement

� TRI = Toxics Release Inventory, SQG = Small Quantity Generators and CESQG = Condi-
tionally Exempt Small Quantity Generators

2.7.3 Efficiency of Filtering

Next, we evaluate the efficiency of the filtering method (proposed in Section
6) for finding probabilistic neighbors. We implement our pattern mining
framework with and without the filtering technique, and record the running
time respectively with respect to the variation of τ and minPPI . The result
is shown in Figure 2.4. It can be seen that the filtering technique clearly
contributes to the reduction of the running time. Moreover, as the data
becomes dense (e.g., the POI data set is denser than the other two), the effect
of filtering is more significant.

26

2.7. Performance Study

Table 2.2: Discretization method vs. our method on ITF data.

λ |P| by our
method

|P| by dis-
critization

Patterns found by discretization

30 3 3 Airport-Rail, Airport-Truck,
Rail-Truck

10 3 2 Airport-Rail, Airport-Truck
3 3 1 Rail-Truck

2.4.a ITF (minPPI = 0.4) 2.4.b EPA (minPPI = 0.4) 2.4.c POI (minPPI = 0.4)

2.4.d ITF (τ = 10000) 2.4.e EPA (τ = 1800) 2.4.f POI (τ = 1500)

Figure 2.4: Evaluation of filtering technique.

2.7.4 Parameter Evaluation

We evaluate our probabilistic co-location mining framework with respect
to the variation of other parameters. Figure 2.5 (a) shows the the number
of co-location patterns discovered by our method by varying the standard
covariance σ. It can be observed that when σ increases, the fewer patterns
will be discovered because the data is becoming more uncertain.

Figure 2.5 (b) shows that the number of patterns found by varying the
probabilistic neighborhood threshold θ. When θ increases, fewer number
of patterns are discovered, especially on the EPA data set due to its larger

27

2.8. Conclusion

2.5.a Evaluating σ 2.5.b Evaluating θ 2.5.c Sampling times

Figure 2.5: Parameter evaluation.

amount of output patterns. The reason is that, when θ gets smaller, fewer
event pairs will be valid neighbors.

Since our approach employs the Monte Carlo method to compute the
probabilistic prevalence, we also conduct experiments to evaluate the effect
of the number of samplings. The results are illustrated in Figure 2.5 (c),
from which we observe that for all the three data sets, the number of out-
put patterns becomes stable after sampling 1000 times. That is why 1000 is
adopted as the default value in all our experiments.

2.8 Conclusion

This chapter addresses the problem of mining probabilistic co-locations from
uncertain spatial data, where locations of events are modeled as Gaussian-
based continuous variables. Prevalence measures are redefined to charac-
terize the interestingness in the context of uncertain data, and computed
with carefully designed strategy when events participate in multiple clique
instances. A proper framework has been developed for probabilistic co-
location mining, which integrates an effective filtering strategy to skip ex-
pensive verification of probabilistic neighborhood relationship between par-
ticular event pairs. Experimental results on multiple datasets demonstrate
the efficiency of the proposed algorithm. As extension, several spatial data
mining tasks over uncertain data (e.g., k-Nearest Neighbor search problem
and frequent trajectory pattern mining) may suffer from similar probability
computation problem. The techniques proposed in this chapter may pro-
vide interesting insights to other spatial data mining problems.

28

Chapter 3

Summarizing Spatial Co-location

Patterns

A traditional framework of co-location pattern mining produces an expo-
nential number of patterns because of the downward closure property, which
makes it hard for users to understand, or apply. To address this conden-
sity issue, in this chapter, we study the problem of mining representative co-
location patterns (RCP). We first define a covering relationship between two
co-location patterns by finding a new measure to appropriately quantify the
distance between patterns in terms of their prevalence, based on which the
problem of RCP mining is formally formulated. To solve the problem of
RCP mining, we first propose an algorithm called RCPFast, adopting the
post-mining framework that is commonly used by existing distance-based
pattern summarization techniques. To address the peculiar challenge in
spatial data mining, we further propose another algorithm, RCPMS, which
employs the mine-and-summarize framework that pushes pattern summa-
rization into the co-location mining process. Optimization strategies are
also designed to further improve the performance of RCPMS. Our experi-
mental results on both synthetic and real-world data sets demonstrate that
RCP mining effectively summarizes spatial co-location patterns, and RCPMS
is more efficient than RCPFast, especially on dense data sets.

29

3.1. Introduction

3.1 Introduction

As one of the most fundamental tasks in spatial data mining, co-location
mining aims to discover co-location patterns where each is a group of spa-
tial features whose instances are frequently located close to each other [11].
Spatial co-location patterns yield important insights for various applica-
tions. In epidemiology, for example, different incidents of diseases may
exhibit co-location patterns such that one type of disease tends to occur in
spatial proximity of another [30]. In ecology, scientists are interested in find-
ing frequent co-occurrences among spatial features, such as drought, sub-
stantial increase/drop in vegetation, and extremely high precipitation [60].
In e-commerce, companies may be interested in discovering types of ser-
vices (e.g., weather, timetabling and ticketing queries) that are requested by
geographically neighboring users, so that location-sensitive recommenda-
tions can be provided [27]. Due to its importance, the problem of finding
prevalent co-location patterns from spatial data has been explored exten-
sively [11, 28, 29, 30, 31, 32, 33].

A common framework of co-location pattern mining uses the frequen-
cies of a set of spatial features participating in a co-location to measure the
prevalence (known as participation index [11], or PI for short) and requires a
user-specified minimum threshold to find interesting patterns. Typically, if
the threshold is high, the framework may generate commonsense patterns.
However, with a low threshold, a great number of patterns will be found.
This is further exacerbated by the downward closure property that holds
for the PI measure. That is, if a set of features is prevalent with respect to
a threshold of PI, then all of its subsets will be discovered as prevalent co-
location patterns. A huge pattern number will jeopardize the usability of
resulted patterns, as it demands great efforts to understand or examine the
discovered knowledge.

The key idea of solving this problem is to find an effective way to sum-
marize the co-location patterns, e.g., to find a high-quality representation
that describes the complete set of resulted patterns precisely and concisely.
Two types of compressed co-location patterns have been explored in the lit-
erature: maximal co-location patterns (MCP) [61] and closed co-location patterns

30

3.1. Introduction

(CCP) [24]. A co-location pattern is a MCP if it is prevalent itself and none
of its super-patterns are prevalent. MCP mining may significantly reduce
the number of co-location patterns, but it fails to preserve the prevalence
information. It is therefore a lossy approximation. As for the second type,
a co-location pattern is a CCP if it is prevalent itself and none of its super-
patterns have the same PI as it does. CCP mining not only diminishes the
number of co-location patterns but also preserves the complete PI infor-
mation. However, by emphasizing too much on the PI information, the
compression power of CCP mining is limited.

Figure 3.1: A motivating example.

For example, given a spatial data set shown in Figure 3.1, where in-
stances/events of four spatial features, A, B, C and D, are represented by
different symbols and edges connecting events denote spatial neighbor-
hood relationships, Table 3.1 lists a set of five prevalent co-location patterns
and their corresponding PI in the data set (the definition of PI is provided
in Section 2). If MCP mining is adopted, only F3 will be output as the others
are all sub-patterns of F3. However, F3 is significantly different from others
in terms of their PIs. In contrast, if CCP mining is used, then all patterns
will be returned since each of them is a closed pattern. That is, CCP mining
provides no compression on this set of patterns. Therefore, to address the
limitations of MCP and CCP mining, a method that not only provides opti-
mal compression rate but also preserves reasonable prevalence information
will be favored.

Similar idea has been explored in the studies of summarizing frequent
itemsets [62, 63, 64]. Xin et al. [62] proposed the notion of a ε-cover rela-
tionship between itemsets. An itemset X1 is ε-covered by another itemset

31

3.1. Introduction

ID Feature Sets Events PI

F1 {A, B} A1B1, A1B2, A2B3 1A4B4, A5B5, A3B6

F2 {A, B, C} A1B1C2, A2B3C1 5/6A3B6C3, A4B4C4, A5B5C5
F3 {A, B, C, D} A2B3C1D2, A4B4C4D1 1/3
F4 {B, C, D} B3C1D2, B4C4D1, B5C5D2 1/2
F5 {C, D} C1D2, C4D1, C5D2 3/5

Table 3.1: Prevalent patterns in the example.

X2 if X1 is a subset of X2 and 1− |T(X1)∩T(X2)|
|T(X1)∪T(X2)| ≤ ε, where T(Xi) is the set

of supporting transactions of pattern Xi. The goal is then to find a mini-
mum set of representative itemsets that can ε-cover all frequent itemsets.
In this chapter, we follow their idea and propose to summarize co-location
patterns using a set of representative co-location patterns (RCPs), which strikes
a fine balance between improving compression rate and preserving preva-
lence information.

However, existing methods for representative itemsets mining cannot
be applied directly to representative co-location pattern mining, neither the
framework of problem definition nor the mining process. This is mainly
because there is no natural notion of transactions in co-location mining [11].
Consequently, the original definition of the ε-cover relationship cannot be
adopted straightforwardly because it is defined on a supporting transaction-
based distance measure. Moreover, the mining process will be more compli-
cated as it is more expensive to examine whether a set of feature instances
participate in a co-location than checking whether a set of items appear in
one transaction.

To formulate the problem of representative co-location pattern mining,
we first define a new measure to appropriately quantify the distance be-
tween two co-location patterns in terms of their prevalence, based on which
the ε-cover relationship can be stated on a pair of co-location patterns. To
solve the problem of RCP mining, we first propose an algorithm, RCPFast,
which follows existing distance-based pattern summarization techniques to
adopt the post-mining framework that finds RCPs from the set of discovered
co-location patterns. Observing a peculiar challenge in spatial data mining,

32

3.2. Related Works

we then develop another algorithm, called RCPMS, which employs a mine-
and-summarize framework to discover RCPs directly from the spatial data.
To our knowledge, RCPMS is the first work among existing distance-based
pattern summarization that pushes summarization into the pattern mining
process. Optimization strategies are also devised to further improve the ef-
ficiency of RCPMS. The main contributions of our research are summarized
as follows.

• We formally define the problem of representative co-location pattern
mining based on a newly exploited measure to quantify the preva-
lence proximity between two co-location patterns. To our knowledge,
this is the first work that summarizes spatial co-location patterns us-
ing distance-based representative patterns.

• We develop two algorithms to discover the set of RCPs, RCPFast and
RCPMS, which adopt fundamentally different mining paradigms and
exploit different optimization strategies to improve performance.

• We evaluate the performance of the developed algorithms on both
synthetic and real-world data sets. Our experimental results demon-
strate the effectiveness of RCP mining, and the efficiency of RCPMS
compared with RCPFast, especially on dense data sets.

The remainder of this chapter is organized as follows. Existing works
related to our research are reviewed in Section 3.2. In Section 3.3, we define
relevant concepts and formally formulate the problem. Section 3.4 intro-
duces the RCPFast algorithm. Section 3.5 describes the RCPMS algorithm
and optimization strategies. In Section 3.6, we evaluate the performance of
the developed algorithms.

3.2 Related Works

The problem of prevalent co-location pattern mining was first introduced
by Morimoto [42], where a support metric was defined as the number of
instances of a co-location and was used to measure the prevalence of a co-
location pattern. However, the metric does not possess the anti-monotonic

33

3.2. Related Works

property. Shekhar and Huang [11] proposed to use participation ratio and
minimum participation index as the interestingness measures that are more
statistically meaningful. Various algorithms have been developed to mine
prevalent co-location patterns based on the two measures, such as the Apriori-
like algorithm [22], the fast algorithm combining the discovery of neighbors
with the mining process [27], the join-based algorithm [22], the partial-join
algorithm [43] and the join-less algorithm [30]. Other interestingness mea-
sures have also been explored, such as mining confident co-locations using
the maximum participation ratio [45] and mining co-locations based on statis-
tic hypothesis [32].

Frequent pattern summarization has been studied extensively in tradi-
tional frequent itemset mining. A variety of concepts have been proposed
to find a smaller set of patterns to represent the complete set of frequent pat-
terns, such as maximal patterns [65], closed patterns [66] and non-derivable
patterns [67]. One common generalization of closed patterns is the support
distance-based approaches [62, 63] which measure the distance between
two itemsets based on their supporting transactions and use a pattern to
represent/cover its sub-patterns if their distance is no greater than a speci-
fied threshold. Although the framework achieves satisfactory compression
rate, it cannot not be applied directly to summarize co-location patterns due
to the lack of transaction concepts in co-location mining.

Some initial research efforts have been exerted to summarize prevalent
co-location patterns. Mining maximal spatial co-location patterns from a
large data set was studied in [68]. This work transforms the data into max-
imal cliques and then considers maximal cliques as transactions for data
mining applications. However, the problem of extracting maximal cliques
from a graph is known as NP-hard. Wang et al. used an order-clique-based
approach to identify table instances and mine maximal co-locations [69].
Closed co-location pattern has been studied by Yoo et al. [30]. They pre-
sented a framework to mine top-k closed co-location patterns without using
minimum prevalence threshold. There are other types of patterns (e.g., con-
densed spatial co-location patterns [70]) or methods (e.g., ontology-based
interactive post-mining method [71]) to address the condensity problem.
To our knowledge, our work is the first distance-based approach to sum-

34

3.3. Preliminary

marize co-location patterns using representative patterns, which preserve
more prevalence information than maximal co-location patterns and enjoy
higher compression rate than closed co-location patterns.

3.3 Preliminary

In this section we first review definitions related to traditional co-location
patterns. Then, we introduce a distance metric to measure the prevalence
difference between two patterns. Finally, we formally define the problem of
representative co-location pattern mining.

3.3.1 Co-location Patterns

Given a set of spatial features F = { f1, f2, . . . , fK}, a spatial data set is a
collection of instances/events E = {e1, e2, . . . , eN}, where each ei ∈ E is
represented by a vector 〈event id, spatial feature type, location〉. We review
the measures used to characterize the interestingness of a subset of features
F ⊆ F as follows. Please refer to Section 2.3.1 and [11] for the details.

Definition 3.1. Given a subset of features F = { f1, . . . , fk}⊆ F , E = {e1, . . . , ek}
⊆ E is a Row Instance (RI) of F, denoted as RI(F), if ∀i ∈ [1, k], ei is an instance
of fi and ∀i, j ∈ [1, k], ||ei − ej|| ≤ τ, where ||ei − ej|| refers to the spatial distance
between two events and τ is a user-specified spatial distance threshold.

Definition 3.2. Given a spatial data set E of a set of spatial features F , the Table
Instance (TI) of a subset of features F ⊆ F , denoted as TI(F), is the collection of
all its row instances in E . That is, TI(F) ={RI1(F), . . . , RIm(F)}.

For example, consider the spatial data set in Figure 3.1 and F5 = {C, D}
in Table 3.1. {C1D2} is a RI of F5. TI(F5) ={C1 D2, C4D1, C5D2}.

Definition 3.3. Given a subset of features F = { f1, . . . , fk}, the Participation
Ratio of a feature fi ∈ F, denoted as PR(fi, F), is the fraction of events of feature
fi that participate in the table instance of F. That is,

PR(fi, F) =
|{ej|ej ∈ TI({ fi}), ej ∈ T̂ I(F)}|

|TI({ fi})}|
, (3.1)

35

3.3. Preliminary

where T̂I(·) is the union of elements in TI set. Hence, the denominator refers to
the total number of events of feature fi and the numerator refers to the number of
distinct events of feature fi that appear in the table instance of F.

Definition 3.4. The Participation Index of a subset of features F = { f1, . . . , fk},
denoted as PI(F), is defined as PI(F) = min

i∈[1,k]
PR(fi, F).

For example, consider the spatial data set in Figure 3.1 and F2 = {A, B, C}
in Table 3.1. Since PR(A, F2) = 5/5, PR(B, F2) = 5/6, PR(C, F2) = 5/5, we
have PI(F2) = min(5/5, 5/6, 5/5) = 5/6.

Definition 3.5. Given a user-specified threshold minpi, a subset of features F ⊆ F
is a Prevalent Co-location Pattern (PCP) if PI(F) ≥ minpi.

3.3.2 Co-location Distance Measure

A distance measure between traditional frequent itemsets has been pro-
posed in [62]. It compares the supporting transactions of two itemsets and

deduces a numerical value as follows, D(I1, I2) = 1− |T(I1) ∩ T(I2)|
|T(I1) ∪ T(I2)|

, where

T(Ii) denotes the set of transactions supporting the itemset Ii. However, it
is difficult to apply this measure to co-location patterns because there is no
natural notion of transactions in co-location mining [11]. One possible solu-
tion is to transactionize the spatial data to let every maximal clique instance
[72] be one transaction. For example, we can derive transactions from the
data set in Figure 3.1 as: t1 = {A3B6C3}, t2 = {A1B2}, t3 = {A1B1C2},
t4 = {A2B3C1D2}, t5 = {A5B5C5}, t6 = {B5C5D2}, t7 = {A4B4C4D1}.
Then, the supporting transactions of a co-location pattern are the set of the
corresponding maximal clique instances. For instance, let F = {ABC} be
a co-location pattern. T(F) = {t1, t3, t4, t5, t7}. With this manipulation, ex-
isting supporting transaction-based distance measure can be applied to co-
location patterns directly.

However, one critical problem of this solution is that it needs to find
all maximal clique instances first. Maximal clique enumeration is a long-
standing problem in graph theory and it is known to be NP-hard. Although
many efficient algorithms have been proposed to tackle this problem, such
as [68, 73], the complexity is still high when the graph is large and dense.

36

3.3. Preliminary

We thus explore a new distance measure that appropriately quantifies
the prevalence difference between two co-location patterns which can be
computed efficiently without manipulating the spatial data set.

For simplicity, we denote the set in the numerator of Eq.(3.1) as EF(fi)

(i.e., EF(fi) = {ej|ej ∈ TI({ fi}), ej ∈ T̂ I(F)}). It refers to the set of events of
feature fi that participate in the table instance of F.

Definition 3.6. Let F1 and F2 be two co-location patterns and f be a feature shared
by them, namely, f ∈ F1 ∩ F2, the Feature Distance between F1 and F2 w.r.t. f is
defined as

FDf (F1, F2) = 1− |EF1(f) ∩ EF2(f)|
|EF1(f) ∪ EF2(f)| (3.2)

Particularly, if F1 ⊆ F2, the formula can be rewritten as

FDf (F1, F2) = 1− |EF2(f)|
|EF1(f)| (3.3)

Definition 3.7. Given two co-location patterns F1 and F2, the Co-location Dis-
tance between them is defined as

D(F1, F2) =

⎧⎨⎩ max
∀ f∈F1∩F2

FDf (F1, F2), if F1 ∩ F2 �= ∅

1, otherwise
(3.4)

Let us apply this new distance measure to co-location patterns in Ta-
ble 3.1 to see if it reasonably reflects the distance/proximity between pat-
terns in terms of their prevalence. Firstly, we consider F1 = {A, B} and
F2 = {A, B, C}. According to the above definitions, EF1(A) = EF2(A) =

{A1, A2, · · · , A5}, EF1(B) = {B1, B2, · · · , B6}, EF2(B) = {B1, B3, B4, B5, B6},

then FDA(F1, F2) = 1 − |EF2 (A)|
|EF1 (A)| = 1 − 5

5 = 0, FDB(F1, F2) = 1 − 5
6 = 1

6 .

Hence, D(F1, F2) = max(0, 1
6) = 1

6 . This small distance value suggests
that F1 and F2 are quite similar in terms of prevalence. Similarly, let us
consider F2 = {A, B, C} and F3 = {A, B, C, D}. We can have D(F2, F3)

= max(1− 2
5 , 1− 2

5 , 1− 2
5) =

3
5 , which indicates that the two patterns (F2, F3)

are quite different. We observe that the new distance measure captures the
prevalence distance between co-location patterns appropriately.

