

Drug delivery to the nose:

formulation, deposition and permeation

of poorly soluble drugs

Michele Pozzoli

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

Graduate Research School of Health

Pharmacy

University of Technology Sydney

January 2017

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Production Note: Signature removed prior to publication.

Date: January 2017

ACKNOWLEDGMENTS

"I was just guessing at numbers and figures "Pulling your puzzles apart Questions of science; science and progress Do not speak as loud as my heart" -The Scientist by Coldplay-

To an amazing supervisory team – Associate Professor Fabio Sonvico, whose mentorship over the past few years has helped me to grow as a scientist and as an individual, words cannot explain my infinite gratitude; Professor Daniela Traini, who spurred me from the first day to put into words my work in the laboratory – if my English writing skills have improved even at the slightest, it is all your merit; Professor Paul Young, thank you for your brilliant ideas; lastly Dr. Maria Sukkar, thank you for accepting me at half way of my candidature.

A special thanks to Dr. Lyn Myor for helping me with my English, my writing and for instilling some "cell biology" into my brain; to Dr. Erick Bing Zhu for teaching me how to use all the equipment; to Dr. Hui Xin Ong (YY) for guiding me at the beginning of my PhD... Thank your Boss. Muito Obrigado Gabriela!

To all my Respitech buddies – Thank you Giulia, Emelie, Khanh, Stewie, Mic, Mariam, Alaa, Jesse "The Teddy Bear"; the post-docs: Yang, Wing & Judy, Mehra, Maliheh and Maree. Special thanks to Larissa and Roberto for being such amazing friends... thank you for all the coffee and beers we shared together. Thank you Lala for being the best messy desk mate I could ever ask for.

Thank you to the visiting student from Italy, thank you for making me feel like I was back home in my country: Mariateresa, Gialunca, Matteo, Angelo and the last crazy couple, the blondie and the brunette Carola & Cristina. Special thanks to my favourite Sicilian girl Valentina. Thank you to all the others students especially Summit and Jasper.

In the Graduate School of Health, I would like to thank Sharon for being my friend... even before having the same supervisor.

A special thanks to all the students that I have met during my period abroad in Parma. Special thanks to Adryana, Kenji and Irene for getting me through it!

The lifelong friendship of who has always been there for me, Tommaso, from kindergarten, he has become a source of amazing and crazy experiences. Even though we are 14,000 kilometres apart, there is not day without talking to each other. Thank you Marty.

Thank you Chiara, Grace and Marta for the long-distance friendship... Thank you for your nice words during the dark period.

Thanks to all my Italian friends for their support and the joyful moments every time I return... Pado and Caste... and of course to all Basketball mates... Mitch, Bimbo, Mirco, Burghi and Simone to help me with 3D drawings.

Lastly, to my family, who have given me so much and to whom I am indebted to always – My Brother, Dad, Rosy and Sister in law (MaryCandy), thank you all for the continuous support and unconditional love. Thank you to my Aunty and Uncles for always believing in my abilities.

I dedicate this thesis to the past and to the future

To my Grandma Carla as gratitude for raising me and allowing me to become the man which I am today and to my forthcoming nephew/ niece... you are just less than a centimetre now but I can't wait to hold you in my arms in a few months' time

TABLE OF CONTENTS

Certificate of original authorship	I
Table of Contents	IV
List of Figures and Tables	X
Glossary and Abbreviations	XV
Thesis Abstract	XVII
Chapter 1	1
1.1 General Introduction	2
1.2 Anatomy and Histology of the Nose	3
1.3 Commercial Nasal Products	7
1.3.1 Liquid Dosage Forms and Metered Dose Spray Pumps	7
1.3.2 Nasal pressurized metered-dose inhalers (pMDIs)	10
1.3.3 Dry Powder Dosage Forms and Devices	11
1.4 Characterization of nasal delivery products	13
1.5 In vitro models for assessing nasal drug deposition	15
1.6 <i>In vitro</i> models for assessing nasal drug absorption	20
1.6.1 <i>Ex vivo</i> models for studying drug permeation	20
1.6.2 Cell Cultures- Primary cells and cell lines	21
1.7 Aim of the Study	25
1.8 Structure of the Thesis	26
1.9 References	29

