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Abstract

Recognizing emotions from facial expression and electroencephalography (EEG) emo-

tion signals are complicated tasks that require substantial issues to be solved in order to

achieve higher performance of the classifications, i.e. facial expression has to deal with

features, features dimensionality, and classification processing time, while EEG emotion

recognition has the concerned with features, number of channels and sub band frequency,

and also non-stationary behaviour of EEG signals. This thesis addresses the aforemen-

tioned challenges.

First, a feature for facial expression recognition using a combination of Viola-Jones al-

gorithm and improved Histogram of Oriented Gradients (HOG) descriptor termed Edge-

HOG or E–HOG is proposed which has the advantage of insensitivity to lighting condi-

tions. The issue of dimensionality and classification processing time was resolved using a

combination of Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA) which has successfully reduced both the dimension and the classification pro-

cessing time resulting in a new low dimension of feature called Reduced E–HOG (RED

E–HOG).

In the case of EEG emotion recognition, a method to recognize 4 discrete emotions from

arousal-valence dimensional plane using wavelet energy and entropy features was devel-

oped. The effects of EEG channel and subband selection were also addressed, which

managed to reduce the channels from 32 to 18 channels and the subband from 5 to 3

bands.

To deal with the non-stationary behaviour of EEG signals, an Optimal Window Selection

(OWS) method as feature-agnostic pre-processing was proposed. The main objective

ix



of OWS is window segmentation with varying window which was applied to 7 various

features to improve the classification results of 4 dimensional plane emotions, namely

arousal, valence, dominance, and liking, to distinguish between the high or low state of

the aforementioned emotions. The improvement of accuracy makes the OWS method a

potential solution to dealing with the non-stationary behaviour of EEG signals in emotion

recognition. The implementation of OWS provides the information that the EEG emotions

may be appropriately localized at 4–12 seconds time segments.

In addition, a feature concatenating of both Wavelet Entropy and average Wavelet Ap-

proximation Coefficients was developed for EEG emotion recognition. The SVM classi-

fier trained using this feature provides a higher classification result consistently compared

to various different features such as: simple average, Fast Fourier Transform (FFT), and

Wavelet Energy.

In all the experiments, the classification was conducted using optimized SVM with a Ra-

dial Basis Function (RBF) kernel. The RBF kernel parameters were properly optimized

using a particle swarm ensemble clustering algorithm called Ensemble Rapid Centroid

Estimation (ERCE). The algorithm estimates the number of clusters directly from the

data using swarm intelligence and ensemble aggregation. The SVM is then trained us-

ing the optimized RBF kernel parameters and Sequential Minimal Optimization (SMO)

algorithm.

x



Chapter 1

Introduction

1.1 Overview

Communication between two or more individuals can take place in the form of verbal or

nonverbal language. Nonverbal communication involves many different aspects as well as

proxemics (physical and interpersonal space: distance and territoriality), kinesics (body

orientation: body posture, body motion, and gesture), appearance (physical attractiveness

and clothing), haptics (touch), paralanguage (voice, tone, rate, pitch, and volume of the

speaker), and facial expression (Sutter, 2010). All of these nonverbal communications

need to be interpreted and they dominate more than 60 percent of the communication

process (Foley & Gentile, 2010). These nonverbal communications have a significant

role in communicating the feelings, attitudes and emotions.

Emotion itself is derived from the psychophysiological process stimulated by conscious

and / or unconscious awareness to any event or object related with the mental state, char-

acteristic and nature of a person (College et al., 2014). Emotion has a significant part in

the communication between individuals. The emotion of an individual will influence the

relationship with other people such as family, relatives and friends at home, workplaces or

other environments that create connection with other people. The emotion is manifested

through the intonation in the voice, gesture and body posture, and most commonly facial
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expression. Psychiatrists emphasize the importance of facial emotion interpretation be-

cause the interpretation of facial emotion in nonverbal communication can lead to a good

or bad relation (Ekman, 2003). The psychiatrist has much guidance and many regulations

to interpret the facial expression of the patients while helping them in a therapy session to

establish good relations between the psychiatrists and their patients to obtain a successful

therapy process (Machado et al., 1999).

Psychology also divides emotions into three components: subjective feeling, motor ex-

pression, and physiological arousal (Scherer et al., 2001), which can be described as

follows:

a Subjective feeling: the awareness of the emotional episode expressed through various

emotional lexica, by communicating the response to certain stimuli.

b Motor expression: the changes in gestures, posture, facial, and vocal expression, con-

sciously and unconsciously. It is a communicated expression of a person, such as be-

haviour intentions, to other people.

c Physiological arousal: change in physiological body in response to emotional event,

i.e. body temperature, skin conductivity, heartbeat alterations, breathing rates, and

brain waves.

Based on those three components, it is obvious that emotions are not just about what

appears, but they are more related to the responses of the brain manifested through the

physiological signals. This opens the opportunities to detect emotion not just from the

external appearance signs (facial expressions, voice, gesture and body posture) (Gunes &

Piccardi, 2005; Metallinou et al., 2010), but also from the internal physiological signals

such as Electroencephalography (EEG) (Petrantonakis & Hadjileontiadis, 2012), Elec-

trocardiography (ECG) (Agrafioti et al., 2012), Electromyography (EMG), and Galvanic

Skin Response (GSR) (AlZoubi et al., 2012).

2
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1.2 Emotion Recognition

Understanding the emotions has become the nature of humans to be successful in commu-

nicating with others. However, once in a while false interpretation of the emotions occurs

between 2 or more individuals so that the communication becomes unsuccessful.

This event sometimes can lead to a worse situation which will affect the relation between

the people who communicate, for example: relation with family or relative or friend. In a

more official situation, it can affect the relation between the employee and the employer,

the student and the teacher, and even the doctor and the patient.

These circumstances trigger the development of a system that can recognize human emo-

tion to minimize the false interpretation of emotions. The emotion recognition system

since then has become very popular in recent years and given significant contributions

in many applications that are capable to interpreting human emotion based on different

physiological signals.

The system has been implemented in many areas such as security, safety, and education

process (Owayjan et al., 2012; Chai et al., 2016a; Wang & Niu, 2012). It is also applied in

the health system by, for example monitoring the emotion of the student or patient while

having the session with the teacher, therapist, or psychiatrist (Wang et al., 2010; Liu et al.,

2010; Othman & Wahab, 2010). The most popular application is the Brain–Computer

interface (BCI) which has been used to control devices or gadgets with an intelligence

system (Pun et al., 2006).

1.3 Application

In general the design of an emotion recognition system is the same as a biometric system.

To be specific, emotion recognition system takes advantage of the physiological signal

that is responsible to the elicitation of emotions. The definition of biometrics itself is

automatic person identification by recognizing the person’s physiological characters (Kim

et al., 2010). The block diagram of an emotion recognition system is shown in Figure 1.1.

3
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Figure 1.1: Block diagram an emotion recognition system

In Fig.1.1 the sensors are the connector between the system and the outer environment.

First the sensors detect and pick up the physiological signals of an individual such as:

face appearance, EEG, or ECG. The signal from the sensors undergoes pre-processing to

dispose of the artifacts mixed up in the sensor and also to improve the quality of the input

signal, to which sometimes a normalization method can be applied.

The feature extractor then collects sets of features from the input signal to be used as input

data for the feature collector. This step is very crucial so that the correct features should

be extracted in an optimal way. Next, the feature collector synthesizes the characteristics

of each specific individual to get adequate recognition information.

The next most important part of a recognition system is the ability to learn and predict.

When prediction training is executed in the learning process, the features of an individual

are stored into the database. While in signal prediction, the features are recognized by

comparing them with the information stored in the database. An emotion recognition
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system provides a prediction result based on the information stored in the database.

1.3.1 Facial Expression Recognition System

The most favored application of emotion recognition system is the facial expression

recognition system. Most of the research on facial expression refers to the work of Prof.

Paul Ekman. He proposed the Facial Action Coding System (FACS) to code the facial

expression extracted from thousands of photographs and tens of thousands of filmed and

videotaped facial expressions (Ekman, 2003). The FACS can be extracted from the face

and used as the features for facial expression classification. The implementation of a fa-

cial expression recognition system can be realized in a similar way using the biometric

design. The facial expression recognition system applies more specific steps as follows:

a Detection of the face.

b Feature extraction (part of facial landmark such as eyes, mouth or the whole face).

c Expressions classification.

The first step utilizes the sensor to collect physiological signal of facial expression from

the person. For that purpose, a camera can be used to produce a still image of the face.

Alternatively, for continuous monitoring of facial expression, a video or web camera will

be more suitable to be used for various conditions and environments.

In the facial expression recognition system, the most important part is the feature ex-

traction process. A proper feature extraction process will produce a better recognition

system with a more accurate result. The algorithms used for facial features extraction

can be classified into two main groups, namely: geometric based methods which collect

feature points or motion of points by tracing them from the face images and classifying

the expressions from the tracked features; and, appearance based methods which collect

the whole or part of the face landmarks and arrange them as one long array feature vec-

tor and apply them in the classification process. The appearance based method has more

advantage compared to the geometric based method (Song et al., 2010).
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1.3.2 EEG Emotion Recognition System

Second compelling application in emotion recognition is the EEG emotion recognition

system. The research on EEG emotion recognition system is mainly based on the circum-

plex model of emotion proposed by Psychologist James Russell in 1980 (Russell, 1980).

Figure 1.2: Russell’s circumplex model of affect Russell (1980). Horizontal axis
represents valence (pleasure); vertical axis represents arousal. Artwork is as seen in

Valenza et. al (Valenza et al., 2014).

The circumplex model is a conceptualized 2-dimensional continuous space where the

horizontal and vertical axes correspond to the degree of valence (pleasure) and arousal,

respectively. Discrete emotional states such as ‘happy’, ‘sad’, ‘angry’, and ‘relaxed’ can

be inferred from the degree of valence and arousal as illustrated in Fig. 1.2. Using this

model, the degree of any of the aforementioned discrete emotional states can be measured.

It was further reported that the psychological condition of positive/negative arousal (acti-

vation/deactivation) and positive/negative valence (pleasant/unpleasant) can be identified

from Galvanic Skin Response (GSR) and EEG signal (Torres et al., 2013).

6



Chapter 1. Introduction

In order to map a raw EEG signal to the appropriate emotion, the following steps can be

applied:

1. Preprocess the raw EEG signal to remove artifacts such as eye blinking.

2. Extract the features from the preprocessed EEG signal.

3. Classify the features with a classifier.

1.4 Challenges

The classification results in emotion recognition system are very impressive. Recogni-

tion of emotions from physiological signals has reached the accuracy between 70%-80%.

Even the computers have successfully classified facial expressions with 80% to 90% of

accuracy. However, it should be noted that the applications are still facing a few chal-

lenges. The existing challenges can be defined as follows:

1. First, challenge in facial expression recognition system. The appearance based

method for facial features extraction has an issue of high dimensionality of fea-

tures which is known as curse the of dimensionality. This circumstance inflicts

very long classification processing time for both training and testing process (Zhao

& Chellappa, 2002). More specifically, the challenge can be expressed in one sen-

tence, that is: how to obtain reliable features in facial expression recognition using

an appearance based method that has very low dimension.

2. Second, challenge in EEG emotion recognition system. A substantial factor for de-

termining the reliability of an EEG emotion recognition systems in general is the

feature selection step, including: the type of feature that is able to supply the infor-

mation in both time and frequency domain, the frequency components that relate to

any state of the brain represented in various subbands, and the position on the sur-

face of the head that generates the EEG signal detected by EEG electrodes at certain

position with several numbers of channels (Jenke et al., 2014b). Hence, the chal-

lenge is how to obtain proper EEG emotion feature that carries useful information
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in time and frequency domain which can be acquired in restricted EEG frequency

subbands using limited number of EEG channels.

3. Another drawback of EEG signals are their time-varying and non-stationary charac-

teristics.To deal with this problem, the EEG signals must be split into smaller win-

dow frames so that pattern repetitions can be extracted more easily (Picard et al.,

2001). In a specific length of time window, a pseudo-stationary signal has a desir-

able statistical property of a constant mean and variance, in which, when it is used

for a prediction, it is likely yield a relatively higher predictive power (Kaplan et al.,

2005). Now, the challenge is how to obtain optimum window size to maximize the

information gain by “zooming in” on the recurring pattern on emotion elicitation.

There is one condition, the window size needs to be just right: A window too short

will lead to incompleteness, whilst a window too long will lead to over-inclusion of

non-stationary components.

4. In addition, classification using Support Vector Machine (SVM) classifier requires

an optimization method to obtain a more reliable classification result (Hsu et al.,

2003). The challenge is what method can be used to optimize the classification

with SVM.

1.5 Contribution of This Thesis

To answer the challenges, this thesis provides solutions to dealing with the problems with

various methods and strategies which become the major contributions of the thesis that

can be summarized as follows:

1. A sophisticated feature for facial expression classification using a combination of

Viola-Jones algorithm and improved Histogram of Oriented Gradients (HOG) de-

scriptor termed as Edge-HOG or E-HOG (Candra et al., 2016) is proposed as ap-

pearance based features to obtain higher performance of classification results with

reduced processing time compared to original HOG. This proposed E-HOG fea-

ture has been proven to be highly efficient for facial-expression recognition. A
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significant improvement in processing time (by comparing the classification pro-

cess applying HOG and E-HOG) with a slight reduction in classification accuracy

relative to HOG can be obtained.

2. Further experiment was conducted to reduce the dimension of Original E-HOG

(ORI E-HOG) features using a combination of Principal Component Analysis (PCA)

and Linear Discriminant Analysis (LDA) which managed to reduce the dimension

from thousands to tens. The new low dimension of E-HOG is called Reduced E-

HOG (RED E-HOG) (Candra et al., (Submitted)b). With RED E-HOG, the ac-

curacy of facial emotion classification results was improved, while the processing

time for training and testing episodes was also reduced dramatically.

3. In the case of EEG emotion recognition, a method to identify four discrete emotions

namely: happy, sad, angry, and relaxed using wavelet features including energy

and entropy was proposed (Candra et al., 2015b). The effect of EEG channel and

subband selection was also investigated, which managed to reduce the 5 subbands

to become only 3 bands utlizing alpha, beta and gamma bands. The channels have

also been reduced from 32 to 18 channels namely: Fp1, Fp2, AF3, AF4, F3,F4, F7,

F8, FC5, FC6, T7, T8, P7, P8, P3, P4, O1, and O2, while no substantial decrease

in results occurred. This gives a positive indication of the appropriateness of the

selected channels and subbands.

4. To deal with the non-stationary behaviour of EEG signals in EEG emotion recog-

nition, the effective window size was investigated to improve the classification re-

sults of EEG emotion using proposed Optimal Window Selection (OWS) (Candra

et al., (Submitted)a) as feature-agnostic preprocessing. Using 7 variations of fea-

tures, with varying window size the information corresponding to the delta, theta,

alpha, beta, and gamma bands was also calculated. These features were fed into the

classification algorithm for classifying between high/low of arousal/valence/domi-

nance/liking emotions. Using the OWS method, the localization of the information

of EEG emotion can be allocated at 4–12 seconds. This makes the OWS method

a potential solution to dealing with the non-stationary behaviour of EEG signals in

emotion recognition.
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5. A novel wavelet feature, concatenating both Wavelet Entropy and average Wavelet

Approximation Coefficients (Candra et al., (Submitted)a) was also proposed to

identify low/high of 4 dimensional plane emotions. Based on the experiments, the

classifiers trained using this novel feature consistently yield significantly higher re-

sults than those trained using other features including simple average, Fast Fourier

Transform (FFT), and Wavelet Energy.

6. In all the experiments, the classification is conducted using optimized SVM trained

with Sequential Minimal Optimization (SMO) algorithm. Optimization is con-

ducted using a Radial Basis Function (RBF) kernel. The RBF kernel parame-

ters were properly estimated in order to obtain proper learning using a particle

swarm ensemble clustering algorithm called the Ensemble Rapid Centroid Estima-

tion (ERCE) algorithm (Yuwono et al., 2014). The advantage of this algorithm is

its capability to estimate the number of clusters directly from the data using swarm

intelligence and ensemble aggregation.

1.6 Outline of The Thesis

This thesis consists of 6 chapters, an appendix and a bibliography. The thesis is organized

as follows: Chapter 2 reviews the literatures related to emotion measurement and emotion

recognition system using the facial expression and EEG emotion signal together with the

information on availability of databases, algorithms, and methods comparison to conduct

the experiment in the related area, and also discussion on SVM and the optimization

method for classification using SVM. Chapter 3 describes in depth the proposed facial

expression recognition system using E–HOG and RED E–HOG with detail algorithm

construction and discussion on the results. This is followed with Chapter 4 that provides

the information on the development of discrete EEG emotion recognition in details. In

Chapter 5, the OptimalWindow Selection (OWS) strategy to improve classification results

of EEG emotion using window segmentation strategy is explained step by step. Chapter

6 summarizes the whole discussion in all chapters in a conclusion and also provides the

research limitations and possible future directions for the research.
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Literature Review

2.1 Emotion Measurement

According to the psychologists, emotional response of individuals is triggered by their

own assessment. The emotion response is manifested as a specific action (motor expres-

sion), physiology signals, and subjective experience, according to a specific situation.

The diagram of individuals emotional reponse is illustrated as a consensual componential

model of emotion as shown in Fig. 2.1 (Mauss & Robinson, 2009).

Figure 2.1: Block diagram of a consensual componential model of emotion. (Mauss &
Robinson, 2009)

Psychologists also use a few different perspectives to measure the emotion response by

dividing it into 3 groups as follows (Caicedo & Beuzekom, 2006):
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a Discrete Emotion perspective: Each emotion corresponds to a unique profile in ex-

perience, physiology, and behaviour (Panksepp, 2007). For that purpose the emotion

is divided into a few basic emotions, for example: fear, anger, joy, sadness, disgust,

and surprise. According to this perspective, the basic emotions can be mixed which

would create a large number variations of an individual emotional episode. The set of

emotions varies depending on the theoretical background used. Ekman 6 basic facial

expression is an example (Ekman, 2003).

b Dimensional perspective: The emotion is allocated between three independent dimen-

sions: Pleasantness–unpleasantness, rest–activation, and relaxation–attention. Recently,

a two-dimensional approach is adapted by allocating the emotion into pleasant–unpleasant

and rest–activation dimensions as these are more sufficient to describe the emotion

(Russell & Barrett, 1999).

c Componential perspective: Emotions are differentiated based on the dimensions used

by the individual to evaluate an event and its affect on the individual. This perspective

is more related to the assessment process.

Considering the appraisal process and emotion perspective, scientists have conducted re-

searches to obtain reliable methods to assess emotional episodes. The methods can be

classified based on the component of the emotional response that needs to be addressed

(Caicedo & Beuzekom, 2006). A few different approaches that have been implemented

in this thesis are discussed briefly in the following section together with their advantages

and disadvantages.

2.1.1 Measurement of Motor Expression

Emotional response of individuals can be measured through their behaviour which is

manifested in motor expressions such as facial expressions, gestures, and voice tones.

Researches on the intrinsic working of facial muscles related to facial motoric action

(Ekman & Friesen, 1976), as well as experiments on emotions recognition from facial ex-

pression (Bekele et al., 2013) and the acoustic speech signal (Busso & Narayanan, 2007)

have been conducted with different methods in this field.
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Many psychologists accept the basic universal facial emotion expression concept. This

concept becomes the asset of motor expression measurement and makes it possible to

measure the emotion expression of individuals with cross-cultural backgrounds. The as-

sessment can be conducted in a nonintrusive method using video cameras and micro-

phones which can be prepared without distracting the individuals in order to minimize the

affect or interfere with their reaction towards the stimuli.

The method focuses on the measurement of basic emotion which has disadvantages in

measuring mixed emotions and is still facing the problem to link certain motor responses

to secondary emotions. Mild emotions with little motor response are also difficult to

measure. There is the possibility of falsification of facial expression related to the abil-

ity of individuals to control their motor expressions to a certain degree. Another major

disadvantage is the need of expertise for the interpretation and complex instrumentation.

