Emotion Recognition Using Facial Expression and Electroencephalography Features with Support Vector Machine Classifier

Student

Henry Candra

Supervisor Associate Professor Steven Su Professor Hung. T. Nguyen

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Centre for Health Technologies School of Electrical, Mechanical and Mechatronic Systems Faculty of Engineering and Information Technology

May, 2017

Certificate of Authorship/Originality

I, Henry Candra, certify that the work in this thesis has not previously been submitted for a degree, nor has it been submitted as part of the requirements of a degree, except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research work and in the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature:

Date: 8 May 2017

"As long as we are mindful and aware, no one practice is better than another." DJKR

Acknowledgements

First and foremost I would like to express my gratitude to my principal supervisor, Associate Professor Steven Su for the opportunity to carry out this research and for his invaluable guidance, support, encouragement, and life teachings. He has been with me since the beginning of my PhD and has been through my ups and downs in my PhD life. Without his help and patience I will not be able to complete my PhD study.

I am also deeply grateful to my co-supervisor, Professor Hung Tan Nguyen for his continuous support, constant guidance, valuable time, inspiration and valuable advice.

My special thanks to all the members of the Centre for Health Technologies (CHT) and other school who have been a source of collaboration, friendships as well as good advice and sharing. My grateful especially to Dr. Mitchell Yuwono for his continuous support, guidance and encouragement; to Dr. Rifai Chai for his sharing, discussion and inspiration; to (Fr.) Dr. Ardi Handojoseno (RIP) for his prayer, advice, and motivation; to Adrian Johannes for the listening and heartening; to Daniel Roxby and Zhichao Sheng for our inspiring lunch discussion; to Ganesh Naik, Steve Ling, Simon Ting for the advice and support; to Kai Cao, Lin Ye, Tao Zhang, and many others whose name has not been mentioned here, through all of you I learn to raise my young spirit once more.

Finally and most importantly, my deep appreciation goes to my Mum, my wife, my son, and all my family. Their encouragement, moral support, understanding, constant love, and prayer become my inspiration, and this thesis is my gift to all of you.

Contents

Li	ist of Figures ii					
Li	ist of Tables v					
No	omenclature vii					
Ał	ostrac	t	ix			
1	Intr	oduction	1			
	1.1	Overview	1			
	1.2	Emotion Recognition	3			
	1.3	Application	3			
		1.3.1 Facial Expression Recognition System	5			
		1.3.2 EEG Emotion Recognition System	6			
	1.4	Challenges	7			
	1.5	Contribution of This Thesis	8			
	1.6	Outline of The Thesis	10			
	1.7	List of Publications	11			

2	Lite	erature Review		
	2.1	Emotio	on Measurement	13
		2.1.1	Measurement of Motor Expression	14
		2.1.2	Measurement of Physiological Arousal	15
		2.1.3	Measurement of Subjective Feeling	16
	2.2	Face D	Detection and Recognition	18
		2.2.1	Face Detection	18
		2.2.2	Face Recognition	21
		2.2.3	Applications of Face Recognition	25
	2.3	Facial	Expression Recognition System	26
		2.3.1	Geometric Based Method	28
		2.3.2	Appearance Based Method	29
	2.4	Databa	ase for Facial Expression Recognition	32
	2.5	Summ nition	ary of Latest Researches Methodology on Facial Expression Recog-	34
	2.6	EEG N	All Applications	35
		2.6.1	EEG Signal Processing and Signal Conditioning	36
		2.6.2	EEG Electrodes and Electrodes Positioning	37
		2.6.3	Brain Rhythms	39
		2.6.4	Applications of EEG Signals	40
	2.7	EEG e	emotion recognition system	41
		2.7.1	Features, Channel Selection and Number of Electrodes for EEG	
			Emotion Recognition	42

		2.7.2	Wavelet Transform for EEG Feature Extraction	43
		2.7.3	Window Segmentation in EEG Emotion Classification	46
		2.7.4	Database for EEG Emotion Classification	47
	2.8	Sumarr	y of The Latest Reseaches Methodology in EEG Emotion Recog-	
		nition		49
	2.9	Suppor	t Vector Machine (SVM) Classifier for Emotion Recognition System	50
		2.9.1	Optimizing the SVM Classifier	51
	2.10	Summa	ury	53
3	Facia	al Expre	ession Recognition using E–HOG and RED E–HOG Features	56
	3.1	Method	l Overview	57
	3.2	Experin	nental Setup	59
		3.2.1	Dataset Prepaparation	59
		3.2.2	Experimental Outline	59
	3.3	Experin	mental Details	60
		3.3.1	Viola-Jones Algorithm for Facial Landmarks Detection	61
		3.3.2	E–HOG Feature Extraction Strategy	62
		3.3.3	Improving E-HOG Feature with Dimensional Reduction Tech-	
			nique: Constructing RED E–HOG	64
		3.3.4	Classifying Facial Expression using Optimized Multi-class SVM .	66
	3.4	Discuss	sion	67
		3.4.1	Classification Results with E-HOG Feature and Comparison to	
			Original HOG	67
		3.4.2	Classification Results of RED E–HOG Feature	69