37

3.3. Preliminary

3.3.3 Problem Statement

It is natural to consider that we can cluster the collection of co-location pat-
terns using typical cluster methods, e.g., k-means. However, in the RCP
problem, the classic cluster methods may not work properly. One of the
most crucial problems is that it might select an incorrect RCP for a cluster.
This problem can be considered in two aspects: (1) There is no explicit objec-
tive to decide a RCP. For instance, suppose F4 and F5 in Table 3.1 consist of
a cluster, either F4 or F5 can be chosen as the RCP according to the distance
metric (i.e., D(F4, F5) = 0). However, it makes no sense to let F5 represents
F4 because F5 ⊂ F4 and it is not able to recover F4 based on F5. (2) Even
though the co-location distance of two patterns is small, these two patterns
may not belong to the same cluster. For example, if D({A, B, C}, {B, C, D})
is very small, it is not appropriate to let {A, B, C} represent {B, C, D}, or
vice versa. To solve this problem, it is reasonable to to define the ε-cover
relation as follows:

Definition 3.8. Given two co-location patterns F1 and F2, and a real number ε ∈
[0, 1], we say F2 ε-covers F1 if

1. F1 ⊆ F2;

2. D(F1, F2) ≤ ε.

Then, given a set of prevalent co-location patterns, we can group them
into ε-clusters, where each ε-cluster consists of a centroid pattern Fr that
ε-covers all patterns in the cluster. It seems that we may return centroid
patterns of ε-clusters as representative patterns. However, by doing so, we
restrict the representative patterns to be prevalent themselves (i.e. PI(Fr) ≥
minpi). The minimum number of representative co-location patterns that
can be achieved using this method is the number of MCPs.

In [62], it shows that an itemset only needs to satisfy a relaxed condition
(i.e., Supp(X) ≥ (1− ε) ∗ minsupp) to ε-cover a frequent itemset. We find
that this property holds as well for our newly defined distance measure and
the induced ε-cover relationship.

Let us consider two co-location patterns F1 and F2, where F1 ⊂ F2 and F1

38

3.3. Preliminary

is prevalent, PI(F1) ≥ minpi. According to the definition of PI, we have

PI(F1) = min
∀ f∈F1

|EF1(f)|
|TI({ f })| ≥ minpi (3.5)

If F2 is able to ε-cover F1, then D(F1, F2) ≤ ε. That is,

max
∀ f∈F1

(1− |EF2(f)|
|EF1(f)|) ≤ ε (3.6)

From the above two equations, we have

∀ f ∈ F1, |EF2(f)| ≥ (1− ε) ∗ |EF1(f)|
≥ (1− ε) ∗minpi ∗ |TI({ f })| (3.7)

Hence,

∀ f ∈ F1,
|EF2(f)|
|TI({ f })| ≥ (1− ε) ∗minpi (3.8)

Recall that, the PI of F2 can be computed as follows,

PI(F2) = min
∀ f∈F1, f ′∈F2\F1

(
|EF2(f)|
|TI({ f })| ,

|EF2(f ′)|
|TI({ f ′})|) (3.9)

Thus, as long as we require PI(F2) ≥ (1 − ε) ∗ minpi, the condition in

Eq. (3.8) can be satisfied, no matter
|EF2 (f)|
|TI({ f })| is greater than

|EF2 (f ′)|
|TI({ f ′})| or the

other way around. That is, to ε-cover a prevalent co-location pattern F1,
F2 only needs to be prevalent with respect to a lower threshold minpi∗ =

(1− ε) ∗minpi. Our experimental results in Section 3.6 show that this relax-
ation contributes to an improved compression rate.

Definition 3.9 (Problem Statement). Given a set of spatial features F , a spatial
data set E on F , a spatial distance threshold τ, a co-location distance threshold ε,
and a prevalence threshold minpi, the problem of representative co-location pattern
(RCP) mining is to discover a minimal set of co-location patterns R such that:
(1) For all Fr ∈ R, PI(Fr) ≥ (1− ε) ∗ minpi; (2) For any prevalent co-location
patterns F, i.e., PI(F) ≥ minpi, there exits a Fr ∈ R s.t. Fr ε-covers F.

39

3.4. The RCPFast Algorithm

3.4 The RCPFast Algorithm

In this section, we first introduce an algorithm, RCPFast, which follows ex-
isting distance-based pattern summarization approaches to mine RCPs by
adopting a post-mining framework.

Similar to [62], the mining framework of RCPFast consists of three stages.
Stage 1 discovers two sets of prevalent co-location patterns, PCP and PCP∗,
with respect to minpi and (1− ε) ∗minpi, respectively. The objective is then
to select minimal number of patterns from PCP∗ to cover all patterns in
PCP.

Stage 2 generates the complete coverage information by finding all preva-
lent co-location patterns F ∈ PCP that can be ε-covered by each pattern
Fr ∈ PCP∗. All prevalent co-location patterns ε-covered by Fr is stored in
set(Fr).

Stage 3 finds the set of desired RCPs based on the coverage information.
As discussed in [62], this is a set cover problem which is NP-hard. It can be
solved by a greedy strategy that always selects the representative pattern
that covers the most number of prevalent co-location patterns. According
to [74], the relation between the number of RCPs selected by the greedy
solution and the number of the optimal ones is bounded by Theorem 3.1.

Theorem 3.1. Given a set of prevalent co-location patterns PCP w.r.t. minpi, a
set of prevalent co-location patterns PCP∗ w.r.t. (1− ε) ∗ minpi, let the number
of RCPs generated using the greedy set cover algorithm be Cg, and the number of
optimal RCPs be C∗, then |Cg| ≤ |C∗|×H(maxFr∈PCP∗ |set(Fr)|), where H(n) =

∑n
k=1

1
k .

The time complexity of the greedy algorithm is O(∑Fr∈PCP∗ |set(Fr)|).
Thus the computational cost of RCPFast mainly comes from the first two
stages.

For the first stage, mining prevalent co-location patterns is a well-studied
topic. Many efficient algorithms have been proposed, such as the spatial-
join method [22] and the join-less method [30]. Note that it is unnecessary
to run the mining process twice to discover the two sets of PCP and PCP∗.
We can find prevalent patterns w.r.t. (1− ε) ∗minpi first, and then filter the
results to obtain those prevalent w.r.t. minpi.

40

3.4. The RCPFast Algorithm

For the second stage, the bottleneck lies in the computations of co-location
distance between two patterns to verify the ε-cover relationship. The com-
plexity of generating the complete coverage information is O(|PCP| ∗ |PCP∗|),
which will become a performance issue when there are many prevalent pat-
terns. Therefore, we aim to exploit strategies to skip verifying the ε-cover
relationship for as many pairs of patterns as possible.

Theorem 3.2. Given three co-location patterns F1, F2, and F3 s.t. F1 ⊆ F2 ⊆ F3,
if F3 ε-covers F1, then F2 ε-covers F1.

Proof. From D(F1, F3) ≤ ε, we have ∀ f ∈ F1,

1− |EF3(f)|
|EF1(f)| ≤ ε.

Because ∀ f ∈ F1, |EF2(f)| ≥ |EF3(f)|. Thus, we have

1− |EF2(f)|
|EF1(f)| ≤ 1− |EF3(f)|

|EF1(f)| ≤ ε,

That is, D(F1, F2) ≤ ε, which proves the result.

According to the theorem, we are allowed to skip computing co-location
distance for certain pairs of co-location patterns. For example, as shown
in Figure 3.2 (a), if we have found that {A, B, C, D} ε-covers {A, B}, then
we conclude immediately that {A, B, C} ε-covers {A, B} and {A, B, D} ε-
covers {A, B}without computing their corresponding co-location distances.
To maximize the benefit introduced by Theorem 3.2, we order the co-location
patterns according to pattern lengths. Then, the procedure of RCPFast is il-
lustrated in Algorithm 3.1.

Algorithm 3.1 follows the three-stage framework. The first stage (lines 1-
2) mines two sets of prevalent co-location patterns and the third stage (lines
15-19) discovers the RCPs using a greedy strategy. The second stage starts
with sorting the patterns in PCP∗ in decreasing order of pattern length, and
sorting patterns in PCP in the reverse order (line 3). Then, a candidate list
(CandList) is constructed for each representative pattern Fr in PCP∗, which
stores all prevalent patterns that may be ε-covered by Fr (lines 4-7). Lines
8-14 find the complete coverage information for each pattern Fr in PCP∗ by

41

3.5. The RCPMS Algorithm

Figure 3.2: An example illustrating RCPFast algorithm.

implementing the optimization enabled by Theorem 3.2. In particular, once
it is confirmed that Fr ε-covers a prevalent pattern F (line 10), we find a set
of patterns Q ⊆ PCP∗ where each Q ∈ Q is a sub-pattern of the current
Fr and a super-pattern of F (line 12). According to Theorem 3.2, F can be
immediately added to set(Q) (line 14).

Note that, the purpose of sorting PCP and PCP∗ in the specified orders
is to allow early discovery of ε-cover relationship between a representa-
tive pattern and its short sub-patterns so that more pairs of patterns can be
skipped for co-location distance computation. For example, Figure 3.2 (b)
shows the candidate lists of three representative patterns, ABCD, ABC and
ABD. Due to the ordering of patterns, we examine first whether ABCD
ε-covers AB. If it happens, we can delete AB from CandList(ABC) and
CandList(ABD) because AB should be covered by these two patterns ac-
cording to Theorem 3.2. Therefore, the computations of D(ABC, AB) and
D(ABD, AB) are omitted.

3.5 The RCPMS Algorithm

Recall that, to verify the ε-cover relationship in the second stage of RCP-
Fast, we need to compute the co-location distance between two patterns,
which requires the table instance information of the corresponding patterns.
However, the output of prevalent co-location pattern mining in the first
stage contains only the prevalent patterns as well as their PI information. It
may not be an issue for frequent itemset summarization as the supporting

42

3.5. The RCPMS Algorithm

Algorithm 3.1 RCPFast

Input: (1) A set of spatial events E , (2) a spatial distance threshold τ, (3) a
prevalence threshold minpi,(4) a co-location distance threshold ε.

Output: The set of RCPsR
1: PCP = MinePCP(E , τ, minpi)
2: PCP∗ = MinePCP(E , τ, (1− ε) ∗minpi)
3: Sort PCP∗ in decreasing order of pattern length, and PCP in increasing

order of pattern length.
4: for all Fr ∈ PCP∗ do
5: for all F ∈ PCP do
6: if F ⊆ Fr then
7: Insert F into CandList(Fr)
8: for all Fr ∈ PCP∗ do
9: for all F ∈ CandList(Fr) do

10: if Fr ε-covers F then
11: Insert F into set(Fr)
12: Find a set of patterns Q ⊆ PCP∗ s.t. ∀Q ∈ Q, F ⊆ Q ⊆ Fr
13: for all Q ∈ Q do
14: Remove F from CandList(Q) to set(Q)
15: while PCP �= ∅ do
16: Find a Fr that maximizes |set(R)|
17: for all F ∈ set(Fr) do
18: Delete F from PCP
19: R = R∪ {Fr}
20: ReturnR

transactions of an itemset can be retrieved easily. However, for spatial data
mining, it is expensive to re-scan the data to obtain the table instance of a
co-location pattern whenever it is required. One possible solution is to out-
put the information of table instances as additional results. However, if the
information is stored in disk, extra I/O cost will be incurred. If the infor-
mation is stored in memory, it will become problematic when the number
of patterns is huge. Therefore, we are motivated to push coverage valida-
tion into the co-location mining process, thereby integrating the first and the
second stages in order to address the table instance acquisition problem.

Based on the idea, we devise the RCPMS algorithm that employs a novel
mine-and-summarize framework, while all existing distance-based pattern
summarization techniques adopt the post-mining paradigm. More specifi-

43

3.5. The RCPMS Algorithm

Algorithm 3.2 RCPMS
Input: Same as RCPFast.
Output: Same as RCPFast.

1: P1 = F , k = 2
2: while Pk−1 �= ∅ do
3: Ck = gen candidate colo(Pk−1)
4: for all C ∈ Ck do
5: pi = calculate PI(C)
6: if pi ≥ (1− ε) ∗minpi then
7: D Table ← cal preval child dis(C)
8: set(C) = gen cover set(C, C, 0)
9: if pi ≥ minpi then

10: Insert C into Pk and set(C)
11: k = k + 1
12: Obtain RCPs using the greedy algorithm

cally, whenever a representative pattern, prevalent w.r.t. (1− ε) ∗minpi, is
discovered, all prevalent patterns, w.r.t. minpi, which can be ε-covered by it
will be found. The feasibility of this idea is supported by the following two
facts.

1. Traditional prevalent co-location pattern mining algorithms usually
use an Apriori-based level-wise scheme to generate patterns [22, 30].
When a representative pattern is mined, all its prevalent sub-patterns
have already been found. Hence, it is sufficient to find the coverage
information for the current representative pattern.

2. When a representative pattern is output in the mining process, its in-
formation of table instance is available, which can be used to compute
its co-location distances with its sub-patterns. For its sub-patterns,
we store their table instance information in memory if they are child
or immediate sub-patterns of the current representative pattern (e.g.,
F ⊂ Fr and |Fr| − |F| = 1). Otherwise, we will retrieve the table in-
stance information of a sub-pattern F (e.g. F ⊂ Fr and |Fr| − |F| > 1)
only if the ε-cover relationship between Fr and F cannot be inferred
using our devised optimization and approximation strategies, which
will be discussed in subsections 4.1 and 4.2.

The general idea of RCPMS is summarized in Algorithm 3.2. In the be-

44

3.5. The RCPMS Algorithm

ginning, it assigns all unique spatial features to P1 (line 1). From line 2 to
line 11, an iterative process is used to generate patterns of length k from pat-
terns of length k− 1. In particular, line 3 calls the function gen candidate colo
to generate candidate co-location patterns (e.g., using an Apriori-like strat-
egy). For each candidate co-location pattern, we first calculate its PI (line 5).
If the candidate pattern is prevalent w.r.t. (1− ε) ∗minpi (line 6), we com-
pute its co-location distances with its child sub-patterns which are preva-
lent w.r.t. minpi and store it in a distance table (line 7). Note that, only the
co-location distances between the current pattern and its prevalent child
sub-patterns need to be computed at this stage. As discussed later, its co-
location distances with other descendent prevalent sub-patterns will be com-
puted only if they can’t be inferred using our proposed optimization and
approximation strategies. In line 8, we call the method gen cover set to find
all prevalent sub-patterns that can be covered by the current representative
pattern. Finally, if the current pattern is prevalent w.r.t. minpi, it should
be used to generate candidate patterns in the next round and should be in-
cluded into its own cover set (lines 9 and 10). Line 12 is the same as the
third stage of RCPFast which finds the minimal RCPs.

In the following, we describe the details of the function gen cover set
which finds all prevalent sub-patterns that can be ε-covered by the current
representative pattern. Before presenting the function, we first introduce an
optimization strategy and an approximation strategy that are used by the
function.

3.5.1 Optimization Strategy

Note that, the optimization strategy used by RCPFast (i.e., Theorem 3.2) is
not applicable here. This is because when we output a representative pat-
tern of length k in RCPMS, the coverage information of representative pat-
terns of length (k− 1) has already been found. Therefore, we exploit a new
optimization strategy based on the following theorem:

Theorem 3.3. Given three co-location patterns F1, F2 and F3 such that F1 ⊆ F2 ⊆

45

3.5. The RCPMS Algorithm

F3, it holds that

D(F1, F2) + D(F2, F3) ≥ D(F1, F3). (3.10)

Before we prove this theorem we introduce an auxiliary lemma.

Lemma 3.1. Let Si = (nia, nib, nic), 1 ≤ i ≤ m be tuples such that each contains
three non-negative integers which satisfy nia ≥ nib ≥ nic, then the following
inequality holds:

max
1≤i≤m

(1− nib
nia

) + max
1≤i≤m

(1− nic

nib
) ≥ max

1≤i≤m
(1− nic

nia
) (3.11)

Proof. For simplicity, let D1(i) = (1− nib
nia
), D2(i) = (1− nic

nib
), D3(i) = (1−

nic
nia
). The proof can be completed in two stages.

1. Prove ∀i, D1(i) + D2(i) ≥ D3(i). This can be done by verifying

D1(i) + D2(i)− D3(i) =
(nia−nib)(nib−nic)

nianib
≥ 0

2. Suppose ∃ l̃1, l̃2, l̃3 such that D1(l̃1) = max1≤i≤m D1(i), D2(l̃2) =

max1≤i≤m D2(i), D3(l̃3) = max1≤i≤m D3(i), because D1(l̃1) ≥ D1(l̃3)
and D2(l̃2) ≥ D2(l̃3), we have

D1(l̃1) + D2(l̃2)− D3(l̃3) ≥ D1(l̃3) + D2(l̃3)− D3(l̃3) ≥ 0.

To sum up, the inequality (3.11) holds.

Now we provide the proof of Theorem 3.3.

Proof. First of all, because F1 ∩ F2 = F1, F1 ∩ F3 = F1, and F2 ∩ F3 = F2,
according to the definitions of co-location distance, we have

D(F1, F2) = max∀ f∈F1(1−
|EF2 (f)|
|EF1 (f)|),

D(F2, F3) = max∀ f∈F1, f ′∈F2\F1
(1− |EF3 (f)|

|EF2 (f)| , 1− |EF3 (f ′)|
|EF2 (f ′)|),

D(F1, F3) = max∀ f∈F1(1−
|EF3 (f)|
|EF1 (f)|).

46

3.5. The RCPMS Algorithm

Note that we divide D(F2, F3) into two parts, such that the former only in-
volves the features in F1, and the latter involves the remaining. The value of
D(F2, F3) depends on the relations between the two parts. It can be divided
into two situations.

1. D(F2, F3) is only related to the former part, or

max
∀ f∈F1

(1− |EF3(f)|
|EF2(f)|) > max

∀ f ′∈F2\F1

(1− |EF3(f ′)|
|EF2(f ′)|).

In this case, D(F2, F3) = max
∀ f∈F1

(1− |EF3 (f)|
|EF2 (f)|). Because ∀ f ∈ F1, EF3(f) ⊆

EF2(f) ⊆ EF1(f) holds, we have |EF1(f)| ≥ |EF2(f)| ≥ |EF3(f)|. Let
each f ∈ F1 binds to a tuple in Lemma 3.1 by building the correspond-
ing relations: nia = |EF1(f)|, nib = |EF2(f)|, nic = |EF3(f)|. Therefore
by lemma 3.1, we have

max
∀ f∈F1

(1− |EF2(f)|
|EF1(f)|) + max

∀ f∈F1
(1− |EF3(f)|

|EF2(f)|) ≥ max
∀ f∈F1

(1− |EF3(f)|
|EF1(f)|),

which means D(F1, F2) + D(F2, F3) ≥ D(F1, F3).

2. D(F2, F3) only depends on the latter part, that is

D(F2, F3) = max
∀ f ′∈F2\F1

(1− |EF3(f ′)|
|EF2(f ′)|),

max
∀ f ′∈F2\F1

(1− |EF3(f ′)|
|EF2(f ′)|) ≥ max

∀ f∈F1
(1− |EF3(f)|

|EF2(f)|).

According to the first situation, we have

D(F1, F2) + D(F2, F3)− D(F1, F3)

= max
∀ f∈F1

(1− |EF2(f)|
|EF1(f)|) + max

∀ f ′∈F2\F1

(1− |EF3(f ′)|
|EF2(f ′)|)− max

∀ f∈F1
(1− |EF3(f)|

|EF1(f)|)

≥ max
∀ f∈F1

(1− |EF2(f)|
|EF1(f)|) + max

∀ f∈F1
(1− |EF3(f)|

|EF2(f)|)− max
∀ f∈F1

(1− |EF3(f)|
|EF1(f)|) ≥ 0.

To sum up, the inequality (3.10) holds, which proves the result.

47

3.5. The RCPMS Algorithm

Figure 3.3: An illustration of the optimization strategy based on Theo-
rem 3.3.

Figure 3.3 illustrates how to use Theorem 3.3 to skip computing co-
location distance between a representative pattern and its non-child preva-
lent sub-patterns. Each Fi is a co-location pattern of size i. Different types
of lines represent different ways of obtaining the co-location distance. Sup-
pose d1 + d2 + d3 ≤ ε and d1 + d2 + d3 + d4 > ε. Suppose F6 is the current
representative pattern and we have computed its co-location distance with
its child sub-pattern F5, i.e., D(F6, F5) = d1, stored in the D Table (e.g., line
7 in Algorithm 3.2). Next, we need to examine whether F6 ε-covers F5’s
child, e.g., F4. Note that D(F5, F4) = d2 should have been computed and
stored in the D Table when outputting F5 in the previous round. According
to Theorem 3.3, we infer that D(F6, F4) < D(F6, F5) + D(F5, F4) = d1 + d2.
Therefore, if d1 + d2 ≤ ε, we can conclude that F6 ε-covers F4 without com-
puting D(F6, F4). Similarly, when examining whether F6 ε-covers F3, which
is a child sub-pattern of F4, we have D(F6, F3) < D(F6, F5) + D(F5, F4) +

D(F4, F3) = d1 + d2 + d3. As indicated in the figure, d1 + d2 + d3 ≤ ε,
we conclude that F6 ε-covers F3 and skip computing the distance D(F6, F3).
When it comes to F2, since d1 + d2 + d3 + d4 > ε, we have to compute the ex-
act value of D(F6, F2) (we will have to re-gain the table instance of F2 in this
case). Therefore, in this particular example, Theorem 3.3 enables us to skip
two of the three co-location distance computations (i.e., D(F6, F4), D(F6, F3)

and D(F6, F2)).