2.1.1.1. Facial Action Coding System (FACS) for Facial Expression Measurement

(Ekman & Friesen, 1976)

FACS was proposed by Paul Ekman and W.V. Friesen in 1976. It is used to identify the

relation between the contraction of each facial muscle and the facial expression of an indi-

vidual. The system is used to measure and describe facial behaviour based on the muscles

that produce it. FACS is a descriptive tool that provides no information about the meaning

or the origin of facial behaviour. A tool called EMFACS (Emotion FACS) is needed to

translate the FACS into more useful information in emotion assessment. EMFACS is a

limited version of FACS that provides translation of facial emotional expressions which

enables the identification of basic emotions to a certain degree.

2.1.2 Measurement of Physiological Arousal

Measuring the physiological arousal can be conducted using specific transducers, such as

electrodes, thermometers, diodes to detect the physiological changes in the body triggered

by any emotion episodes. The results are represented in physiological signals such as

brain waves, heart rate, blood pressure, and skin conductivity.
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The main advantage of physiological measurements is the objectivity of the measure-

ments in a way that the change of physiological signals is triggered by the body on an

unconscious level of the individual. Therefore, it can be used to measure individuals from

different social and cultural backgrounds.

The main drawback of the method is that the interpretation of certain physiological signals

to a specific emotion is still argued by the scientists. In addition, the effect of other

external factors mostly are not taken into consideration, for example, physical activity

during the experiment that may affect the body temperature and heart rate of the individual

whichis not correlated to the measured emotion.

Furthermore, the instrumentation attached to the participant in the experiment may create

an uncomfortable feeling that affect the result of emotion measurement. The installation

of the instruments also requires experts in physiology and technical engineering.

2.1.3 Measurement of Subjective Feeling

Subjective feelings usually are measured with self-report assessment of the participants.

Using questionnaires the participants rate their emotions in a given scale or by using

verbal descriptions. The method also applies pictorial models to eliminate or reduce the

cultural and linguistic problem in interpreting the verbal material.

The main advantage is the accessibility to measure mixed emotions using a set of ques-

tions. It also requires very little technical background of the participants which reduces

the need of technical support.

The main disadvantage is the difficulty for some participants to interpret their experiences

which leads to misinterpretation of emotions (consciously or unconsciously). Besides, it

is crucial to assess the emotion experience as soon as it arises. Distorted measurement

may occurr if the assessment is longer than the stimulus events that trigger the emotion.
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2.1.3.1. The Pleasure, Arousal and Dominance (PAD) Emotion Scales (Mehrabian,

1997)

PAD is an example of a method to measure subjective feeling. The PAD method uses

3 dimensional planes to describe and measure the emotional response. Using the PAD

method, eight basic emotions can be grouped and identified according to their position in

the 3 dimensional planes. The 3 dimensions used in PAD methods are: Arousal (alert–

not alert which defines the issue of physical activity and mental alertness); Dominance

(dominance–submissiveness which assesses the individual’s feeling of control on a given

situation); and Valence (pleasant–unpleasant which address the affective quality of the

experience). The emotions are identified from possible combinations of the levels in

Arousal, Dominance, and Valence dimensions. Some example of the measured emotions

are hostile, anger, defiance and insolence.

2.1.3.2. Self-Assessment Manikin (SAM) (Bradley & Lang, 1994)

SAM is a pictorial graphs that replace the verbal description of emotion which is used in

the self-assessment method. The graphs consist of 3 different series of images represent-

ing 3 dimensional planes of Arousal, Dominance and Valence with the scale from 1 to

9 for each dimension. The users interpret their emotions by selecting a particular image

which they feel is best represents their emotion at a triggered emotion episode. Using

SAM, the emotion of different cross-cultural participants can be measured.

Although self-reports of emotion using SAM are likely to be valid for current experienced

emotions, however, there is a report that the users have faced difficulty to interpret and

relate the images used in SAM to their emotion so that some specific emotions were

interpreted as other contradictory emotions which leads to degradation of the emotion

measured (Isomursu et al., 2007).
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Figure 2.2: Self Assessment Manikin SAM (Bradley & Lang, 1994)

2.2 Face Detection and Recognition

With the rapid development of computational powers and availability of modern equip-

ment and technologies, computers are becoming more and more intelligent. Many re-

search projects and commercial products have shown the capability for a human com-

puter interaction in a natural way by looking at people through cameras, listening to peo-

ple through microphones, understanding these inputs, and reacting to people in a friendly

manner.

2.2.1 Face Detection

One of the fundamental techniques that enables such natural human-computer interaction

(HCI) is face detection. Face detection is the main step to all facial analysis algorithms,

including face modeling, face recognition, face authentication, head pose tracking, facial

expression recognition, age recognition, and many other methods.

The goal of face detection is to determine whether or not there are any faces in an image

and return the image location and extent of each face (Yang et al., 2002). Although this is

a simple task for human beings, it is a very challenging task for computers, and has been
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one of the most favoured research topics in the past few decades. The problems associated

with face detection can be attributed to many variations, i.e. scale, location, orientation,

poses, facial expression, lighting conditions, occlusions.

There have been numerous approaches for face detection (Yang et al., 2002; Hjelms &

Low, 2001). For instance, Yang et al. (Yang et al., 2002) grouped the various methods

into four categories: knowledge-based methods, feature invariant approaches, template

matching methods, and appearance-based methods. Knowledge-based methods use pre-

defined rules to determine a face based on human knowledge; feature invariant approaches

aim to find face structure features that are robust to pose and lighting variations; template

matching methods use pre-stored face templates to judge if an image is a face; appearance-

based methods learn face models from a set of representative training face images to

perform detection. In general, appearance-based methods had been showing superior

performance to the others due mainly to the rapid growth in computation power and data

storage.

The field of face detection has made significant progress in the past decade. In particular,

the important work by Viola and Jones (Viola & Jones, 2001) has made face detection

practically feasible in real world applications such as digital cameras and photo modifica-

tion and organization.

2.2.1.1. Viola Jones Algortihm for Face Detection

The famous face detection algorithm that has the most impact is the Viola and Jones

algortihm (Viola & Jones, 2001). The advantages of the Viola–Jones algorithm is related

to its robustnest with high detection rate to true-positive rate rather than false-positive rate.

It is also applicable for real time processing. The algorithm detects faces from non-faces

images with 4 main steps as follows:

1. Haar Feature: is sets of 3 rectangular features. First, a two-rectangle feature which

is the difference between the sum of the pixels within two rectangular regions. The

regions have the same size and shape and are horizontally or vertically adjacent.
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Second, a three-rectangle feature which computes the sum within two outside rect-

angles subtracted from the sum in a center rectangle. And third, a four-rectangle

feature computes the difference between diagonal pairs of adjacent rectangles. Fig.

2.3 illustrates the Haar feature.

Figure 2.3: The Haar feature (Viola & Jones, 2001)

2. Integral Image: is an algorithm for quickly and efficiently generating the sum of

values of the rectangle features . The itegral image at location x, y contains the sum

of the pixels above and to the left of x, y, inclusively.

3. Adaboost classifier: is a machine learning boosting algorithm capable of construct-

ing a strong classifier through a weighted combination of weak classifiers. (A weak

classifier classifies correctly in only a little bit more than half the cases.) To match

this terminology to the presented theory each feature is considered to be a potential

weak classifier.

4. Cascading Classifiers: is composed of stages each containing a strong classifier.

The function of each stage is to determine whether a given sub-window is definitely

not a face or maybe a face. When a sub-window is classified to be a non-face by

a given stage it is immediately discarded. Conversely a sub-window classified as a

maybe-face is passed on to the next stage in the cascade. It follows that the more

stages a given sub-window passes, the higher the chance the sub-window actually

contains a face.

The computation of Viola-Jones face detection algorithm in details is as follows:

1. Computing the integral image I . An integral image I is an image whose value at

I(x, y) is the sum of all the pixels above and to the left of x and y, inclusive. That
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is,

I(x, y) =
∑
x′≤x
y′≤y

I(x′, y′), (2.1)

which can be done in a single pass recursively,

I(x, y) =I(x, y) + I(x− 1, y) + . . .

I(x, y − 1)− I(x− 1, y − 1), (2.2)

with the base case being

I(x, y) = {0 : x < 0 ∨ y < 0}. (2.3)

2. Compute the value of each rectangle feature from the integral image I . This can be

computed in linear time using at most nine array references (e.g. for four rectangle

features).

3. Optimizing a classification model from a given training set. Viola and Jones pro-

pose cascading multiple sets of weak classifiers (Viola & Jones, 2001) trained using

AdaBoost (Freund & Schapire, 1996). 38 layers cascaded classifier is reportedly

sufficient for detecting frontal upright faces (Viola & Jones, 2001).

This thesis implemented the Viola Jones algorithm for the face detection considering the

fact that Viola Jones algorithm is a lightweight algorithm to detect faces and various facial

landmarks including eyes and mouth and also it has low algorithmic complexity which

makes the algorithm suitable for time-critical applications.

2.2.2 Face Recognition

In recent years, face recognition has gained more attention from engineers and neurosci-

entists, since it gives many potential opportunities to develop automatic access control

and computer vision applications. Face detection has an important role in face recogni-

tion algorithm as it becomes the first step of automatic face recognition development. The

quest in face recognition is how to determine the identity of a person from any given input

image using existing database of face images from known individuals.
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Biometric-based methods have become the favourite option for person identification which

can be alternatives replacing authentication and access granting methods using physical

and virtual tools that use domains based, such as: key, cards, smart cards, passwords,

Each method has disadvantage such as: passwords and PINs sometimesare difficult be

remember or can be predicted systematically or randomly; keys and cards sometimes are

lost, stolen or duplicated; and also magnetic cards may become unreadable; the biometric-

based methods make use of any physiological characteristics of individuals to determine

their identity which cannot be misplaced, forgotten or stolen (Parmar & Mehta, 2014).

Biometric-based technologies include identification based on physiological characteris-

tics (such as face, fingerprints, hand geometry, palm, iris, retina, ear and voice) (Bolle &

Pankanti, 1998). Face recognition appears to offer several advantages over other biomet-

ric methods, a few of which are outlined here.

All the technologies require voluntary action by the user, such as: the user needs to place

his hand on a device to identify fingerprinting or hand geometry detection or has to stand

in a fixed position in front of a camera for iris or retina identification. However, face

recognition can be conducted passively without any explicit action or participation on the

part of the user since face images can be acquired from a distance by a camera. This is

particularly beneficial for security and surveillance purposes.

Furthermore, data acquisition in general is fraught with problems; for example, hands and

fingers can be rendered useless if the epidermis tissue is damaged (bruised or cracked).

Iris and retina identification require expensive equipment and are very sensitive to any

body motion. Voice recognition is susceptible to background noises and auditory fluc-

tuations on a phone line or tape recording. Signatures can be modified or forgotten. In

addition, methods that require multiple individuals to use the same equipment to capture

the biometric characteristics potentially expose the user to the transmission of germs and

impurities from other users.

In contrast, facial images can be easily obtained with an inexpensive fixed camera. Good

face recognition algorithms and appropriate preprocessing of the images can compensate

for noise and slight variations in orientation, scale and illumination. Additionally, face
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recognition is non-intrusive and does not carry any health risks (Rabia & Hamid, 2009).

The disadvantage of face recognition is the fact that in the most common form of the

frontal view, faces appear to be roughly alike and the differences between them are quite

subtle. Consequently, frontal face images form a very dense cluster in image space which

makes it virtually impossible for traditional pattern recognition techniques to accurately

discriminate among them with a high degree of success (Nastar & Mitschke, 1998). Fur-

thermore, the human face is not a unique, rigid object. Indeed, there are numerous factors

that cause the appearance of the face to vary. The sources of variation in the facial ap-

pearance can be categorized into two groups: intrinsic factors and extrinsic ones (Gong

et al., 2000).

Intrinsic factors are related to the physical nature of the face and are independent of the

observer. These factors can be further divided into two classes: intrapersonal and in-

terpersonal (Jebara, 1995). Intrapersonal factors are responsible for varying the facial

appearance of the same person, some examples being age, facial expression and facial

paraphernalia (facial hair, glasses, and cosmetics). Interpersonal factors are responsible

for the differences in the facial appearance of different people, some examples being eth-

nicity and gender.

Extrinsic factors cause the appearance of the face to alter via the interaction of light with

the face and the observer. These factors include illumination, pose, scale and imaging

parameters, such as resolution, focus, imaging, noise.

Considering such challenging yet interesting factors, the face recognition methods can be

classified into 3 groups as follows:

a Feature-based (structural)

b Holistic Matching

c Hybrid
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2.2.2.1. Feature-based (structural)

In this method local features such as eyes, nose and mouth are first of all extracted and

their locations and local statistics (geometric and/or appearance) are fed into a structural

classifier. A big challenge for feature extraction methods is feature “restoration”; this is

when the system tries to retrieve features that are invisible due to large variations, for

example, head pose when we are matching a frontal image with a profile image (Zhao

et al., 2003). The method can be further divided into 3 different extraction techniques:

Generic methods based on edges, lines, and curves; Feature-template-based methods;

Structural matching methods that take into consideration geometrical constraints on the

features.

2.2.2.2. Holistic Matching

Using the holistic approach, the complete face region is taken into account as input data

into face catching system rather than on local features of the face. The methods can be

subdivided into two groups: statistical and Artificial Intelligent (AI) approaches, while the

most widely used algorithms in this method are eigenfaces (Turk & Pentland, 1991), Prin-

cipal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Independent

Component Analysis (ICA) (Delac et al., 2005).

2.2.2.3. Hybrid

Hybrid face recognition systems use a combination of both holistic and feature extraction

methods. 3D Images are used in hybrid methods. The image of a person’s face is caught

in 3D, allowing the system to note the curves of the eye sockets, for example, or the

shapes of the chin or forehead. Even a face in profile would serve because the system

uses depth, and an axis of measurement, which gives it enough information to construct

a full face (Parmar & Mehta, 2014). The 3D system usually proceeds thus: Detection,

Position, Measurement, Representation and Matching.
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2.2.3 Applications of Face Recognition

Face recognition can be implemented in many area with different purposes. Some possi-

ble applications can be summarized into the following:

a Face Identification: Face recognition systems identify people from their face images.

Face recognition systems establish the presence of an authorized person and replace

the use of a valid identification (ID), key, Pins, or passwords.

b Access Control: Giving the access control to a device such as office access or computer

logon. In the access control, the face pictures can be caught under natural conditions,

such as frontal faces and indoor illumination with high accuracy and without much

co-operation from the user.

c Security: An example of a security system application is in airport protection systems

that use face recognition technology; these have been implemented at many airports

around the world.

d Surveillance: Like security applications in public places, surveillance by face recogni-

tion systems has a low user satisfaction level, if not lower. Free lighting conditions, face

orientations and other divisors all make the deployment of face recognition systems for

large scale surveillance a challenging task.

e Facial expression recognition: This is the interpretation of human facial characteristics

that is read by an input sensing device such as a webcam. The facial characteristics are

then interpreted using any face recognition algorithm to identify specific face expres-

sion and translated into emotional state of the individual, such as: happy, sad, angry,

fear, and other emotions. Facial expression recognition can be useful in many areas, for

example in medical science a doctor can be alerted when a patient is in severe pain and

immediately take prompt action to help the patient. The application of facial expression

recognition system is discussed further in the next section as part of the research focus

of this thesis.
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2.3 Facial Expression Recognition System

Facial expressions have been studied by clinical and social psychologists, medical prac-

titioners, actors and artists. However in the last quarter of the 20th century, with the

advances in the fields of robotics, computer graphics and computer vision, animators and

computer scientists have started showing interest in the study of facial expressions.

In the past, facial expression analysis was a primary research subject for psychologists

such as Ekman and Friesen, who have postulated six primary emotions. Each emotion

possess a distinctive content with a specific facial expression. These prototypic emotional

displays are also called basic emotions. The referred emotions are universal across human

ethnicities and cultures and comprise happiness, sadness, fear, disgust, surprise and anger

(Ekman & Friesen, 1976) .

Recent advances in image analysis and pattern recognition open up the possibility of

automatic detection and classification of emotional and conversational facial signals. Au-

tomating facial expression analysis could bring facial expressions into man-machine in-

teraction as a new modality and make the interaction tighter and more efficient. Such a

system could also make classification of facial expressions widely accessible as a tool for

research in behavioral science and medicine.

Various applications using automatic facial expression analysis can be envisaged in the

near future, fostering further interest in doing research in different areas, including image

understanding, psychological studies, facial nerve grading in medicine (Dulguerov et al.,

1999), face image compression and synthetic face animation, video-indexing, robotics as

well as virtual reality.

However, facial expression recognition should not be confused with human emotion recog-

nition as is often done in the computer vision community. While facial expression recog-

nition deals with the classification of facial motion and facial feature deformation into

abstract classes that are purely based on visual information, human emotions are a result

of many different factors and their state might or might not be revealed through a number

of channels such as emotional voice, pose, gestures, gaze direction and facial expressions.
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Furthermore, emotions are not the only source of facial expressions. In contrast to facial

expression recognition, emotion recognition is an interpretation attempt and often de-

mands understanding of a given situation, together with the availability of full contextual

information. Fig. 2.4 provides the details of this conceptual thinking (Fasel & Luettin,

2003).

Figure 2.4: Sources of facial expressions (Fasel & Luettin, 2003)

Automatic facial expression analysis is a complex task as physiognomies of faces vary

from one individual to another quite considerably due to different age, ethnicity, gender,

facial hair, cosmetic products and occluding objects such as glasses and hair. Faces ap-

pear disparate because of pose and lighting changes. Variations such as these have to be

addressed at different stages of an automatic facial expression analysis system (Fasel &

Luettin, 2003).

In general, facial expression analysis includes both measurement of facial motion and

recognition of expression. The general approach to automatic facial expression analysis

consists of 3 steps: face detection, facial feature extraction, and facial emotion recognition

(Tian et al., 2011). Fig. 2.5 illustrates the process.
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Figure 2.5: Facial expressions analysis (Tian et al., 2011)

The algorithm used in facial expression recognition system is adopted from facial recog-

nition techniques. However, the success of facial expression recognition system relies on

the features used to distinguished the facial expressions. Therefore, facial emotion recog-

nition puts a particularly strong emphasis on facial feature extraction to collect some

specific features from the face. The facial features extraction method for facial emotion

recognition can be categorized into 2 groups namely: Geometric Based and Appearance

Based (Tariq et al., 2012).

2.3.1 Geometric Based Method

The geometric facial features present the shape and locations of facial components (in-

cluding mouth, eyes, brows, nose, etc.). The facial components or facial feature points

are extracted to form a feature vector that represents the face geometry. Geometric fea-

tures present the shape and locations of facial components, which are extracted to form a

feature vector that represents the face geometry.

A famous geometric feature is Active Appearance Models (AAM) (Edwards et al., 1998;

Zheng & Liu, 2016). However, the geometric feature-based methods usually require accu-

rate and reliable facial feature detection and tracking, which is difficult to accommodate

in many situations (Shan et al., 2009). The disadvantages of the geometric method is
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described in the following (Donato et al., 1999):

a The approximate locations of individual face features are detected automatically in

the initial frame; however, in order to carry out template based tracking, the contours

of these features and components have to be adjusted manually in this frame to each

individual subject.

b In cases of pose and illumination changes, the problems of robustness and difficulties

emerge, while the tracking is applied on images.

c As actions and expressions tend to change both in morphological and in dynamical

senses, it becomes hard to estimate general parameters for movement and displace-

ment. Therefore, ending up with robust decisions for facial actions under these varying

conditions becomes very difficult.

2.3.2 Appearance Based Method

Appearance-feature based approaches represent the texture of local regions of the face,

which captures the intensity changes associated with different expressions, such as wrin-

kles, bulges and furrows. During an expression, movement of facial organs is always

associated with change in appearance of the corresponding region by producing wrinkles,

skin folding etc.