		3.4.3	Comparison of Classification Processing Time Between RED E-HOG vs. ORI E-HOG	70
		3.4.4	Analysis of Classification Results for Each Emotion with Confu- sion Matrix of RED E-HOG Face	71
		3.4.5	Analysis of The Dimensional Reduction Process with Scatter Plots Between Feature Vectors	72
		3.4.6	Comparison of ORI E-HOG and RED E-HOG to Other Methods	72
	3.5	Summ	ary	74
4	Disc	rete EE	G-Emotions Recognition Using Wavelet Features	75
	4.1	Metho	d Overview	76
	4.2	Experi	mental Setup	78
		4.2.1	Dataset Resource and Dataset Preprocessing	78
		4.2.2	Subject Grouping from The Dataset	79
		4.2.3	Dataset Mapping	79
		4.2.4	Experimental Outline	80
	4.3	Experi	mental Detail	81
		4.3.1	Subject Grouping	81
		4.3.2	EEG Feature Extraction with Discrete Wavelet Transform (DWT)	83
		4.3.3	EEG subband selection	84
		4.3.4	EEG channel selection	84
		4.3.5	Optimizing the Multi-class SVM Classifier	85
		4.3.6	Receiver operating characteristic (ROC) for Classification Analysis	86
		4.3.7	Normalized Mutual Information (NMI) for EEG Channel Analysis	88

	4.4	Discus	sion	89
		4.4.1	Classification Results of The Discrete EEG-Emotion Recognition	89
		4.4.2	Confusion Matrix of The Best Trained Classifier	91
		4.4.3	ROC Analysis of The Classification Results	92
		4.4.4	NMI Analysis of The EEG Channel Selection	92
	4.5	Summa	ary	94
5	Imp	roving l	EEG Emotion Recognition Accuracy Using OWS Method	95
	5.1	Metho	d Overview	96
	5.2	Experi	mental Setup	99
		5.2.1	Dataset Resource and Dataset Preparation	99
		5.2.2	Subject Grouping	100
		5.2.3	Experimental Overview	100
	5.3	Experi	mental Detail	102
		5.3.1	Subject Grouping	103
		5.3.2	EEG Emotion Signals Segmented into 12 Window Sizes	103
		5.3.3	Wavelet Feature Extraction: Wavelet Energy and Wavelet Entropy	104
		5.3.4	Creating an array of 32 channels wavelet PSD / entropy in 5 or 3 bands formation	105
		5.3.5	Statistical Features: <i>MTD</i> and <i>MAE</i>	105
		5.3.6	Fast Fourier Transform Power Spectral Density (FFT PSD)	106
		5.3.7	Recognizing the EEG Emotion with SVM Classifier	107
	5.4	Discus	sion	107

	5.4.1	Analysis of Segmented EEG Signals with Wavelet PSD Spec- trum: Benefit of Window Segmentation	108
	5.4.2	Comparative Summary of The Classification Results for 7 Features	\$ 109
	5.4.3	Anaysis for The Wavelet Features	110
	5.4.4	Comparison of MAE to other Features	111
	5.4.5	Analysis of Training and Testing Time: Finding Window with Less Processing Time	112
	5.4.6	Suggested optimal window selection (OWS) in EEG emotion recog- nition using 7 features for all emotions	113
5.5	Summa	ary	115
6 Con	clusions	and Future Direction	116
6.1	Discus	sion	116
6.2	Conclu	sion	118
6.3	Limita	tion of The Research	121
6.4	Future	Directions	122
Append	ix		123
Bibliogr	raphy		165

List of Figures

1.1	Block diagram an emotion recognition system	4
1.2	Russell's circumplex model of affect Russell (1980). Horizontal axis represents valence (pleasure); vertical axis represents arousal. Artwork is as seen in Valenza et. al (Valenza <i>et al.</i> , 2014).	6
2.1	Block diagram of a consensual componential model of emotion. (Mauss & Robinson, 2009)	13
2.2	Self Assessment Manikin SAM (Bradley & Lang, 1994)	18
2.3	The Haar feature (Viola & Jones, 2001)	20
2.4	Sources of facial expressions (Fasel & Luettin, 2003)	27
2.5	Facial expressions analysis (Tian <i>et al.</i> , 2011)	28
2.6	Block diagram of HOG computation (Dalal & Triggs, 2005)	30
2.7	EEG electrodes positioning with 10/20 international system (Roman-Gonzale	ez,
	2012)	39
2.8	Brainwave Rhythms in various band frequencies	40
2.9	Segmentation of EEG signal with different window size. The EEG signal is segemented into different window size to obtain most effective length of EEG signal to be used in EEG emotion classification (Candra <i>et al.</i> , 2015.)	47
	2013a).	4/

