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Preface 

The Chapters within this PhD thesis have been written with the intention of 

submission to scientific journals. The chapters are therefore presented in a typical 

journal format, ready for submission. Chapter 1 has already been published in a 

scientific journal (Functional and Integrative Genomics; IF = 2.265) as a critical 

literature review. Chapters 4 and 5 will be submitted in the near future to scientific 

journals as original research articles. Scientific work, which I have contributed to, is 

listed in Appendix 4, one of these pieces of work has been published in another journal 

(Frontiers in Plant Science; IF =4.495), whilst the other piece of work (a book chapter) 

is in preparation. Given that this thesis is presented as a series of ready to submit 

manuscripts, there is an element of repetition in the introduction of some of the 

chapters. 

 

A foreword 

 

- Albert Einstein

    

 Personally for me, the above quote sums up my PhD journey over the past three 

and a half years. Only through bioinformatics analyses, did true meaning come from the 

observations I made in the laboratory at UTS. To unravel the complexity of one 

organism over three and a half years has been a huge accomplishment for me, one that I 

have immenseley enjoyed; however, with the satisfaction came the challenge, one that I 

found testing at times. By undertaking this PhD, I feel that I have come a long way, 

learning about myself, and seagrasses in many ways. A journey, which gave me 

appreciation for how complex nature can be. As the saying goes - “There’s more than 

meets the eye.” 
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Thesis summary 

Understanding how a keystone marine species responds to its extrinsic 

environment is important to ensure adequate conservation measures are in place, 

especially with increasing reports of climate change and anthropogenic disturbance 

events. For the Southern Hemisphere seagrass, Zostera muelleri, this scenario is no 

different. This keystone species is native to Australia and New Zealand, providing many 

socio-economic benefits to the coastal zone. Over the past few decades, a reduction in 

water quality (light limitation) has led to numerous reports of Z. muelleri meadow loss 

in Australia and New Zealand. Although seagrass biologists have a firm understanding 

of the physiological, morphological and ecological changes within light limited Z. 

muelleri meadows, no current knowledge exists on how Z. muelleri responds to light 

limitation at the transcriptional level. By investigating transcriptional regulation, new 

knowledge was obtained on how this species responds to light limitation, allowing for 

more appropriate conservation measures.  Encompassing the advances in RNA-Seq, this 

project has examined how Z. muelleri responds to light limitation over a 14-day period, 

through transcriptional regulation, photobiology and physiology, both at the nuclear and 

chloroplastic level. Main findings indicate that important regulational shifts occur in 

genes associated with photosynthesis, photo-pigments, carbon metabolism, reactive 

oxygen species (ROS) homeostasis and secondary defence metabolism. Both nuclear 

and chloroplast encoded genes involved in photosynthetic processes have been shown to 

be correlated with downstream changes in photophysiology, and thus are both crucial 

for the response as well as the acclimation to light limitation. This research also 

compared genome-guided transcriptome assembly versus de novo assembly, indicating 

the superiority of genome-guided protocols when a genome is available. Whilst this 

PhD thesis offers a new level of knowledge to seagrass biologists, it also provides 

candidate molecular markers, which can be used in future monitoring efforts and 

population genetic studies. 



 

1 

PhD thesis aims and objectives 

The overall aim of this thesis is to investigate how Zostera muelleri responds to 

light limitation using a multi-disciplinary approach. By combining mRNA-seq and RT-

qPCR protocols with already established photobiology and pigment profiling 

techniques, we will not only obtain a new level of understanding on how this seagrass 

species responds at the transcriptional level, but also how transcriptional regulation is 

linked to downstream changes in photophysiology.  Such work is timely, given that 

seagrasses are increasingly threatened by light limitation within the coastal 

environment. 

 

Objectives 

•• To examine and provide a critical literature review on the current state of 

molecular profiling and omics techniques in seagrass biology, whilst identifying 

key knowledge gaps in previous and current research. 

 

• To address the background knowledge associated with light perception in higher 

plants, seagrasses and Zostera muelleri: fundamental knowledge and further 

direction for research will be discussed. 

 

• To complete in silico characterisation and data mining of the Z. muelleri de novo 

transcriptome, based on whole plant tissue.  

 

• To characterise leaf tissue-specific responses of Z. muelleri to light limitation; to 

establish links between transcriptional regulation of nuclear-encoded genes and 

downstream photophysiology. 

 

• To investigate the expression of chloroplast-encoded photosynthetic genes in Z. 

muelleri in response to light limitation. To designate suitable reference genes 

and link chloroplastic-encoded gene expression with downstream photobiology. 
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