Some popular appearance features are Gabor descriptor (Li et al., 2015) and Local Binary

Patterns (LBP) (Zhao & Zhang, 2012). Lately, Histograms of Oriented Gradient (HOG)

descriptors have received a lot of attention for the purpose of object detection (Dalal &

Triggs, 2005).

HOG is a shape descriptor that counts occurrences of gradient orientations in localized

portions of an image and that is mainly used for the purpose of object detection but that

is also intuitively useful to model the shape of the facial muscles by means of an edge

analysis. HOG descriptor has been applied as a tool for object recognition (Creusen

et al., 2010; Liang et al., 2012), human detection (Zhu et al., 2006; Yang et al., 2012),

and face recognition (Dniz et al., 2011; Salhi et al., 2013; Tan et al., 2014; Baltrusaitis
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et al., 2015). However its implementation for facial expression recognition is very few

because of its complexity and high dimension as an appearance-based feature.

2.3.2.1. HOG descriptor for Facial Emotion Recognition feature

HOG is a robust morphological image descriptor that is insensitive to light variation. The

main concept of the HOG descriptor is that local object appearance and shape within an

image can be described by the distribution of intensity gradients or edge directions. The

image must be divided into small connected regions called cells, and for the pixels within

each cell, a HOG directions is compiled. The descriptor is the concatenation of these

histograms. For improved accuracy, the local histograms can be contrast-normalized by

calculating a measure of the intensity across a larger region of the image, called a block,

and then using this value to normalize all cells within the block. This normalization results

in better invariance to changes in illumination and shadowing (Dalal & Triggs, 2005). The

block diagram of HOG computation is illustrated in Fig. 2.6.

Figure 2.6: Block diagram of HOG computation (Dalal & Triggs, 2005)

The HOG descriptor has a few key advantages over other descriptors. Since it operates on
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local cells, it is invariant to geometric and photometric transformations, except for object

orientation. Such changes would only appear in larger spatial regions. Moreover, as Dalal

and Triggs discovered, coarse spatial sampling, fine orientation sampling, and strong local

photometric normalization permits the individual body movement of pedestrians to be

ignored so long as they maintain a roughly upright position. The HOG descriptor is thus

particularly suited for human detection in images (Dalal & Triggs, 2005).

An overview of the static HOG feature extraction computation is decribed in the following

as proposed by Dalal and Triggs (Dalal & Triggs, 2005).

1. Compute the gradient of the input image E with

Gvert = E ∗ [−1, 0, 1], (2.4)

Ghoriz = E ∗ [−1, 0, 1]T , (2.5)

2. Compute the gradient magnitude |gE(x, y)| and orientation θE(x, y) using

|g(x, y)| =
√
G2

vert(x, y) +G2
horiz(x, y), (2.6)

θ(x, y) = tan−1

(
Gvert(x, y)

Ghoriz(x, y)

)
, (2.7)

3. Divide the orientation image matrix θE into equally spaced cells. Each θE(x, y)

within each cell is binned into a 9-point orientation histogramweighted by |gE(x, y)|.
Since θE is sparse, only those cells with nonzero values needs to be computed.

4. Group the cells together into blocks and normalize the gradient strengths contained

within each block,

vnormalizedi =
vi√

‖v‖22 + ε2
, (2.8)

where v = {v1, . . . , v9} denotes a non-normalized vector containing all histograms
in a given block, ε denotes a small constant for preventing a zero-valued denomina-

tor.

The HOG feature is implemented in this thesis considering its advantages of being rela-

tively insensitive to the lighting condition and its robustness as facial recognition feature.

Also in this thesis, an improved HOG feature is developed with the advantage of less sen-

sitivity to lighting condition and also low dimensionality compared to the original HOG.
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2.4 Database for Facial Expression Recognition

One of the most important aspects of developing any new recognition or detection system

is the choice of the database that will be used for testing the new system. If a common

database is used by all the researchers, then testing the new system, comparing it with

the other state of the art systems and benchmarking the performance becomes a very easy

and straightforward job. However, building such a common database that can satisfy the

various requirements of the problem domain and become a standard for future research is

a difficult and challenging task.

When compared to face recognition, face expression recognition poses a very unique chal-

lenge in terms of building a standardized database. This challenge is due to the fact that

expressions can be posed or spontaneous which are very different in their characteristics,

temporal dynamics and timings. Thus, a standardized training and testing database that

contains images and video sequences of people displaying spontaneous expressions under

different conditions of head posed, occlusions, and lighting conditions is required.

Some popular facial expression databases are publicly available without any cost. From

many available databases, reviewing all of them will not be possible. Therefore, only

those databases that have mostly been used in the past few years are presented in Table

2.1.
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Table 2.1: Summary of Databases for Facial Expression Recognition

Database Participants Details Description
Extended Cohn-Kanade
(Kanade et al., 2000; Lucey
et al., 2010).

210 adults with 593 image sequences; Gender: 69% female;
Age: 18 to 50 years; Ethnicity: 81% Euro–American, 13%
Afro-Ameican, and 6% other ethnics; Each specific facial ex-
pressions are annotated with FACS Action Units.

The participants were asked to pose 23 facial expressions in ei-
ther single action or combinations of action units, started and
finished with neutral expression. 7 prototypic emotions (happi-
ness, surprise, anger, fear, disgust, sadness, and contempt) were
annotated by certified FACS coders. Images were taken using 2
cameras which located in front of the participants and at 30 de-
grees to their right side. Only the images taken from the frontal
camera are provided in the database.

MMI Facial Expression (Pantic
et al., 2005)

19 students and staffs; Gender: 44% female; Age: 19 to 62
years; Ethnicity: European, Asian, or South American; Anno-
tated with Action Units and metadata (data format, facial view,
shown AU, shown emotion, gender, age).

The database contains posed and spontaneous expressions with
frontal and profile view images. The subjects were asked to dis-
play 79 series of expressions with a single AU, or a combination
of a minimal number of AUs, or expressions of emotion with a
short neutral expression at start at the end of each expression.
The emotions were determined using an expert annotator.

The Japanese Female Facial
Expression (JAFFEE) (Lyons
et al., 1998)

10 Japanese female models; 219 images; Each image were rated
on 6 emotion adjectives by 92 Japanese female undergraduates.

The database contains only posed expressions with 6 basic fa-
cial expressions (happiness, sadness, surprise, anger, disgust,
fear) and a neutral face. The images have been taken under
strict controlled conditions of similar lighting and with the hair
tied away from the face. All the expressions are multiple AU
expressions.
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Based on the comparison of the databases in Table 2.1, the Cohn-Kanade database has

shown more advantages compared to others. Therefore, the Cohn-Kanade database is

selected for the thesis experiment in facial expression recognition to build the dataset for

training and testing of the classifier.

2.5 Summary of Latest Researches Methodology on Facial Expres-

sion Recognition System

The most recent application of facial expression recognitions are listed in the following

Table 2.2, comparing latest reference with the method, feature used, number of emotions

measured, and database used.

Table 2.2: Comparison Between Facial Expression Recognition Methods

Method Feature # Emotions Database Reference

Appearance Modified SIFT
combined with
DWT and CoC

5 JAFFEE (Neeru & Kaur,
2016)

Appearance Gabor filters and
GLCM

7 JAFFEE (Li et al., 2015)

Appearance Gabor filtering
and KPCA

7 Cohn–Kanade (Li & Lam, 2015)

Geometric RHMM 7 Cohn–Kanade (Sun & Akansu,
2014)

Appearance MSR 7 Cohn–Kanade (Ptucha & Savakis,
2013)

Geometric AUs - MMI (Pantic & Patras,
2006)

SIFT:Scale Invariant Feature Transform; DWT: Discrete Wavelet Transform;
CoC: Coefficient of Correlation
GLCM Gray-Level Co-occurrence Matrix
KPCA: Kernel Principal Component Analysis
RHMM:Regional Hidden Markov Model
MSR: Manifold based Sparse Representation
AU: Action Units

Firstly, Table 2.2 shows that appearance-based methods are the most widely used due

to their advantage compared to geometric-based method as shown in previous section.

Secondly, the researchers also prefer to use Cohn-Kanade database. Lastly, the number

of emotions to be detected are mostly 7 as the highest.
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2.6 EEG Measurement and Its Applications

Early diagnosis of a variety of diseases can be obtained by acquiring signals and images

from the human body by collecting the data in the form of electrobiological signals such

as electroencephalography (EEG) and magnetoencephalography (MEG) from the brain,

electroocclugraphy ( or electrooptiphy (EOG)) from eye nerves, and electrogastrography

(EGG) from the stomach.

Different measurements can also be collected in the form of ultrasound or radiograph

(ultrasound image), computerized tomography (CT), magnetic resonance imaging (MRI)

or (fMRI), positron emission tomography (PET), and single photon emission tomogra-

phy (SPET). Physiological and functional changes in the brain can be depicted by either

EEG, MEG, or functional MRI (fMRI). However, application of fMRI is very limited in

comparison with EEG because of its limitation of low time resolution (two frames/s) and

higher cost.

The first electrical neural activities were registered using simple galvanometers. In or-

der to magnify very fine variations of a pointer, a mirror was used to reflect the light

projected to the galvanometer on the wall. The d’Arsonval galvanometer then featured a

mirror mounted on a movable coil and the light focused on the mirror was reflected when

a current passed the coil. The capillary electrometer was introduced by Lippmann and

Marey. The string galvanometer as a very sensitive and more accurate measuring instru-

ment was introduced by Einthoven in 1903. This became a standard instrument for a few

decades and enabled photographic recording(Sanei & Chambers, 2007).

The first EEG of a human being was recorded by Hans Berger, a German neurologist

as early as in 1924. An EEG can be recorded using an electrode which is displayed as

an oscillating signal reflecting the electric potential from the group of neurons located in

close proximity to the electrode. This signal actually shows the activity of synchronized

neurons from a certain region of the brain.

In the early day, the recording of the EEG was only suitable to detect large differences

arising in the signal pattern produced, such as epileptic convulsive. This is because the
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fact that the rhythms of the brain produced from the low quality instrument had to be

manually inspected in order to detect changes in the recording.

Nowadays, with more precise recording equipment, and the availability of sufficient com-

putational power in modern computers, and also more empirical studies of EEG, it is

possible to detect even more subtle changes in the electric potential recorded. This means

that the cognitive processes such as selective attention, working memory, mental calcula-

tions, as well as specific cognitive states and different types of behaviour can be encoded

and recognized from these subtle changes (Kvaale, 2012).

Next generation EEG systems combine a number of electrodes and a set of differen-

tial amplifiers (one for each channel) followed by filters, and needle (pen)-type registers.

These multichannel EEGs are then plotted on plain or grid paper. Afterward, researchers

looked for a computerized system with digitized and stored signals. This encouraged the

emergence of digital signals EEG which required sampling, quantization, and encoding

process. This was followed by the growth of the number of electrodes used which also

raised the data volume, which means number of bits increases. The digital systems al-

low different settings like variable, stimulations, and sampling frequency together with

advanced processing tools (Sanei & Chambers, 2007).

2.6.1 EEG Signal Processing and Signal Conditioning

In digital EEG, the conversion from analogue to digital is carried out with multichannel

analogue-to-digital converters (ADCs). Effective bandwidth for EEG signals approxi-

mately is 100 Hz. Therefore, to satisfy the Nyquist criterion, a minimum sampling fre-

quency of 200 samples/s is adequate for EEG signals. In some applications with higher

resolution, sampling frequencies of up to 2000 sample/s may be used to represent brain

activities in the frequency domain.

In order to maintain the diagnostic information, representation of each signal sample with

up to 16 bits for the quantization of EEG signals is normally very fine. To record one

hour of EEG signal with 128-electrodes and 500 samples/s of signal sample will need a

memory size of 128 × 60 × 60 × 500 × 16 ≈ 3.68 Giga Bytes ≈ 0.45 GB. Therefore, to
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record large number of patients would need huge storage facilities such as large removable

hard drives, and optical disks.

Furthermore, there are many and varied formats of EEG data captured from different EEG

machines. However these formats are easily convertible to readable spreadsheets format

and processed with most signal processing software packages such as MATLAB (Sanei

& Chambers, 2007).

The raw EEG signals carry out amplitudes in the order of volts and contain variation of

frequency components of up to 300 Hz. These signals are amplified before the ADC,

and then filtered either before or after the ADC, to reduce noise and make the signals

ready for processing and visualization. The filters are designed to reduce any change or

distortion to the signals. Often, Highpass filters with a cut-off frequency less than 0.5

Hz are used to remove very low frequency disturbing components such as breathing. On

the other hand, lowpass filters with a cut-off frequency of approximately 50–70 Hz are

used to reduce high-frequency noise. Notch filters with a null frequency of 50 Hz are also

necessary to ensure perfect rejection of the strong 50 Hz power supply. In this case the

sampling frequency used can be as low as twice the bandwidth in common EEG systems.

The common sampling frequencies for EEG recordings are 100, 250, 500, 1000, and 2000

samples/s.

There are 2 main artifacts for EEG signal: patient-related (physiological) and system ar-

tifacts. Often, these artifacts are highly mitigated in the preprocessing stage so that useful

information can be restored. Including in the patient-related artifacts are body movement-

related, EMG, ECG (and pulsation), EOG, and sweating, while the system artifacts are

50/60 Hz power supply interference, impedance fluctuation, cable defects, electrical noise

from the electronic components, and unbalanced impedances of the electrodes.

2.6.2 EEG Electrodes and Electrodes Positioning

The EEG electrodes are utilized to acquire high quality data. There are different types of

electrodes which can be used in the EEG recording systems, such as: disposable (gel-

less, and pre-gelled types); reusable disc electrodes (gold, silver, stainless steel, or tin);
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headbands and electrode caps; saline-based electrodes; and needle electrodes.

Electrode caps are often use for multichannel recordings with a large number of elec-

trodes. The most commonly used are scalp electrodes consist of Ag–AgCl disks, with

diameter less than 3 mm, and long flexible leads plugged into an amplifier. Needle elec-

trodes have to be implanted under the scalp with minimal invasive operations. Distortion

might occur related to high impedance between the cortex and the electrodes as well as the

electrodes with high impedances, which can conceal the actual EEG signals. Commercial

EEG recording systems usually are equipped with impedance monitors. The electrode

impedances should be maintained to less than 5 k ohm and be balanced to within 1 kΩ of

each other to get a satisfactory recording read (Sanei & Chambers, 2007).

There are various different systems for electrodes positioning (Illinois, Montreal, Aird,

Cohn, Lennox, Merlis, Oastaut, Schwab, Marshall). The most widely used at present

is 10/20 international system. According to this system the electrodes are positioned as

follows: the common electrode is placed remote of the skull (earlobe, nose, or chin).

It is counted as nasion and inion on data points. Ten percent of the data points are the

prefrontal and occipital planes. The rest is divided into four equal parts of 20% each. The

number of electrodes used and the position depends on the particular signal that is needed

for the analysis. There are five cross-sectional planes:

• Prefrontal: Fpz

• Frontal: Fz

• Vertex: Cz

• Parietal: Pz

• Occipital: Oz (Roman-Gonzalez, 2012).

Fig. 2.7 shows the positioning of the EEG electrodes for EEG measurement using 10/20

international system.
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Figure 2.7: EEG electrodes positioning with 10/20 international system
(Roman-Gonzalez, 2012)

2.6.3 Brain Rhythms

Since the first recording of EEG, the classification of different types of brain rhythms and

the relation with different pathologies and functions became the concern of the researches.

Brain rhythms can be divided into several frequency bands which related to different brain

states, functions or pathologies (Quiroga, 1998). The division is as follows:

a. Delta (δ) rhythms (0.5 – 3.5Hz): These rhythms are characteristic of deep sleep stages.

Furthermore, delta oscillations with certain specific morphologies, localizations and

rhythms are correlated with different pathologies.

b. Theta (θ) rhythms (3.5 – 7.5Hz): These rhythms are enhanced during sleep and have

an important role in infancy and childhood. In an awake adult, high theta activity is

considered abnormal and it is related with different brain disorders.

c. Alpha (α) rhythms (7.5 – 12.5Hz): These rhythms appear spontaneously in normal

adults during wakefulness, while in relaxed or mental inactivity conditions. They occur

when eyes are closed and are most pronounced in occipital locations.

d. Beta (β) rhythms (12.5 – 30Hz): These rhythms are best defined in central and frontal
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locations, with less amplitude than alpha waves and will be enhanced upon expectancy

states or tension. Traditionally the rhythms are subdivided in 1 and 2 oscillations.

e. Gamma (γ) rhythms (30 – 60Hz): These rhythms are occurring in physical and mental

activity such as public appearance, game arena, panic, scared, nervous in a conscious

condition.

The brainwave rhytms in different frequencies are illustrated in Fig. 2.8.

Figure 2.8: Brainwave Rhythms in various band frequencies

2.6.4 Applications of EEG Signals

Considering that all human activities are related to the brain both mentally or physically,

including the planning, coordination, execution and controlling of the activities. These ac-

tivities also give feedback to the brain as an affect or change in an alteration of brainwave

pattern. Therefore, the application of EEG is very vast and open to any possibilities. The

limit is only the availability of technology and knowledge to exploit and implement the

methods. This also means that new possibilities require new exploration and experiment

to verify the result to a certain acceptable level depending on the area of implementation.
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For example, the applications in health and medical areas require a higher standard of

acceptance compared to computer control applications such as Brain Computer Interface

(BCI). Some existing researches in EEG applications are: EEG in sleep stages both in

normal and abnormal (Colten et al., 2006), abnormal EEG patterns of the ageing (Purdon

et al., 2015), mental disorders, for example in dementia (Signorino et al., 1995), epileptic

seizure (Jouny et al., 2011), psychiatric disorders (Oberman et al., 2008). Recently, it is

also implemented for detection of freezing of gait (Handojoseno et al., 2015), and driver

fatigue (Chai et al., 2016b). One of the the most favoured implementation is in BCI

for neuroscience applications(Machado et al., 2010) or gaming applications (Liao et al.,

2011).The application is also implemented for emotion recognition system (Wang et al.,

2015; Papadaniil et al., 2015; Khosrowabadi et al., 2014).

2.7 EEG emotion recognition system

To find the correlation between EEG and emotional states should be started with the

methodology to define the emotional state space. There are two large categories of emo-

tional state spaces as previously mentioned: discrete and continuous space. The discrete

space describe the emotional state as various different types of discrete emotional states

as well as happiness, surprise, sadness, anger disgust, contempt and fear (sometimes with

more additional state space), while continuous space represents the emotional state as a

multidimensional space vector. A few different emotional dimensions have been proposed

and the most renowned is 2-dimensional circular space using arousal and valence dimen-

sions which known as the circumplex model (Kim et al., 2013; Russell, 2003; Barrett,

1998; Schaefer, 1959).

The study of EEG and emotional states should also consider the stimuli to induce the

emotions. Usually, emotion stimuli are taken to address arousal and valence states which

are presented in many modalities including visual, auditory, tactile and odor stimulation.

The accuracy of the result generated by the stimulus are measured with self-rating of sub-

jects or standard stimulus sets such as the International Affective Picture System (IAPS)
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or the International Affective Digitized Sound system (IADS). IAPS provides sets of nor-

mative pictures for emotional stimuli to induce emotional changes and attention levels

while IADS supplies acoustic stimuli to induce emotions (Kim et al., 2013).

The study in the neuropsychological area divides the EEG features in correlation to emo-

tional states into two domains: time domain and frequency domain. The time domain

focusses on the event- related potentials (ERPs) that reflect the emotional states. The

ERP components of short to middle latencies are correlated with valence, whereas the

ERP components of middle to long latencies are correlated with arousal. The ERPs com-

putation takes the averaging of EEG signals over multiple trials. The frequency domain

correlates the spectral power in various frequency bands with different emotional states.