48

3.5. The RCPMS Algorithm

Figure 3.4: Examples of the approximation strategy.

3.5.2 Approximation Strategy

Although Theorem 3.3 can reduce distance computation for a certain num-
ber of pairs of patterns, the effectiveness of this single strategy may not be
sufficient. Therefore, we further exploit an approximation strategy which
substantially improves the computation efficiency by slightly sacrificing the
compression rate.

Recall that, in Figure 3.3, only if the co-location distance between the cur-
rent representative pattern (e.g., F6) and its child prevalent sub-pattern (e.g.,
F5) is smaller than ε, we may use the optimization strategy to infer the dis-
tance between F6 and F4 (F3). Otherwise, we have to compute the distance
between F6 and F4 (F3), which is expensive since we have to re-gain the ta-
ble instance of F4 (F3). Therefore, we consider the following approximation
strategy.

If a representative pattern Fr cannot ε-cover its prevalent child sub-pattern F,
we skip considering whether Fr ε-covers any descendant sub-pattern of F.

For example, in Figure 3.3, if the co-location distance between F6 and F5

is greater than ε, all F4, F3 and F2 will not be included in set(F6).
Figure 3.4 provides two examples to illustrate the influence of the ap-

proximation strategy. In Figure 3.4 (a), let’s assume the set of PCP that
need to be summarized are F′5, F4 and F3, where F3 is a child sub-pattern of
F4, which is a child sub-pattern of F5. F′5 is a sibling pattern of F5 (e.g., ABC
and ABD). The exact coverage information shows that F6 ε-covers F4. How-

49

3.5. The RCPMS Algorithm

ever, since F6 does not ε-cover F5, F4 is removed from set(F6) according to
the approximation strategy. If using the greedy algorithm to find RCPs, the
final number of RCPs found from the exact cover sets will be 2, which is the
same as the final number of RCPs found from the approximate cover sets.
It indicates that the approximation strategy does not incur any difference to
the final number of RCPs under this situation.

In contrast, Figure 3.4 (b) shows an example where this approximation
strategy will result in difference in the final number of RCPs. In this ex-
ample, suppose the set of PCP are F4 and F′4. The complete coverage in-
formation shows that F6 ε-covers both F4 and F′4. Since F6 does not ε-cover
F5 or F′5, F4 and F′4 are removed from set(F6) in the approximate cover sets.
Consequently, the final number of RCPs found from the exact cover sets is
1 while the final number found from the approximate cover sets is 2.

In general, we have the following lemma, implying that the final number
of RCPs generated from the incomplete cover sets, produced by the approx-
imation strategy, will be no smaller than the final number of RCPs generated
from the complete cover sets.

Lemma 3.2. Let P be a set of representative patterns with non-empty cover sets.
That is, P ⊆ PCP∗ and ∀P ∈ P , |set(P)| > 0. Let P′ be a set of representative
patterns with non-empty cover sets found using the approximation strategy. Then
we have (1) P′ ⊆ P and ∀P ∈ P′, |set(P)| ≥ |set′(P)|, where set′(P) represents
the cover set generated by the approximation strategy. (2) let R and R′ be the
minimum sets of RCPs generated from P and P′, respectively, i.e., R ⊆ P and
R′ ⊆ P′, we have |R| ≤ |R′|.

Proof. The first conclusion can be proved easily since the approximation
strategy removes prevalent patterns from the cover set of a representative
pattern. Therefore, for the same representative pattern P, |set(P)| ≥ |set′(P)|.
Consequently, if a representative pattern has non-empty approximate cover
set (e.g., |set′(P)| > 0), its real cover set must be non-empty (e.g., |set(P)| >
0). That is, ∀P ∈ P′, P ∈ P. However, the other way around may not be
true. Thus, we have P′ ⊆ P .

To prove the second conclusion, let’s assume first |R′| < |R|. Since
R′ ⊆ P′ and P′ ⊆ P , we must be able to find the same result set R′ from

50

3.5. The RCPMS Algorithm

Algorithm 3.3 gen cover set(Fr, F, dis)

Input: Fr: the current representative pattern; F: a sub-pattern; dis: accumu-
lated distance

Output: S : all prevalent patterns ε-covered by Fr
1: for all P ⊂ F s.t. |F| − |P| = 1 & PI(P) ≥ minpi do
2: dis = dis + TableLookup(P, F)
3: if dis ≤ ε then
4: Insert P to S
5: gen cover set(Fr, P, dis)
6: else
7: dis = D(Fr, P)
8: if dis ≤ ε then
9: Insert P to S

10: gen cover set(Fr, P, dis)
11: return S

P . That isR′ ⊂ P . In this caseR = R′, which contradicts with |R′| < |R|.
Hence the assumption is wrong.

We will investigate the efficiency improvement gained by this approxi-
mate strategy and the incurred loss of compression rate in Section 3.6.

3.5.3 The gen cover set() Function

Integrating the optimization strategy and the approximation strategy dis-
cussed above, we present the function gen cover set() in Algorithm 3.3.

Given the input representative pattern Fr, Algorithm 3.3 visits its sub-
patterns using a depth-first search. Line 1 finds all child prevalent co-location
patterns of the current pattern F. Lines 2-4 implement the optimization
strategy, when the co-location distance between Fr and a sub-pattern can
be inferred to be smaller than ε. Otherwise, we have to compute the co-
location distance (line 7). If the co-location distance is smaller than ε, we
check further descendent sub-patterns (lines 9 -10). If not, the depth-first
search can be stopped according to the approximation strategy.

51

3.6. Experimental Study

3.6 Experimental Study

We have conducted comprehensive experiments to evaluate the proposed
algorithms from multiple perspectives on both synthetic and real data sets.
All algorithms are implemented in Python 2.7. All experiments are run on
a PC with Intel Core Xeon 2.9 GHz CPU and 8 GB memory.

Parameters Description SynData 1 SynData 2 SynData 3
Nseed The number of seed co-locations 5 5 50

λ

The parameter of Poisson dis-
tribution to define the number
of instances of each seed co-
location

1000 10000 1000

Naux
The number of features added to
construct auxiliary co-locations 3 5 5

α

The ratio that determines the
number of instances of addi-
tional features when construct-
ing auxiliary co-locations

0.7 0.9 0.9

rnoise

The ratio of the number of noise
features over the number of fea-
tures involved in seed and aux-
iliary co-locations

0.5 0.5 0.5

nnoise
The number of noise instances
per noise feature 1000 1000 1000

D1 × D2 The size of global spatial map 105 × 105

τ The spatial distance threshold 10

ε
The default value of co-location
distance threshold 0.2

minpi The default value of prevalence
threshold 0.4

Table 3.2: Parameters used in synthetic data generation.

3.6.1 Experiments on Synthetic Data

In this section, we first introduce the synthetic data generator used in our
experiments. Then we present the evaluation results on three different syn-
thetic data sets.

52

3.6. Experimental Study

3.6.1.1 Synthetic Data Generator

Our synthetic data generation methodology is similar to the one used in [22]
for co-location mining. Table 3.2 summarizes the parameters used in the
generator. The data generation process begins with the generation of a set
of Nseed seed co-locations. For each seed co-location, we randomly pick 2
features without replacement from a feature set. Next, we generate the in-
stances of seed co-locations. The number of instances of a seed co-location
is decided by a Poisson distribution with mean λ. To decide the positions of
a seed co-location instances, we randomly pick a location (xc, yc) from the
whole map D1 × D2 as the center and set the radius as r = uniform(0, τ

2),
where uniform(0, τ

2) selects a value from (0, τ
2] uniformly. Then we place

instances within the circle. The coordinate of an instance is

(xc + r× cos(uniform(0, 2π)), yc + r× sin(uniform(0, 2π))).

After seed co-location instances are obtained, we then generate auxiliary co-
locations by growing each seed co-location with Naux additional features.
Particularly, for each seed co-location with Nc instances and its correspond-
ing circles, we randomly select αi ∗ Nc circles to insert an instance of the ith

additional feature, where α ∈ (0, 1] is the density ratio. A larger α leads
to a denser data set. The final step is to generate noises, based on the two
parameters of rnoise, the ratio of noise features, and nnoise, the number of
noise instances per noise feature. Noise instances are placed randomly in
the whole map.

Three synthetic data sets are generated with specific parameter values
listed in Table 3.2. SynData 1 is a sparse data set while the other two are
relatively dense. In particular, SynData 1 contains 37 features and 29, 496
events; SynData 2 consists 52 features and 291, 520 events, with more in-
stances per co-location; and SynData 3 involves 525 features and 424, 400
events.

53

3.6. Experimental Study

0.10.20.30.40.50.60.70.80.9

minpi

20

30

40

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.a SynData 1(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.b SynData 2(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

20

30

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.c SynData 3(minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

55

60

65

70

75

80

85

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.d SynData 1(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

40

50

60

70

80

90

100
C

o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.e SynData 2(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

CCP

MCP

RCP-NoRelax

RCP

3.5.f SynData 3(w.r.t. ε)

Figure 3.5: Compression rate tests on synthetic data sets.

3.6.1.2 Compression Rate

We first evaluate the compression rate achieved by representative co-location
pattern (RCP) mining, in comparison with closed co-location pattern (CCP)
mining and maximal co-location pattern (MCP) mining. Specifically, we de-
fine compression rate as (1− N∗

NPCP
)× 100%, where N∗ equals to the number of

compressed patterns and NPCP refers to the number of prevalent co-location
patterns (PCP).

Besides comparing with CCP and MCP, we also conduct experiments to
investigate the compression rate of RCP without relaxation (RCP-NoRelax).
As discussed in Section 3.3.3, we may either generate ε-clusters from the
spatial data and return the prevalent centroid patterns as representatives,
or relax the restriction to allow representative patterns to be prevalent w.r.t.
(1− ε) ∗minpi in order to achieve higher compression rate.

Figure 3.5 shows the compression rates of MCP, CCP, RCP, and RCP-
NoRelax on the three synthetic data sets by varying the parameters minpi
and ε respectively. Overall, it can be observed that CCP has the lowest
compression rate, while RCP achieves a higher compression rate than RCP-

54

3.6. Experimental Study

NoRelax. Regarding the comparison between RCP and MCP, we observe
that MCP has a higher compression rate when ε is fixed at 0.2 (Figures 3.5.a,
3.5.b and 3.5.c). However, as ε is getting larger, RCP’s compression rate
prevails (Figures 3.5.d, 3.5.e and 3.5.f). That is, by relaxing the condition
on the co-location distance threshold ε, RCP can achieve a compression rate
which is even higher than that of MCP. This is due to the definition of RCP,
while the best compression rate of RCP-NoRelax is bounded by that of MCP.

Moreover, it can be observed that RCP obtains a high compression rate
on a dense data set. For example, when ε = 0.2, the best compression rate
of RCP on SynData 1 is 71.9% (Figure 3.5.a) while it is 89.9% and 85.0% on
SynData 2 and SynData 3, respectively (Figure 3.5.b and Figure 3.5.c). This
is because a representative pattern tends to cover more patterns on a dense
data set. We also observe that when the prevalent threshold minpi gets
smaller, which means more co-location patterns are generated, the compres-
sion rate of RCP is higher. When the requirement on preserving the preva-
lence information is relaxed (i.e., when the co-location distance threshold ε

is increased), the compression rate of RCP also improves, which is consis-
tent with the definition of ε-cover relationship.

3.6.1.3 RCPFast vs. RCPMS

In this section we conduct experiments to compare the two proposed al-
gorithms from different perspectives. Note that, all experiments are run 5
times and the average performance results are reported.

Framwork Comparison. Firstly, we compare the post-mining framework
and the mine-and-summarize framework by implementing them without any
optimization. That is, we implement RCPFast without the optimization
based on Theorem 2 and RCPMS without the optimization strategy stated
in Subsection 4.1 and the approximation strategy in Subsection 4.2. Fig-
ure 3.6 shows the running time with respect to the variation of minpi and
ε respectively. It can be seen that, on sparse data (SynData 1), the perfor-
mance of the two frameworks is similar. This is because the post-mining
framework performs quite fast on the sparse data set already. There is not
much space for the mine-and-summarize framework to improve further. In
contrast, when running on dense data sets (e.g., SynData 2 and SynData 3),

55

3.6. Experimental Study

3.6.a SynData 1(minpi) 3.6.b SynData 2(minpi) 3.6.c SynData 3(minpi)

3.6.d SynData 1(w.r.t. ε) 3.6.e SynData 2(w.r.t. ε) 3.6.f SynData 3(w.r.t. ε)

Figure 3.6: Framework comparison on synthetic data sets.

the post-mining framework is relatively slower than the mine-and-summarize
framework. The performance gap between the two frameworks enlarges
on SynData 3 because SynData 3 is bigger than SynData 2, involving more
features and events. Consequently, as we will show in Figure 3.8, there
are more number of co-location distance computation required, which en-
tangles the post-mining framework to spend more time on retrieving table
instance information.

Computation Efficiency. We now compare the overall efficiency of the
RCPFast algorithm and the RCPMS algorithm, both implemented with re-
spective optimization strategies. In particular, we also implement a varia-
tion of RCPMS, called RCPMS-NA, which uses the optimization strategy in
Subsection 4.1 only. Hence, by comparing RCPMS and RCPMS-NA, we can
study the effectiveness of the approximation strategy in Subsection 4.2.

Figure 3.7 presents the running time on three synthetic data sets with
respect to the variation of minpi and ε respectively. It can be observed that
RCPMS outperforms RCPFast in all situations. Comparing the results on the
three datasets, we note that the performance advantage of RCPMS is not as

56

3.6. Experimental Study

obvious on sparse data (SynData 1) as on dense data (SynData 2 and Syn-
Data 3). This is because when the data is sparse, the size of table instance
of a co-location is small, resulting in a short time for computing co-location
distance. Consequently, even if RCPMS reduces more number of co-location
distance computation, the effect of computation saving of RCPMS is not ob-
vious. The reasons for RCPMS being more efficient on the two dense data
sets are different. For SynData 2, the data is dense in terms of the number of
co-location instances, which leads to larger size of table instances and longer
time to compute co-location distances. Specifically, the time of co-location
distance computation is around 60ms on SynData 2 while it is 2.3ms and
3.5ms on SynData 1 and SynData 3, respectively 1. Therefore, by reducing
a few more number of co-location distance computation, RCPMS can show
efficiency improvement clearly. SynData 3 is dense in terms of the number
of co-locations. For this type of dense data, RCPMS demonstrates efficiency
advantage by directly reducing the number of co-location distance compu-
tation.

By comparing RCPMS and RCPMS-NA, it is obvious, especially on Syn-
Data 2 and SynData 3, that the approximation strategy contributes signifi-
cantly to the efficiency of the RCPMS algorithm.

Reduction of Co-location Distance Computation. The optimization
strategies devised form both RCPFast and RCPMS aim to skip some co-
location distance computation. To investigate the effectiveness of these strate-
gies more thoroughly, we conduct experiments to record the number of co-
location distance computations for RCPFast, RCPMS and RCPMS-NA, com-
pared with the original number (baseline). Figure 3.8 presents the results by
varying minpi and ε respectively. It can be observed that all algorithms in-
volves fewer co-location distance computations than the baseline does and
the number of computations in RCPMS is the smallest.

In addition, by comparing RCPFast against the baseline, we notice that
Theorem 2 does reduce the number of co-location distance computations.
However, when the reduced number is not great enough (e.g., Figures 3.8.a,
3.8.b, and 3.8.c), Theorem 2 cannot contribute much to the performance im-

1The results are obtained by a profile tool for Python, available at
https://github.com/rkern/line profiler

57

3.6. Experimental Study

0.10.20.30.40.50.60.70.80.9

minpi

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

R
u
n
n
in

g
 t

im
e
(s

)
RCPFast

RCPMS-NA

RCPMS

3.7.a SynData 1(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

20

40

60

80

100

120

140

160

180

200

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

3.7.b SynData 2(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

0

20

40

60

80

100

120

140

160

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

3.7.c SynData 3(minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

3.7.d SynData 1(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

100

110

120

130

140

150

160

170

180
R

u
n
n
in

g
 t

im
e
(s

)
RCPFast

RCPMS-NA

RCPMS

3.7.e SynData 2(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

50

60

70

80

90

100

110

120

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS-NA

RCPMS

3.7.f SynData 3(w.r.t. ε)

Figure 3.7: Performance tests with minpi and ε on synthetic data sets.

provement. For example, the running times of RCPFast in Figures 3.7.a,
3.7.b, and 3.7.c is similar to those of the post-mining framework in Figures 3.6.a,
3.6.b, and 3.6.c. This is because it costs extra time for RCPFast to find all pat-
terns that can be skipped according to Theorem 2.

Compression Rate. Although both Figures 3.7 and 3.8 show that the
approximation strategy significantly improves the efficiency of RCPMS, as
indicated by Lemma 3.2, more RCPs will be discovered by RCPMS than
RCPFast. Hence, we further carry out experiments to evaluate how many
more RCPs will be produced by RCPMS. We present the results using com-
pression rate difference, which is calculated as NM−NF

NPCP
× 100%, where NM and

NF refer to the numbers of patterns output by RCPMS and RCPFast, respec-
tively. The results in Figure 3.9 show that the compression rate difference
is less than 5% on all three datasets, regardless of the variation of param-
eters. Hence, RCPMS effectively improves the computation efficiency by
sacrificing the compression rate very slightly.

58

3.6. Experimental Study

0.10.20.30.40.50.60.70.80.9

minpi

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.a SynData 1(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.b SynData 2(minpi)

0.10.20.30.40.50.60.70.80.9

minpi

0

10000

20000

30000

40000

50000

60000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.c SynData 3(minpi)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

50

100

150

200

250

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.d SynData 1(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.e SynData 2(w.r.t. ε)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ε

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

c
o
lo

-d
is

.
c
o
m

p
.

Baseline

RCPFast

RCPMS-NA

RCPMS

3.8.f SynData 3(w.r.t. ε)

Figure 3.8: Co-location distance computation analysis on synthetic data
sets.

3.6.2 Experiments on Real Data

Two real-world data sets are used in our experiments. The first one is from
the EPA databases, which contain environmental activities that affect air,
land and water in United States2. Different environmental interest types
are used as spatial features and each facility represents a spatial event. In
our experiment, we use the EPA data of Allen Counties in Indiana State,
which consists of 23 features and 647 events in total. The second data set is
the points of interest (POI) in California3, which was used in [59]. There are
63 category types (e.g., dam, school, and bridge) and 104, 770 data points.
All the geographic coordinates are transformed to 2-dimensional Cartesian
coordinates by Universal Transverse Mercator projection. The spatial dis-
tance threshold is 2000 by default (meaning 2km in real world).

We first investigate the compression rate of RCP mining. Figure 3.10
illustrates the compression rate of RCPFast and RCPMS on the two real
data sets by varying minpi and ε respectively. We set the default values as

2http://www.epa.gov/
3http://www.usgs.gov/

59

3.6. Experimental Study

0.10.20.30.40.50.60.70.80.9

minpi

−10

−5

0

5

10

15

20

25

C
o
m

p
re

s
s
io

n
 r

a
te

 d
if
f.
(%

) SynData_1

SynData_2

SynData_3

3.9.a w.r.t. minpi

0.10.20.30.40.50.60.70.80.9

ε

−10

−5

0

5

10

15

20

25

C
o
m

p
re

s
s
io

n
 r

a
te

 d
if
f.
(%

) SynData_1

SynData_2

SynData_3

3.9.b w.r.t. ε

Figure 3.9: Compression rate differences between RCPMS and RCPFast on
synthetic data sets.

minpi = 0.4 and ε = 0.2. Generally, the compression rates of the two algo-
rithms are close to each other, except on the EPA dataset when ε is large (e.g.,
Figure 3.10.b where ε = 0.5). However, in that situation, we note RCPMS
still can reach a compression rate as high as 75%, which is acceptable. Also
it can be observed that the compression rates increase when minpi is de-
creased or ε is increased, which is consistent with the results obtained from
the synthetic data sets.