3.1	The block diagram of the proposed emotion recognition algorithm	60
3.2	The facial landmarks extraction using Viola-Jones' algorithm.	62
3.3	HOG vs E-HOG features of the eye and mouth. Sparse E matrix in the E-HOG computation contributes to a substantial amount of cells having zero values, yielding simpler features and a leaner extraction process.	63
3.4	Classification results with various E–HOG features after applying PCA.	69
3.5	Classification result with various E-HOG features after applying a com- bination of PCA and LDA.	70
3.6	Scatter plot of ORI E-HOG features before and after dimensionality re- duction using PCA and a combination of PCA and LDA.	73
4.1	Mapping of 4 discrete emotions to Russell's circumplex model of affect (Russell, 1980). Horizontal axis represents valence (pleasure); vertical axis represents arousal.	77
4.2	Block diagram of the Discete EEG-emotion recognition.	80
4.3	Confusion matrix of binary classification with 4 possible outcomes	87
4.4	Receiver Operating Characteristic (ROC) of an average case scenario	92
4.5	The Normalized Mutual Information between each channel and combina- tion of emotions.	93
5.1	Recommendation of 3 to 12s for EEG emotion classification of arousal and valence emotional states (Candra <i>et al.</i> , 2015a).	98
5.2	Block diagram of Optimal Window Selection (OWS) method.	100
5.3	Result of subject grouping to overcome mistranslation effect of SAM rat- ing method. The Euclidean distance reveals how closely a participant is related with another. Participants with similar response patterns will have relatively closer distance.	103

5.4	The signal segmentation scheme with 12 window sizes
5.5	An array of 32 channels wavelet PSD / entropy in 5 or 3 bands formation as the representation of one segment EEG-emotion signal
5.6	Visualization of 1 channel EEG signals in their related 5 stacked bands wavelet PSD spectrum of 60s window compared to 15 consecutive 4s window (marked by red dotted oval) showing the repetitional pattern be- tween both windows. This is the benefit of the segmentation process 108
5.7	Comparative summary of classification results for 4 emotions with 7 fea- tures represented in line graphs
5.8	Simplified graph of 7 features using weighted average accuracy of 4 emo- tions
5.9	Graphichal reprentation of optimal training and testing time in EEG-emotion recognition for 7 features using weighted average of 4 emotions 113
5.10	Suggested optimal window selection (OWS) color graph. The numbers in the graph reflect the weighted average accuracy of 4 emotions for each 7 features. The color heatmap expresses various levels of accuracy yield by window size between 1s and 60s for each of the 7 features, where darker colors represent higher accuracy. Referring to the graph, the optimal win-
	dow can be identified

List of Tables

2.1	Summary of Databases for Facial Expression Recognition	33
2.2	Comparison Between Facial Expression Recognition Methods	34
2.3	Summary of Databases for EEG Emotion Recognition	48
2.4	Comparison Between EEG Emotion Recognition Methods	49
3.1	Comparison of average classification accuracy between ORI HOG and E–HOG (30 repetitions)	68
3.2	Comparison of average classification processing time between ORI HOG and E–HOG (30 repetitions)	68
3.3	Confusion Matrix of the best trained classifier using Face E-HOG features	69
3.4	Average training time of ORI E-HOG vs. 10 Dimensions RED E-HOG trained with multi-class SVM in 30 repetitions	71
3.5	Average testing time of ORI E-HOG vs. 10 Dimensions RED E-HOG trained with multi-class SVM in 30 repetitions	71
3.6	Confusion Matrix of the best trained SVM classifier using 10 dimensions RED E-HOG Face	71
3.7	Comparison of ORI E–HOG, RED E-HOG Faces to Other Facial Expree- sion Recognition Methods	72