Chapter 2		39
2.0 Prefa	ce	40
2.1 Abstr	act	41
2.2 Introd	duction	43
2.3 Mate	rials and Methods	50
2.3.1 The	e Puvlizer [®] device	50
2.3.2 Phy	vsico-chemical characterization	52
2.3.2.1	Powder bulk and tapped density	52
2.3.2.2	Dynamic Vapor Sorption	52
2.3.2.3	Specific Surface Area	53
2.3.2.4	Particle Size Distribution by Laser Diffraction	53
2.3.2.5	Scanning electron microscopy	53
2.3.2.6	Scanning Raman Spectroscopy	54
2.3.3 Ana	alytical Characterization	55
2.3.3.1	BDP quantification using HPLC	55
2.3.3.2	Dose Content Uniformity	55
2.3.3.3	Shoot Weight and BDP Content	
2.3.4 Aei	rosol performance of Teijin Rhinocort [®]	56
2.3.4.1	Cascade impaction	56
2.3.4.2	In-line In Vitro Aerosol Laser Diffraction Analysis	58
2.4 Resul	ts and Discussion	59
2.4.1 Phy	vsicochemical characterization of the formulation	59
2.4.2 Aei	rosol performance of Teijin Rhinocort	66
2.5 Concl	usion	70
2.6 Ackno	owledgements	71

2.7	Autho	r Disclosure Statements	71
2.8	Refere	nces	72
apter	3		76
3.0 Pre	face		77
3.1`	Abstra	ct	78
3.2	Introd	uction	79
3.3	Mater	ials and Methods	83
3.3.1	L Mat	erials	83
3.3.2	2 Cell	Culture Nasal Cell Line	84
3.3.3	8 Trai	nsepithelial electrical resistance Measurements	84
3.3.4	1 Sod	ium Fluorescein Permeation Experiments	85
3.3.5	5 Eva	uation of Mucus Production	86
3.3.6	6 Imn	านnocytochemistry Experiment	86
3.3.7	7 Exp	ression of Xenobiotic Transporters	87
3.	3.7.1	RPMI 2650 Cell Culture and Sample Collection of Primary Nasal Cell	87
3.	3.7.2	RNA Isolation, Target Synthesis, Microarray Data Analysis	88
3.3.8	B Dev	elopment and Validation of Aerosol Nasal Deposition Apparatus	89
3.	3.8.1	Development of the Modified Expansion Chamber	89
3.	3.8.2	Validation of the Impactor Deposition Performances: Standard vs. Modified Expan	nsion
Cł	namber	91	
3.	3.8.3	Validation of the Cell Layer Integrity in the Modified Chamber	92
3.3.9) Dep	osition and Transport of a Commercial Budesonide Nasal Spray on Optimize	ed
RPM	1 2650	cell Model using the Modified Expansion Chamber	92
3.3.1	LO A	nalytical Quantification of Budesonide	93
	2.8 apter 3 3.0 Pre 3.1` 3.2 3.3 3.3.2 3.3.3.2 3.3.3.2 3.3.3.2 3.3.3.2 3.3.3.3.	2.8 Refere apter 3 3.0 Preface 3.1 Abstra 3.2 Introdu 3.3 Materi 3.3.1 Materi 3.3.2 Cell 3.3.3 Tran 3.3.4 Sodi 3.3.5 Eval 3.3.6 Imm 3.3.7 Expl 3.3.7 Expl 3.3.8 Dev 3.3.8.1 3.3.8.2 Chamber 3.3.8.3 3.3.9 Dep RPMI 2650 of RPMI 2650 of	2.8 References apter 3