0.10.20.30.40.50.60.7

minpi

20

30

40

50

60

70

80

90

100

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

3.10.a EPA (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5 0.6

ε

20

30

40

50

60

70

80

90

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

3.10.b EPA (w.r.t. ε)

0.10.20.30.40.50.6

minpi

0

10

20

30

40

50

60

70

80

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

3.10.c POI (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5

ε

35

40

45

50

55

60

65

70

75

C
o
m

p
re

s
s
io

n
 R

a
te

(%
)

RCPFast

RCPMS

3.10.d POI (w.r.t. ε)

Figure 3.10: Compression rate tests on EPA and POI data sets.

Next, we study the efficiency of the proposed algorithms on real data

60

3.6. Experimental Study

sets. Figure 3.11 illustrates the running time of the two algorithms with
respect to the variation of minpi and ε respectively. It shows that RCPMS
outperforms RCPFast on the two real datasets, especially when the data is
getting dense (e.g., when minpi is decreased) or the requirement of preserv-
ing prevalence information is relaxed (e.g., when ε is increased).

0.10.20.30.40.50.60.7

minpi

0

500

1000

1500

2000

2500

3000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

3.11.a EPA (w.r.t. minpi)

0.10.20.30.40.50.6

minpi

0

1000

2000

3000

4000

5000

6000

7000

8000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

3.11.b POI (w.r.t. minpi)

0.1 0.2 0.3 0.4 0.5

ε

0

10

20

30

40

50

60

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

3.11.c EPA (w.r.t. ε)

0.1 0.2 0.3 0.4 0.5

ε

0

500

1000

1500

2000

2500

3000

R
u
n
n
in

g
 t

im
e
(s

)

RCPFast

RCPMS

3.11.d POI (w.r.t. ε)

Figure 3.11: Performance on EPA and POI data sets.

To examine whether the summarized representative co-location patterns
are meaningful, we also inspect the discovered patterns. We show the ex-
perimental results on the POI data set when minpi = 0.6 and ε = 0.2 as an
example. In this case, seven prevalent co-location patterns are discovered:
BUILDING-PARK, CHURCH-PARK, PARK-SCHOOL, BUILDING-PO(abbreviation
of post office), BUILDING-SCHOOL, BUILDING-CHURCH, and BUILDING-PARK-
SCHOOL. Each pattern refers to a set of points of interests that are frequently
located in proximity. By running the RCPMS algorithm on the data, we dis-
cover four representative co-location patterns: BUILDING-PARK-SCHOOL,
BUILDING-PO, PARK-SCHOOL and BUILDING-CHURCH-PARK. It can be seen
that it makes sense to use the compressed patterns to represent the origi-
nal patterns. Moreover, among the four RCPs, only the pattern BUILDING-
CHURCH-PARK is not a prevalent co-location. However, the PI value of

61

3.7. Conclusions

BUILDING-CHURCH-PARK is 0.51, which is greater than (1 − 0.2) × 0.6 =

0.48.

3.7 Conclusions

In this chapter, we study the problem of summarizing spatial co-locations
using representative patterns. Addressing the missing of transactions in
spatial data, a new measure is defined to appropriately quantify the preva-
lence distance between two co-location patterns, based on which the prob-
lem of representative co-location pattern mining is formulated. We propose
two efficient algorithms for RCP mining: RCPFast and RCPMS. RCPFast fol-
lows existing approaches to adopt a post-mining framework that finds rep-
resentative patterns from the set of discovered prevalent co-location pat-
terns. RCPMS employs a novel mine-and-summarize paradigm to discover
representative patterns directly from the spatial data set, thereby pushing
pattern summarization into the co-location mining process. Experimental
results show that RCP mining effectively summarizes prevalent co-location
patterns, and RCPMS significantly improves over RCPFast on dense data
sets by slightly sacrificing compression rate. Moreover, the proposed sum-
marizing method is not only helpful in static co-location pattern mining, but
also useful in the dynamic scenario, e.g., time-evolving co-location pattern
mining. For the dynamic case, we can aggregate the representative patterns
within different time window to extract the interesting patterns.

62

Chapter 4

Protecting Location Privacy in

Spatial Crowdsourcing

Spatial crowdsourcing (SC) has emerged as a transformative platform pro-
viding services to outsource spatio-temporal tasks to a set of registered in-
dividual workers, who may be willing to physically travel to locations of
interest and perform tasks. In order to assign tasks to workers in proxim-
ity of the task locations, existing SC solutions usually require workers to
disclose their locations, which inevitably raises privacy concerns about the
workers’ locations. Although a handful of methods have been proposed to
protect location privacy using cloaking techniques or random perturbation,
we argue that it is more secure for workers to encrypt their location informa-
tion when they register with the SC platforms. In this chapter, we propose
a secure SC framework based on encryption, that ensures that workers’ lo-
cation information is never released to any party, yet the system can still
assign tasks to workers situated in proximity of each task’s location. We
solve the challenge of assigning tasks based on encrypted data using homo-
morphic encryption. Moreover, to overcome the efficiency issue, we propose
a novel secure indexing technique with a newly devised SKD-tree to index
encrypted worker locations. Experiments on real-world data evaluate vari-
ous aspects of the performance of the proposed SC platform.

63

4.1. Introduction

4.1 Introduction

Crowdsourcing, using ’wisdom of the crowd’ or the knowledge and opin-
ion of a group of individuals, has been widely adopted to outsource man-
ual tasks, such as image labeling or natural language understanding, to
the public for quick services. With the pervasiveness of mobile devices,
the ubiquity of wireless network and the improvement of sensing technol-
ogy, a new mode of crowdsourcing, namely Spatial Crowdsourcing (SC), has
emerged [75, 76]. In SC, task requesters register through a centralized spatial
crowdsourcing server (SC-server) and request resources related to tasks situ-
ated in specific locations. The SC server assigns tasks to registered workers
according to performance criteria. If a worker accepts the assigned task,
he/she physically travels to the location to perform the required task. For
example, in traffic management, SC allows engaged individuals with mo-
bile phones to report nearby traffic conditions so that effective traffic control
can be used to alleviate traffic jam situations. Many other SC applications
can be found in a variety of domains, such as weather monitoring, environ-
mental sensing, crisis response, and urban planning.

In order to avoid long distance travel for workers (i.e., to minimize the
costs), existing SC systems usually require workers to disclose their location
in the form of either spatial points or approximate regions [77]. In reality,
SC servers may not be fully trustworthy, so disclosing individual locations
may have serious privacy implications. For example, with the leakage of
workers’ location information, an adversary may invoke a broad spectrum
of attacks such as physical stalking, identity theft, and breach of sensitive in-
formation including health status, political or religious views [78]. Location
privacy is therefore a critical privacy issue and it is important to develop
secure SC frameworks to ensure maximum security.

Several approaches have been proposed [79] to protect workers’ loca-
tions using a trusted third party (TTP). In their framework, each worker
subscribes to a cellular service provider (CSP), which serves as the TTP and
has access to all worker locations. When assigning tasks, the CSP releases
location information to the SC server in a noisy form, and the SC server
then queries sanitized data and disseminates tasks to workers. One major

64

4.1. Introduction

drawback of this approach is that there is no privacy protection with respect
to the CSP. Once CSP is compromised by adversaries, location privacy is in-
fringed. Not to mention that this framework does not protect task locations.

Alternatively, a TTP-free privacy-preserving framework [78] can be im-
plemented by obfuscating with each worker’s location as a probabilistic dis-
tribution, as opposed to a deterministic value. The goal of the SC-server is to
assign as many tasks as possible based on approximate information. Unfor-
tunately, by simply observing location distributions, the SC server is able to
approximately guess a worker’s location. In addition, the server knows the
final task assignment results, from which it can infer worker locations with
reasonable confidence. For example, if the SC server knows that a number
of tasks have been assigned to a particular worker, it can draw circles us-
ing task locations as centers and the maximum travel distance as the radius,
which will easily conclude, with high probability, that the worker is located
at the intersection of those circles.

The above observations motivate our work, which aims to deliver a gen-
eral trustworthy SC framework with improved privacy by requiring work-
ers and requesters to encrypt their location data when registering with and
exchanging information through the SC server. Using the correct settings
and protocols, real location information is hidden in the ciphertexts and
is never disclosed to any party. Accordingly, we can deliver a secure SC
framework to sufficiently preserve the location privacy of both workers and
requesters based on encryption.

Although encryption provides maximum security protection, the chal-
lenge is that the SC server has to assign tasks (e.g., compute the distance
between tasks and workers) based on encrypted data. We solve the prob-
lem of computation on ciphertexts with a homomorphic encryption scheme
and introduce a dual SC server design. To address the inefficiency of en-
cryption operations, we propose a secure indexing technique with a newly
devised SKD-tree to index encrypted worker locations for fast searching and
pruning.

We have named our SC framework HESI, as it combines a homomorphic
encryption (HE) scheme and a secure indexing (SI) technique. The proposed
framework has the following properties:

65

4.2. Related Works

1. Location privacy: The HE scheme ensures zero worker location privacy
leakage. A worker’s location is never disclosed to any parties except
themselves. Task locations are also preserved and are only exposed to
the assigned workers.

2. Data privacy: Task information is only disclosed to a small group of
workers who will potentially perform the tasks.

3. Computation efficiency: An SI technique improves the efficiency and
scalability of the task assignment process. The proposed SKD-tree also
allows efficient operations such as insertion and search.

4. Lightweight computation on the client side: The workers and requesters
are only required to perform a small number of encryptions/decryptions.

The remainder of the chapter is organized as follows. Related works are
reviewed in Section 4.2. Section 4.3 discusses relevant research prelimiaries.
Section 4.4 presents the architecture of the HESI framework and describes
the overall workflow. Secure distance computation, secure indexing and
task assignment are discussed in Section 4.5, Section 4.6, and Section 4.7
respectively. Section 4.8 analyzes the security and complexity. Experiments
are reported in Section 4.9, and we conclude this chapter in Section 4.10.

4.2 Related Works

In this section, we briefly provide an overview of existing works on location
privacy, task assignment in spatial crowdsourcing and secure index.

4.2.1 Location Privacy

Location privacy is a key factor in many real-world applications, such as
sensor network [80, 81], social network [82],cloud computing [83], mobile
computing [84, 85], and Internet of Things (IoT) [86]. Existing methods for
location privacy protection roughly fall into two categories. Methods in the
first category rely on a trusted third party (TTP) to control privacy leak-
age while preserving utility. In this context, a technique of k-anonymity

66

4.2. Related Works

is commonly adopted, where the real location of a user is replaced by a
cloaking area which guarantees that at least k users are located [87]. Many
extended works have been studied based on k-anonymity, such as [88, 89],
in which the personal privacy requirement can be defined by individual
users, and [90], in which the cloaking techniques are based on grids. Lo-
cation perturbation techniques are also proposed to protect object locations
[91] [92] [93]. However, there is a potential privacy hazard in relying on a
TTP. The second category of location privacy preserving methods run with-
out a TTP. Three representative TTP-free methods are assessed in [94]. The
first is collaboration-based, in which a user constructs a centroid location area
with other users [95] [96]. The second is obfuscation-based, where the real lo-
cation of a user is usually replaced by a circular area of variable center and
radius [97] [26]. The last method is cryptography-based. One common tech-
nique is the Private Information Retrieval (PIR) protocol that allows a user
to retrieve information from a server without revealing what information
has been retrieved. It has been applied to solving secure kNN problems [98]
[99].

Many works have been proposed to protect location privacy in spatial
crowdsourcing [100, 89]. [79] proposes a framework where a cellular ser-
vice provider (CSP) acts as a TTP holding all worker locations. It publishes
their locations to the SC server using the Private Spatial Decomposition ap-
proach [101]. This framework suffers from the same problems as TTP meth-
ods. Moreover, the requester/task locations are not protected. A TTP-free
privacy-preserving framework that protects worker location privacy was
studied in [78]. It is based on the obfuscation method where each worker lo-
cation is considered as a probabilistic distribution. However, the SC server
has the knowledge of location distribution and assignment results, which
leads to a security threat whereby the server is able to deduce a worker
location with high probability.

4.2.2 Secure Index

Several secure index techniques exist to facilitate an efficient query process
[102, 103, 104]. In [105], Hore et al. built an index by partitioning the data

67

4.2. Related Works

into a set of buckets, enabling the data owner to index for buckets, outsourc-
ing all data to the cloud, but retained the indexes at his/her own site. In
[106], an encrypted traversal framework based on privacy homomorphism
was proposed to process private queries. A multi-level indexing data struc-
ture based on R-tree is provided to securely assess the distance information
between two data points. Wang et al. proposed a hierarchical encrypted
index model to execute range queries on outsourced databases [107]. They
designed a secure R̂-tree based on Asymmetric Scalar-product Preserving
Encryption (ASPE) [108], where encrypted data points carry information
relating to their distance from the origin. As an extended work, Cheng et
al. proposed a new encryption method, ASPE with Laplace noise, and used
an SR-tree (secure R-tree) to enable secure kNN query processing over en-
crypted spatial data [109]. All these previous works require the client (or
data owner) to take part in the computation process. This means that the
client side must have sufficient computation resources; however, this is not
always the case, especially in the mobile sensing scenario. Our secure index
technique is different from previous work because in our setting, the index
processing is done on the server side, alleviating the computation burden
on the data owner.

4.2.3 Task Assignment in SC

Many studies on task assignments in spatial crowdsourcing have been pro-
posed [110] [111] [112, 113, 114, 115]. In [75], it is assumed that if a worker
receives the task, he will certainly complete it. Hence, only one worker is
needed for each task. Based on this work, a new constraint whereby the
workers are not trustworthy is considered in [116]. Each worker is associ-
ated with the probability that the worker will perform a task; consequently,
the success rate of task assignment becomes probabilistic. In [110], it is as-
sumed that each task consists of several sub-tasks. A task is completed only
if all sub-tasks are completed. It is proved that this problem is reducible
to the maximum flow problem. In [117], it is assumed that a task requires
the expertise type (e.g., professional photographer) and degree of expertise.
Our framework produces a distance matrix between tasks and workers and

68

4.3. Preliminariy

can directly (or easily be extended to) support most task assignment mod-
els.

4.3 Preliminariy

In this section, we introduce necessary background on spatial crowdsourc-
ing, privacy concerns, and the Paillier cryptosystem.

4.3.1 Spatial Crowdsourcing Model

One of the important process in spatial crowdsourcing is to assign spatial
tasks to workers, who are willing to perform tasks at specific locations. Ac-
cording to [116], spatial task publishing modes, i.e., the ways in which work-
ers are matched to tasks, can be categorized into two types: Worker Selected
Tasks (WST) and Server Assigned Tasks (SAT).

In the WST mode, an SC server publishes the spatial tasks online and
workers can autonomously choose any task in their proximity without the
need to coordinate with the SC server. A clear advantage of this mode is
that workers do not need to reveal their location to the SC server, and thus
preserve their location privacy. However, the ultimate assignment result is
usually sub-optimal since workers do not have a global view. It may cause a
situation in which multiple workers choose the same task while other tasks
remain unassigned. In SAT mode, workers share their locations with the SC
server which is in charge of assigning tasks to workers according to certain
goals. Because the SC server knows all the spatial information, SAT can
achieve global optimization by running delicate matching algorithms, but
it requires workers to disclose their location to the server, which raises a
privacy issue.

In our work, we focus on the SAT mode. To remedy the privacy issue, we
provide location privacy protection instead of directly revealing workers’
locations, and allow workers to encrypt their location before sending it to
the server.

69

4.3. Preliminariy

4.3.2 Threat Model

Similar to existing work on secure outsourcing [99][118], we adopt settings
and definitions commonly used in secure multi-party computation (SMC)
[119]. In this setting, there are two main types of models: semi-honest and
malicious [120]. In the semi-honest model all parties (including the cor-
rupted ones) follow the protocol rules, but are later free to use what they
see during the execution of the protocol to compromise security. The semi-
honest parties are also known as “honest-but-curious” and “passive”. In
comparison, malicious parties, called “active”, can arbitrarily manipulate
the protocol specification according to an adversary’s instruction. In prac-
tice, the malicious model does exist but is too inefficient to be used or im-
plemented. However, the semi-honest model is not only useful but also the
foundation of designing secure protocols in the malicious model. There-
fore, following existing work in [99], [121] and [122], we have adopted the
semi-honest model for our framework.

We assume that all encryptions are secure and no adversary is able to
derive plaintext from ciphertext without the correct key. Considering the
power of the adversary, we allow the adversary to have knowledge of some
plaintext and the corresponding ciphertext in advance (also known as a
known-ciphertext attack [123]).

The security of a protocol in the semi-honest model is analyzed using a
simulation-based proof technique [119]. The key idea of this technique is
to construct a simulator to show that the real protocol behaves like some
idealized ones. Since essentially no attacks can be carried out in the ideal
world, security is implied. The details of the security analysis are discussed
in Section 4.8.

4.3.3 Paillier Cryptosystem

The Paillier cryptosystem is an additive homomorphic and multiplicative
homomorphic encryption scheme [124]. It is commonly used in SMC ap-
plications such as electronic voting and electronic cash. Let EpkC be the en-
cryption function with public key pk given by (N, g) where N is a product
of two large primes and g is in Z∗

N2 . Given a, b ∈ ZN, the Paillier encryption

70

4.4. The HESI Framework

scheme has the following properties:

1. Homomorphic Addition

Epk(a + b) = Epk(a) ∗ Epk(b) mod N2 (4.1)

2. Homomorphic Multiplication

Epk(a ∗ b) = Epk(a)b mod N2 (4.2)

That is, we can perform addition or multiplication of plaintexts by ma-
nipulating ciphertexts with multiplication or exponentiation, respectively.
In our framework, all encryptions are based on the Paillier cryptosystem.

4.4 The HESI Framework

We present an overview of the proposed framework HESI in this section,
including the system architecture and the overall workflow.

4.4.1 The Dual-Server Architecture

Our secure SC problem can be considered as a secure outsourcing multi-
party computation [125]. Our aim is to enable the SC server to carry out all
the computations while users (workers/requesters) do nothing but perform
a small number of encryptions and decryptions.

In a single server setting, each user outsources their encrypted data with
their private key to the server and the server is able to perform compu-
tations on encrypted data using homomorphic encryption (HE). Multi-key
homomorphic encryption (MHE) seems to be an optimal solution to achieve
feasibility [126]. However, a user will need to recover the results inter-
actively by participating in another SMC protocol, which is very ineffi-
cient in terms of communication and computation. Therefore, the goal of
lightweight computation, on the user side, is difficult to achieve in a multi-
user, one-server setting.

71

4.4. The HESI Framework

To solve this challenge, we have adopted a dual-server design and pro-
pose an SC framework that consists of two non-colluding semi-honest servers.
The assumption of non-collusion between two service providers, such as
Google and Amazon, is reasonable in practice [121], because the collusion
of two well-established companies may damage their reputation and con-
sequently reduce their revenues.

According to the semi-honest model, these two servers are curious but
will follow the protocols. A dual-assisted server setting can liberate users
from heavy computation and communication by allowing the server to com-
plete computation tasks. The security intuition behind dual-server settings
has been addressed in related domains such as secure multi-party computa-
tion [127], secure kNN search [118] and secure trajectory computation [122],
and we refer interested readers to these texts for further rationale.

Figure 4.1 illustrates the HESI framework. It consists of workers, re-
questers, and two servers: the logistics server (SL) and the encrypted data
computing server (SC). In general, the requesters submit their tasks to the SC
platform and the tasks are dispatched to appropriate workers. The SL han-
dles all logistics issues, including new user/task registration, data indexing
maintenance (i.e., SKD tree), and task assignment, whereas the computing
server is an auxiliary server that handles the computation of encrypted data.
We assume that each server owns a pair of encryption keys, i.e., (pkL, skL)

and (pkC, skC), where pk is the public key and the private key sk is known
only to owner.

4.4.2 The System Workflow

LetW and T denote the set of workers and tasks, respectively. Each worker
only accepts a limited number of tasks at the same time and accepts only
those within a certain distance. In the following, we assume that all loca-
tions are 2-dimensional, yet our framework can be easily extended to mul-
tiple dimensions. The whole process is presented as follows:

(1) Worker Registration (WR). Workers register and sign up with the SL.

72

4.4. The HESI Framework

Figure 4.1: The HESI framework.

Each worker’s registration information is a tuple:

< wi, EpkC(lwi), Ti, Di >,

where wi is the worker identity, lwi is the worker’s current location, EpkC

represents the Paillier encryption, Ti refers to the maximum number of tasks
that a worker is willing to accept at one time, and Di refers to the acceptable
maximum travel distance. The SL will index all workers’ encrypted loca-
tions using an interactive secure indexing (SI) technique and store them in a
data structure called an SKD-tree, as shown in Figure 4.1. The construction
of the SKD-tree and the usage of the tree for fast range search is discussed
in Section 4.6. The Di information, necessary at the task assignment stage,
is also transferred to the SC.