For example, the alpha power is correlated to the valence state or with discrete emotions

such as happiness, sadness, and fear. Also, the event-related synchronization (ERS) and

desynchronization (ERD) of the gamma power are correlated to happiness and sadness

(Kim et al., 2013; Balconi & Mazza, 2009; Balconi & Lucchiari, 2006, 2008; Keil et al.,

2001; Muller et al., 1999).

Although the use of EEG for emotion analysis has been conducted with various methods

and algorithms by different researchers, however, there is no consensus of a standard

procedure for EEG signal processing (Wichakam & Vateekul, 2014). Some examples of

methods and algorithms used for EEG emotion analysis are demonstrated in the following

articles (Petrantonakis & Hadjileontiadis, 2012; Conneau & Essid, 2014; Liu et al., 2013).

2.7.1 Features, Channel Selection and Number of Electrodes for EEG Emotion

Recognition

The features used in EEG emotion classification can be divided into 2 main categories:

1) time; 2) and frequency domain. The time domain feature exploits Event Related Po-

tential (ERP), statistical computation of EEG signal, Hjorth features, Non Stationary In-

dex (NSI), Fractal Dimensions, and Higher Order Crossing, while the frequency domain

makes use of Band Power and Higher Order Spectra (HOS). There is also the imple-

mentation of a combination of time and frequency domains which exert Hilbert-Huang
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Spectrum and Discrete Wavelet Transform (Jenke et al., 2014a).

Other substantial factors which should be considered in EEG emotion classification are

the number of electrodes used and the channel selection for EEG recording (Zheng & Lu,

2015a). For example, Jatupaiboon et.al. using 14 channels EMOTIV EEG system man-

aged to reduce the number of electrodes used from 7 pairs (14 electrodes) to 5 pairs (10

electrodes) without significant difference in the result. They applied channel selection in

pairs namely: F7–F8, AF3–AF4, F3–F4, FC5–FC6, T7–T8, and O1–O2. Using Wavelet

Transform feature, the EEG signal is subdivided into 5 frequency bands of Delta (0–4Hz),

Theta (4–8Hz), Alpha (8–16Hz), Beta (16–32Hz), and Gamma (32–64Hz) (Jatupaiboon

et al., 2013).

Other researchers reduced the number of channels from 64 to 5 channels using Synchro-

nization Likelihood (SL) method with only a slight loss of classification. The method pro-

posed the following selected channels: AF2, F3, F4, CP5 and CP6 respectively (Ansari-

Asl et al., 2007).

Moreover, Wichakam and Vateekul proposed a different channel selection. They pro-

posed reduction of 32 to 10 channels by utilizing a band power method, and the selected

channels are: FP1, FP2, F3, F4, T7, T8, P3, P4, O1, and O2 (Wichakam & Vateekul,

2014).

2.7.2 Wavelet Transform for EEG Feature Extraction

In recent years, the Wavelet Transform (WT) has become popular for EEG features ex-

traction method to obtain features from EEG signal in time and frequency domain at the

same time. It has been indicated that the WT is advantageous for several reasons (Rosso

et al., 2001b):

1 The relative wavelet energy can be naturally associated with the EEG frequency bands;

2 The relative entropy of its wavelet power can serve as a reliable estimate of the degree

of similarity between different segments of the signal.
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The word wavelet means a small wave with limited duration and zero average values.

Wavelet is used as a function to localize another function or a set of data in time and

frequency domain. The first reference to wavelets is Haar wavelets in 1909. In the mid

80s the broader concept of wavelet was introduced by Grossman and Morlet. The wavelet

transform becomes famous because its effectiveness in obtaining a signal at a particular

time and frequency, or extracting features at various locations in space at different scales

(time frequency localization) and its capabilities for multi–rate filtering (differentiating

signals with their various frequencies). Desired features from an input signal can be

extracted which are characterized by certain local properties in time and space of the

signal (Graps, 1995).

Wavelet analysis can be divided into 2 groups: ContinuousWavelet Transform (CWT) and

Discrete Wavelet Transform (DWT). With CWT the signal to be analysed is matched and

convolved with the wavelet basis function at continuous time and frequency increments.

Even in CWT, the data have to be digitized. Continuous time and frequency increments

indicate that data at every digitized point or increment is used. As a result, the original

signal is expressed as a weighted integral of the continuous basis wavelet function.

In contrast, with DWT, the inner product of the original signal with the basis wavelet

function is taken at discrete points (usually dyadic to ensure orthogonality) and the result

is a weighted sum of a series of basis functions. The basis for wavelet transform is the

wavelet function. Wavelet functions are families of functions satisfying prescribed con-

ditions, such as continuity, zero mean amplitude, and finite or near finite duration. Other

properties categorize wavelets, for example, orthogonality and biorthogonality, regularity

(Resnikoff & Wells, 1998).

2.7.2.1. EEG Feature Extraction with Discrete Wavelet Transforms (DWT)

The DWT is advantageous in a sense that it provides time-frequency localization, multi-

scale zooming, and multirate filtering for detecting and characterizing transients. These

advantages allowDWT to potentially extract the appropriate information from non-stationary

signals such as the EEG signals (Handojoseno et al., 2012).
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Given any one dimensional time signal x(t), the DWT decomposes x(t) based on dyadic

scales and positions defined as follows:

DWT(x(t); a, n) =
∫ ∞

−∞

x(t)
1√
2a

ψ

(
t− 2an

2a

)
dt (2.9)

where 2an and 2a are the time localization and scale respectively, while ψ(t) denotes the

mother wavelet function.

The DWT can be interpreted as a filtering process using a dyadically shifted and scaled

mother wavelet. Given a sampled signal x[n] = x(nTs) where Ts denotes the time be-

tween samples, the DWT can then be computed recursively for each level of decomposi-

tion by convolving x[n] with a quadrature mirror filter with high-pass impulse response

g[n] and low-pass impulse response h[n] and downsampling the resulting signals by a

factor of 2. The resulting signals xA = (x∗h)[n] and xD[n] = (x∗g)[n] are referred to as
the approximation and detail coefficients, respectively. Programmatically, the DWT can

be defined as a recursive operation as follows:

xAa+1
[n] ← (xAa

∗ g) ↓2def=
∞∑

k=−∞

x[k]g[2n− k], and (2.10)

xDa+1
[n] ← (xAa

∗ h) ↓2def=
∞∑

k=−∞

x[k]h[2n− k]. (2.11)

where a denotes the level of decomposition, while ↓2 denotes the downsampling operator
by a factor of 2.

a. Wavelet Energy

The wavelet energy E(a) measures the energy of the wavelet coefficient localized at the

ath level of decomposition computed as follows,

E(a) = ‖Ca‖2 =
∑
n

C2
a [n] (2.12)

where Ca denotes the wavelet coefficients at the ath decomposition level. Ca can be either

xAa
or xDa

.

Normalizing the wavelet energy against the total wavelet energy, a probability mass func-

tion is obtained as follows,

p(a) =
E(a)∑K
k=1 E(k)

, (2.13)
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where K denotes the number of discrete wavelet decompositions, p(a) ∈ {0, 1} and∑
a p(a) = 1. This normalized measure is also known as the relative wavelet energy

(Rosso et al., 2001b).

b. Wavelet Entropy

The wavelet entropy H(a) measures the degree of ‘unpredictability’ in the energy distri-

bution. Given the probability mass function p(a) (refer to Eq. (2.13)), the wavelet entropy

is calculated as follows (Shannon, 1948),

H(a) = −p(a) log p(a), (2.14)

where K denotes the number of DWT decompositions.

2.7.3 Window Segmentation in EEG Emotion Classification

As experts already know that emotions are elicited directly from the brain, they have tried

many different approach to clasify the emotion in order to obtain higher classification

results (Panksepp, 2010).

One major challenge with EEG that has not been taken into consideration by most of

available methods is the time-varying and non-stationary characteristics of the EEG sig-

nals. One possible approach to deal with this difficulty is to split these signals into smaller

window frames so that pattern repetitions can be extracted more easily (Picard et al., Oct.

2001).

During a short time window, a pseudo-stationary signal has the desirable statistical prop-

erty of having a constant mean and variance. Predictions done using pseudo-stationary

signals are likely to yield relatively higher predictive power (Kaplan et al., 2005).

This thesis gives more attention to the investigation of appropriate window segmentation

to be used in EEG emotion classification. In this thesis, an Optimal Window Selection

(OWS) method is proposed to maximize the information gain by “zooming in” the recur-

ring pattern on emotion elicitation. The window size needs to be just right: A window too

short will lead to incompleteness, whilst a window too long will lead to over-inclusion of
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non-stationary components. Fig. 2.9 illustrates the idea of window segmentation process.

Figure 2.9: Segmentation of EEG signal with different window size. The EEG signal is
segemented into different window size to obtain most effective length of EEG signal to

be used in EEG emotion classification (Candra et al., 2015a).

2.7.4 Database for EEG Emotion Classification

Similar to facial expression recognition, the demand for a reliable database to conduct

the experiment in EEG emotion classification becomes a significant concern to obtain

accountable results. Many researchers in EEG emotion recognition perform their stud-

ies based on a restricted number of participants which may lead to a result that is only

applicable to a specific group of people with limited environment or situation.

Although a very few researches that contribute advantageous EEG emotion databases still

can be found, they have become references for other researchers to conduct more pro-

found methods in EEG emotion recognition. The databases referred to are: MAHNOB–

HCI Database (Soleymani et al., 2012a) and Database for Emotion Analysis Using Phys-

iological Signals (DEAP) (Koelstra et al., 2012). The description of both databases is

summarized in Table 2.3.
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Table 2.3: Summary of Databases for EEG Emotion Recognition

Database Content Summary Description
DEAP (Koelstra et al., 2012). Participant: 32; video: 40; Rating scales and value: conitnu-

ous 1–9 (Arousal, Valence, Dominance, Liking), discrete 1–5
(Familiarity); Recorded signals: 32–channel 512Hz EEG, with
peripheral physiological signals, Face video for 22 participants
only.

The participants were asked to watch 40 one-minute extracts of
music videos while having their EEG and other physiological
signals recorded: EEG (10-20 system), EOG, EMG (Zygomati-
cus Major and Trapezius muscles), GSR (left middle and ring
fingers), respiration belt, plethysmograph (left thumb), and tem-
perature (left pinky). Frontal face video of 22 particpants were
recorded during the experiment. The participants rated each
video with continuous value from 1 and 9 for valence, arousal,
dominance, liking, and discrete value between 1 and 5 for famil-
iarity. Assessment was conducted with SAM (Bradley & Lang,
1994).

MAHNOB–HCI (Soleymani
et al., 2012b)

Partiicpant: 27 (11 male, 16 female); video: 20; Rating scale
and value: discrete 1–9 (arousal, valence, dominance, pre-
dictability); Recorded signals: 32-channel EEG 256Hz, face
and body video using 6 cameras (60f/s), eye gaze (60Hz), audio
(44.1kHz).

30 participants were watching fragments of movies and pic-
tures. The participant was asked to rate their emotive state on a
scale 1 to 9 for valence and arousal. Recording was condcuted
with 6 video cameras, a head-worn microphone, an eye gaze
tracker, physiological sensors of ECG, EEG (32 channels), res-
piration amplitude, and skin temperature. Next, images/video
fragments were shown with a tag containing right or wrong info
at the bottom of the screen. The participant pressed a green
button if they agreed with the tag, or red button if not agreed.
Eye tracking and gaze locations were monitored at that time.
Audio, video, gaze data and physiological data were recorded
simultaneously with accurate synchronisation between sensors.
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Table 2.3 shows that DEAP dataset has more advantages compared to MAHNOB–HCI

as it has more physiological signals recorded and more emotion states rated. Therefore,

this thesis utilized the DEAP database to build an experimental dataset for EEG emotion

recognition.

2.8 Sumarry of The Latest Reseaches Methodology in EEG Emotion

Recognition

The latest researches in EEG emotion recognitions are listed in Table 2.4, comparing be-

tween the feature used, subband, number of channel, type of emotions, and signal window

size.

Table 2.4: Comparison Between EEG Emotion Recognition Methods

Feature # Subband # Channel Emotions Window Reference

FD or FFT PSD 5 12 Familiarity 4 s (Thammasan
et al., 2016)

MSCE 3 9 Anger, Fear 60 s (Papadaniil et al.,
2015)

Statistical, FFT
Band Power,
Wavelet PSD

4 32/10 Arousal, Valence,
Dominance, Lik-
ing

60 s (Wichakam &
Vateekul, 2014)

GMM segment-
level

5 14 Arousal, Valence,
Dominance, Lik-
ing

1 s overlapped (0.1 s step) (Zhuang et al.,
2014)

Statitstical / FD 5 32 / 14 Arousal, Domi-
nance, Valence

49 s (Liu & Sourina,
2013)

FFT Power Spec-
tral

5 32 Arousal, Valence,
Dominance, Lik-
ing

1 / 2 / 4 / 8 s shifted 1 s (Rozgi et al.,
2013)

FD: Fractal Dimension; PSD: Power Spectral Density; FFT: Fast Fourier Transform
GMM: Gaussian Mixture Model
MSCE: Magnitude Square Coherence Estimation

Table 2.4 shows that Power Spectral and statistical features are often selected as the fea-

tures. The number of sub bands accommodated are mostly all the 5 bands, while the

number of channels depends on the EEG equipment that has been used. Some EEG equip-

ment may only have a limited number of channels, for example:some EEG systems only

equipped with 14 channels. The emotion detected is mostly based on Russel’s circumplex

model (Russell, 1980) that accommodates arousal, valence, and dominance emotion. The
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detection of discrete emotion is usually mapped from the arousal–valence dimensional

plane. Only a few researcher considered applying a different selection of window size for

the signal segmentation, (Rozgi et al., 2013) for example.

It should also be noticed that (Thammasan et al., 2016) and (Guo et al., 2017) has applied

and cited the proposed window segmentation method described in (Candra et al., 2015a).

Thammasan et al. used Fast Fourier Transform Power Spectral Density (FFT PSD) for the

feature, where the emotion to be detected is related to the familiarity to the musics, while

Guo et al. used the combination of time domain and DWT feature classified with com-

bined SVM and HMM. Their results supported the hypothesis that the implementation of

window segmentation improved the classification results of EEG emotion consistently in

general.

For the EEG emotion recognition, this thesis focuses on the exploration of power spec-

tral and entropy of wavelet features while dealing with the subband and channel reduction.

And also, investigation of window segment was conducted to obtain window size that pro-

vides higher performance of classification results. In addition, discrete and dimensional

plane emotional states were also addressed in the recognition.

2.9 Support Vector Machine (SVM) Classifier for Emotion Recogni-

tion System

SVM was first introduced by Vladimir Vapnik in 1979 and first published in 1995. It is

used for binary classification by discovering the hyperplane that separates the n-dimensional

data into two classes. Often, the data cannot be linearly separated; hence the kernel in-

duced feature space is introduced in SVM so that the data is moved into higher dimen-

sional space to make it possible for separation. Moving the data into higher dimensional

space raises a computational problem and overfitting. However, this is not really the case

since the higher dimensional space should not be addressed directly (it is only dot product

in that space). The target of SVM is developing a model from the training data to predict

the target values of test data with only the test data attributes. (Joachims, 2002).
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For a training set with instance-label pairs (xi, yi), i = 1, . . ., l where xi ∈ Rn and y ∈ {1,
-1}l the SVM require the solution of the following optimization problem:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (2.15)

is subject to

yi(w
Tφ(xi) + b) ≥ 1− ξi, (2.16)

ξi ≥ 0, i = 1, . . . , l.

Training vectors xi are mapped into a higher (maybe infinite) dimensional space by the

function φ. SVM finds a linear separating hyperplane with the maximal margin in this

higher dimensional space. C > 0 is the penalty parameter of the error term. Furthermore,

K(xi, xj) ≡ φ(xi)
T φ(xj) is called the kernel function (Hsu et al., 2003). Hsu et. al.

suggest to use the following four basic kernels:

• Linear: K(xi, xj) = xT
i xj

• Polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0

• Radial Basis Function (RBF): K(xi, xj) = exp(−γ ‖ xi − xj ‖ 2, γ > 0

• Sigmoid:K(xi, xj) = tanh(γxT
i xj + r)

where, γ, r, and d are the kernel parameters.

2.9.1 Optimizing the SVM Classifier

SVM has several advantages, foe example, the margin maximization and the regulariza-

tion term, good generalization properties (Bennett & Campbell, 2000; Jain et al., 2000),

insensitive to overtraining (Jain et al., 2000) and to the curse-of-dimensionality (Burges,

1998; Bennett & Campbell, 2000). Having all those advantages, SVM has been shown

to be a powerful classifier for the task due to its ability to operate on non-linear and high

dimensional feature spaces. However, these advantages are gained at the expense of a low

speed of execution (Lotte et al., 2007).
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Using SVM, it is possible to create nonlinear decision boundaries, with only a low in-

crease of the classifier’s complexity, by using the proper kernels. It consists in implic-

itly mapping the data to another space, generally of much higher dimensionality. The

most common kernel used for the above mentioned purpose is RBF kernel. When using

SVM with RBF kernel, there are a few hyperparameters that need to be defined manually,

namely, the regularization parameter C and the RBF width σ if using kernel 2 (Lotte et al.,

2007).

In this thesis, the SVM classifier is optimized using an RBF kernel by first properly es-

timating the RBF kernel parameters in order to obtain proper learning (Schlesinger &

Hlavac, 2002) using a particle swarm ensemble clustering algorithm called the Ensem-

ble Rapid Centroid Estimation (ERCE) algorithm (Yuwono et al., 2014). The algorithm

can estimate the number of clusters directly from the data using swarm intelligence and

ensemble aggregation. Having the optimized RBF kernel parameters, the SVM is then

trained using the Sequential Minimal Optimization (SMO) algorithm. The detaiedl steps

for the optimization of the SVM classifier is presented in the following. First, calculate

the RBF kernel using:

RBFJS(x,μk, σk) = exp

(
−JS(x‖μk)

2σ2
k

)
(2.17)

where k denotes the support vector index, σk denotes the support vector radius, JS(x‖μk)

denotes the Jensen-Shannon (JS) divergence between a random vector x and the support

vector centroid μk.

The JS divergence is a symmetrized and smoothed version of the Kullback-Leibler (KL)

divergence (Fuglede & Topsoe, 2004). Given two discrete probability distributions P ∼
p(x) and Q ∼ q(x), the JS divergence is calculated as follows,

JS(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M), where (2.18)

KL(R‖S) =
∑
x

R(x) log
R(x)

S(x)
. (2.19)

HereM = (P +Q)/2 denotes the central probability mass function and KL denotes KL

divergence.

The next important step is the estimation of the RBF kernel parameters using a particle
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swarm ensemble clustering algorithm called the ERCE algorithm (Yuwono et al., 2014).

It has been argued that the algorithm can estimate the number of clusters directly from

the data using swarm intelligence and ensemble aggregation (Yuwono et al., 2014, Jun.

2014).

Using ERCE, the support vector centroids μk ∈ {μ1,μ2, . . .} and the kernel radius σk ∈
{σ1, σ2, . . .} can be inferred from the training data as follows:

1. Execute ERCE (Yuwono et al., 2014) to cluster the training setXtrain = {x1,x2, . . .}
to an arbitrary number of cluster based on JS distance (i.e. the square root of JS di-

vergence).

2. Aggregate the ensemble clustering results using average linkage to get the final

clustered sets {C1,C2, . . . ,CK}, whereK is determined automatically by ERCE at

ensemble aggregation. The corresponding centroid vector μk ∈ {μ1, . . . ,μK} is
computed as conditional expectation as follows,

μk = E[x|Ck] =
1

|Ck|
∑
x∈Ck

x. (2.20)

3. The RBF kernel radius for the kth support vector is taken as the square root of

conditional JS divergence as follows,

σ2
k = E [JS(x‖μk)|Ck] =

1

|Ck|
∑
x∈Ck

JS(x‖μk). (2.21)

4. Given the optimized RBF kernel parameters, the SVM is then trained using the

SMO algorithm (Chang & Lin, 2011).