3.3.2	11 Statistics	93
3.4	Result and Discussion	94
3.4.2	L Transepithelial Electrical Resistance (TEER) Measurements	94
3.4.2	2 Sodium Fluorescein Permeation Experiments	96
3.4.3	3 Evaluation of Mucus Production	98
3.4.4	1 Immunocytochemical investigation	103
3.4.5	5 Expression of Xenobiotic Transporters	104
3.4.6	5 Development and Validation of the Modified Expansion Chamber	109
3.5	Conclusion	113
3.6	Acknowledgements	114
3.7	Author Disclosure Statements	114
3.8	References	115
Chapter	4	120
•	4 face	
4.0 Pre		121
4.0 Pre	face	121 122
4.0 Pre 4.1 Intr	face roduction Material and Methods	121 122 124
4.0 Pre 4.1 Intr 4.2	face roduction Material and Methods	121 122 124 124
4.0 Pre 4.1 Inte 4.2 4.2.2	face roduction Material and Methods Materials Aerosol Performances and Modified Expansion Chamber Validation	121 122 124 124 124
4.0 Pre 4.1 Intr 4.2 4.2.2	face roduction Material and Methods Materials Aerosol Performances and Modified Expansion Chamber Validation	121 122 124 124 124 127
4.0 Pre 4.1 Intr 4.2 4.2.3 4.2.3	face	121 122 124 124 127 127
4.0 Pre 4.1 Inte 4.2 4.2.2 4.2.2 4.2.2 4.2.2	face roduction Material and Methods 1 Materials 2 Aerosol Performances and Modified Expansion Chamber Validation 3 In-line In Vitro Aerosol Laser Diffraction Analysis 4 Cultivation of RPMI 2650 cell line in Air Liquid Interface 5 Transport Studies on Nasal Cell Model (Conventional and after Deposition)	121 122 124 124 127 127 128
4.0 Pre 4.1 Intr 4.2 4.2.2 4.2.2 4.2.2 4.2.2 4.2.2	face roduction Material and Methods Materials Aerosol Performances and Modified Expansion Chamber Validation Aerosol Performances and Modified Expansion Chamber Validation In-line <i>In Vitro</i> Aerosol Laser Diffraction Analysis Cultivation of RPMI 2650 cell line in Air Liquid Interface	121 122 124 124 127 127 128 129

	4.3.1	L	Aerosol Performances Expansion Chamber Validation	130
	4.3.2	2	Transport Studies on Nasal Cell Model	133
	4.4	Co	nclusion	
	4.5	Re	ferences	
Ch	apter !	5		139
	5.0	Pr	eface	
	5.1	Ał	ostract	
	5.2	In	troduction	
	5.3	м	aterial and Methods	
	5.3.1	L	Materials	143
	5.3.2	2	Chemical Quantification of Budesonide by High Performance Liquid Chro	omatography
			144	
	5.5.3	3	Preparation of Freeze-dried formulation (LYO)	145
	5.3.4	ļ	Preparation of the Physical Mixture with Diluent	146
	5.3.5	5	Physico-Chemical Characterization	146
	5.	3.5	1 Scanning electron microscopy	146
	5.	3.5	2 Specific Surface Area	147
	5.	3.5	3 Particle Size Distribution by Laser Diffraction	147
	5.	3.5	4 X-Ray Powder Diffractometry (XRPD)	147
	5.	3.5	5 Differential scanning calorimetry (DSC)	148
	5.3.6	5	In Vitro Drug Release Studies	148
	5.3.7	7	Spray Performances and Interaction with Nasal Cell Model	149
	5.	3.7	1 Aerosol Performances by Cascade Impaction	149
	5.	3.7	2 In-line In Vitro Aerosol Laser Diffraction Analysis	150
	5.	3.7	3 Cultivation of RPMI 2650 cell line in Air Liquid Interface	150
				VIII

	5.3.	7.4 Deposition and Transport Studies on Nasal Cell Model	151
	5.3.8	Statistical Analysis	152
	5.4 F	Result and Discussion	153
	5.4.1	Physical Chemical Characterization	153
	5.4.2	In Vitro Drug Release Studies	158
	5.4.3	Aerosolization Performance and Interactions with Nasal Cell Model	162
	5.5 (Conclusion	166
	5.6	Acknowledgements	166
	5.7	Author Disclosure Statements	166
	5.8 F	References	167
(Chapter 6		172
	6.1 Gene	eral Conclusion	
	6.2 Futu	re Directions	
	Appendice	25	
	A.1 Publ	ication List	180
	Journa	al articles included as thesis chapter	180
	Confe	rence Proceeding	181
	A.2 Othe	er Publications During Candidacy Unrelated to Thesis	216
	A.3 Copy	rights Permissions	254