(2) Task Submission (TS). Apart from worker locations, our framework
also protects the privacy of requester/task locations. The requesters submit
their tasks to the SL in the following form:

< ti, EpkC(lti), reward, content >,

where ti is the task identity, lti represents the task location, reward refers
to the payment for the workers and content specifies the task mission, e.g.,
taking photos or reporting traffic conditions at the location lti .

(3) Distance Computation (DC). In order to assign workers to tasks in

73

4.4. The HESI Framework

close proximity, the SC platform needs to know the distances between tasks
and workers. The SL and SC together perform an interactive protocol to
compute the distance based on the encrypted data using homomorphic en-
cryption. The distance between tasks and workers can be used for evalua-
tion during task assignment, while the real locations of tasks and workers
are never revealed to either the SL or SC. In addition, neither the SL and
SC are able to learn any sensitive information from the intermediate result,
unless they conspire which is not allowed according to the protocol. The
details of the interactive protocol for distance computation are discussed in
Section 4.5.

(4) Task Assignment (TA). Based on a distance matrix M, where ele-
ment mij represents the distance between ti and wj, and the task acceptance
conditions of workers (e.g., Ti and Di), the SC-system assigns the tasks to
workers with the goal of maximizing the number of assigned tasks while
minimizing the workers’ travel costs. The task assignment is carried out by
an interactive protocol between the SL and the SC, under conditions that
both servers cannot learn any sensitive information from the intermediate
results. The details of task assignment strategy are discussed in Section 4.7.
The task assignment results are preserved in the form < ti : w1, . . . , wk >,
indicating that task ti is assigned to w1, . . . , wk.

(5) Task Notification (TN). The final stage is for the SL to notify assign-
ment results to corresponding workers. Because the SL does not know the
exact locations of the tasks, it needs to communicate with requesters as
follows. The SL first sends the workers’ public keys to the requester ac-
cording to the assignment results. For example, if a result record is < ti :
w1, . . . , wk >, ti will receive the corresponding workers’ public keys. Next,
the requester encrypts the task’s location with the received public keys and
sends them back to the SL, in the form < (w1, Epkw1

(lti)), . . . , (wk, Epkwk
(lti)) >.

The SL then notifies the worker wj with a message < (Epkwj
(lt1), content1),

. . . , (Epkwj
(ltq), contentq) >. When wj receives the message, she decrypts the

ciphertext using her own private key skwj to obtain the task’s location. The
worker is then able to travel to the specified location and perform the task
according to the mission described in its content.

Implementation details are discussed in the following sections, includ-

74

4.5. Secure Distance Computation

Table 4.1: The outline of the secure protocols.

Scope Protocols Description

Index

SecInsert Insert a node (worker’s encrypted location)
into an SKD-tree securely.

SecVerifySide
Verify the insertion side with respect to a
given node. An auxiliary protocol of SecIn-
sert.

SecSearch Given a spatial range, output a set of workers
within this range.

SecComp Compare two integers securely. An auxiliary
protocol of SecSearch.

Computation SecDisCal Calculate the distance of two locations se-
curely.

SecMul Compute the multiplication of two integers
securely. An auxiliary protocol of SecDisCal.

Assignment SecAssign Perform secure task assignment according to
some strategies.

ing the secure distance computation (Section 4.5), secure indexing (Section
4.6), and the task assignment solution (Section 4.7).

For clarity, we briefly outline our proposed secure protocols in Table 4.1.
These secure protocols are categorized into distance computation, secure
index and assignment. SecDisCal, SecInsert, SecSearch SecAssign are the main
protocols, while the others are auxiliary protocols.

We have used the small dataset shown in Figure 4.2 as a ’toy’ example
for illustration. There are 3 tasks (denoted by triangles) and 7 workers (de-
noted by circles) in a 300× 300 spatial region. All coordinate information is
given in the table. The circle symbol denotes a task location and the triangle
represents a worker location. The coordinates are given in the table.

4.5 Secure Distance Computation

Recall that the third stage of HESI is to compute the distances between tasks
and workers. The challenge of this stage is to compute exact distances with-
out knowing the real locations. The SL possesses the encrypted locations
(e.g., EpkC(lti) and EpkC(lwj)), while the SC owns the private key sk. The ob-
jective is to let the SC derive the distance dij = ||lti − lwj || without knowing
lti and lwj . To solve the problem, we introduce a secure protocol SecDisCal

75

4.5. Secure Distance Computation

Figure 4.2: A small spatial dataset.

Algorithm 4.1 SecDisCal(EpkC(l1), EpkC(l2))

Input: SL has EpkC(l1), EpkC(l2) and SC has sk.
Output: SC obtains |l1 − l2|2.

1. SL:
(a) Compute EpkC(l1x − l2x) = EpkC(l1x) ∗ EpkC(l2x)

N−1

(b) Compute EpkC(l1y − l2y) = EpkC(l1y) ∗ EpkC(l2y)
N−1

(c) Send the identity of l1 and l2 to SC.
2. SL and SC:
Based on SecMul protocol, compute dx = EpkC((l1x − l2x)

2) and dy =

EpkC((l1y − l2y)
2).

3. SL:
Compute d = dx ∗ dy = EpkC((l1x − l2x)

2 + (l1y − l2y)
2), which equals to

EpkC(|l1 − l2|2).

as described in Algorithm 4.1, which interacts between the SL and the SC

using homomorphic encryption (HE).
The inputs of SecDisCal include two encrypted locations, where each co-

ordinate dimension is correspondingly encrypted using public key pkC (e.g.,
EpkC(l1x) and EpkC(l1y)). In step 1, the SL computes the subtraction of each
dimension. Then the SL and SC compute the square of the subtraction us-
ing a protocol SecMul, which will be explained later. Lastly, SL adds the
squares using homomorphic encryption (i.e., Eq.(4.1)) and obtains the en-
crypted square distance between l1 and l2. We note that while the locations
in Algorithm 4.1 are two-dimensional, SecDisCal can be easily extended to
multi-dimensional applications.

76

4.5. Secure Distance Computation

Algorithm 4.2 SecMul(EpkC(x1), EpkC(x2))

Input: SL has EpkC(x1), EpkC(x2) and SC has sk.
Output: EpkC(x1 ∗ x2).

1. SL:
(a) Pick two random numbers r1, r2 ∈ ZN.
(b) Compute x′1 = EpkC(x1) ∗ EpkC(r1), x′2 = EpkC(x2) ∗ EpkC(r2) and send
x′1, x′2 to SC.
2. SC:
(a) Decrypt x′1, x′2 and have m1 = Dsk(x′1), m2 = Dsk(x′2).
(b) Compute m = m1 ∗m2 mod N.
(c) Compute m′ = EpkC(m) and send m′ to SL.

3. SL:
(a) Compute s′1 = EpkC(x1)

N−r2 , s′2 = EpkC(x2)
N−r1 and s′3 = EpkC(r1 ∗

r2)
N−1.

(b) Compute ((m′ ∗ s′1) ∗ s′2) ∗ s′3 step by step. The final result equals
EpkC(x1 ∗ x2).

Figure 4.2 demonstrates the calculation of the distance between t1 and
w1 using SecDisCal. Firstly, the SL computes EpkC(t1x − w1x) = EpkC(70−
58) = EpkC(70) ∗ EpkC(−58) = EpkC(12) and EpkC(t1y − w1y) = EpkC(65−
50) = EpkC(65) ∗ EpkC(−50) = EpkC(15). Secondly, the square coordinate
differences can be derived based on SecMul, i.e., dx = EpkC(122) and dx =

EpkC(152). Then, the SL computes the square distance d = EpkC(122 + 152) =

EpkC(122) ∗ EpkC(152) = EpkC(369).
Algorithm 4.2 illustrates the secure multiplication protocol SecMul. Given

two encrypted integers EpkC(x1), EpkC(x2), the protocol SecMul outputs their
encrypted multiplication EpkC(x1 ∗ x2). At step 1, the SL perturbs the en-
crypted locations by adding noisy integers according to Eq. (4.1) (i.e., x′1 =

EpkC(x1 + r1) and x′2 = EpkC(x2 + r2)). After step 2, the SC has m′ = EpkC((x1 +

r1) ∗ (x2 + r2)). By expanding the polynomial, we have m′ = EpkC(x1 ∗ x2 +

x1 ∗ r2 + x2 ∗ r1 + r1 ∗ r2). Therefore at step 3, the SL needs to eliminate the
terms x1 ∗ r2, x2 ∗ r1 and r1 ∗ r2 to obtain the desired output EpkC(x1 ∗ x2).

To give an example of computing the square coordinate differences, sup-
pose the inputs of SecMul are EpkC(x1) = EpkC(x2) = EpkC(12) and with-
out lost of generality, let r1 = 1, and r2 = 2. Firstly, the SL computes
x′1 = EpkC(12) ∗ EpkC(1) = EpkC(13), x′2 = EpkC(12) ∗ EpkC(2) = EpkC(14)

77

4.6. Secure Indexing

and sends them to the SC. Next, the SC decrypts the ciphertext and com-
putes m = m1 ∗ m2 = 13 ∗ 14 = 182. Then it sends m′ = EpkC(182) to
SL. In the last step, the SL computes s′1 = EpkC(12)N−2 = EpkC(−24), s′2 =

EpkC(12)N−1 = EpkC(−12) and s′3 = EpkC(1 ∗ 2)N−1 = EpkC(−2). The result
is obtained by computing EpkC(182) ∗ EpkC(−24) ∗ EpkC(−12) ∗ EpkC(−2) =
EpkC(182− 24− 12− 2) = EpkC(144), which equals EpkC(122).

SecDisCal, as a common protocol in SMC, that has been applied to other
related work [118], however, it suffers from inefficiency issue due to its high
frequency encryption and communication procedures. Each worker-task
pair must be compared to find workers close to a task location. This is com-
putationally expensive and hard to scale to large number of workers and
tasks. Therefore, we only use SecDisCal to compute distances for promising
worker-task pairs. To achieve this goal, the SL uses a secure indexing (SI)
technique in the first stage of HESI, after receiving the encrypted locations
of workers, to store the encrypted locations in the SKD-tree structure, which
prunes a large number of unnecessary distance computations.

4.6 Secure Indexing

In this section, we present detailed secure indexing techniques. We first
introduce the motivation and construction of the SKD-tree, and then discuss
how to apply this indexing structure for efficient pruning.

4.6.1 SKD-tree

Recall that it is unnecessary, and time-consuming, to compute distances for
each worker-task pair. Given only a small number of workers usually sat-
isfy the neighborhood condition of a task, instead of comparing all worker-
task pairs the encrypted locations of workers are indexed in advance, and
unpromising workers are pruned before computing the distances.

KD-tree [128] was the first, and most promising, indexing technique we
considered to tackle this purpose. A KD-tree is a spatial data structure that
organizes points in k-dimensional space. It is a binary tree in which every
node is a dimensional point that divides the space into two parts according

78

4.6. Secure Indexing

to a certain dimension.
Using a KD-tree to construct our framework presents two major chal-

lenges. First, all operations must be performed on encrypted data, to en-
sure that neither the SL nor the SC will obtain any private location infor-
mation during the indexing process. Second, normal KD-trees hold a po-
tential privacy threat. The splitting dimensions of normal KD-trees are pre-
determined and public – nodes in odd levels split the space with the x-
dimension, and nodes in even levels split with y-dimension. Consequently,
the SL could deduce the relative locations of all workers. For instance, it
knows w1 is to the left side of w2 if w2 is an x-splitting node and w1 is in
the left subtree of w2. By continually observing the tree, the possible spatial
range of w1 can be shrunk to a small region, if enough relative location in-
formation is collected. Even though the location information is relative, not
exact, it is still insecure.

We have therefore developed a novel secure indexing technique based
on KD-tree, called SKD-tree. One major difference between an SKD-tree
and a normal KD-tree is that SKD-tree is split into two parts and stored
on the SL and SC separately. The SL stores the tree structure information
(i.e., parent-child relationships) while the SC stores the dimension splitting
information in a dictionary. The splitting dimension of each node is selected
randomly, allowing nodes in the same level to split the space along different
dimensions. This feature improves security by increasing the difficulty of
inferring the relative locations.

Figure 4.3 compares a normal KD-tree vs. an SKD-tree using the exam-
ple in Figure 4.2. The indexing tree is constructed by insertion according to
the order from 1 to 7. The graphs show how each node cuts the space ac-
cording to the splitting dimension. Each node’s splitting dimension is pre-
determined in the normal KD-tree but randomly generated and separately
stored on SC in the SKD-tree. SL preserves the tree structure and can acquire
the dimension information through secure protocols. The shaded nodes in
SKD-tree represent data that are encrypted. All worker locations are in-
dexed by a normal KD-tree (left) and an SKD-tree (right). Each line in the
graph represents a node that splits the space along a particular dimension.
In a normal KD-tree the splitting information is fixed in advance. By con-

79

4.6. Secure Indexing

Figure 4.3: An example of a normal KD-tree vs. an SKD-tree with reference
to worker locations in Figure 4.2.

trast, each node’s splitting dimension is randomly generated and separately
stored in the SKD-tree on the SC. The SL, preserving the tree structure, ac-
quires the dimension splitting information from the SC through secure pro-
tocols (details are given later). The shaded nodes in the SKD-tree represent
encrypted data. Both data structures are constructed by inserting nodes one
by one from 1 to 7 . Take the insertion of node 6 in the SKD-tree for ex-
ample. Node 6 is first compared with the root node 1 and assigned to the
right sub-tree because 1 is X-splitting and 6 lies in the right partition of
the split along the X axis. Then it is inserted as the left child of 2 because
node 2 is also X-splitting and is in the left part of the partition. We discuss
the construction of SKD-tree in detail below.

Before explaining SKD-tree construction details, we introduce an aux-
iliary protocol, namely SecVerifySide, which allows the SL to find the cor-
rect sub-tree for the insertion of a new node. The details of SecVerifySide
are given in Algorithm 4.3. The input of the protocol from the SL has two
nodes: C is an existing node of the SKD-tree and P is the node to be inserted.
The input from the SC is a dictionary (called dict) that contains the splitting
information for each node. The splitting dimension is randomly generated
on the SC side by flipping an unbiased coin. The output is a decision as to
whether P should be in the left or right sub-tree of C.

80

4.6. Secure Indexing

Algorithm 4.3 SecVerifySide(P, C)

Input: SL wants to insert node P to the tree starting from node C.
(EpkC(lPx), EpkC(lPy)) and (EpkC(lCx), EpkC(lCy)) are the corresponding en-
crypted locations. SC preserves a splitting information dictionary:
dict = {< wid : dim > |dim ∈ {x, y}}.

Output: true if P is on C’s left sub-tree, and false otherwise.
1. SL:
(a) Pick two random numbers rx, ry ∈ ZN.
(b) p′x = EpkC(lPx) ∗ EpkC(rx), p′y = EpkC(lPy) ∗ EpkC(ry),

c′x = EpkC(lCx) ∗ EpkC(rx), c′y = EpkC(lCy) ∗ EpkC(ry).
(c) Flip a coin c
if c is up then

Send ordered tuple {h′x, t′x, h′y, t′y} = {p′x, c′x, p′y, c′y}.
else

Send ordered tuple {h′x, t′x, h′y, t′y} = {c′x, p′x, c′y, p′y}.
(d) Send EpkC(idC) to SC
2. SC:
(a) Decrypt and get idC.
if dict[idC]=x then

Compute Δ = DskC(h
′
x)− DskC(t

′
x).

else
Compute Δ = DskC(h

′
y)− DskC(t

′
y).

(b) Send q′ = EpkL(1) to SL if Δ < 0 and q′ = EpkL(0) otherwise.
3. SL:
(a) Decrypt q = DskL(q

′).
if c is up then

return true if q = 1, and false otherwise.
else

return true if q = 0, and false otherwise.

81

4.6. Secure Indexing

In step 1, SL injects disturbances by adding random integers to protect
the encrypted locations. Since the SL does not know whether C is x-splitting
or y-splitting, it sends both dimensional encryptions to SC. In order to pre-
vent SC from deducing any useful information, these ciphertexts are trans-
mitted via an oblivious transfer technique [129]. Specifically, the SC has two
alternative orders of grouping these encryptions and decides the order by
flipping an unbiased coin. In this way, the SC is not able to determine which
ciphertext corresponds to which node. In step 2, the SC looks up the dimen-
sion from dict and computes the coordinate distance accordingly. Then SC

verifies the subtraction and sends the result to the SL. The SL then evalu-
ates the result according to the previous flipped coin information. It can be
seen that during the whole protocol, the SC only does the decryption and
subtraction, but does not know which ciphertext represents what identity.
Therefore, the SC is not able to deduce any useful information, even though
it knows the distance between P and C.

Based on SecVerifySide, we now describe the protocol for inserting a node
into the SKD-tree. Given an SKD-tree S and a new node N, the goal of
the SecInsert protocol is to insert N into S securely. The details are given
in Algorithm 4.4. The C node is initialized as S .Root (i.e., the algorithm
is called as SecInsert(S .Root, N, S)). The algorithm compares N with the
nodes in the tree iteratively by calling SecVerifySide. When it reaches a leaf
node, it inserts N under the leaf node according to the verification result.

Note that in our current implementation, the SL constructs an SKD-tree
by using a randomly selected worker as the root node and inserting the
remaining workers one by one. Though the SKD-tree may be imbalanced,
our experiments show that the constructed tree enables effective pruning
and the randomized construction has good scalability.

4.6.2 Fast Pruning

A constructed SKD-tree can be used to efficiently find a set of nodes (e.g.,
workers) within a spatial range (e.g., close to a task). Because the SL only
stores the tree structure, not the splitting information, we have devised an
interactive protocol to complete the pruning securely.

82

4.6. Secure Indexing

Algorithm 4.4 SecInsert(C, N, S)

Input: SL has an SKD-tree S. SC has dict and sk. C is the current node in the
iteration.

Output: N is inserted to S .
while C is not a leaf node do

if SecVerifySide(N, C) then
//N is on C’s left sub-tree
C=C.LeftChild

else
//N is on C’s right sub-tree
C=C.RightChild

if SecVerifySide(N, C) then
Insert N as C’s left child.

else
Insert N as C’s right child.

To prune unpromising workers, we conservatively use the maximum
value of workers’ travel distances as the search range, i.e., D̂ = maxwi∈W Dwi .
Given a task t ∈ T and D̂, we can securely compute a range search rectangle,
denoted by Rect, using homomorphic encryption. More precisely, Rect is a
tuple of four encrypted vertexes (x+, x−, y+, y−), where

x+ =EpkC(ltx) ∗ EpkC(D̂),

x− =EpkC(ltx) ∗ EpkC(D̂)N−1,

y+ =EpkC(lty) ∗ EpkC(D̂),

y− =EpkC(lty) ∗ EpkC(D̂)N−1.

The left-bottom and right-upper vertexes are (x−, y−) and (x+, y+), respec-
tively, which are computed on the SL. To make use of the rectangle range,
we can prune the unpromising workers by simply comparing the target’s x-
and y-coordinates with Rect accordingly. Our aim is to find a set of workers
whose locations are within Rect.

In the following, we first propose an auxiliary protocol SecComp to se-
curely compare two encrypted numbers. The protocol is demonstrated in
Algorithm 4.5. Given two encrypted inputs, the SL sends the perturbed in-
puts to the SC, which decrypts the received ciphertexts, calculates the sub-

83

4.6. Secure Indexing

traction, and notifies the SL of the comparison results. Then, the SL evalu-
ates the result based on the flipped coin. In the SC scenario, this protocol is
used to verify the coordinate differences between two encrypted locations.

Algorithm 4.5 SecComp(EpkC(a), EpkC(b))

Input: SL has EpkC(a), EpkC(b) and SC has sk.
Output: true if a < b, and false otherwise.

1. SL:
(a) Pick a random number r ∈ ZN.
(b) a′ = EpkC(a) ∗ EpkC(r), b′ = EpkC(b) ∗ EpkC(r)
(c)Flip a coin c
if c is up then

Send ordered tuple {h′, t′} = {a′, b′} to SC.
else

Send ordered tuple {h′, t′} = {b′, a′} to SC.
2. SC:
(a) Compute δ = DskC(h

′)− DskC(t
′).