91
111
112
1

Nomenclature

AAM	:	Active Appearance Models
ADCs	:	Analogue-to-Digital Converters
AI	:	Artificial Intelligent
AU	:	Action Units
BCI	:	Brain-Computer interface
CK+	:	Extended Cohn-Kanade database
CoC	:	Coefficient of Correlation
СТ	:	Computerized Tomography
CWT	:	Continuous Wavelet Transform
DEAP	:	Database for Emotion Analysis Using Physiological Signals
DWT	:	Discrete Wavelet Transforms
ECG	:	Electrocardiography
EEG	:	Electroencephalography
EGG	:	Electrogastrography
E-HOG	:	Edge-Histogram of Oriented Gradients
EMG	:	Electromyography
EOG	:	electroocclugraphy
ERCE	:	Ensemble Rapid Centroid Estimation
ERD	:	Event-Related Desynchronization
ERP	:	event- related potentials
ERS	:	event-related synchronization
FACS	:	Facial Action Coding System
FD	:	Fractal Dimension
FFT	:	Fast Fourier Transform
fMRI	:	Functional Magnetic Resonance Imaging
GB	:	Giga Bytes
GLCM	:	Gray-Level Co-occurrence Matrix
GMM	:	Gaussian Mixture Model
GSR	:	Galvanic Skin Response
HCI	:	Human-Computer Interaction
HOG	:	Histogram of Oriented Gradients
HOS	:	Higher Order Spectra

IADS	:	International Affective Digitized Sound System
IAPS	:	International Affective Picture System
ICA	:	Independent Component Analysis
ID	:	Identification
JS	:	Jensen-Shannon
KL	:	Kullback-Leibler
KPCA	:	Kernel Principal Component Analysis
LBP	:	Local Binary Patterns
LDA	:	Linear Discriminant Analysis
MEG	:	Magnetoencephalography
MSCE	:	Magnitude Square Coherence Estimation
MSR	:	Manifold based Sparse Representation
NSI	:	Non Stationary Index
ORI E-HOG	:	Original Edge-Histogram of Oriented Gradients
OWS	:	Optimal Window Selection
PAD	:	Pleasure, Arousal and Dominance Emotion Scales
PCA	:	Principal Components Analysis
PET	:	Positron Emission Tomography
PSD	:	Power Spectral Density
RBF	:	Radial Basis Function
RCE	:	Rapid Centroid Estimation
RED E-HOG	:	Reduced Edge-Histogram of Oriented Gradients
RHMM	:	Regional Hidden Markov Model
SAM	:	Self-Assessment Manikin
SIFT	:	Scale Invariant Feature Transform
SMO	:	Sequential Minimal Optimization
SPET	:	Single Photon Emission Tomography
SVM	:	Support Vector Machine
WE	:	Wavelet Energy
WT	:	Wavelet Transform

Abstract

Recognizing emotions from facial expression and electroencephalography (EEG) emotion signals are complicated tasks that require substantial issues to be solved in order to achieve higher performance of the classifications, i.e. facial expression has to deal with features, features dimensionality, and classification processing time, while EEG emotion recognition has the concerned with features, number of channels and sub band frequency, and also non-stationary behaviour of EEG signals. This thesis addresses the aforementioned challenges.

First, a feature for facial expression recognition using a combination of Viola-Jones algorithm and improved Histogram of Oriented Gradients (HOG) descriptor termed Edge-HOG or E–HOG is proposed which has the advantage of insensitivity to lighting conditions. The issue of dimensionality and classification processing time was resolved using a combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which has successfully reduced both the dimension and the classification processing time resulting in a new low dimension of feature called Reduced E–HOG (RED E–HOG).

In the case of EEG emotion recognition, a method to recognize 4 discrete emotions from arousal-valence dimensional plane using wavelet energy and entropy features was developed. The effects of EEG channel and subband selection were also addressed, which managed to reduce the channels from 32 to 18 channels and the subband from 5 to 3 bands.

To deal with the non-stationary behaviour of EEG signals, an Optimal Window Selection (OWS) method as feature-agnostic pre-processing was proposed. The main objective

of OWS is window segmentation with varying window which was applied to 7 various features to improve the classification results of 4 dimensional plane emotions, namely arousal, valence, dominance, and liking, to distinguish between the high or low state of the aforementioned emotions. The improvement of accuracy makes the OWS method a potential solution to dealing with the non-stationary behaviour of EEG signals in emotion recognition. The implementation of OWS provides the information that the EEG emotions may be appropriately localized at 4–12 seconds time segments.

In addition, a feature concatenating of both Wavelet Entropy and average Wavelet Approximation Coefficients was developed for EEG emotion recognition. The SVM classifier trained using this feature provides a higher classification result consistently compared to various different features such as: simple average, Fast Fourier Transform (FFT), and Wavelet Energy.

In all the experiments, the classification was conducted using optimized SVM with a Radial Basis Function (RBF) kernel. The RBF kernel parameters were properly optimized using a particle swarm ensemble clustering algorithm called Ensemble Rapid Centroid Estimation (ERCE). The algorithm estimates the number of clusters directly from the data using swarm intelligence and ensemble aggregation. The SVM is then trained using the optimized RBF kernel parameters and Sequential Minimal Optimization (SMO) algorithm.