LIST OF FIGURES AND TABLES

Figure 1.1 Advantages and limitations of nasal drug delivery. Adapted from [4]3
Figure 1.2. Anatomy of the human nasal cavity schematic of a sagittal plane cut (A)
and sample coronal plane midway through the nasal cavity (B). Reproduced
from reference [5] with authorisation4
Table 1.1 Summary of featuring of the nasal cavity and the different epithelium of
the nasal mucosa5
Figure 1.3. Metered dose spray pump. Reproduced from reference [33] with
permission10
Figure 1.4. Examples of nasal powder devices: A. Teijin Rhinocort (Teijin Pharma);
B. Rhinocort Turbuhaler (Astrazeneca), from [33]; C. Optinose (Optinose),
Reproduced from reference [21] with permission
Figure 1.5. The two halves of the silicon nasal cast produced by Koken
Figure 1.6. Scheme representing the subdivision of the Bespak cast. Reproduced
from reference [61] with permission17
Figure 1.7. Part composing Boehringer-Ingelheim nasal Cast. Reproduced from
reference [65] with permission18
Figure 2.1. Disassembled Teijin Puvlizer device with accessories
Table 2.1. Summary of nasal dry powder products and water-based alternatives
marketed in U.K
Table 2.2. Summarized Steps for the device preparation and administration of Teijin
Rhinocort [®] 51

Figure 2.2. Apparatus E system used for the aerosol performance of the Teijin nasal
powder device equipped with the nasal expansion chamber
Figure 2.3. SEM micrographs of the Teijin Rhinocort powder blend60
Table 2.3. Amount of Powder (mg) and BDP (μ g) emitted after each actuation (n=3
±StDev)62
Figure 2.4. Dynamic vapor sorption isotherm (two cycles) of Rhinocort Teijin Powder.
Figure 2.5. Particle size analysis by laser diffraction of Rhinocort Teijin powder blend
measured with Malvern Mastersizer MS3000 (n=3 ± StDev)65
Figure 2.6. Overlay of Raman images on white light montage (BDP=green; HPC =
blue and magnesium stearate = red)66
Table 2.4. Percentage of Active ingredient in each stage of the Apparatus E Impactor
equipped with the 2L expansion glass chamber for nasal delivery (n=3, ± StDev).
equipped with the 2L expansion glass chamber for nasal delivery (n=3, ± StDev).
Figure 2.7. Particle size distribution of the powder emitted from Teijin Rhinocort using

- Figure 3.4. Optical microscope images of Alcian blue mucus staining on RPMI 2650 grown on Snapwell[®] inserts at 2.50 x10⁶ cell/mL seeding density.......99

- Table 3.3. Amount of Budesonide (% of the nominal dose) recovered from each Stage of the NGI using the Glass and Modified chamber (n=3 \pm StDev). 109
- Figure 3.7. Amount of budesonide transported through RPMI 2650 nasal cell model after NGI aerosols deposition using the 3D modified chamber (n=5 ± StDev).

Figure 4.1. NGI configuration with Glass Expansion Chamber (A) and Modified
Chamber printed in ABS (B)125
Figure 4.2. CAD 3D drawing of the Modified Expansion Chamber. Modified from
Chapter 3
Figure 4.3. Exemplification of conventional transport (A), Deposition of Nasal
Products on cells (B)128
Table 4.1. Comparison of BDP mass deposition in the standard glass and the
modified chamber using the NGI (n=3 ± StDev)131
Table 4.2. Summary of the particle size of Teijin Rhinocort and Beconase (n=3, \pm
StDev)
Figure 4.4: Total amount (%) of BDP and BMP transported across the RPMI 2650
nasal cell model over 4 hours (n= 3, ± StDev)134
Table 4.3. Percentage of BDP and BMP found 'on' the surface and inside 'in'
RPMI2650 cells after 4 hours from the deposition/transport studies (n=3, \pm
StDev)
Table 5.1. Freeze-drying process for the Soluplus-budesonide formulation 146
Table 5.1. Freeze-drying process for the Soluplus-budesonide formulation146 Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C)
Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C)
Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C) LYO formulation
 Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C) LYO formulation
 Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C) LYO formulation
 Figure 5.1. SEM micrographs of (A) micronized budesonide, (B) Soluplus and (C) LYO formulation