2.10 Summary

In this chapter the general concept of emotion measurement has been explained. The

3 perspectives of emotion response measurement have been discussed including: dis-

crete, dimensional, and componential perspective. Combining the appraisal process as

explained in Chapter 1 and the 3 perspectives bring about 3 possible approaches to mea-

sure the emotion. Each of the approaches is related to specific attributes. For example:
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motor expression measurement is related to motoric activity of body part, and physio-

logical arousal measurement is related to physiological signal, while subjective feeling

measurement is more related to the affect.

Furthermore, the development of facial expression recognition involves much background

knowledge such as: face detection and face recognition which has 3 different mecha-

nisms: feature-based, holistic matching and hybrid methods. The facial emotion recogni-

tion gives more emphasis to facial features extraction: the geometric based method which

has some disadvantages compared to appearance based.

A detailed description has been provided of the Histograms of Oriented Gradient (HOG)

descriptor that has been successfully implemented for object recognition including face

recognition which has condiserable potential to be used as a feature for facial expression

recognition.

The availability of database for facial expression recognition should also be taken into

consideration to develop the recognition system as it is required for testing the new sys-

tem, comparing it with the other state of the art systems and benchmarking the perfor-

mance. Such a common database will satisfy the various requirements of the problem

domain and can be used as a standard for future research. The Extended Cohn–Kanade

(CK+) database (Kanade et al., 2000) is one good example.

In Electroencephalography (EEG) emotion recognition, it relies on the methodology, ap-

plication, and equipment to measure the EEG signals. Signal processing and conditioning

is also required before the information can be extracted to develop any application that

uses the attributes of EEG signal as a feature. In addition, the electrodes positioning is

an important factor in recording the EEG signal. The most used positioning method is

the 10/20 international system. The EEG signal is usually divided into several frequency

bands: delta, theta, alpha, beta, and gamma.

To build a reliable EEG emotion recognition system attention must given to the features,

channel selection, and number of electrodes. Another important parameter is the window

segmentation to overcome the challenge of time-varying and non-stationary characteris-

tics of the EEG signals. Proper selection of window size will improve the performance of
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the system.

A sophisticated feature to be used in EEG emotion recognition system is the Discrete

Wavelet Transform (DWT) by taking its relative energy and or entropy. The advantages of

the DWT are related to its capability of time-frequency localization, multiscale zooming,

and multirate filtering for detecting and characterizing transients. These advantages allow

DWT to potentially extract the appropriate information from non-stationary signals.

The same as in facial expression recognition, the need for a reliable database to conduct

the EEG emotion recognition becomes an important issue. There are few EEG emotion

databases that can meet with the expectation, and the Database for Emotion Analysis

Using Physiological Signals (DEAP) (Koelstra et al., 2012) becomes the most preferred

one.

To complete the chapter, the Support Vector Machine (SVM) classifier has been explained

together with the optimization method using a particle swarm ensemble clustering algo-

rithm called the Ensemble Rapid Centroid Estimation (ERCE) algorithm.
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Chapter 3

Facial Expression Recognition using

E–HOG and RED E–HOG Features

In this chapter, the implementation of Edge–Histogram of Oriented Gradients (E–HOG)

for facial expression recognition is discussed (Candra et al., 2016). In addition, the high

dimensionality issue of original E–HOG (ORI E–HOG) is resolved using a combination

of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to ob-

tain very low dimension of ORI E-HOG. Using the new feature Reduced E–HOG (RED

E–HOG) (Candra et al., (Submitted)b), improvement was achieved in various aspects,

such as, reduced dimensions, increased accuracy, and shortened training and testing time.

The following are the primary contributions of this chapter:

the development of E-HOG feature for facial expression recognition; The implementation

of dimensionality reduction using a combination of PCA and LDA to obtain a very low

dimension RED E-HOG feature; The demonstration of RED E–HOG in facial expression

recognition which provide improvement of accuracy and reduction of classifacation time

compared to E–HOG.

This chapter is organized as follows: a quick overview on the method is explained in

Section 3.1. Section 3.2 describes the experimental setup involving dataset preparation

and experimental outline. In Section 3.3 the proposed E–HOG algorithm is discussed

in depth, including Viola-Jones facial landmarks detection, and E–HOG computation.
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Dimensionality reduction using a combination of PCA and LDA to generate RED E-

HOG feature is also explained in this section, followed by the discussion on the results of

E–HOG and RED E–HOG implementation in Section 3.4. The summary in Section 3.5

concludes this chapter.

3.1 Method Overview

For many decades scientists have shown significant interest to accurately identify human

facial expressions in order to help people to better understand the human emotions. The

implementations have been extended to various areas, including: human-computer inter-

action, advertisement, computer games, and biomedical areas, (Mohamed et al., 2013;

Taspinar et al., 2012; Tanaka et al., 2010; Ulukaya & Erdem, 2014).

Recently, the facial expression was also implemented as an assisting tool in psychother-

apy. (Candra et al., 2016). Using a sophisticated feature called Edge–Histogram of Ori-

ented Gradients (E–HOG), the method was aimed to identifying patients’ facial emotion

expressions to provide an effective counselling session and offer the optimum treatment

which is very important in psychotherapy (Foley & Gentile, 2010). Usually a therapist

uses various guidance to interpret the facial expression of patients with psychological

problems Machado et al. (1999) to provide therapeutic alliance and treatment process

(Sutter, 2010). Therefore the facial expression recognition system will be very helpful for

the therapists while they focus on the appropriate treatment methods.

To distinguish different types of human emotions, Ekman divides them into six basic

facial expressions, namely: anger, disgust, fear, happy, sad, surprise. Contempt is then

added later as another natural emotion (Ekman, 2003). These facial expressions have

been implemented to Machine aided emotion recognition systems such as a lie detector

for security application (Owayjan et al., 2012) and autistic therapy system (Smitha &

Vinod, 2015) to name a couple.

Viola Jones is renowned as a lightweight algorithm to detect faces and various facial

landmarks including eyes and mouth with low algorithmic complexity which makes the
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algorithm suitable for time-critical applications (Viola & Jones, 2001).

Histogram of Oriented Gradient (HOG) as a robust morphological image descriptor was

first introduced by Dalal and Triggs (Dalal & Triggs, 2005). Although it has been used for

various facial recognition implementations since inception (e.g.(Baltrusaitis et al., 2015;

Salhi et al., 2013; Do & Kijak, 2012; Monzo et al., 2011)) its usage in facial-emotion

expression classification may not have not been adequately explored to date.

The combination of Viola-Jones algorithm and improved HOG descriptor, which is HOG

feature extracted from a binary edge image is proposed to develop the E–HOG feature

for facial expression recognition (Candra et al., 2016). The proposed E–HOG feature

can be highly efficient for facial-emotion expression recognition with high classification

results and a significant improvement in processing time (by comparing the classification

process applying HOG and E-HOG). The E–HOG was successfully trained to distinguish

between Ekman 7 basic emotions.

In addition, the original E-HOG (ORI E-HOG) has an issue of high dimensionality which

demands very long training and testing time. Therefore, the improvement of ORI E-HOG

in its dimensions is necessary to make it more feasible to be implemented in a facial emo-

tion recognition system. To obtain very low dimension of ORI E-HOG features, dimen-

sionality reduction technique using a combination of PCA and LDA is implemented. The

new feature is named Reduced dimension E-HOG (RED E-HOG). Using RED-E-HOG

trained with multi-class Support Vector Machine (SVM), we achieved improvement in

various aspects, such as, reduced dimensions, increased accuracy, and shortened training

and testing time.
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3.2 Experimental Setup

3.2.1 Dataset Prepaparation

This study used the extended Cohn-Kanade database (Lucey et al., 2010). The database

has 2,105 frontal faces images of 210 participants from various backgrounds, i.e., Euro-

American (81%), Afro-American 13%), and other groups (6%); it consists of 31% male

and 69% female with ages between 18 and 50 years. They were asked to perform 23 facial

expressions in either single action or combinations of action units, starting and finishing

with a neutral expression. The database was collected in an observation room that had

relatively uniform lighting conditions and context. The room was equipped with a chair

and 2 video cameras which were located in front of the participants and at 30 degrees to

their right side. The images were recorded in 425 lines per frame and digitized by only

using the odd fields (Kanade et al., 2000).

The images taken from the frontal-view camera were digitized into 640 × 490 pixel with
8 bit gray-scale or 640 × 480 pixel of 24-bit colour values. From these frontal-view

images, 182 subjects with 1,917 image sequences have been coded with the Facial Action

Coding System (FACS).

We used the FACS coded images to construct the dataset for our experiment to identify 7

facial expression emotions including: 1. Anger (An); 2. Contempt (Co); 3. Disgust (Di);

4. Fear (Fe); 5. Happy (Ha); 6. Sad (Sa), and; 7. Surprise (Su). Each of these emotions

was represented with 150 FACS coded images, giving a total number of images in the

constructed dataset as much as 150 × 7 = 1,050. The dataset was then divided into 30%
and 70% proportions for the training and testing purpose.

3.2.2 Experimental Outline

The facial expression recognition method is applied in the following steps: 1. Detec-

tion of facial landmarks using Viola Jones algorithm; 2. RED E-HOG feature extraction

which is comprised of 2 consecutive steps: 2a. E–HOG Feature extraction; 2b. Dimen-

sional reduction using a combination of PCA and LDA. This process produces 2 features
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namely: E–HOG and RED E–HOG, respectively. Both features are used in the facial

expression classification, which becomes the next step; 3. Facial expression recognition

with Multi-class SVM. The complete steps are illustrated in the block diagram as in Fig.

3.1.

Figure 3.1: The block diagram of the proposed emotion recognition algorithm.

3.3 Experimental Details

In this section, we will explain the detailed process of the algorithm step by step, as re-

ferred to in Fig. 3.1. We started by performing Viola-Jones robust object detector to

capture facial landmarks from the input image with the results of 3 cropped facial land-

mark images, i.e., face, pair of eyes, and mouth. The cropped facial landmarks were then

fed to the RED E-HOG algorithm to obtain the features for facial emotions classification.

The RED E-HOG algorithm itself consists of 2 steps as follows:

• First, E-HOG algorithm: Canny edge method (Canny, 1986) was applied to the
cropped facial landmarks to produce binary edge images. The process was contin-

ued with the HOG algorithm to extract HOG features from the binary edge images;
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• Second, Dimensionality reduction: To reduce the complexity of the E-HOG fea-
tures, dimensionality reduction using PCA was implemented to obtain the projec-

tion of features vectors that best representing the distribution of features within the

features space. Further dimensionality reduction was conducted using LDA to pick

the maximum possible discrimination between different classes of E-HOG features

by taking largest differences between them.

The output, E–HOG and RED E–HOG features were collected for facial emotion classi-

fication using multi-class SVM to distinguish 7 facial expressions. To better understand

how the experiment was conducted, this section has been divided into the following 4

subsections:

1. Viola-Jones Algorithm for Facial Landmarks Detection.

2. E–HOG Feature Extraction Strategy.

3. Improving E–HOG Feature with Dimensional Reduction Technique: Constructing

RED E–HOG.

4. Classifying Facial Expression using Optimized Multi-class SVM.

A more detailed algorithm on each step is discussed in the following subsections.

3.3.1 Viola-Jones Algorithm for Facial Landmarks Detection

Given an intensity image I with x and y denoting the row and column index, respectively

and using equation 2.1 to 2.3 from Chapter 2, the Viola–Jones algorithm can be computed.

To continue the Viola–Jones algortihm, facial landmarks including face, mouth and eyes

are isolated from an image with the following steps:

1. Given an image capture, localize a face entity of arbitrary size Fm×n.

2. If Fm×n exists, standardize the image size using any interpolation method,

F r×c ← imresize (Fm×n, [r × c]) , (3.1)
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where r × c is a predefined standard resolution. In this experiment we find 212 ×
212 pixels to be adequate for the emotion recognition purpose.

3. F is then divided into two parts: The upper half F upper
r/2×c — where the eyes are

detected and the lower half F lower
r/2×c — where the mouth is detected. The detection

process is shown in Fig. 3.2.

Figure 3.2: The facial landmarks extraction using Viola-Jones’ algorithm.

3.3.2 E–HOG Feature Extraction Strategy

A descriptor derived from Dalal’s HOG Dalal & Triggs (2005) is proposed in this the-

sis which is termed Edge-HOG or E-HOG. The proposed feature takes the edge image

extracted using the Canny method as an input to the HOG feature extraction process.

E-HOG is calculated from an input image as follows:

1. Perform edge detection using Canny method:

(a) Normalize the intensity image.

(b) Smoothen the image with a Gaussian mask.

(c) Calculate the horizontal and vertical gradients of the pixels in the image, i.e.
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gvert(x, y) = ∂I(x, y)/∂x and ghoriz(x, y) = ∂I(x, y)/∂y,

Gvert = I ∗ [−1, 0, 1], (3.2)

Ghoriz = I ∗ [−1, 0, 1]T . (3.3)

(d) Calculate the gradient magnitude |g(x, y)| and orientation θ(x, y) as follows,

|g(x, y)| =
√
g2vert(x, y) + g2horiz(x, y), (3.4)

θ(x, y) = tan−1

(
gvert(x, y)

ghoriz(x, y)

)
, (3.5)

(e) Apply non-maximum suppression,

(f) Identify strong and weak edges,

(g) Track the strong edges,

(h) Return the resulting edge image E as an output.

2. Compute the HOG features from the edge image E using equation 2.4 to 2.8 from

Chapter 2.

E-HOG features are relatively faster to compute than HOG due to the sparse E (refer to

Step 2 equation 2.6 and 2.7) which potentially contributes to a computational complexity

reduction. The descriptors returned by HOG and E-HOG are seen in Fig. 3.3.

(a) HOG (b) E-HOG

Figure 3.3: HOG vs E-HOG features of the eye and mouth. Sparse E matrix in the
E-HOG computation contributes to a substantial amount of cells having zero values,

yielding simpler features and a leaner extraction process.
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3.3.3 Improving E–HOG Feature with Dimensional Reduction Technique: Con-

structing RED E–HOG

To reduce the complexity of E-HOG features dimension, we need to implement a dimen-

sionality reduction algorithm. We chose a combination of PCA and LDA in our strategy

due to the advantage of each method that if combined will enhance the dimensional re-

duction. The advantage and formulation of each method is explained in the following

paragraph together with the steps for the combination.

3.3.3.1. Dimension Reduction with Combination of PCA and LDA Algorithm

A. Principal Component Analysis (PCA)

PCA is well known as a standard technique in signal and image processing that can be

used to linearly reduce the dimensionality of complex data (features) that contains re-

dundant information into lower dimensional feature vectors. The main idea of PCA is to

identify the vectors that best represent the distribution of features within the entire feature

space by projecting them into the direction of highest variability (Martis et al., 2013).

An E-HOG feature ofM ×N can be considered as a one-dimensional vector with dimen-

sion of (M ×N ). For example, E-HOG feature of mouth with size of 80 × 36 pixels can
be taken as a vector with dimension = 80 × 36 = 2,880 or equivalently points in a 2,880
dimensional space which is an ensemble of features vectors maps to a collection of points

in this highly-dimensional space.

Supposing that L numbers of K dimensions E-HOG feature are arranged in matricesK ×
L, the covariance matrices V of the E-HOG feature can be calculated with

V = (Y − ȳ)(Y − ȳ)T , (3.6)

where Y is the features matrices of E-HOG coefficients and ȳ represents mean vector of

Y.

The eigenvalues are the first principal component that provide the basis vector for the di-

rection of highest variability, while eigenvectors are the basis vector for the next direction
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orthogonal to the first principal component. This diagonal matrix of eigenvalues D and

matrices eigenvectors E can be computed with

E−1V E = D. (3.7)

To obtain the new reduced dimension features matrices R, the eigenvectors E are sorted

in descending order of the eigenvalues D, and then the inner product between the original

features matrices and the sorted eigenvectors E are taken. Those give:

R = [ET (Y − ȳ)T ]T . (3.8)

B. Linear Discriminant Analysis (LDA)

LDA proposed the maximum possible discrimination between different classes of E-HOG

features by searching for basis vectors within the features that provide the largest differ-

ences between various classes by taking the measurement of smallest within-class scatter

matrices Sw and the largest between-class scatter matrices SB which can be computed as

follows (Zhou et al., 2013):

SW =
K∑
k=1

Lk∑
l=1

(ykl − xk)(y
k
l − xk)

T , (3.9)

SB =
K∑
k=1

(xk − x)(xk − x)T , (3.10)

where ykl represents the lth sample of class k, xk is the mean of class k, K is the number

of classes, and Lk the number of samples in class k; and x is the mean of all classes.

Then use the Fisher criterion to measure the discriminatory power with:

D(W ) =
‖W TSBW‖
‖W TSWW‖ . (3.11)

Matrix W as the optimal projection matrix can be obtained by solving the generalized

eigenvalue problem:

SBW = λSWW (3.12)
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The LDA coefficients that represent the reduced dimensional features of E-HOG can be

obtained from the projection matrix with

s = W T r, (3.13)

where s is the LDA coefficients and r is the original E-HOG features coefficient.

C. Combination of PCA and LDA

PCA reduces the dimension of E-HOG features by finding basis vectors which correspond

to the maximum-variance directions in the original space, while LDA aims at increasing

separability of the samples in subspace by searching vectors in the underlying space that

best discriminate among classes. Therefore, combination of both will provide optimized

dimensionality reduction of the features (Yoo et al., 2015).

The proper order of the implementation is first applying the PCA to the ORI E-HOG

features to obtain maximum variance directions in space of the features. Then, the output

of PCA is used as an input to LDA algorithm to gain highest discrimination among classes.

3.3.4 Classifying Facial Expression using Optimized Multi-class SVM

The facial expression classification is done using an optimized multi-class SVM with a

Radial Basis Function (RBF) kernel as explained in Chapter 2. The kernel radius RSVM

is inferred from the training data using Ensemble Rapid Centroid Estimation (ERCE)

(Yuwono et al., 2014). The SVM radius estimation step is as follows,

1. For each vectorized E-HOG descriptor vj in the training set, compute the probabil-

ity mass function with equally spaced bins centered atC = {0.000, 0.025, 0.050, . . . ,
0.500} to normalize against general shape of the face to improve generalization
capability by having sufficiently adequate support vector radius to avoid over or

under-cluster.

pj = pmf(vj, C), (3.14)

where j denotes the observation index.
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2. Execute ERCE (Yuwono et al., 2014) to cluster P = {p1, p2, . . .} to an arbitrary
number of cluster based on Jensen-Shannon distance.

3. Aggregate the ensemble clustering results using average linkage to get the final

clustered sets {C1 ∪ . . . ∪ CK}, where K is determined automatically by ERCE

at ensemble aggregation. The corresponding centroid vectors {μ1, . . . ,μK} are
computed using Eq. (2.20).

4. The SVM radius RSVM is taken as the average cluster radius in terms of euclidean

distance and computed using Eq. (2.18), (2.19), and (2.21).

The SVM is trained using Sequential Minimal Optimization (SMO) algorithm (Chang &

Lin, 2011).

3.4 Discussion

In order to understand the experiment results, we must first look at the steps involved

prior to discussing the experiment outcome. In this section, we will first evaluate the

summary of classification results with various facial landmarks of ORI E–HOG com-

pared to original HOG (ORI HOG) together with the confusion matrix of the best trained

SVM classifier using Face E–HOG. We will then discuss the impact to the classification

results after the implementation of dimensionality reduction. The next step is the anal-

ysis of training and testing time by comparing the classification results before and after

dimensionality reduction (ORI E–HOG Vs. RED E–HOG), followed by comparison of

classification result for each facial expression using RED E–HOG Face in a confusion

matrix, and finally the comparison between RED E–HOG Face and other methods. The

detail for each section is discussed in the following.