(b) Send q′ = EpkL(1) to SL if δ < 0 and q′ = EpkL(0) otherwise.
3. SL:
(a) Decrypt q = DskL(q

′).
if c is up then

return true if q = 1, and false otherwise.
else

return true if q = 0, and false otherwise.

Based on the above protocol, we use SecSearch for the range search in
SKD-tree. As shown in Algorithm 4.6, the whole search protocol is an itera-
tive process. In each iteration, the algorithm verifies the spatial relationship
between the current node C and the range rectangle Rect. If C lies on the
left or at the bottom of Rect, the SL turns to C’s right child for further com-
parison. Similarly, if C is to the right or on top of Rect, C’s left child will be
compared. If C is within Rect, we add C to the result set and continue to
inspect both of C’s children. All the comparisons are completed by evalu-
ating C’s coordinates with Rect’s boundaries using SecComp. The following
lemma ensures the effectiveness of SecSearch.

Lemma 4.1. SecSearch is correct and complete.

Proof. To prove the correctness, we need to verify that all workers in the set
of discovered Wr are inside Rect. This can be straightforwardly achieved

84

4.6. Secure Indexing

Algorithm 4.6 SecSearch(C, Rect)

Input: SL has the SKD-tree S and SC has Dict and sk. C is a node in S and
Rect is the required query rectangle.

Output: SL obtains a worker set Wr whose real locations are within the
specified Rect.
SL:
Send C to SC and execute the following protocols simultaneously: Sec-
Comp(EpkC(lCx), x−), SecComp(EpkC(lCx), x+), SecComp(EpkC(lCy), y−) and
SecComp(EpkC(lCy), y+).
SL and SC:
Lookup dim = dict[idC].
if dim = x then

if SecComp(EpkC(lCx), x−) then
//The target is on C’s right sub-tree
Let SL invoke SecSearch(C.RightChild, Rect).

if not SecComp(EpkC(lCx), x+) then
//The target is on C’s left sub-tree
Let SL invoke SecSearch(C.Le f tChild, Rect).

else
//C is the potential target.
if SecComp(EpkC(lCy), y+) and

not SecComp(EpkC(lCy), y−) then
//C is the desired node
Add C toWr.

SecSearch(C.LeftChild,Rect)
SecSearch(C.RightChild,Rect)

else
(same as then clause with “x” and “y” exchanged)

because, according to the protocol execution, ∀w ∈ Wr, x− ≤ lwx ≤ x+ and
y− ≤ lwy ≤ y+ must be satisfied simultaneously.

The completeness is proved as follows. Let the true result set denoted
byW∗

r , the set of pruned nodes be P̄ and the set of other nodes be P . Note
that P ∩ P̄ = ∅ and P ∪ P̄ = W . Because the algorithm will examine all
the nodes in P , the aim is to prove for each iteration ∀w ∈ W∗

r ,w �∈ P̄.
There are three possible results in each round when C is compared with

Rect: (1) C is to the left (or on the top) of Rect, (2) C is to the right (at the
bottom) of Rect, or (3) otherwise. In the first two situations, we can safely
prune a whole branch of the subtree because it can be assured that the nodes

85

4.7. Secure Task Assignment

in P̄ are not inside Rect. In the third situation, the algorithm does not prune
any nodes. Instead, it adds the nodes of both subtrees into P . Therefore,
for all iterations, the nodes added to P̄ will not appear in the result set.
Combined with the correctness, completeness is obtained.

Referring to Figure 4.2, for example, suppose we want to search the
workers in the vicinity of t2 within the range of 50 (i.e., D̂ = 50). Since
lt2 = (140, 90), we have x+ = EpkC(190), x− = EpkC(90), y+ = EpkC(140)
and y− = EpkC(40). The search process starts from w1 (the root of the tree),
which is an X-splitting node according to the dictionary inquiry. Because
SecComp(lw1x

, x−) = smaller, it means that Rect does not include w1 and it
is on w1’s right hand side. Thus it is not necessary to examine the left child
(w5) and the algorithm turns to the right sub-tree. In the second iteration,
w2 is verified as being inside Rect, hence the algorithm adds w2 to the result
setWr, and continues the search by exploring both of w2’s sub-trees. Simi-
larly, after the comparison, we can prune the left child w6 and add w3 to the
result set. In the final round, we examine both of w3’s sub-trees and filter
out w4 and w7. Therefore, the final result set isWr = {w2,w3}.

In practice, the size ofWr will be small as there are only limited number
of workers close to a task, which means generally that a great number of
nodes can be pruned during each iteration. Thus SecSeach can output the
desired worker set efficiently, for which we compute the exact distance be-
tween task and worker using SecDisCal. Our experiments in Section 4.9 also
show that the proposed protocol is scalable for large datasets.

4.7 Secure Task Assignment

In this section, we first study the task assignment strategy, and then propose
a secure assignment framework.

4.7.1 Assignment Strategy

Many existing task assignment models, such as [75], [116] and [130], con-
cern the criterion of minimizing overall worker travel costs and can be ap-
plied to our framework. Note that our main contribution is to protect lo-

86

4.7. Secure Task Assignment

cation privacy. To make the process of spatial crowdsourcing complete, we
borrow the assignment strategy from [116] and introduce our assignment
strategy as follows.

Suppose that not all workers are trustworthy and there is an associ-
ated probability value concerning the likelihood of certain tasks being per-
formed, thus the task acceptance is probabilistic. Let the probability of a
worker performing a task (called acceptance probability) depend on the dis-
tance between their location and the target’s location. More precisely, given
a task ti and a worker wj, we assume the acceptance probability decreases
linearly as the distance becomes larger, and is zero when the distance ex-
ceeds the worker’s maximum travel distance. The acceptance probability
can be formally defined as

APtiwj =

⎧⎨⎩ −
||lti−lwj ||

Dwj
+ 1, if 0 < ||lti − lwj || < Dwj

0, otherwise

Based on the acceptance probability of workers with respect to a task,
a confidence probability can be defined for each task indicating how likely
the task will be accepted. A task is successfully assigned if the confidence
probability is greater than a given threshold (i.e., denoted as α). Given a set
of k workers and a task ti, the confidence probability is defined as CPti =

1−∏k
j=1(1− APtiwj), which is the probability that at least one worker will

accept the task. If the confidence probability is no less than α, the task can
be assigned to these k workers. In fact, there are multiple groups of workers
available for a task.

Another restriction of the task assignment is the acceptance number Twj

for each worker, which prohibits simultaneously assigning more than Twj

tasks to a worker wj.
Overall, given the task set T , the worker setW , the distance matrixM,

and the confidence probability threshold α, task assignment aims to suc-
cessfully assign as many tasks as possible, under the conditions:

∀ti ∈ T ,wj ∈ W , ||lti − lwj || ≤ Dwj ,

CPti ≥ α, and Nwj ≤ Twj .

87

4.7. Secure Task Assignment

This problem is similar to the one proposed in [116], which has been
proved to be an NP hard problem. Below we introduce a greedy approach.
For each task, we select one proper worker set as the result from the poten-
tial assignment sets if this selected set (1) has the shortest average distance;
and (2) does not contradict the restriction. The selection step stops when no
more proper assignments exist. For illustration, we use example in Figure
4.2 to demonstrate the task assignment. Suppose maximum travel distance
of all the workers is (D̂) is 100. After the pruning process, the distance and
the acceptance probability matrices are given as:⎛⎜⎜⎜⎜⎝

w1 w2 w3

t1 19.2 51.0 68.0
t2 91.2 40.3 45.3
t3 23.9 79.1 91.2

⎞⎟⎟⎟⎟⎠
We can derive the acceptance probabilities as follows:⎛⎜⎜⎜⎜⎝

w1 w2 w3

t1 0.81 0.49 0.32
t2 0.09 0.60 0.55
t3 0.76 0.21 0.09

⎞⎟⎟⎟⎟⎠
Let α = 0.7, we can group workers and produce the potential worker

groups as shown in Table 4.2.

t1 w1, < w1,w2 >, < w1,w3 >, < w1,w2,w3 >
t2 < w2,w3 >, < w1,w2,w3 >
t3 w1, < w1,w2 >, < w1,w3 >, < w1,w2,w3 >

Table 4.2: Potential assignments for each task.

Suppose Tw1 = 2, Tw2 = 1 and Tw3 = 1. Firstly, for task t1, w1 is the near-
est candidate, thus t1 is assigned to w1. Next, because the set < w2,w3 >

has a shorter average distance (42.8) and does not violate the restriction, t2
is assigned to this set. Lastly, since w1 is able to accept one more task and it
is closest to t3, we assigned t3 to w1.

88

4.7. Secure Task Assignment

4.7.2 Secure Assignment

To adopt the assignment strategy to our framework, we need to compute
worker’s acceptance probability based on the task-worker distance. One
challenge is that if we adopt SecDisCal directly to allow SC to obtain the dis-
tance, it may induce a security threat. In particular, if SC is corrupted and
observes a set of tasks and the corresponding encrypted values in advance
(also known as the known-ciphertext attack [123]), some distance-recovery
attack [108] can be carried out to deduce other workers’ locations. For ex-
ample, if three tasks are leaked, the corrupted SC may get the distances
between wi and these tasks, establish three equations and consequently de-
duce the real location of wi by solving these equations.

A necessary condition to breach the location privacy by leveraging the
Euclidean distance results is that the adversary establishes equations by
using tasks real locations in advance. To prevent the adversary from es-
tablishing such equations, we can hide the task and worker identifies and
break their relationships. Following this intuition, we propose to carry out
a random permutation on the workers’ identities for each task. In this case,
though the SC knows the distance values, it cannot successfully deduce the
real identities of workers. As a result, a secure protocol, SecAssign, is pro-
posed in Algorithm 4.7, in which both servers carry out the task assignment
interactively.

Assume that unnecessary task-worker pairs are already pruned by run-
ning SecSearch and let Wri be the resulting worker sets for the task ti after
pruning. For each task, a random permutation is applied to the neighbor-
ing workers’ identities. The objective of the permutation is to muddle the
identities of the task-worker pairs so that SC is not able to know which dis-
tance value belongs to which pair. Note that the random permutation is
independently chosen for each task. Only the SL possesses the random per-
mutations and can recover the real mapping. In the following, the ’*’ sym-
bol corresponds to the disturbed identities. After executing SecDisCal, the
SL sends the encrypted distance to the SC. Afterwards, the SC packs the
received distances into a distance vector D∗i , and decrypts the encrypted
distances. Then the potential worker groups are derived based on the con-
fidence probabilities and other assignment restrictions. Note that for the SC

89

4.8. Analysis

Algorithm 4.7 SecAssign

Input: SL has the promising worker setWri for each task
Output: SL knows the task assignment results

for i = 1 to |T | do
Permute workers’ identitiesW∗

ri
= Πi(Wri)

for w∗j ∈ W∗
ri

do

SL and SC: Execute SecDisCal(EpkC(lti), EpkC(lw∗j))

SL: Send d∗j = EpkC(|lti − lwj |2) to SC
SC:
(a) Pack the distances d∗j into a distance vector D∗i
(b) Decrypt the distance vector M∗

i = DskC(D
∗
i)

(c) Calculate the acceptance probability vector P∗i based on M∗
i

(d) Derive the potential worker groups G∗i based on P∗i and other re-
strictions
(e) Send C∗ = EpkL(G

∗
i) to SL

SL:
(a) Decrypt G∗i = DskL(C

∗)
(b) Restore Gi = Π−1

i (G∗i)
SL:
Carry out the assignment based on the potential worker groups using
greedy approach

the identities of the workers are disturbed, therefore the real task-worker
relationships are unclear for the SC. The resulting worker groups are then
encrypted using pkL and sent to the SL. Next, the SL performs the decryp-
tion and re-permutation to obtain the real potential worker groups. Finally,
the SL carries out the assignment based on all the potential worker groups
using the greedy approach discussed in the above subsection.

4.8 Analysis

In this section we analyze the security and complexity of the proposed
framework.

90

4.8. Analysis

4.8.1 Security Analysis

In this subsection, we analyze the security of SKD-tree and the proposed
protocols accordingly.

The related security analysis of SecDisCal and SecMul can be found in
[118]. In the following, we focus on the secure index protocols and secure
assignment protocols.

SecVerifySide: We first analyze the location privacy information the SC

can observe during the execution. The SC only knows the identity of P,
and the partial coordinate differences between the inserted node C and P.
Therefore, it cannot learn any sensitive information. Moreover, the SC does
not know whether C is inserted as P’s left or right sub-tree. The probability
of guess is 1/2. However, since the coin flipping is independent each time,
the probability of deriving the inserting path of C is quite small.

SecComp: Similar to the analysis of SecVerifySide, the SC is not able to
know which number is larger, while the SL can obtain the final result.

SecInsert & SecSearch: These two protocols mainly use SecVerifySide and
SecSeach as sub-routines, therefore the security is implied.

SecAssign: The random permutation of workers’ identities for each task
makes it difficult for the adversary to derive the workers’ real locations. Af-
ter the permutation, although the distance value is disclosed, the identity of
the task-worker pair corresponding to the distance value remains unknown.
In this case, an adversary is not able to correctly establish the equations. In
addition, the adversary is not able to leverage these equations to derive the
distance, because the relations between these equations are confused. As a
result, a distance recovery attack (such as the one in [108]) cannot be suc-
cessful.

To formally prove the security of the proposed protocols, we adopt a
simulation-based proof technique. In this technique, there two different
worlds: the ’real’ world and the ’ideal’ world. The real world refers to the
scenarios where the actual protocol executes. The ideal world exists as an
external trusted party that can help all other parties do the computation. It
is assumed that no attacks can be carried out in the ideal world. Therefore,
if we can construct a simulator to show that the real protocol behaves like
an idealized one, the security is implied. The simulator typically works by

91

4.8. Analysis

simulating a corrupted party in the ideal world. The only thing the simula-
tor can do in the ideal world is to choose the corrupted party’s input.

The formal security definitions of a protocol in the semi-honest model in
SMC are as follows.

Definition 4.1. Let {Dn}n∈N and {En}n∈N be two distributions or ensembles
indexed by a security parameter n, then we say they are computationally indis-
tinguishable, if for any non-uniform polynomial time algorithm A the following
quantity is a negligible function in n:

δ(n) = | Pr
x∈Dn

[A(x) = 1]− Pr
x∈En

[A(x) = 1]|.

In other words, any polynomial-time algorithm trying to distinguish between these
two distributions will only perform negligibly better than if one were to just guess.

Definition 4.2. [119] Let P be a protocol for computing a function f by two par-
ties. Suppose party A (resp. B) computes the function fA(x, y) (resp. fB(x, y)),
where x, y are the inputs of A and B, respectively. The view of a party is what it
sees during the execution. The view of A (resp. B), denoted by VA (resp. VB), is
defined as:

VA = (x, r,m1, . . . ,mt)

VB = (y, r,m1, . . . ,mt)

where r represents the randomness and mi represents the messages passed between
parties.

We say protocol P is secure in the semi-honest model if there exists probabilistic
polynomial time (PPT) simulators S1 and S2 such that:

S1(x, fA) ≡ VA (4.3)

S2(y, fA) ≡ VB (4.4)

where ≡ denotes computational indistinguishability.

In other words, a protocol is secure if its execution can be simulated such
that the distribution of the simulated execution is computationally indistin-
guishable from the real one.

92

4.8. Analysis

In our work, all proposed protocols are running by two parities. We
summarize the characteristics of the proposed protocols and prove their se-
curity by the following theorem.

Theorem 4.1. Suppose that A and B run a protocol P, in which all messages
passed from A to B are encrypted using a secure homomorphic encryption scheme,
and all messages passed from B to A are uniformly distributed and are independent
of B’s inputs. Then we say protocol P is secure under the semi-honest adversaries
model.

Proof. Firstly, consider the scenario that A is corrupted. In this case, we can
construct a simulator, S1, to simulate A’s view in the following way: for
every message that A receives from B, S1 randomly picks a random num-
ber from a certain domain and encrypts it. Since the encryption scheme is a
semantically secure scheme that generates ciphertexts which are uniformly
distributed, the simulatedmessage is computationally indistinguishable from
the real one. That is, equation (4.3) holds. Secondly, if B is corrupted, we
construct a simulator S2 to simulate themessages sent by A. Similarly, let S2
picks a random element and encrypts it. Any PPT adversary cannot distin-
guish the simulators encryption of a random number from A’s encryption
of the correct computation, which means equation (4.4) holds.

By this theorem, the protocols SecDisCal, SecMul, SecVerifySide, SecComp
and SecAssign are secure, because the messages transmitted in these proto-
cols are either ciphertexts or random numbers that are independent of the
private input. The security of SecInsert and SecSeach are also ensured be-
cause they are the sub-routines of SecVerifySide and SecComp, respectively.

4.8.2 Complexity Analysis

We analyze the complexity of HESI by the number of operations, i.e., en-
cryption, decryption and exponentiation. We assume that all operations us-
ing the Paillier cryptosystem cost a similar amount of time. Suppose there
are m tasks and n workers in total.

When inserting a node in the SKD-tree, it costs 4 encryptions and 3 de-
cryptions to find the appropriate position by calling SecVerifySide, i.e., 7 op-

93

4.8. Analysis

erations in total. Similar to the binary search tree, the complexity of the
SKD-tree for insertion is O(n) in the worst case and O(log n) on average.
Thus, the complexity of constructing an SKD-tree is bounded by O(n2) at
worst and O(n log n) on average.

The pruning process in the SKD-tree requires 4 encryptions to form the
search range Rect, and the SecComp protocol requires 5 operations (2 encryp-
tions and 3 decryptions). The pruning process is basically a range search
problem on a KD-Tree, which has been well studied with the conclusion
that the average complexity for a range search in a k-dimensional KD-Tree
is O(k + log n), and for the worst case it can be given by O(kn1−

1
k) [131].

Therefore in a 2-dimensional space, the complexity of pruning is bounded
by O(

√
n) in the worst case and O(log n) on average.

The distance computation requires 8 cryptographic operations to multi-
ply two integers using SecMul. Thus, the complexity of executing SecDisCal
is 2+ 8 ∗ 2+ 1 = 19. The total complexity of the distance computation is
determined by the number of worker-task pairs for comparison. Basically,
the baseline (index-free) solution needs to compare all possible worker-task
combinations, which is subject to complexity of 19mn, which is of order
O(mn). In our framework, let q be the maximum number of workers ad-
jacent to a task: the total complexity of computing distances for m tasks is
bounded by 19mq, which is of order O(mq).

In terms of task assignment, let Q be the average complexity for picking
a satisfactory worker set from the potential assignment sets for one task.
The total assignment complexity is bounded by mQ.

Table 4.3: Complexity summary.

Operations Index-based Index-freeAverage Worst
Tree construction O(n log n) O(n2) -Pruning O(m log n) O(m

√
n)

Distance computation O(mq) O(mn)
Task assignment mQ

Table 4.3 summarizes the details. By comparing the computational com-
plexity, with the exception of the task assignment step, it can be seen that
our index-based approach is bounded by O((m+ n) log n+mq) on average

94

4.9. Performance Evaluation

while the index-free method costs O(mn). The advantage of indexing will
be more significant when n is large. Our experiment results show that the
index-based approach has good scalability and significantly improves the
performance.

For each worker or task requester, the computational cost at the client
side (excluding server computational costs) is comparable to non-encryption
approaches, because the client side only needs to perform a small number
of encryption/decryption operations, which costs less than one second ac-
cording to our experiments.

4.9 Performance Evaluation

In this section, we evaluate the performance of the proposed framework
using two real-world datasets. All experiments were implemented in C++
on a Linux machine with a 3.47GHz Intel Xeon CPU and 12GB RAM.

4.9.1 Benchmark Data

The Yelp dataset is a collection of user reviews about local businesses, such
as restaurants. It includes users’ comments, check-ins and business infor-
mation. We consider each Yelp user as an SC worker with their check-in as
the location, and assume that the restaurants are the specified task targets.
The Gowalla dataset is a location-based social network dataset where users
share their locations with their friends. Each Gowalla user is considered
to be an SC worker, and their location is the most recent check-in. Each
check-in point is also modeled as a task location.

In our experiments, 10, 000 workers and 5, 000 tasks were chosen from
both datasets. It is assumed that each worker’s maximum number of tasks
(Ti) and maximum travel distance (Di) are the same. By default, we set Ti to
5, set Di = 1km for the Yelp dataset and Di = 10km for the Gowalla dataset.
All geographic coordinates of locations are transformed to projection coor-
dinates using the Universal Transverse Mercator (UTM) projection. We ran
each experiment five times and report the average runtime.

95

4.9. Performance Evaluation

4.9.2 Experimental Results

4.9.2.1 SKD-tree Evaluation

In this subsection, we evaluate the performance of SKD-tree from different
aspects.