XIII

GLOSSARY AND ABBREVIATIONS

ABS	Acrylonitrile butadiene styrene
API	Active Pharmaceutical Ingredient
ALI	Air Liquid Interface
ATCC	American Type Culture Collection
Рарр	Apparent permeability
BMP	Beclomethasone Monopropionate
BDP	Beclomethasone Dipropionate
BSA	Bovine Serum Albumin
BET	Brunauer–Emmett–Teller
Bud	Budesonide
CaCO ₃	Calcium Carbonate
CI	Cascade Impactor
R2	Coefficient of determination
f1	Difference factor
DSC	Differential Scanning Calorimetry
DMSO	dimethyl sulfoxide
DVS	Dynamic Vapor Sorption
EC	Expansion Chamber - Glass Chamber
FBS	Foetal Bovine Serum
Tag	Glass Transition Temperature
HBSS	Hank's Buffer Salt Solution

- HPLC High Performances Liquid Chromatography
- HPC Hydroxypropyl cellulose
- HPMC Hydroxypropylmethyl cellulose
- LCC Liquid Cover Culture
- Lyo Lyophilized/ Freeze-dried
- MEM Minimum Essential Media
- MC Modified Chamber Developed Apparatus
- NGI Next Generation Impactor/ Apparatus E
- P-gap P-Glycoprotein
- PSD Particle Size Distribution
- PBS Phosphate Buffer Saline
- RGB Red Green Blue
- RH Relative Humidity
- SEM Scanning Electron Microscopy
- f2 Similarity factor
- Flu-Na Sodium Fluorescein
- StDev Standard Deviation
- TGA Thermogravimetric Analysis
- TEER Trans Epithelial Electric Resistance
- FDA United States of America Food and Drug Administration
- Dv(X) Volumetric diameter (percentage of population related to)
- XRPD X-Ray Powder Diffractometry
- ZO-1 Zonula occludens-1

THESIS ABSTRACT

The nose, is a promising site to deliver drugs with low oral bioavailability and for treatment of conditions that require a rapid onset of action. It is the first option to treat localized diseases such as rhinitis but also it can be used as site to deliver drug systemically. In the future, the number of product administered through the nose it is expected to increase, as more drugs will require an effective route for drug absorption. Hence, while the current characterization of nasal product focus mainly on the physicochemical properties of spray formulations, the biopharmaceutical evaluation of new nasal drug delivery products and formulations will require robust and reliable pre-clinical *in vitro* models.

The first aim of this study was to develop an apparatus able to perform deposition and permeation of nasal formulation at the same time, mimicking so the *in vivo* process of drug administration.

The second aim was the application of this model to the characterization of commercial products and the development of novel formulations.

In particular, to provide a physiologically relevant surface and barrier for the deposition and permeation studies, the cell line RPMI 2650 was chosen in order to establish a model of the nasal mucosa. The model was obtained using the air-liquid interface culturing method, in which the upper surface of the cell is exposed to air after the seeding on cell culture insert. The model developed showed production of

mucus, expression of xenobiotic transporters similar to primary nasal cells and barrier properties matching those reported in literature for excised human nasal mucosa.

The deposition apparatus was produced via 3D printing starting from an expansion chamber proposed by FDA for the determination the aerodynamic particle size of nasal sprays with cascade impactors. The apparatus developed consists of a plastic chamber able to accommodate cell culture inserts on its internal surface. This allows the deposition of aerosolised particles directly onto the surface of the RPMI 2650 cells previously cultured on inserts. The apparatus was validated against FDA glass expansion chamber using three different commercial products: two suspensions and one powder. The powder has shown faster permeation rate across RPMI 2650 cells nasal mucosa model.

In conclusion, this work has developed, validated and tested an *in vitro* method to assess particles deposition and drug permeation in conditions similar to those occurring *in vivo* and which will be useful for the characterization and development of future nasal products.