3.4.1 Classification Results with E–HOGFeature and Comparison to Original HOG

We begin the analysis with the comparison of the classification results between E–HOG

and ORI HOG as summarized in Table 3.1. A paired t-test was conducted with the null
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hypothesis (H0) being “accuracy using E-HOG is not higher than ORI HOG.” α = 0.001.

Table 3.1: Comparison of average classification accuracy between ORI HOG and
E–HOG (30 repetitions)

Feature Source Dimension (pixels) Ave. Accuracy p-value

ORI HOG E-HOG

Eyes 128× 40 0.8095 0.7361 1.74E-17
Mouth 80×36 0.8972 0.8066 3.32E-24

Eyes & Mouth 128×40, 80×36 0.9456 0.8936 2.05E-17
Face* 180×140 0.9607 0.9490 0.0016*

*H0 could not be rejected for the face feature at α = 0.001.

To complete the analysis, a table showing the classification processing time for each clas-

sification process utilizing ORI HOG and-E–HOG is also provided in Table 3.2. A paired

t-test was also computed with the null hypothesis (H0) being “the E-HOG processing time

is not smaller than ORI HOG.” α = 0.001.

Table 3.2: Comparison of average classification processing time between ORI HOG and
E–HOG (30 repetitions)

Feature Source Ave. Time (s) improvement % p-value

ORI HOG E–HOG tORI HOG − tE–HOG
tE–HOG

Eyes 0.98 0.53 83.07% 0.0015
Mouth 0.75 0.41 82.20% 0.0103

Eyes and Mouth 1.5 0.76 97.67% 5.20E-07
Face 29 1.5 1833.33% 2.43E-17

Observing both Table 3.1 and 3.2, it can be noticed that the face yields the best trade-off

between time complexity and accuracy as indicated with a significant improvement in

classification processing time ((tHOG − tE-HOG)/tE-HOG = 1833.33%, p-value = 2.43E-17)

and a slight decrease in average accuracy (accHOG−accE-HOG = 1.17%, p-value = 0.0016,

insufficient evidence to reject H0 at α = 0.001). Despite the high accuracy, ORI HOG

(face) is significantly slower to compute compared to E-HOG (face).

The high accuracy using the face feature indicates that the key features for describing

emotions are also conceived outside of the eyes and mouth. This includes skin wrinkles

in the forehead and the nose.
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Next, a confusion matrix showing the best trained SVM classifier using Face E-HOG

feature is shown in Table 3.6. The table shows that accuracy as high as 96.4% can be

achieved using the proposed feature.

Table 3.3: Confusion Matrix of the best trained classifier using Face E-HOG features

An Co Di Fe Ha Sa Su

An 97.2% 0.0% 0.0% 1.4% 0.0% 1.4% 0.0%
Co 0.0% 90.0% 0.0% 8.6% 0.0% 1.4% 0.0%
Di 4.3% 0.0% 95.7% 0.0% 0.0% 0.0% 0.0%
Fe 1.4% 0.0% 1.4% 94.4% 1.4% 0.0% 1.4%
Ha 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
Sa 1.4% 0.0% 0.0% 0.0% 0.0% 98.6% 0.0%
Su 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 98.6%

Average Accuracy = 96.4%

3.4.2 Classification Results of RED E–HOG Feature

Dimensionality reduction was performed to all facial landmarks of ORI E-HOG by first

applying PCA to obtain principal components of the features that give classification re-

sults approximately equal to the results without dimensionality reduction. The results

after applying PCA are provided in Fig. 3.4.
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Figure 3.4: Classification results with various E–HOG features after applying PCA.

Fig. 3.4 shows that the dimension of ORI E-HOG features can be reduced from thou-

sands to hundreds using PCA with the classification results equal to ORI E-HOG. How-

ever, reducing the dimension to lower than 100 will result in drastically reduced accuracy.

Therefore, to obtain further dimensional reduction of E-HOG features, we applied LDA
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by using the output from PCA algorithm that has dimension of 100 as the input to LDA

algorithm. The result after LDA implementation is given in Fig. 3.5.
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Figure 3.5: Classification result with various E-HOG features after applying a
combination of PCA and LDA.

Using the combination of PCA and LDA, the dimension of E-HOG features is reduced

to tens with equal classification results to ORI E-HOG. However, the accuracy dropped

when the dimension was reduced to less than 5.

The observation of Fig. 3.4 and Fig. 3.5 also shows that best performance of dimensional

reduction can be obtained using the combination of PCA and LDA by first implement-

ing PCA algorithm to acquire hundreds of dimension and then continuing with the LDA

algorithm to reach tens dimension.

3.4.3 Comparison of Classification Processing Time Between REDE-HOG vs. ORI

E-HOG

Table 3.4 and Table 3.5 present the comparison of training and testing time between ORI

E-HOG and 10 dimensions RED E-HOG for each classification process.

Both tables indicate that ORI E-HOG demands extensive training and testing time com-

pared to RED E-HOG. And also, the most significant improvement of training and testing

time is given by the RED E-HOG face (1.48e4% and 1.09e5%). The results suggest that

dimensionality reduction applied to RED E-HOG offers time efficiency, which makes

RED E-HOG more effective and feasible to be used in facial expression recognition, es-

pecially for RED E-HOG Face.
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Table 3.4: Average training time of ORI E-HOG vs. 10 Dimensions RED E-HOG
trained with multi-class SVM in 30 repetitions

Feature Source Average Time (s) improvement %
ORI E-HOG RED E-HOG tORI − tRED

tRED

Eyes 4.60 0.90 411.11%
Mouth 1.86 0.20 830.00%

Eyes & Mouth 5.49 0.21 2,514.29%
Face 28.22 0.19 14,752.63%

Table 3.5: Average testing time of ORI E-HOG vs. 10 Dimensions RED E-HOG trained
with multi-class SVM in 30 repetitions

Feature Source Average Time (s) improvement %
ORI E-HOG RED E-HOG tORI − tRED

tRED

Eyes 1.80 0.01 1.79e4%
Mouth 1.00 0.01 9.90e3%

Eyes & Mouth 2.93 0.01 2.92e4%
Face 10.93 0.01 1.09e5%

3.4.4 Analysis of Classification Results for Each Emotion with Confusion Matrix

of RED E-HOG Face

Using 10 dimensions RED E-HOG Face, a confusion matrix comparing the classification

results for all 7 expressions is created and presented in Table 3.6. The confusion matrix

denotes that using the selected features accuracy as high as 99.6% can be realized. Further

analysis also reveals that anger, contempt, fear, and sad can be identified clearly with

100% accuracy. Although disgust and happy were misidentified as anger, while surprise

was misinterpreted as fear, these occur in only 1.0% in each case.

Table 3.6: Confusion Matrix of the best trained SVM classifier using 10 dimensions
RED E-HOG Face

An Co Di Fe Ha Sa Su

An 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Co 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Di 1.0% 0.0% 99.0% 0.0% 0.0% 0.0% 0.0%
Fe 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Ha 1.0% 0.0% 0.0% 0.0% 99.0% 0.0% 0.0%
Sa 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%
Su 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% 99.0%

Average Accuracy = 99.6%
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3.4.5 Analysis of The Dimensional Reduction Process with Scatter Plots Between

Feature Vectors

To understand the effect of dimensionality reduction using a combination of PCA and

LDA to the features, scatter plots between feature vectors are created as illustrated in Fig.

3.6. The scatter plots of the feature vectors represent the relation between each facial

expression. In Fig. 3.6 (a), The ORI E-HOG with high dimensionality creates contiguous

and overlapping plots between 7 facial expressions. In Fig. 3.6 (b), when the PCA was

applied to the ORI E–HOG, the plot becomes convergent with clear boundaries between

each facial expression, although some overlapping still occurs. Finally, when LDA was

implemented after PCA, a more solid boundary with a significant distance arises between

each facial expression as illustrated in Fig. 3.6 (c). Therefore, the features that represent

the 7 facial expressions can be easily distinguished by the classifier.

3.4.6 Comparison of ORI E–HOG and RED E-HOG to Other Methods

A comparative summary showing the accuracy of ORI E–HOG Face, RED E-HOG Face

with other methods that use the extended Cohn-Kanade dataset as a benchmark is pre-

sented in Table 3.7. All of the methods classified 7 facial expressions using various fea-

tures. The table indicates that RED E-HOG Face outperforms the other methods for

accuracy.

Table 3.7: Comparison of ORI E–HOG, RED E-HOG Faces to Other Facial Expreesion
Recognition Methods

Method Feature # Emotions Accuracy (%)

CK+ (Kanade et al., 2000) Action Unit (AU) 7 83.33
J. Li & E. Lam (Li & Lam, 2015) Gabor Wavelet and Kernel

PCA
7 91.70

Ptucha et. al.(Ptucha & Savakis, 2013) Manifoldbased Sparse
Representation

7 94.60

H. Candra et. al. (Candra et al., 2016) ORI E-HOG Face 7 94.90
H Candra et.al. (Candra et al., (Submitted)b) RED E-HOG Face 7 99.33
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Figure 3.6: Scatter plot of ORI E-HOG features before and after dimensionality
reduction using PCA and a combination of PCA and LDA.
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3.5 Summary

The proposed Edge Histogram Oriented Gradient (E-HOG) has been shown to have very

high potential as a feature for facial expression recognition; a classification result as high

as 96.4% has been realized using the Extended Cohn-Kanade dataset (Kanade et al.,

2000).

The reduced dimension of Edge-Histogram of Oriented Gradients (RED E-HOG) is also

introduced as an improved E–HOG with a very low dimension. Using a combination of

PCA and LDA for dimensionality reduction technique, the dimension is reduced from

thousands to tens. 7 facial expressions has been successfully recognized using 10 dimen-

sions of RED E-HOG, as indicated by the accuracy being as high as 99.6% when trained

with multi-class SVM.

The high classification result of RED E-HOG is also supported by the significant improve-

ment in training and testing time of RED E-HOG compared to ORI E-HOG. Upon these

2 indicative improvements, the implementation of the RED E-HOG features (specifically

RED E-HOG Face) becomes feasible and efficient for facial expression recognition.

Analysis of the confusion matrix indicates that anger, contempt, fear, and sad were distin-

guished clearly from the 7 emotions using the RED E-HOG Face features. The analysis

of dimensional reduction process with scatter plots between feature vectors reveals that

RED E–HOG demonstrates a simpler plot compared to ORI E–HOG. The scatter plot of

RED E–HOG has a solid boundary with significant distance between 7 facial expressions

so that they can be distinguished clearly by the SVM classifier.

The comparison to other methods shows that the RED E-HOG Face features outperforms.

The high classification rate of RED E-HOG Face features indicates that the features to de-

scribe facial emotions include the area outside the eyes and mouth, such as skin wrinkles

on the nose and forehead.

Future research in this field includes the implementation of Deep Belief Network as the

classifier and application of the features in biomedical engineering to recognize facial

expressions of people associated with specific emotional disorders.
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Chapter 4

Discrete EEG-Emotions Recognition

Using Wavelet Features

This chapter focus on the development of an EEG emotion recognition method to identify

four discrete emotions namely: happy, sad, angry, and relaxed using wavelet features in-

cluding energy and entropy. The effect of EEG channel and subband selection in relation

to the classification results is also investigated to improve accuracy while also simplifying

the wavelet features and reducing the number of channels. For that purpose, 2 statistical

tools specifically Receiver Operating Characteristic (ROC) and Normal Mutual Informa-

tion (NMI) were adopted in the analysis.

The main contribution of this chapter are: development of a discrete EEG- emotion recog-

nition method using EEG signals and wavelet features; recommendation of subband selec-

tion using only 3 bands of wavelet energy and entropy (alpha, beta, and gamma subbands)

as features for EEG discrete emotion recognition, and also; suggestion on channel selec-

tion of EEG electrodes using 18 channels (Fp1, Fp2, AF3, AF4, F3,F4, F7, F8, FC5, FC6,

T7, T8, P7, P8, P3, P4, O1, and O2), without substantial decrease in the results, which

gives a positive indication of the appropriateness of the selected channels and subbands.

The organization of this chapter is as follows: a quick overview on EEG emotion recog-

nition method is discussed in Section 4.1. Section 4.2 describes the experimental setup
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involving dataset resources and preprocessing, subject grouping, dataset mapping, and ex-

perimental outline. In Section 4.3 the experimental detail of the proposed discrete EEG-

emotion recognition using wavelet features is explained, followed by the discussion on

the results and implementation in Section 4.4. The chapter is summarized in Section 4.5.

4.1 Method Overview

Emotions as a part of non-verbal communication play an important role in interactions

between individuals. Emotions are directly related to the brain and are manifested in

the form of brain waves that affect the entire system of a person’s body. Detection and

study of these brain waves is known as electroencephalography (EEG) which is a type

of physiological signal that has been implemented in various emotion recognition system

schemes.

Psychologist James Russell proposed the circumplex model of emotion in 1980 (Russell,

1980). The circumplex model is a conceptualized 2-dimensional continuous space where

the horizontal and vertical axes correspond to the degree of valence (pleasure) and arousal,

respectively. Discrete emotional states such as ‘happy’, ‘sad’, ‘angry’, and ‘relaxed’ can

be mapped to degree of valence and arousal as illustrated in Fig. 4.1. Using this model,

the degree of any of the aforementioned discrete emotional states can be measured. It has

been further reported that the psychological condition of positive/negative arousal (acti-

vation/deactivation) and positive/negative valence (pleasant/unpleasant) can be identified

from Galvanic Skin Response (GSR) and EEG signal (Torres et al., 2013).

Studies have indicated that the reliability of most EEG-based systems can be improved

by proper:

1. Feature selection To date, there is still no consensus as to which features are most

suitable for EEG emotion recognition (Jenke et al., 2014b). Two of the popular

methods often considered are Fast Fourier Transform (FFT) (Nie et al., 2011) and

Discrete Wavelet Transform (DWT) (Rizon, 2010).

2. EEG subband selection: EEG waveforms are generally subdivided into several
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Figure 4.1: Mapping of 4 discrete emotions to Russell’s circumplex model of affect
(Russell, 1980). Horizontal axis represents valence (pleasure); vertical axis represents

arousal.

bandwidths known as delta, theta, alpha, beta, and gamma. These bands need to

be properly selected as not all of them carry the relevant information for emotion

recognition. For example, Zhu et. al. discovered that EEG patterns in the Beta and

Gamma bands are generally stable across emotions and subjects (Zhu et al., 2014).

3. EEG channel selection: Jenke suggested that not all of the electrode locations

carry the appropriate information for emotions (Jenke et al., 2014b).

In this chapter, an EEG emotion recognition method is cosntructed to identify four dis-

crete emotions namely: happy, sad, angry, and relaxed using wavelet features including

energy and entropy. The classification algorithm used is the Multi-class Support Vector

Machine (SVM) (Schlesinger & Hlavac, 2002). We also investigated the effect of EEG

channel and subband selection.

On the DEAP (Dataset for Emotion Analysis using electroencephalogram, Physiological

and Video Signals) (Koelstra et al., 2012), our method achieved the average sensitivity

and specificity of 72.3% and 83.8% using the Wavelet Entropy features. We observed an
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increase of specificity from 79.8% to 82.1% using the alpha, beta, and gamma subbands.

Further specificity increase to 83.8% was achieved using 18 EEG channels namely: Fp1,

Fp2, AF3, AF4, F3,F4, F7, F8, FC5, FC6, T7, T8, P7, P8, P3, P4, O1, and O2 (Candra

et al., 2015b). We did not observe any substantial decrease in sensitivity. This implies that

the channels and subbands selection are applicable for discrete EEG emotion recognition

method.

4.2 Experimental Setup

4.2.1 Dataset Resource and Dataset Preprocessing

This part of the thesis uses the Dataset for Emotion Analysis using electroencephalo-

gram, Physiological and Video Signals (DEAP) Koelstra et al. (2012) provided through

the courtesy of the authors, Koelstra et. al. The dataset provides multimodal data of hu-

man affective states analysis from 32 volunteers. The volunteers were asked to watch

40 one-minute extracts of music videos while having their signals recorded. The sig-

nal sources include EEG (10-20 system), EOG, EMG (Zygomaticus Major and Trapez-

ius muscles), GSR (left middle and ring fingers), respiration belt, plethysmograph (left

thumb), and temperature (left pinky). 22 out of 32 participants had their frontal face

videoed during the experiment. The participants assessed each music video with contin-

uous real value between 1 and 9 to describe their emotions in term of valence, arousal,

dominance, delight and familiarity. Assessment was conducted with the standardized

Self-Assessment Manikins (SAM) (Bradley & Lang, 1994). EEG preprocessing was done

according to Koelstra’s Koelstra et al. (2012) as follows:

1. Resampling to 128Hz,

2. Removal of EOG artifacts using Blind Source Separation,

3. Filtering using 4.0 - 45.0 Hz Bandpass filter, and

4. Averaging the data to common reference.
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Additionally, the dataset also provides important information to understand the dataset

such as online ratings, list of videos, and participant questionnaires. The preprocessed

EEG data using Koelstra’s preprocessing method (Koelstra et al., 2012) were also pro-

vided in Python and Matlab format. This preprocessed data was used throughout the

experiment.

4.2.2 Subject Grouping from The Dataset

As previously mentioned in Chapter 2, the used of self-reports of emotion using SAM

still faced an issue of misinterpretation of the images used in SAM to be related to certain

emotions by the users. This leads to very contradicting interpretation of emotions that

creates degradation of the classification reliability (Isomursu et al., 2007). Therefore, to

reduce the mistranslation effect, we conducted a subject grouping to properly select a

group of participants for the experiment as explained in the Experimental Detail section.

4.2.3 Dataset Mapping

In order to extract 4 discrete emotions from the EEG signals, there is a need to map the

subjective rating of arousal and valence emotions into 4 classes of discrete emotion. This

can be accomplished by plotting the ratings into 4 quadrants of the circumplex model. The

coordinate pairs of arousal and valence will define the position in the 4 quadrants. Each

quadrant is related to a specific discrete emotion as illustrated in Fig. 4.1. The coordinate

pairs are defined as follows:

• Pleasant, Activation⇒ Happy

• Pleasant, Deactivation⇒ Relaxed

• Unpleasant, Activation⇒ Angry

• Unpleasant, Deactivation⇒ Sad
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4.2.4 Experimental Outline

The block diagram of the discrete EEG-emotion recognition is shown in Fig. 4.2.

DWT feature
extraction

EEG subband 
selection

EEG channel 
selection

Emotion 
classification 

(SVM)

Preprocessed 
EEG signals

Discrete 
Emotions

Subject 
Grouping

Statistical Analysis

NMI ROC

Figure 4.2: Block diagram of the Discete EEG-emotion recognition.

The method applied a few main steps to map a raw EEG signal to the appropriate emotion.

The brief description of the block diagram is as follows:

• Preprocess the raw EEG signal to remove artifacts such as eye blinking and down-
sampling the signal to 128Hz. The preprocessed DEAP dataset is readily available

in the DEAP website (Koelstra et al., 2012).

• Subject grouping from the dataset by applying the RBF kernel function (Vert

et al., 2004) to calculate the transformation matrix of each person’s EEG features

related to their own emotion rating. The result is fitted as a logistic regression. The

whole results of all participants are concatenated to form the matrices for clustering.

These mapping matrices are clustered based on how closely related each person is

to another and put in groups with dendrogram.

• Compute the wavelet features using DWT from a given EEG channel and take the
wavelet energy and wavelet entropy from the decomposition level that corresponds

to the appropriate EEG subband.

• Select the EEG subbands by choosing from 5 available subbands reduced to 3
subbands only.

• Reduce the EEG channels by taking from 32 available electrodes subtracted into
18 selected channels.
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• Train the SVM classifier by conducting 2 consecutive operations: dataset genera-

tion, and; optimization of the support vector centroids and radius.

• Analyse the features and classification results with NMI and ROC.