We first evaluate the scalability of our tree construction method. Two
Paillier key sizes are used: K = 512 bits and K = 1024 bits. We vary
the number of workers from 1000 to 10, 000 and record the corresponding
runtime for building the SKD-tree. The results are presented in Figure 4.4
and show that the runtime for tree construction achieves good scalability
on both datasets. In addition, we observe that the encryption key size in-
fluences the performance significantly, which justifies the fact that a trade-
off between privacy and efficiency exists. For example, when the number
of workers in the Yelp dataset is 10, 000, the tree building time is 433s for
K = 512 but increases to 2196s when K = 1024. However, the tree construc-
tion time for K = 1024 is still efficient. In the following experiments, we
used 1024 as the default key size.

4.4.a Build Tree - Yelp 4.4.b Build Tree - Gowalla

Figure 4.4: Evaluation of tree construction.

Next we evaluate the operations on SKD-tree. Because deletion is very
similar to insertion, only the results of insertion and range search are pre-
sented. Figure 4.5.a illustrates the costs of inserting a node into trees of
different size. The y-axis represents the average runtime of inserting a node
(i.e. worker) into the tree. It can be observed that the insertion time increases
on both datasets as the tree size increases. The reason is that more compar-
isons are needed to find an appropriate position for insertion when the tree

96

4.9. Performance Evaluation

becomes larger. However, it can be observed that the trend increases quite
slowly, showing that the insertion operation is scalable to the tree size.

4.5.a Insert Time vs. Tree Size 4.5.b Search Time vs. Tree Size

Figure 4.5: Tree operation evaluation.

To evaluate range search, we invoked 100 random queries with a de-
fault range size of 1km. Figure 4.5.b reports the average search time with
respect to the number of workers, which demonstrates good scalability on
both datasets. Moreover, it costs less time to search the Gowalla dataset be-
cause it is sparser than the Yelp dataset, more unnecessary comparisons are
pruned at each step.

In conclusion, our proposed SKD-tree is scalable in construction, inser-
tion and search, and can be applied to large scale SC environments.

4.9.2.2 Overall Performance Evaluation

We compared the running time of building a tree, computing distances
and assigning tasks by varying the number of workers and tasks on both
datasets respectively. Figure 4.6 reports the results by plotting the logarith-
mic runtime of corresponding components. It can be observed that the dis-
tance computation accounts for the major time consumption, and the costs
of task assignment are comparatively low.

Figures 4.6.a and 4.6.b show that the runtime of distance computation in-
creases linearly with respect to the number of tasks. Taking the Yelp dataset
as an example, the runtime increases from 20.7s to 43.6s when the task num-
ber changes from 1000 to 2000. It demonstrates that our proposed protocols

97

4.9. Performance Evaluation

of computing distance have good scalability with respect to the number of
tasks.

Conversely, Figures 4.6.c and 4.6.d show that the number of workers
hardly has any effect on the runtime of distance computation. This is be-
cause the complexity of distance computation does not increase according
to the actual number of workers. Many unnecessary distance computations
can be discarded by effective pruning enabled by the secure indexing tech-
nique.

4.6.a Yelp w.r.t. tasks 4.6.b Gowalla w.r.t. tasks

4.6.c Yelp w.r.t. workers 4.6.d Gowalla w.r.t. workers

Figure 4.6: Overall Performance.

Secondly, we compare the performance of HESI to the baseline index-
free framework which compares all worker-task pairs for distance informa-
tion. We set the number of tasks as 10 and varied the number of workers
from 100 to 1000. The results are shown in Figure 4.7. It can be seen that the
performance of the baseline framework increases linearly with respect to
the number of workers. The HESI framework shows a clear advantage over
the baseline. This is mainly because HESI is able to prune a large number

98

4.9. Performance Evaluation

of unnecessary distance computations with the contribution of the secure
indexing technique.

4.7.a Yelp 4.7.b Gowalla

Figure 4.7: Performance Improvement.

Lastly, we evaluate the influence of location distribution on distance
computation using synthetic data. We generate three types of location dis-
tribution: uniform, clustered and skewed distribution for worker and task lo-
cations. A uniform distribution was generated by randomly picking 1000
points from a 100km× 100km rectangle centered on Los Angeles. The clus-
tered distribution consists of 10 clusters, each containing 100 points and hav-
ing an isotropic Gaussian distribution with a variance of 20km. The skewed
distribution involves only one big cluster with 1000 points. We recorded
the runtime of distance computation for different worker and task location
distribution. Table 4.4 reports the results.

Tasks
Uniform Clustered Skewed

Workers
Uniform 0.28s 206s 218s
Clustered 0.24s 252s 228s
Skewed 0.16s 143s 85s

Table 4.4: Performance of distance computation for different location distri-
bution.

It can be seen that the distance computation runs longer when the dis-
tribution of task locations is clustered or skewed, regardless of the variation
in the distribution of worker locations. This can be explained as follows.
Recall that we invoke SecSearch protocol to find nearby workers for each

99

4.9. Performance Evaluation

task. The cost of the search process can be neglected for those tasks with-
out nearby workers, because it is only necessary to compare the root node
of SKD-tree when executing the protocol. For comparison, we consider the
queries for tasks involving nearby workers as costly queries, and assume the
corresponding costs are the same. Therefore, the results in Table 4.4 can be
explained by the fact that when the distribution of task locations is clus-
tered or skewed, the number of costly queries is large, resulting in longer
running time. For example, let us consider a simple clustered situation with
1000 task-worker neighboring pairs in total. If there are 100 clustered tasks
and 10 workers located near the cluster center, there are 100 costly queries.
By contrast, if there are 100 workers within a cluster and 10 tasks are closed
to the cluster center, only 10 costly queries are needed.

4.9.2.3 Communication Cost Evaluation

In this section, we evaluate the communication overhead between two servers
in the proposed framework. Specifically, we record the total size of data that
transferred during the executions of the secure protocols. Table 4.5 shows
the results with respect to different numbers of workers and tasks. It can
be seen that the cost changes from 8.18MB to 26.25MB when the number of
workers varies from 2000 to 10000, and changes from 5.24MB to 21.83MB
when the number of tasks varies from 1000 to 5000. The result shows that
the extra communication overhead due to the dual-server design is accept-
able, and our proposed framework is feasible in practice.

Table 4.5: Communication cost.

#Workers Comm. Cost (MB) #Tasks Comm. Cost (MB)
2000 8.18 1000 5.24
4000 10.95 2000 8.63
6000 16.20 3000 13.35
8000 20.22 4000 17.39
10000 26.25 5000 21.83

100

4.10. Conclusions

4.9.2.4 Task Assignment Evaluation

For comparison, a baseline assignment model is simulated by assigning a
task to a nearby worker who decides whether to accept the task request
based on the distance. In this experiment there are 1000 workers and 5000
tasks. Each worker’s Ti equals 5 and D̂ is chosen from [1km, 5km, 10km]
for Yelp and [10km, 15km, 20km] for Gowalla. We examine the number of
assigned tasks and the average travel cost. Note that a worker may accept
multiple tasks. In this case the cost is computed by averaging the distances
with respect to the number of the tasks he/she accepted. The results are
presented in Table 4.6 and Table 4.7, respectively. It can be seen that our as-
signment solution is able to disseminate more tasks to workers while main-
taining lower travel costs. Hence, our proposed solution is effective for SC
task assignment.

D̂ = 1km D̂ = 5km D̂ = 10km
base HESI base HESI base HESI

NO. of tasks 539 743 593 834 641 898
Avg. cost (km) 0.81 0.72 4.02 3.43 6.21 5.87

Table 4.6: Task assignment evaluation on Yelp.

D̂ = 10km D̂ = 15km D̂ = 20km
base HESI base HESI base HESI

NO. of tasks 483 531 553 674 694 752
Avg. cost (km) 6.13 5.47 11.23 9.42 14.61 12.94

Table 4.7: Task assignment evaluation on Gowalla.

4.10 Conclusions

In this chapter, we proposed a novel privacy-preserving framework for spa-
tial crowdsourcing, which ensures that user locations are never released to
anyone, yet the system is still able to assign tasks to workers in an effi-
cient way. In particular, we encrypt all location information using the Pail-
lier cryptosystem. To calculate worker-task distance without knowing the

101

4.10. Conclusions

actual locations of workers and tasks, we proposed a dual-server design
which uses homomorphic encryption to conduct computations based on
encrypted data. To improve the efficiency, we advocated a secure indexing
technique and proposed an SKD-tree to index all encrypted worker loca-
tions for fast pruning. The key innovation of our framework, compared to
existing work in the field, is threefold: (1) a new encrypted data based spa-
tial crowdsourcing framework for the SC community; (2) a secure SKD-tree
structure to store and index encrypted data for fast search; and (3) ensured
data privacy (including worker and requester privacy) and data security,
whereas existing works only limit to worker privacy. In our future work,
we will study the optimization of the SKD-tree for further improvement.

Moreover, since our framework provides useful operations such as se-
cure distance computation, it can also be used to support a variety of other
secure data mining tasks. For example, it can be adopted in the secure
data clustering problem where all data are encrypted, because certain se-
cure computing operation are maintained.

102

Chapter 5

Conclusion

As the arrival of big data era, spatial data mining is facing new challenges.
In this thesis, we have investigated the challenges from three aspects: un-
certainty, condensity, and privacy.

Firstly, we discuss the motivation of uncertain data in real-world appli-
cation. On one hand, the data is inherently uncertain in many applications.
On the other hand, artificial noise may be added deliberately for privacy
protection. It is difficult to process uncertain data because new algorithms
are necessary for the same mining task, and usually they require high com-
putation costs. To show how to solve this challenge, we have studied the
problem of discovering co-location patterns in the context of continuously
distributed uncertain data. The spatial data are modeled as multivariate
Gaussian distributions, based on which we formulate the problem of prob-
abilistic Co-location pattern mining and develop a efficient framework for
computing and verifying the neighborhood relationship between instances.
Our techniques can be applied to other scenarios where the original data
are represented as multivariate Gaussian distributions.

Secondly, we discuss the necessity of summarizing output patterns. A
spatial data mining framework may generate a large amount of patterns, or
if setting a high threshold, only commonsense patterns are returned. Co-
location pattern mining also suffers this problem. We propose an effective
way to reduce the resulting pattern numbers, while the outputs still deliver
interesting and useful knowledge. Based on the definition of co-location, we
define a newmeasure to appropriately quantify the prevalence distance be-

103

tween two co-location patterns. Then two efficient algorithms are proposed
for summarization. One is a post-mining framework that finds representa-
tive patterns from the set of discovered prevalent co-location patterns. The
other one, which is more efficient, is to discover representative patterns di-
rectly from the spatial data set. Though the techniques are devised for co-
location pattern mining, we believe that the ideas can be applied to other
pattern mining tasks, especially the mine-and-summarize paradigm.

Thirdly, we address the privacy issue and focus on the problem of pro-
tecting location privacy in spatial crowdsourcing. Different from traditional
privacy-preserving techniques, we encrypt the target location data using
cryptographic algorithms, and make sure the plaintext will not expose to
the unwanted parties during the whole time. The challenge lies in how to
process encrypted data, e.g., numerical comparing and distance comput-
ing, without decrypting the ciphertext. We adopt a duel-server setting, and
design security protocols covering the process from worker registration to
task assignment in spatial crowdsourcing. To improve the performance, we
devise a novel secure indexing technique to index all encrypted data for
fast data retrieval. We show that the security and efficiency is a trade-off
and it takes efforts to balance these two factors. The proposed framework
and techniques are not limited to spatial crowdsoucing scenario. It can be
easily extended to other cloud computing applications where user data are
encrypted and outsourced.

The challenges of SDM are not limited to these three prospectives. In
fact, as the development of big data analysis, traditional mining techniques
are not able to handle new characteristics of spatial data, such as fast varia-
tion, continual evolving and large volume. For future work, we will inves-
tigate these challenges more thoroughly, and apply the resulting results to
solve more real-world problems.

104

References

[1] Shashi Shekhar, Pusheng Zhang, Yan Huang, and Ranga Raju Vat-
savai. Data Mining: Next Generation Challenges and Future Directions.
AAAI/MIT Press, 2003.

[2] Deren Li, Shuliang Wang, Hanning Yuan, and Deyi Li. Software and
applications of spatial data mining. Wiley Interdisc. Rew.: Data Mining
and Knowledge Discovery, 6(3):84–114, 2016.

[3] Majid Shishehgar, Seyed Nasirodin Mirmohammadi, and Ah-
mad Reza Ghapanchi. A survey on data mining and knowledge dis-
covery techniques for spatial data. IJBIS, 19(2):265–276, 2015.

[4] Shashi Shekhar, Pusheng Zhang, and Yan Huang. Spatial data min-
ing. In Data Mining and Knowledge Discovery Handbook, 2nd ed., pages
837–854. 2010.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for min-
ing association rules in large databases. In VLDB, pages 487–499,
1994.

[6] Shashi Shekhar, Paul R. Schrater, Ranga Raju Vatsavai, Weili Wu, and
Sanjay Chawla. Spatial contextual classification and prediction mod-
els for mining geospatial data. IEEE Trans. Multimedia, 4(2):174–188,
2002.

[7] Pusheng Zhang, Yan Huang, Shashi Shekhar, and Vipin Kumar.
Exploiting spatial autocorrelation to efficiently process correlation-
based similarity queries. In SSTD, pages 449–468, 2003.

105

References

[8] Baris Kazar, Shashi Shekhar, andDavid J. Lilja. Parallel formulation of
spatial auto-regression. In Army High-Performance Computing Research
Center (AHPCRC) Technical Report no. 2003-125, 2003.

[9] Monica Wachowicz and Tianyu Liu. Finding spatial outliers in collec-
tive mobility patterns coupled with social ties. International Journal of
Geographical Information Science, 30(9):1806–1831, 2016.

[10] Chongcheng Chen, Jiaxiang Lin, Xiaozhu Wu, and Jianwei Wu. Par-
allel and distributed spatial outlier mining in grid: Algorithm, design
and application. J. Grid Comput., 13(2):139–157, 2015.

[11] S Shekhar and Y Huang. Discovering Spatial Co-location Patterns: a
Summary of Results. Advances in Spatial and Temporal Databases, pages
236–256, 2001.

[12] Hien Duy Nguyen, Geoffrey J. McLachlan, and Ian A. Wood. Mix-
tures of spatial spline regressions for clustering and classification.
Computational Statistics & Data Analysis, 93:76–85, 2016.

[13] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. A demonstration of
geospark: A cluster computing framework for processing big spatial
data. In ICDE, pages 1410–1413, 2016.

[14] Johannes Niedermayer, Andreas Züfle, Tobias Emrich, Matthias
Renz, Nikos Mamoulis, Lei Chen, and Hans-Peter Kriegel. Proba-
bilistic Nearest Neighbor Queries on Uncertain Moving Object Tra-
jectories. PVLDB, 7(3):205–216, 2013.

[15] Yi Xia, Yirong Yang, and Yun Chi. Mining Association Rules with
Non-uniform Privacy Concerns. In DMKD, pages 27–34, 2004.

[16] Thanh T. L. Tran, Charles A. Sutton, Richard Cocci, YanmingNie, Yan-
lei Diao, and Prashant J. Shenoy. Probabilistic Inference over RFID
Streams in Mobile Environments. In ICDE, pages 1096–1107, 2009.

[17] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Ver-
hein, and Andreas Züfle. Probabilistic Frequent Itemset Mining in
Uncertain Databases. In SIGKDD, pages 119–128, 2009.

106

References

[18] Lizhen Wang, Jun Han, Hongmei Chen, and Junli Lu. Top-k proba-
bilistic prevalent co-location mining in spatially uncertain data sets.
Frontiers of Computer Science, 10(3):488–503, 2016.

[19] Mark Pogson and Pete Smith. Effect of spatial data resolution on un-
certainty. Environmental Modelling and Software, 63:87–96, 2015.

[20] Liming Zhan, Ying Zhang, Wenjie Zhang, and Xuemin Lin. Finding
top k most influential spatial facilities over uncertain objects. IEEE
Trans. Knowl. Data Eng., 27(12):3289–3303, 2015.

[21] L. SrikarMuppirisetty, Tommy Svensson, andHenkWymeersch. Spa-
tial wireless channel prediction under location uncertainty. IEEE
Trans. Wireless Communications, 15(2):1031–1044, 2016.

[22] Yan Huang, Shashi Shekhar, and Hui Xiong. Discovering Colocation
Patterns from Spatial Data Sets: A General Approach. IEEE Trans.
Knowl. Data Eng., 16(12):1472–1485, 2004.

[23] Lizhen Wang, Lihua Zhou, Joan Lu, and Jim Yip. An Order-
clique-based Approach for Mining Maximal Co-Locations. Inf. Sci.,
179(19):3370–3382, 2009.

[24] Jin Soung Yoo and Mark Bow. Mining Top-k Closed Co-location Pat-
terns. In ICSDM, pages 100–105, 2011.

[25] Byoungyoung Lee, Jinoh Oh, Hwanjo Yu, and Jong Kim. Protecting
Location Privacy Using Location Semantics. In SIGKDD, pages 1289–
1297, 2011.

[26] Claudio Agostino Ardagna, Marco Cremonini, Ernesto Damiani, Sab-
rina De Capitani di Vimercati, and Pierangela Samarati. Location Pri-
vacy Protection Through Obfuscation-Based Techniques. In DBSec,
pages 47–60, 2007.

[27] Xin Zhang, NikosMamoulis, DavidW. Cheung, and Yutao Shou. Fast
Mining of Spatial Collocations. In KDD, pages 384–393, 2004.

107

References

[28] Hui Xiong, Shashi Shekhar, Yan Huang, Vipin Kumar, Xiaobin Ma,
and Jin Soung Yoo. A Framework for Discovering Co-Location Pat-
terns in Data Sets with Extended Spatial Objects. In SDM, pages 78–
89, 2004.

[29] Jin Soung Yoo, Shashi Shekhar, andMete Celik. A Join-Less Approach
for Co-Location Pattern Mining: A Summary of Results. In ICDM,
pages 813–816, 2005.

[30] Jin Soung Yoo and Shashi Shekhar. A Joinless Approach for Mining
Spatial Colocation Patterns. IEEE Trans. Knowl. Data Eng., 18(10):1323–
1337, 2006.

[31] Mete Celik, James M Kang, and Shashi Shekhar. Zonal Co-location
Pattern Discovery with Dynamic Parameters. In ICDM, pages 433–
438, 2007.

[32] Sajib Barua and Jörg Sander. SSCP: Mining Statistically Significant
Co-location Patterns. In SSTD, pages 2–20, 2011.

[33] Feng Qian, Qinming He, Kevin Chiew, and Jiangfeng He. Spatial
Co-location Pattern Discovery without Thresholds. Knowl. Inf. Syst.,
33(2):419–445, 2012.

[34] Johannes Niedermayer, Andreas Züfle, Tobias Emrich, Matthias
Renz, Nikos Mamoulis, Lei Chen, and Hans-Peter Kriegel. Proba-
bilistic Nearest Neighbor Queries on Uncertain Moving Object Tra-
jectories. PVLDB, 7(3):205–216, 2013.

[35] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Ver-
hein, and Andreas Züfle. Probabilistic Frequent Itemset Mining in
Uncertain Databases. In KDD, pages 119–128, 2009.

[36] Lizhen Wang, Pingping Wu, and Hongmei Chen. Finding Probabilis-
tic Prevalent Colocations in Spatially Uncertain Data Sets. IEEE Trans.
Knowl. Data Eng., 25(4):790–804, 2013.

[37] Zhi Liu and Yan Huang. Mining Co-locations under Uncertainty. In
SSTD, pages 429–446, 2013.

108

References

[38] Mike Y. Chen, Timothy Sohn, Dmitri Chmelev, Dirk Hähnel, Jeffrey
Hightower, Jeff Hughes, Anthony LaMarca, Fred Potter, Ian E. Smith,
and Alex Varshavsky. Practical Metropolitan-Scale Positioning for
GSM Phones. In UbiComp, pages 225–242, 2006.

[39] Dieter Pfoser and Christian S. Jensen. Capturing the Uncertainty of
Moving-Object Representations. In SSD, pages 111–132, 1999.

[40] Tingting Dong, Chuan Xiao, Xi Guo, and Yoshiharu Ishikawa. Pro-
cessing Probabilistic Range Queries over Gaussian-Based Uncertain
Data. In SSTD, pages 410–428, 2013.

[41] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press,
2005.