4.3 Experimental Detail

In order to better understand the process and algorithms involved in the proposed discrete

EEG-emotion recognition method, this section is divided into the following subsections

to provide more detailed explanation of each step:

a Subject grouping

b EEG Feature Extraction with Discrete Wavelet Transform (DWT)

c EEG subband selection

d EEG channel selection

e Optimizing the Multi-class SVM Classifier

f Receiver operating characteristic (ROC) for Classification Analysis

g Normalized Mutual Information (NMI) for EEG Channel Analysis

The details of each steps are discussed in the following paragraph.

4.3.1 Subject Grouping

Let Xz(s) = { (cz,1,x1), (cz,2,x2), . . . , (cz,N ,xN) } be defined as a set of labeled points
Xz produced by a specific subject s.

For any x, let φ(x,x′) be defined as an RBF kernel function (Vert et al., 2004),

φ(x,x′
m) = exp

(
−||x− x

′
m||2

2σ2

)
(4.1)
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where x
′
m and σ denote the center and radius of the mth kernel, both assumed to be

reasonably optimized.

Let Φ(x) be defined as a vector containing the outputs of the kernel function evaluated

for each x′
m,m ∈ { 1, . . . ,M },

Φ(x) =
⋃
m

φ(x,x′
m). (4.2)

For any cz, let logit(cz) be defined as follows,

logit(cz) = log

(
cz

1− cz

)
. (4.3)

Let c be defined as a vector containing the label for the four emotions,

c =
⋃
z∈A

cz,A ∈ { vl, ar, do, lk } . (4.4)

The relation between (cn,xn) can then be simplified as the following linear equation,

Φ(xn)P = logit(cn) (4.5)

where P is a M × 4 matrix explaining the linear relationship between Φ(xn) and cn.

Assuming C = { c1, . . . , cN }, Φ(X) = {Φ(x1), . . . ,Φ(xN) }, and Φ(X) is a full-

column rank matrix, we can then linearly solve P as follows,

P =
(
Φ

T (X)Φ(X)
)−1

Φ
T (X) logit(C). (4.6)

In order to compare the mapping matrices of each individual subject, we then solve P

for every Xz(s). This process yields P = {P1, . . . ,PS }, where S is the number of sub-
jects. We then compute pairwise euclidean distance between the P matrices. Subjects

with similar reponse patterns will then have relatively closer distance. We then construct

a dendrogram usingWard’s method and divide the subjects into several subgroups accord-

ing to the closeness of their matrices. We then randomly picked one of the subgroups as

the subjects of interest in the experiment.
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4.3.2 EEG Feature Extraction with Discrete Wavelet Transform (DWT)

The DEAP dataset recorded the EEG signals of 32 participants with each having 40 min-

utes duration. Each of the EEG signals can be divided into 40 × 1 minutes length of

cropped EEG signals with each being related to a low/high state of arousal or valence

emotion. Therefore, from each participant can be collected 40 different EEG signals that

represent high/low state of arousal or valence emotion, which in total gives 40 EEG sig-

nals × 32 participants = 1,280 individual EEG signals.

In this experiment all of the 1,280 individual EEG signals were processed to acquire fea-

tures in time-frequency domain using the DWT transform. The purpose of the DWT uti-

lization is due to its capability to multiscale zooming, and multirate filtering for detecting

and characterizing transients which allow us to extract the appropriate information from

the EEG signals to be used as the feature for EEG emotion classification Handojoseno

et al. (2012).

The DWT feature extraction of each individual preprocessed EEG signal was conducted

using the following steps:

1. Given any 1 minute EEG signal x(t), the DWT of x(t) can be computed using Eq.

(2.9). As it has already been explained in Chapter 2, the DWT can be interpreted as

a filtering process using a dyadically shifted and scaled mother wavelet. Thus, for

a given sampled EEG signal x[n] = x(nTs), the DWT can then be calculated recur-

sively for each level of decomposition, where Ts denotes the time between samples.

For that purpose, the EEG signals approximation coefficients xA and detail coeffi-

cients xD can be calculated using Eq. (2.10) and (2.11), respectively.

2. The next step is to calculate the wavelet energy E(a) from the EEG wavelet co-

efficient localized at the ath level of decomposition using Eq. (2.12), where Ca is

the EEG wavelet coefficients at the ath decomposition level. Ca can be either xAa

or xDa
of the EEG wavelet coefficients, and then the wavelet energy is normalized

against the total wavelet energy using Eq. (2.13), where K denotes the number of

EEG discrete wavelet decompositions, p(a) ∈ {0, 1} and∑a p(a) = 1.
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3. The wavelet entropy H(a) of the EEG sgnal is also computed using Eq. (2.14),

with K as the number of EEG signal DWT decompositions.

4.3.3 EEG subband selection

According to Tinguely et. al, (Tinguely et al., 2006) the delta and theta bands are more

relevant to the sleep stage, and thus have less relevance to the emergence of emotion.

For this reason, we investigated two experimental settings of EEG channel selection as

follows:

SB5: 5 EEG frequency bands: delta, theta, alpha, beta, and gamma: SB5 = {δ, θ, α, β, γ},
and

SB3: 3 EEG frequency bands: alpha, beta, and gamma: SB3 = {α, β, γ}.

The results of those 2 experimental settings were then compared to inspect the effect of

subband reduction to the classification results.

4.3.4 EEG channel selection

The effect of channels selection was also examined based on the literature review on the

most commonly used EEG channels for EEG emotion recognition. We implemented the

channels selection scenarios as follows:

CH32: No channel selection, i.e. using all the 32 available EEG channels.

CH18: The number of channels was reduced to the 18 channels commonly used in the

EEG emotion recognition literature according to Jenke et. al (Jenke et al., 2014b).

The 18 channels are: Fp1, Fp2, AF3, AF4, F3,F4, F7, F8, FC5, FC6, T7, T8, P7,

P8, P3, P4, O1, and O2.
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4.3.5 Optimizing the Multi-class SVM Classifier

In order to improve the classification results of the SVM classifier, the following prepara-

tion steps were carried out :

1. Generate the training and testing sets:

• Perform signal preprocessing and DWT feature extraction for each emotion
for each subject from a group of n participants and assign this array of obser-

vations as the training set, so that

Xtrain = {X1,X2, . . . ,Xn}

where Xn = {x1,n,x2,n, . . .} denote the observation vectors extracted from
participant n.

• Similarly, the test set Xtest can then be constructed from another n participants
so that

Xtest ∩ Xtrain = ∅.

2. Optimize the support vector centroids and radius for the RBF kernel from Xtrain

using the Ensemble Rapid Centroid Estimation (ERCE) (Yuwono et al., 2014).

3. Train the multi-class SVM using Xtrain against the class labels. Sequential Minimal

Optimization (SMO) algorithm was used for the SVM training algorithm.

The emotion classification was conducted using a multi-class SVM with a Radial Basis

Function (RBF) kernel which can be computed using Eq. (2.17).

The JS divergence is a symmetrized and smoothed version of the Kullback-Leibler (KL)

divergence (Fuglede & Topsoe, 2004). Given two discrete probability distributions P ∼
p(x) and Q ∼ q(x), the JS divergence is calculated using Eq. (2.18) and (2.19).

Properly estimating the parameters for the RBF kernel is particularly important in order to

ensure proper learning (Schlesinger & Hlavac, 2002). We used a particle swarm ensemble

clustering algorithm called the ERCE algorithm for this purpose (Yuwono et al., 2014). It

has been argued that the algorithm can estimate the number of clusters directly from the
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data using swarm intelligence and ensemble aggregation (Yuwono et al., 2014; Yuwono,

2015).

Using ERCE, the support vector centroids μk ∈ {μ1,μ2, . . .} as well as the kernel radius
σk ∈ {σ1, σ2, . . .} can be inferred from the training data. The steps are as follows:

1. Execute ERCE (Yuwono et al., 2014) to cluster the training setXtrain = {x1,x2, . . .}
to an arbitrary number of clusters based on JS distance (i.e. the square root of JS

divergence).

2. Aggregate the ensemble clustering results using average linkage to get the final

clustered sets {C1,C2, . . . ,CK}, whereK is determined automatically by ERCE at

ensemble aggregation. The corresponding centroid vector μk ∈ {μ1, . . . ,μK} was
computed as conditional expectation using. Eq 2.20.

3. The RBF kernel radius for the kth support vector was taken as the square root of

conditional JS divergence and computed with Eq. (2.21).

4. Given the optimized RBF kernel parameters, the SVM was then trained using the

SMO algorithm (Chang & Lin, 2011).

4.3.6 Receiver operating characteristic (ROC) for Classification Analysis

A receiver operating characteristic (ROC) curve is a statistical tool to evaluate the quality

or performance of diagnostic tests from a binary classifier system which is illustrated as a

graphical plot (Bradley, 1997).

The ROC curve was first developed by electrical engineers and radar engineers during

World War II for detecting enemy objects in battlefields and was soon introduced to psy-

chology to account for perceptual detection of stimuli. ROC analysis since then has been

used in medicine, radiology, biometrics, and other areas for many decades and is increas-

ingly used in machine learning and data mining research (Hajian-Tilaki, 2013; Zou et al.,

2007).
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Consider a two class prediction problem (binary classification) with the outcomes are

labelled either as positive (p) or negative (n). It will give 4 possible outcomes as follows:

1. If the outcome from a prediction is p and the actual value is also p, then it is called

a true positive (TP);

2. If the outcome from a prediction is p and the actual value is n then it is said to be a

false positive (FP);

3. When both the prediction outcome and the actual value are n, then true negative

(TN) is occurred;

4. When the prediction outcome is n while the actual value is p, it is called the false

negative (FN).

The confusion matix of the binary classification with its possible outcomes is illustrated

in Fig. 4.3.

Figure 4.3: Confusion matrix of binary classification with 4 possible outcomes.

A ROC space is defined by FPR and TPR as x and y axes respectively, which depicts

relative tradeoffs between true positive (benefits) and false positive (costs). Since TPR is
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equivalent to sensitivity and FPR is equal to 1 – specificity, the ROC graph is sometimes

called the sensitivity vs (1 – specificity) plot. Each prediction result or instance of a

confusion matrix represents one point in the ROC space (Fawcett, 2006). The formulation

of the TPR and FPR is as follows:

Sensitivity = TPR =
TP

P
=

TP

(TP + FN)
(4.7)

Specificity = SPC =
TN

N
=

TN

(TN + FP )
(4.8)

FPR = 1− Specificity = 1− SPC (4.9)

4.3.7 Normalized Mutual Information (NMI) for EEG Channel Analysis

Mutual Information (MI) is the measurement of mutual dependence (amount of informa-

tion) between a random variable X towards another random variable Y. This measurement

is an indication of coherence between two distributions that generates the variables (vec-

tors). Mutual Information has been applied for image registration over the decades based

on the marginal and joint entropies (Cahill, 2010). However, its implementation has been

applied in data mining to group similar data records (He et al., 2008).

Recently, Normalized Mutual Information (NMI) has been proposed for feature analysis

which can be used to better understand the relation between the features and their repre-

sented label (Estévez et al., 2009). The NMI may inform whether the features are fully,

partly or not even related to the label. The implementation of NMI algorithm in EEG

signal processing offers the possibilities to analyze the relation between the features and

the EEG channels. The attempt to implement NMI algorithm in EEG-emotion classifi-

cation has been initiated in (Candra et al., 2015b) and applied in (Candra et al., 2017),

using NMI algorithm to measure the relation between features in EEG channels and their

represented emotions. The calculation of MI and NMI can be defined as follows (Cahill,

2010):

MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (4.10)

The MI is normalized (NMI) to obtain value between 0 (independence) and 1 (really

88



Chapter 4. Discrete EEG-Emotions Recognition Using Wavelet Features

dependence) with the equation can be rewritten as (Strehl & Ghosh, 2003):

MI(X, Y ) =
NMI(X, Y )√
H(X)H(Y )

(4.11)

This NMI calculation is implemented in this chapter to analyse the correlation between

the EEG wavelet features and the EEG channels.

4.4 Discussion

Prior to discussing the implementation results of the discrete EEG-emotion recognition,

we divide this section into the following 4 subsections to provide the analysis of the results

and its implication in depth:

a Classification Results of The Discrete EEG-Emotion Recognition

b Confusion Matrix of The Best Trained Classifier

c ROC Analysis of The Classification Results

d NMI Analysis of The EEG Channel Selection

The detailed discussion of each subsection is presented in the following paragraph in

accordance with the given order.

4.4.1 Classification Results of The Discrete EEG-Emotion Recognition

Basically, the classification results can be divided into 2 main categories: the classification

results of wavelet energy and wavelet entropy. These groups can be further subdivided

into 3 more specific combinations of subband selection and channel selection, which, in

total give 6 combinations of classification results, in particular: wavelet energy with 5

subbands and 32 channels; wavelet energy with 3 subbands and 32 channels; and wavelet

energy with 3 subbands and 18 channels. The similar combinations can also be retrieved

from the wavelet entropy.
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In addition, the division of the subbands was obtained using daubechies 5 (db5) as the

mother wavelet. The wavelet features were computed from the following detail coeffi-

cients to extract 5 different subbands frequency:

• 5th detail coefficients: xD5
≈ Delta (3–4Hz);

• 4th detail coefficients: xD4
≈ Theta (5–8Hz);

• 3rd detail coefficients: xD3
≈ Alpha (9–16Hz);

• 2nd detail coefficients: xD2
≈ Beta (17–32Hz); and

• 1st detail coefficients: xD1
≈ Gamma (33–64Hz).

Furthermore, the channel selections were taken based on the summary of channel selec-

tions used in the references that has been adopted by Jenke et. al (Jenke et al., 2014b).

We selected the 18 most commonly used EEG channels which deliver the following list

of channels: Fp1, Fp2, AF3, AF4, F3,F4, F7, F8, FC5, FC6, T7, T8, P7, P8, P3, P4, O1,

and O2.

All the classification results of those combinations of the discrete EEG-emotion recog-

nition are summarized in Table 4.1 which were obtained from 30 repetitions of SVM

training and testing episodes using 5 subbands (SB5) and 3 subbands (SB3), as well as 32

(CH32) and 18 (CH18) EEG channels.

Using Table 4.1 we can observe diverse diagnosis. First, the emotion classification results

of wavelet entropy generally pick up higher accuracy than relative wavelet energy.

Second, using only the alpha, beta, and gamma subbands (SB3) maintains desirable results

in the overall accuracy.

Third, wavelet entropy features achieved 61.8% accuracy under the CH32, SB3 setting.

When the number of channel is reduced to 18, a slight increase in sensitivity is observed

with a substantial drop in specificity.
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Table 4.1: Classification Results of The Discrete EEG-Emotion Recognition

Channel,
Subband

Sensitivity∗ Specificity∗ Accuracy∗

Features: Relative Wavelet Energy
CH32, SB5 72.5% ± 10.6% 79.3% ± 7.0% 57.3% ± 2.8%
CH32, SB3 75.4% ± 11.1% 81.8% ± 5.9% 59.6% ± 1.9%
CH18, SB3 73.5% ± 14.8% 82.3% ± 6.2% 59.6% ± 2.6%
Features: Wavelet Entropy
CH32, SB5 74.6% ± 10.3% 79.8% ± 6.5% 59.0% ± 1.7%
CH32, SB3 75.7% ± 12.1% 83.7% ± 6.8% 61.8% ± 4.4%
CH18, SB3 77.4% ± 14.1% 69.1% ± 12.8% 60.9% ± 3.2%

——

* Sensitivity, specificity and accuracy are averaged over the four emotions over 30
experiments.

4.4.2 Confusion Matrix of The Best Trained Classifier

Further investigation is conducted using the confusion matrix as shown in Table 4.2. We

selected the wavelet entropy under CH18, SB3 setting to create the confusion matrix of

the best trained classifier. From Table 4.2 it can be observed that the sad emotion was

classified up to 88.89%, while the other three emotions achieved lower than 80%. The

least result was attained by relaxed emotion with 64.29% of accuracy.

Table 4.2: Confusion matrix of the best trained classifier using wavelet entropy under
CH18, SB3 setting.

Output class

Sad Relaxed Angry Happy

Target Class

Sad 88.89% 00.00% 00.00% 11.11%
Relaxed 28.57% 64.29% 00.00% 07.14%
Angry 09.09% 00.00% 72.73% 18.18%
Happy 09.09% 20.00% 18.18% 72.73%
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4.4.3 ROC Analysis of The Classification Results

We conducted statistical analysis of the classification results by taking the sensitivity

(TPR) and 1–specificity (FPR) of the classification results for wavelet entropy with CH18,

SB3 setting and expressing it as a ROC curve of an average case scenario as displayed in

Fig. 4.4.
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Figure 4.4: Receiver Operating Characteristic (ROC) of an average case scenario.

The ROC curve in Fig. 4.4 shows that sad emotion keeps the highest true positive rate

compares to the other three emotions. However, the relaxed emotion this time occupies

the second position followed by happy emotion in the third place and the angry emotion

at the lowest position. These circumstances do not coincide with the confusion matrix in

Table 4.2.

4.4.4 NMI Analysis of The EEG Channel Selection

To understand the difference between those two results, we inspect the EEG wavelet fea-

tures including the EEG channel selections using the NMI method. The NMI of each
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selected channel was computed by comparing the combination of 4 emotions that are rep-

resented by the feature which provide 6 possibilities, i.e. sad vs. relaxed, sad vs. angry,

sad vs. happy, relaxed vs. angry, relaxed vs. happy, and angry vs. happy. The result is

illustrated in a stacked bar graph with each bar representing each selected EEG channel

as shown in Fig. 4.5.
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Figure 4.5: The Normalized Mutual Information between each channel and combination
of emotions.

Using Fig. 4.5, the phenomena can now be revealed. The stacked bar in the graph indi-

cates that the features are lacking the information to distinguish between angry and happy

emotions. It can be seen that the wavelet entropy features were predominantly biased

towards characterizing sad emotion, whereas relaxed, happy, and angry emotions were

seemingly underrepresented. Therefore, the classification result of sad emotion is higher

compared to other emotions. Furthermore, the relaxed emotion has less representation

in each stacked bar, while angry emotion has less representation compared to the 3 other

emotions on average over all channels.
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4.5 Summary

In this chapter the discrete EEG-emotion recognition has successfully classified 4 discrete

emotions (happy, sad, angry, and relaxed) from dimensional plane of arousal valence

using wavelet energy and entropy.

Using the DEAP dataset (Koelstra et al., 2012) we discovered that the alpha, beta, and

gamma EEG subbands are particularly important for discrete EEG-emotion recognition.

Using wavelet entropy features with the CH18, SB3 setting, with the 18 selected EEG

channels of Fp1, Fp2, AF3, AF4, F3,F4, F7, F8, FC5, FC6, T7, T8, P7, P8, P3, P4, O1,

O2, our proposed approach achieved an average sensitivity and specificity of 77.4% and

69.1%, respectively.

Further analysis of the features and results using ROC curve and NMI method reveals that

our method has a limitation, which is that transient patterns and quasi-stable states that

may exist in the EEG are overlooked in both energy and entropy formulations. Having

this in mind, potential research directions that are worth considering include incorporating

EEG microstates and/or brain connectivity features.
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Chapter 5

Improving EEG Emotion Recognition

Accuracy Using OWS Method

A strategy to optimize the reliability of an EEG emotion classification system is intro-

duced in this chapter using a simple feature-agnostic time window selection method. Us-

ing the proposed strategy, consistent inceasing of accuracy can be achieved. Analysis

of time processing for training and testing is also conducted to locate the window with

shorter processing time. The results provide recommendations on the optimal window

size in EEG-emotion classification and its correlated time processing. To generalize the

finding, 7 different types of features were extracted to identify 4 different types of dimen-

sional state emotion.

The novel contributions of this chapter are: The demonstration of feature-agnostic pre-

processing method using Optimal Window Selection (OWS) to improve the classification

accuracy of an EEG emotion recognition; The generalization of the method as a potential

answer to dealing with the non-stationary behavior of EEG signals using emotion recogni-

tion as an example use case; A recommendation of a novel wavelet feature, concatenating

both Wavelet Entropy and segment average Wavelet Approximation Coefficients for EEG

emotion recognition.