[42] Yasuhiko Morimoto. Mining Frequent Neighboring Class Sets in Spa-
tial Databases. In SIGKDD, pages 353–358, 2001.

[43] Jin Soung Yoo and Shashi Shekhar. A Partial Join Approach for Min-
ing Co-location Patterns. In GIS, pages 241–249, 2004.

[44] LizhenWang, Yuzhen Bao, Joan Lu, and Jim Yip. A New Join-less Ap-
proach for Co-location Pattern Mining. In CIT, pages 197–202, 2008.

[45] Yan Huang, Hui Xiong, Shashi Shekhar, and Jian Pei. Mining Confi-
dent Colocation Rules without A Support Threshold. In SAC, pages
497–501, 2003.

[46] Feng Qian, Kevin Chiew, Qinming He, Hao Huang, and Lianhang
Ma. Discovery of Regional Co-location Patterns with k-Nearest
Neighbor Graph. In PAKDD (1), pages 174–186, 2013.

[47] Robert Munro, Sanjay Chawla, and Pei Sun. Complex Spatial Rela-
tionships. In ICDM, pages 227–234, 2003.

[48] Shisheng Yang, Lizhen Wang, Xuguang Bao, and Junli Lu. A frame-
work for mining spatial high utility co-location patterns. In 12th In-
ternational Conference on Fuzzy Systems and Knowledge Discovery, FSKD
2015, Zhangjiajie, China, August 15-17, 2015, pages 595–601, 2015.

109

References

[49] Jundong Li, Aibek Adilmagambetov, Mohomed Shazan Mohomed
Jabbar, Osmar R. Zaı̈ane, Alvaro Osornio-Vargas, and Osnat Wine.
On discovering co-location patterns in datasets: a case study of pol-
lutants and child cancers. GeoInformatica, 20(4):651–692, 2016.

[50] Wenhao Yu. Spatial co-location pattern mining for location-based ser-
vices in road networks. Expert Syst. Appl., 46:324–335, 2016.

[51] Reynold Cheng, Tobias Emrich, Hans-Peter Kriegel, NikosMamoulis,
Matthias Renz, Goce Trajcevski, and Andreas Züfle. Managing uncer-
tainty in spatial and spatio-temporal data. In ICDE, pages 1302–1305,
2014.

[52] Chun Kit Chui, Ben Kao, and Edward Hung. Mining Frequent Item-
sets from Uncertain Data. In PAKDD, pages 47–58, 2007.

[53] Charu C. Aggarwal, Yan Li, JianyongWang, and JingWang. Frequent
pattern mining with uncertain data. In KDD, pages 29–38, 2009.

[54] Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng.
Mining Uncertain Data with Probabilistic Guarantees. In KDD, pages
273–282, 2010.

[55] Yongxin Tong, Lei Chen, Yurong Cheng, and Philip S. Yu. Mining Fre-
quent Itemsets over Uncertain Databases. PVLDB, 5(11):1650–1661,
2012.

[56] R.B.J.T. Allenby and Alan Slomson. How to Count: An Introduction
to Combinatorics. In Discrete Mathematics and Its Applications (2ed.).
CRC Press, 2010.

[57] Yoshiharu Ishikawa, Yuichi Iijima, and Jeffrey Xu Yu. Spatial Range
Querying for Gaussian-Based Imprecise Query Objects. In ICDE,
pages 676–687, 2009.

[58] Mihael Ankerst, Bernhard Braunmüller, Hans-Peter Kriegel, and
Thomas Seidl. Improving Adaptable Similarity Query Processing by
Using Approximations. In VLDB, pages 206–217, 1998.

110

References

[59] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and
Shang-Hua Teng. On Trip Planning Queries in Spatial Databases. In
SSTD, pages 273–290, 2005.

[60] Yan Huang, Jian Pei, and Hui Xiong. Mining Co-Location Patterns
with Rare Events from Spatial Data Sets. GeoInformatica, 10(3):239–
260, 2006.

[61] Lizhen Wang, Lihua Zhou, Joan Lu, and Jim Yip. An Order-
clique-based Approach for Mining Maximal Co-locations. Inf. Sci.,
179(19):3370–3382, September 2009.

[62] Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng. Mining Com-
pressed Frequent-Pattern Sets. In VLDB, pages 709–720, 2005.

[63] Guimei Liu, Haojun Zhang, and Limsoon Wong. Finding Minimum
Representative Pattern Sets. In KDD, pages 51–59, 2012.

[64] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing
Itemset Patterns: A Profile-based Approach. In KDD, pages 314–323,
2005.

[65] Roberto J. Bayardo Jr. Efficiently Mining Long Patterns from
Databases. In SIGMOD, pages 85–93, 1998.

[66] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Dis-
covering Frequent Closed Itemsets for Association Rules. In ICDT,
pages 398–416, 1999.

[67] Toon Calders and Bart Goethals. Mining All Non-derivable Frequent
Itemsets. In PKDD, pages 74–85, 2002.

[68] Natwar Modani and Kuntal Dey. Large Maximal Cliques Enumera-
tion in Sparse Graphs. In CIKM, pages 1377–1378, 2008.

[69] Song Wang, Yan Huang, and Xiaoyang Sean Wang. Regional Co-
locations of Arbitrary Shapes. In SSTD, pages 19–37, 2013.

111

References

[70] Claudio Silvestri, Francesco Cagnin, Francesco Lettich, Salvatore Or-
lando, andMonicaWachowicz. Mining condensed spatial co-location
patterns. In Proceedings of the 4th ACM SIGSPATIAL International Work-
shop on Mobile Geographic Information Systems, MobiGIS 2015, Bellevue,
WA, USA, November 3-6, 2015, pages 84–87, 2015.

[71] Xuguang Bao, Lizhen Wang, and Hongmei Chen. Ontology-based
interactive post-mining of interesting co-location patterns. In Web
Technologies and Applications - 18th Asia-Pacific Web Conference, APWeb
2016, Suzhou, China, September 23-25, 2016. Proceedings, Part II, pages
406–409, 2016.

[72] Ghazi Al-Naymat. Enumeration of Maximal Clique for Mining Spa-
tial Co-location Patterns. In AICCSA, pages 126–133, 2008.

[73] James Cheng, Linhong Zhu, Yiping Ke, and Shumo Chu. Fast Algo-
rithms for Maximal Clique Enumeration with Limited Memory. In
KDD, pages 1240–1248, 2012.

[74] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Second Edition. MIT Press, 2001.

[75] Leyla Kazemi and Cyrus Shahabi. Geocrowd: Enabling query an-
swering with spatial crowdsourcing. In SIGSPATIAL, pages 189–198,
2012.

[76] Yongjian Zhao and Qi Han. Spatial crowdsourcing: Current state and
future directions. IEEE Communications Magazine, 54(7):102–107, 2016.

[77] Yongxin Tong, Jieying She, Bolin Ding, Libin Wang, and Lei Chen.
Online mobile micro-task allocation in spatial crowdsourcing. In
ICDE, pages 49–60, 2016.

[78] Layla Pournajaf, Li Xiong, Vaidy S. Sunderam, and Slawomir
Goryczka. Spatial Task Assignment for Crowd Sensing with Cloaked
Locations. In MDM, pages 73–82, 2014.

112

References

[79] Hien To, Gabriel Ghinita, and Cyrus Shahabi. A Framework for Pro-
tecting Worker Location Privacy in Spatial Crowdsourcing. PVLDB,
7(10):919–930, 2014.

[80] Sangho Lee, Jong Kim, and Yoonho Kim. Preserving source- and sink-
location privacy in sensor networks. Comput. Sci. Inf. Syst., 13(1):115–
130, 2016.

[81] Wei Wang, Yingjie Chen, and Qian Zhang. Privacy-preserving lo-
cation authentication in wi-fi networks using fine-grained physical
layer signatures. IEEE Trans. Wireless Communications, 15(2):1218–
1225, 2016.

[82] Rong Yu, Jiawen Kang, Xumin Huang, Shengli Xie, Yan Zhang, and
Stein Gjessing. Mixgroup: Accumulative pseudonym exchanging for
location privacy enhancement in vehicular social networks. IEEE
Trans. Dependable Sec. Comput., 13(1):93–105, 2016.

[83] Hui Zhu, Rongxing Lu, Cheng Huang, Le Chen, and Hui Li. An effi-
cient privacy-preserving location-based services query scheme in out-
sourced cloud. IEEE Trans. Vehicular Technology, 65(9):7729–7739, 2016.

[84] Feilong Tang, Jie Li, Ilsun You, and Minyi Guo. Long-term location
privacy protection for location-based services in mobile cloud com-
puting. Soft Comput., 20(5):1735–1747, 2016.

[85] Shuang Zhao, Xiapu Luo, Bo Bai, Xiaobo Ma, Wei Zou, Xinliang Qiu,
and Man Ho Au. I know where you all are! exploiting mobile social
apps for large-scale location privacy probing. In ACISP, pages 3–19,
2016.

[86] Lichun Li, Rongxing Lu, and Cheng Huang. EPLQ: efficient privacy-
preserving location-based query over outsourced encrypted data.
IEEE Internet of Things Journal, 3(2):206–218, 2016.

[87] Pierangela Samarati. Protecting Respondents’ Identities in Microdata
Release. IEEE Trans. Knowl. Data Eng., 13(6):1010–1027, 2001.

113

References

[88] Bugra Gedik and Ling Liu. Protecting Location Privacy with Person-
alized k-Anonymity: Architecture and Algorithms. IEEE Trans. Mob.
Comput., 7(1):1–18, 2008.

[89] Jie Hu, Liusheng Huang, Lu Li, Mingyu Qi, andWei Yang. Protecting
location privacy in spatial crowdsourcing. In APWeb, pages 113–124,
2015.

[90] Bhuvan Bamba, Ling Liu, Péter Pesti, and Ting Wang. Supporting
Anonymous Location Queries in Mobile Environments with Privacy
Grid. In WWW, pages 237–246, 2008.

[91] Marco Gruteser and Dirk Grunwald. Anonymous Usage of Location-
Based Services Through Spatial and Temporal Cloaking. In MobiSys,
pages 31–42, 2003.

[92] Bugra Gedik and Ling Liu. Location Privacy in Mobile Systems: A
Personalized Anonymization Model. In ICDCS, pages 620–629, 2005.

[93] Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos. PRIVE:
Anonymous Location-based Queries in Distributed Mobile Systems.
In WWW, pages 371–380, 2007.

[94] Agusti Solanas, Josep Domingo-Ferrer, and Antoni Martı́nez-Ballesté.
Location Privacy in Location-Based Services: Beyond TTP-based
Schemes. In PiLBA, 2008.

[95] Josep Domingo-Ferrer. Microaggregation for Database and Location
Privacy. In NGITS, pages 106–116, 2006.

[96] Chi-Yin Chow, Mohamed F. Mokbel, and Xuan Liu. A Peer-to-peer
Spatial Cloaking Algorithm for Anonymous Location-based Service.
In GIS, pages 171–178, 2006.

[97] Gianluca Dini and Pericle Perazzo. UniformObfuscation for Location
Privacy. In DBSec, pages 90–105, 2012.

[98] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and
Kian-Lee Tan. Private Queries In Location Based Services: Anonymiz-
ers Are Not Necessary. In SIGMOD, pages 121–132, 2008.

114

References

[99] Xun Yi, Russell Paulet, Elisa Bertino, and Vijay Varadharajan. Practi-
cal k nearest neighbor queries with location privacy. In ICDE, pages
640–651, 2014.

[100] Yao Shen, Liusheng Huang, Lu Li, Xiaorong Lu, Shaowei Wang,
and Wei Yang. Towards preserving worker location privacy in spa-
tial crowdsourcing. In 2015 IEEE Global Communications Conference,
GLOBECOM 2015, San Diego, CA, USA, December 6-10, 2015, pages
1–6, 2015.

[101] Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. Differentially
Private Grids for Geospatial Data. In ICDE, pages 757–768, 2013.

[102] Eirini C.Micheli, GiorgosMargaritis, and Stergios V. Anastasiadis. Ef-
ficient multi-user indexing for secure keyword search. In EDBT/ICDT,
pages 390–395, 2014.

[103] Bo Cheng, Li Zhuo, Yu Bai, Yuanfan Peng, and Jing Zhang. Secure
index construction for privacy-preserving large-scale image retrieval.
In BDCloud, pages 116–120, 2014.

[104] Sun-Ho Lee and Im-Yeong Lee. A secure index management scheme
for providing data sharing in cloud storage. JIPS, 9(2):287–300, 2013.

[105] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantar-
cioglu. Secure Multidimensional Range Queries over Outsourced
Data. VLDB, 21(3):333–358, 2012.

[106] Haibo Hu, Jianliang Xu, Chushi Ren, and Byron Choi. Processing
Private Queries over Untrusted Data Cloud through Privacy Homo-
morphism. In ICDE, pages 601–612, 2011.

[107] Peng Wang and Chinya V. Ravishankar. Secure and Efficient Range
Queries on Outsourced Databases using Rp-trees. In ICDE, pages
314–325, 2013.

[108] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, and Nikos
Mamoulis. Secure kNN Computation on Encrypted Databases. In
SIGMOD, pages 139–152, 2009.

115

References

[109] Xiang Cheng, Sen Su, Yiping Teng, and Ke Xiao. Enabling Secure and
Efficient kNN Query Processing over Encrypted Spatial Data in the
Cloud. Security and Communication Networks, 2, 2015.

[110] Hung Dang, Tuan Nguyen, and Hien To. Maximum Complex Task
Assignment: Towards Tasks Correlation in Spatial Crowdsourcing.
In IIWAS, page 77, 2013.

[111] Roula Karam and Michele Melchiori. A Crowdsourcing-Based
Framework for Improving Geo-spatial Open Data. In SMC, pages
468–473, 2013.

[112] Peng Cheng, Xiang Lian, Zhao Chen, Rui Fu, Lei Chen, Jinsong Han,
and Jizhong Zhao. Reliable Diversity-Based Spatial Crowdsourcing
by Moving Workers. PVLDB, 8(10):1022–1033, 2015.

[113] Umair ul Hassan and Edward Curry. Efficient task assignment for
spatial crowdsourcing: A combinatorial fractional optimization ap-
proach with semi-bandit learning. Expert Syst. Appl., 58:36–56, 2016.

[114] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, and Linhong
Zhu. Task selection in spatial crowdsourcing from worker’s perspec-
tive. GeoInformatica, 20(3):529–568, 2016.

[115] Peng Cheng, Xiang Lian, Lei Chen, Jinsong Han, and Jizhong Zhao.
Task assignment on multi-skill oriented spatial crowdsourcing. IEEE
Trans. Knowl. Data Eng., 28(8):2201–2215, 2016.

[116] Leyla Kazemi, Cyrus Shahabi, and Lei Chen. GeoTruCrowd: Trust-
worthy Query Answering with Spatial Crowdsourcing. In SIGSPA-
TIAL, pages 304–313, 2013.

[117] Khanh-Hung Dang and Kim-Tuyen Cao. Towards Reward-based
Spatial Crowdsourcing. In ICCAIS, pages 363–368, Nov 2013.

[118] Yousef Elmehdwi, Bharath K. Samanthula, and Wei Jiang. Secure k-
nearest Neighbor Query over Encrypted Data in Outsourced Environ-
ments. In ICDE, pages 664–675, 2014.

116

References

[119] Oded Goldreich. Foundations of Cryptography Volume 2 - Basic Applica-
tions. University Press, Cambridge, 2004.

[120] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols
- Techniques and Constructions. Information Security and Cryptogra-
phy. Springer, 2010.

[121] Bharath K. Samanthula, Fang-Yu Rao, Elisa Bertino, and Xun Yi.
Privacy-Preserving Protocols for Shortest Path Discovery over Out-
sourced Encrypted Graph Data. In IRI, pages 427–434, 2015.

[122] An Liu, Kai Zheng, Lu Li, Guanfeng Liu, Lei Zhao, and Xiaofang
Zhou. Efficient Secure Similarity Computation on Encrypted Trajec-
tory Data. In ICDE, pages 66–77, 2015.

[123] Hans Delfs and Helmut Knebl. Introduction to Cryptography: Principles
and Applications. Springer, 2002.

[124] Pascal Paillier. Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes. In EUROCRYPT, pages 223–238, 1999.

[125] Jake Loftus and Nigel P. Smart. Secure Outsourced Computation. In
AFRICACRYPT, pages 1–20, 2011.

[126] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly Multiparty Computation on the Cloud via Multikey Fully Homo-
morphic Encryption. In STOC, pages 1219–1234, 2012.

[127] Yi Sun, Qiaoyan Wen, Yudong Zhang, Hua Zhang, Zhengping Jin,
and Wenmin Li. Two-Cloud-Servers-Assisted Secure Outsourcing
Multiparty Computation. The Scientific World Journal, 2014:7, 2014.

[128] Jon Louis Bentley. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM, 18(9):509–517, 1975.

[129] Moni Naor and Benny Pinkas. Oblivious Transfer with Adaptive
Queries. In CRYPTO, pages 573–590, 1999.

117

References

[130] Layla Pournajaf, Li Xiong, Vaidy S. Sunderam, and Slawomir
Goryczka. Spatial Task Assignment for Crowd Sensing with Cloaked
Locations. In MDM, pages 73–82, 2014.

[131] D. T. Lee and C. K. Wong. Worst-Case Analysis for Region and Partial
Region Searches in Multidimensional Binary Search Trees and Bal-
anced Quad Trees. Acta Inf., 9:23–29, 1977.

118

References

119

References

Published Work

1. Bozhong Liu, Ling Chen, Xingquan Zhu, Ying Zhang, Chengqi Zhang
andWeidongQiu. Protecting Location Privacy in Spatial Crowdsourc-
ing using Encrypted Data. In EDBT, 2017. Accepted.

2. Bozhong Liu, Ling Chen, Chunyang Liu, Chengqi Zhang and Wei-
dong Qiu. Mining Co-locations from Continuously Distributed Un-
certain Spatial Data. In APWEB, pages 66-78, 2016.

3. Bozhong Liu, Ling Chen, Chunyang Liu, Chengqi Zhang and Wei-
dong Qiu. RCP Mining: Towards the Summarization of Spatial Co-
location Patterns. In SSTD, pages 451-469, 2015.

120

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Mining Co-location Patterns from Uncertain Data
	2.1 Introduction
	2.2 RelatedWorks
	2.3 Problem Definitions
	2.3.1 Co-location Patterns in Deterministic Data
	2.3.2 Co-location Patterns in Gaussian-based Data

	2.4 Probabilistic Participation Ratio Computation
	2.5 Probabilistic Co-location Mining Framework
	2.6 Finding Probabilistic Neighbors
	2.6.1 Minimum Bounding Sphere
	2.6.2 The filtering

	2.7 Performance Study
	2.7.1 Experiment Setup
	2.7.2 Comparisons with other methods
	2.7.3 Efficiency of Filtering
	2.7.4 Parameter Evaluation

	2.8 Conclusion

	3 Summarizing Spatial Co-location Patterns
	3.1 Introduction
	3.2 RelatedWorks
	3.3 Preliminary
	3.3.1 Co-location Patterns
	3.3.2 Co-location Distance Measure
	3.3.3 Problem Statement

	3.4 The RCPFast Algorithm
	3.5 The RCPMS Algorithm
	3.5.1 Optimization Strategy
	3.5.2 Approximation Strategy
	3.5.3 The gen cover set() Function

	3.6 Experimental Study
	3.6.1 Experiments on Synthetic Data
	3.6.2 Experiments on Real Data

	3.7 Conclusions

	4 Protecting Location Privacy in Spatial Crowdsourcing
	4.1 Introduction
	4.2 RelatedWorks
	4.2.1 Location Privacy
	4.2.2 Secure Index
	4.2.3 Task Assignment in SC

	4.3 Preliminariy
	4.3.1 Spatial Crowdsourcing Model
	4.3.2 Threat Model
	4.3.3 Paillier Cryptosystem

	4.4 The HESI Framework
	4.4.1 The Dual-Server Architecture
	4.4.2 The SystemWorkflow

	4.5 Secure Distance Computation
	4.6 Secure Indexing
	4.6.1 SKD-tree
	4.6.2 Fast Pruning

	4.7 Secure Task Assignment
	4.7.1 Assignment Strategy
	4.7.2 Secure Assignment

	4.8 Analysis
	4.8.1 Security Analysis
	4.8.2 Complexity Analysis

	4.9 Performance Evaluation
	4.9.1 Benchmark Data
	4.9.2 Experimental Results

	4.10 Conclusions

	5 Conclusion
	References
	Published Work