The organization of the chapter is as follows: Section 5.1. provides a brief overview of the

proposed OWS method. Section 5.2 elaborates on the experimental setup for the OWS.
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Section 3 describes in depth of the experimental details including subject selection algo-

rithm, signal segmentation process step by step, details features extraction algorithms for

7 different kind of features, continuing with the training and testing protocols. Section 5.4

provides the analysis and discussion of the experimental results using OWS implementa-

tion. Section 5.5 summarize the results and future directions.

5.1 Method Overview

Time-varying and non-stationary characteristics of the EEG signals have become a major

challenge in EEG emotion recognition. A simple and effective method to overcome the

problem is by dividing the EEG signals into smaller window frames so that the signal

with the similar pattern can be extracted (Picard et al., 2001). The extracted signal in cer-

tain length of time (window) becomes a pseudo-stationary signal that owns a statistical

property which is valuable as a feature for the classification purpose. Therefore, classi-

fications conducted with pseudo-stationary signals provides relatively higher predictive

results (Kaplan et al., 2005).

In this chapter, we target the escalated information gain by “zooming in” the recurring

pattern on emotion elicitation using the optimization strategy of Optimal Window Selec-

tion (OWS) method. The window size has to be just right: A window too short will lead

to incompleteness, while a window too long will lead to over-inclusion of non-stationary

components.

Previously in Chapter 2, we have described an emotion model — that described by Russel

— known as Russel’s Circumplex Model of Affect (Barrett & BlissMoreau, 2009) which

maps a given emotion into two-dimensional planes namely arousal (activate-deactivate)

and valence (pleasant-unpleasant) (Russell, 1980). The benefit of this model in emotion

recognition has also been demonstrated by Nardelli et al. who shows statistically sig-

nificant changes in heart rate variability (HRV) between emotion representations in the

arousal-valence plane (Nardelli et al., 2015).

Also in Chapter 3, we have demonstrated the use of Russel’s Circumplex Model to extract

96



Chapter 5. Improving EEG Emotion Recognition Accuracy Using OWS Method

discrete emotion from the arousal – valence dimensional plane. However, we found that

the classification results still can be improved. We came to the hypothesis that to improve

the classification results, we first need to improve the detection of high/low of arousal

and valence as they are the variable base for a dimensional plane. For that purpose, this

chapter focusses on the improvement of EEG emotion classification of dimensional plane

to distinguish between high/low states of arousal/valence emotion together with another

two additional emotional states, namely dominance (dominant–submissive), and liking

(like–dislike).

In addition, there are 2 common features used in EEG signal analysis, i.e. Fast Fourier

Transform (FFT) and wavelet transform (Akin, 2002). The extensive use of wavelet trans-

form is related to its advantages compared to FFT- such as (Rosso et al., 2001a):

• The wavelet transform (WT) is both a band-pass filter and a denoiser. With WT, an
EEG signal can be easily decomposed and isolated to include only the information

from the desired sub-band. This characteristic is particularly important for emotion

recognition as beta and gamma frequencies show a higher degree of correlation to

emotion relative to other subbands (Zheng & Lu, 2015b; Candra et al., 2015b).

• Wavelet entropy estimates inter-segment regularity. It can be used to identify the
occurrence of a pattern.

• Wavelet approximation coefficient is a proxy for identifying the shape of a pattern.

The demonstration of WT as a powerful tool for time-critical EEG feature extraction was

shown by Handojoseno et. al. for detection of freezing gait episodes (Ardi Handojoseno

et al., Sep. 2015), and and also by Ocak et. al. for epileptic seizures detection (Ocak,

2008).

Moreover, EEG-based emotion classifiers can be built using algorithms such as Linear

Discriminant Analysis (LDA), Artificial Neural Networks (ANN), or Support Vector Ma-

chines (SVM). In particular SVM has been shown to be a powerful classifier for the task

due to its ability to operate on non-linear and high dimensional feature spaces (Lotte et al.,

2007). In this experiment, the EEG-emotion classification was conducted using the SVM
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classifier.

Previous investigation of window size to improve the classification of EEG emotion using

wavelet features and SVM classifier has been conducted (Candra et al., 2015a). The

result is a recommendation of 3 to 12s window to be used for classification of valence and

arousal emotional state with the result of improved accuracy when using wavelet entropy

feature. The recommnendation is presented in the following Fig. 5.1.
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Figure 5.1: Recommendation of 3 to 12s for EEG emotion classification of arousal and
valence emotional states (Candra et al., 2015a).

Further investigation has been performed to generalize the finding (Candra et al., (Sub-

mitted)a) by improving the investigation parameters as well as:

1. Increasing the number of investigated windows from 10 to 12,

2. Adding 6 additional features to the previous wavelet entropy,

3. Raising the number of emotional states from 2 to 4.

This chapter introduces the Optimal Window Selection (OWS) method based on the work

in (Candra et al., (Submitted)a) to optimize the classification results of EEG emotion
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recognition in identifying high/low state of arousal/valence/dominance/liking emotions.

We explored 7 types of features extracted from EEG emotion signals to demonstrate our

optimization strategy with OWS. Our experiments achieved improvement of accuracy

between 3% and 15% for all the experimental features. We lock SVM as the classifier of

choice in the experiment to provide a fair prediction framework to cater to the objective of

finding the optimum feature and window size. We also analysed the training and testing

time in finding the shorter processing time. We provide recommendations of the optimal

window size in EEG emotion recognition supplied with its correlated time processing.

In addition, a novel wavelet feature built from concatenated Wavelet Entropy and segment

average Wavelet Approximation Coefficients is proposed. The classification results us-

ing this novel features consistently yield significantly higher accuracy compared to other

features as well as simple average, Fast Fourier Transform (FFT), wavelet energy, and

wavelet entropy.

5.2 Experimental Setup

5.2.1 Dataset Resource and Dataset Preparation

The experiment in this chapter was also conducted with the prepocessed DEAP dataset

(Koelstra et al., 2012). As previously explained, the dataset contains 32 channels EEG

signals of 32 participants while watching 40 music videos with one minute duration for

each video. The participants rated each video with a continuous scale 1 to 9 for arousal,

valence, dominance, and liking emotions at the time they were watching the video. This

experiment makes use of the ratings from the participants to label arousal/valence/dom-

inance/liking emotions with High and Low value, respectively. The middle value of the

rating is taken as the baseline.
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5.2.2 Subject Grouping

To reduce the mistranslation of the emotions by the participants while they rate the video

with the SAM method, we need to conduct subject grouping to properly select a group

of participants for this experiment. The subject grouping procedure is the same as in

the previous chapter. We construct a dendrogram using Ward’s method and divide the

subjects into several subgroups according to the closeness of their matrices. We then

randomly pick one of the subgroups as the subjects of interest in the experiment.

5.2.3 Experimental Overview

The objective of the experiment was to find the optimal window size and feature extractor

that maximizes the accuracy of an SVM emotion classifier. Grid-search was employed

for optimizing these two parameters as illustrated in Fig. 5.2.

Figure 5.2: Block diagram of Optimal Window Selection (OWS) method.

The brief description of the method is as follows:

1. Subject grouping: We applied the RBF kernel function to relate EEG features of

each person to their emotion rating using a transformation matrix. We fitted the re-

sult as a logistic regression. The whole results of all participants were concatenated
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using mapping matrices and clustered based on how closely related each person is

to another and put them in groups with a dendrogram.

2. Signal segmentation: The preprocessed EEG signal was first segmented to 12 win-

dow sizes. This parameter was upper bounded by the video length, i.e. 60s. The

number of produced segments obeys the rule N = 60/t (refer to Fig. 5.4).

3. Feature extraction: Let a feature extractor be a function that maps a preprocessed

EEG signal segment sn to its feature vector representation xn as follows,

f(sn) �→ xn. (5.1)

The feature extractor considered in this study includes:

(a) wavelet PSD (5 bands and 3 bands)1,

(b) wavelet entropy (5 bands and 3 bands)1 Candra et al. (2015b),

(c) naiveMean of the Time Domain signal (MTD), and

(d) Mean wavelet Approximation coefficients with wavelet Entropy (MAE),

(e) FFT PSD (5 bands) was added as a comparison to other features.

4. Emotion classification and evaluation

(a) Labeled set construction

For a given emotion2 z ∈ A : A = { vl, ar, do, lk }, the ratings given to a
video v were mapped to a category label cz,v using the following rule:

cz,v =

⎧⎪⎨
⎪⎩
Lo if 1 ≤ v ≤ 4.5,

Hi if 4.5 < v ≤ 9.

(5.2)

This category was then mapped to the corresponding feature vectors, yielding

a collection of labeled points3, {Xz : z ∈ A }:

Xz(v) = { (cz,v,x1), (cz,v,x2), . . . , (cz,v,xN) } , (5.3)
15 EEG bands: delta, theta, alpha, beta, and gamma: SB5 = {δ, θ, α, β, γ}, 3 EEG bands: alpha, beta, and gamma: SB3 =

{α, β, γ}
2vl: valence; ar: arousal; do: dominance; lk: liking
3a labeled point is a category-label–feature vector tuple: (czv ,xz

n)
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where N denotes the number of segments. The overall dataset X is the union

of labeled points for each video:

Xz =
V⋃
1

Xz(v) (5.4)

(b) Training and testing

The datasets were randomly split into training set (30%) and test set (70%).

SVM was trained using the training set. Classification sensitivity, specificity,

and accuracy were evaluated using the test set. This random sampling and

retraining step was repeated 30 times.

With 4 emotions, 12 window sizes, 7 features, and 30 re-trainings, a total of 4× 12× 7×
30 = 10, 080 parallel computation jobs were generated and dispatched. A more detailed

process on each step will be discussed in the following section.

5.3 Experimental Detail

In this section, we will explain in more detail how the experiment was conducted. We

started by performing subject grouping, EEG signal segmentation, continued with feature

extraction employing various methods including: Discrete Wavelet Transform, statistical

features, and Fast Fourier Transform. The last step of the experiment was classification

with SVM. To better understand how the experiment was conducted, we have divided this

section into the following 6 subsections:

a. Subject grouping

b. EEG emotion signals segmented into 12 window size

c. Discrete Wavelet Transform (DWT) feature extraction

d. Statistical features: naiveMean of the Time Domain signal (MTD) andMean wavelet

Approximation coefficients with wavelet Entropy (MAE)

e. Fast Fourier Transform Power Spectral Density (FFT PSD)

f. Training and testing with SVM classifier
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5.3.1 Subject Grouping

We implemented the subject grouping procedure the same as in Chapter 4. We then com-

pute pairwise euclidean distance between the P matrices. Subjects with similar reponse

patterns will then have relatively closer distance. A dendrogram using Ward’s method is

then constructed which result in the division of the subjects into subgroups based on the

distance between their matrices. One of the subgroups was picked up randomly to be used

as the dataset for the experiment. The result of the subject grouping is visualized in the

following Fig. 5.3.
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Figure 5.3: Result of subject grouping to overcome mistranslation effect of SAM rating
method. The Euclidean distance reveals how closely a participant is related with another.

Participants with similar response patterns will have relatively closer distance.

5.3.2 EEG Emotion Signals Segmented into 12 Window Sizes

The preprocessed EEG signals were segmented to prepare for feature extraction. The

largest possible window size was upper bounded at the video clip length, 60s. This win-

dow was then subsequently reduced by half and continuously reduced by half from the

previous window size until obtaining the smallest window of 1s which was limited by the

sampling rate 128 sample/s. Additional window sizes were inserted between the previ-

ously selected sizes to subtilize the result of the investigation.
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The total window sizes accommodated are 12 sizes which are: 60; 30; 20; 15; 12; 10;

8; 6; 4; 3; 2; and 1s. Fig. 5.4 illustrated the window segmentation process from largest

to smallest size with a total of 12 window sizes. The results of the segmentation are

stored as a different dataset for the feature extraction process. For each segmentation

result, all segments were combined and used for the feature extraction which results in

the multiplication of data size according to the number of segments gathered.

Figure 5.4: The signal segmentation scheme with 12 window sizes.

5.3.3 Wavelet Feature Extraction: Wavelet Energy and Wavelet Entropy

This process is needed to extract 2 types of wavelet features from the EEG signals,

i.e. wavelet energy which is also called wavelet Power Spectral Density (PSD) and

wavelet entropy. First, compute the wavelet coefficients DWT . The wavelet coefficient

DWT(x(t); a, n) can be calculated using Eq. (2.9).

The process is continued with the computation of wavelet PSD E(a) using Eq. (2.12)

to obtain the wavelet energy localized at ath. To collect the wavelet PSD, the localized

wavelet energy E(a) is normalized against the total wavelet energy as probability mass

function p(a) and calculated using Eq. (2.13).

The wavelet entropy H(a) as the degree of uncertainty in the energy distribution can be

obtained from the probability mass function p(a) (refer to Eq. (2.13)), using Eq. (2.14).
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5.3.4 Creating an array of 32 channels wavelet PSD / entropy in 5 or 3 bands for-

mation

The wavelet PSD and entropy, each is then arranged as an array of 32 channels with 5 or 3

bands formation. Each array is the representation of one segment of EEG-emotion signal.

The process is illustrated in Fig. 5.5.

Figure 5.5: An array of 32 channels wavelet PSD / entropy in 5 or 3 bands formation as
the representation of one segment EEG-emotion signal.

5.3.5 Statistical Features: MTD andMAE

This experiment used 2 different types of statistical features. First, the statistical feature

in time domain using simple average of the EEG signals in time domain we called MTD.

Second, the feature in time frequency domain using average of wavelet approximation

coefficients combined with wavelet entropy we named MAE. The computation of each

feature is as follows:
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A. NaiveMean of the Time Domain signal (MTD)

Take Xk as the representation of the amplitude from kth sample in 1 channel pre-

processed EEG emotion signal, the statistical features of MTD can be calculated as

(Picard et al., 2001),

μx =
1

K

K∑
k=1

Xk (5.5)

where K = n(X) denotes the cardinality of X .

B. Mean wavelet Approximation coefficients with wavelet Entropy (MAE)

Given a wavelet approximation coefficient decomposition at the ath level,

Ak = approx(DWT (x(t); a, k), the mean of wavelet approximation coefficient μA is

computed as follows,

μA =
1

K

K∑
k=1

Ak (5.6)

where K = n(A) denotes the cardinality of A. For the MAE features, both μA and

H(a) are concatenated in an array and ordered by the EEG channel.

5.3.6 Fast Fourier Transform Power Spectral Density (FFT PSD)

Fast Fourier Transform Power Spectral Density (FFT PSD) is a feature in frequency do-

main. We used it as a comparison to our proposed features in time frequency domain

using the wavelet PSD, wavelet entropy and MAE. The computation of the FFT PSD is

done as follows:

Given an EEG signal x(n), the FFT PSD of the EEG signal can be calculated as (Van Loan,

1992)

X(k) =
N−1∑
n=0

x(n)W kn
N (5.7)

where WN = e−j(2π/N) with N = length of the EEG signal which varies based on the

window size.

Using these Fourier coefficients, the relative FFT PSD can then be obtained using Eq.

(2.12) and (2.13). The FFT PSD feature is then arranged in 5 bands formation.
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5.3.7 Recognizing the EEG Emotion with SVM Classifier

The classification of the EEG emotion is conducted with SVM classifier using Radial Ba-

sis Function (RBF) kernel. Ensemble Rapid Centroid Estimation (ERCE) is implemented

to obtain the optimum kernel radius RSVM from the training data with the SVM radius

estimation (Yuwono et al., Jun. 2014, 2014). The computation is conducted following the

steps given in Chapter 2 using the Eq. (2.17) to (2.21). The SVM is also trained using

Sequential Minimal Optimization (SMO) algorithm (Chang & Lin, 2011).

5.4 Discussion

In order to understand the results of the experiment, we must first look at the steps in-

volved prior to discussing the experiment outcome. In this section, we will first show the

analysis of segmented EEG signal using wavelet PSD spectrum to show the benefit of

window segmentation. We will then perform the analysis of the comparative summary of

the classification results with 7 features. The next step is to analyse the wavelet features in

more depth, followed by comparison of MAE to other features. We will discuss the train-

ing and testing time with 7 features in regard to locating the window size that has shorter

processing time, and then explain the process on how we finally arrived at recommending

the optimal window selection. This section is divided into 6 subsections as follow:

a. Analysis of Segmented EEG Signals with Wavelet PSD Spectrum: Benefit of Window

Segmentation

b. Comparative Summary of The Classification Results for 7 Features

c. Anaysis for The Wavelet Features

d. Comparison of MAE to other Features

e. Analysis of Training and Testing Time: Finding Window with Less Processing Time

f. Suggested optimal window selection in EEG emotion classification with 7 features for

all emotions
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5.4.1 Analysis of Segmented EEG Signals with Wavelet PSD Spectrum: Benefit of

Window Segmentation

We begin the analysis with the demonstration of how the EEG emotion segmentation

affects the features and what benefit can be obtained by implementing the segmentation

procedure. For that purpose, one sample of preprocessed EEG signals from a randomly

selected channel was taken from one arbitrary participant. The signals are visualized in

their related 5 stacked bands wavelet PSD spectrum as shown in Fig. 5.6, showing the

comparison between 60s window and 15 consecutive 4s windows.
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Figure 5.6: Visualization of 1 channel EEG signals in their related 5 stacked bands
wavelet PSD spectrum of 60s window compared to 15 consecutive 4s window (marked
by red dotted oval) showing the repetitional pattern between both windows. This is the

benefit of the segmentation process.

The 60s segment in fact is the exact combination of 15 consecutive 4s segments. However

the 60s segment only holds 1 stacked wavelet PSD spectrum whereas the 4s segments

have 15 stacked spectrums. There are repetition of pattern in 3rd,7th, 10th, 14th, and 15th

spectrum of 4s segment (marked by red dotted oval) which have the similar pattern as in

the 60s segment.

This repetition of pattern reveals that segmented EEG signals with a certain window size

carry a stationary pattern which is repeated in the segments with smaller window size.

This becomes the benefit of the segmentation process as it will intensify the feature that

represent the emotion state.
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However, it should be noted that a non-regular pattern will also appear in the additional

segments. Therefore, increasing the number of segmentations does not always provide an

advantage, as it will depend on the size of the window segment selected. Consequently

proper selection becomes very important to obtain an improvement of classification re-

sults that count on the segmented feature.

5.4.2 Comparative Summary of The Classification Results for 7 Features

The comparative summary for the classification results of 4 emotions using the 6 investi-

gated features as well as the FFT PSD feature as a comparison are demonstrated in Fig.

5.7. The graphs in Fig. 5.7 show that MAE feature outperformed toward all other features

including the comparative FFT PSD feature.

Although each emotion has a different range of accuracy, nonetheless they show similar

progression. They start with very low accuracy at the widest window 60 sec, after that

rise slightly between 30 to 20s window. The accuracies reached a peak between 12 to 4s

window and then decreased again between 3 to 1s window.

Figure 5.7: Comparative summary of classification results for 4 emotions with 7 features
represented in line graphs.
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By considering the similar trend of the 4 graphs that represent 4 emotions as illustrated

in Fig. 5.7, we decided to simplify those 4 graphs for further investigation of the window

selection method by taking the weighted average of 4 emotions for each of the 7 features

and displaying them in one graph as shown in Fig 5.8.
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Figure 5.8: Simplified graph of 7 features using weighted average accuracy of 4
emotions.

5.4.3 Anaysis for The Wavelet Features

By simplifying the graphs, now it is easier for us to compare and analyse the classification

results for each features using the simplified graph shown in Fig. 5.8. We begin the

analysis by further investigating the relation between wavelet entropy and wavelet PSD.

The graph shows that accuracy of 5 bands wavelet entropy is slightly better than 5 bands

wavelet PSD. The classification results indicate an increase within a smaller window. Sig-

nificant rise started at 12 to 3s window and then reduced again. In addition, the maximum

accuracy is 70%.

With the consideration that wavelet entropy has higher accuracy than wavelet PSD feature,

the analysis is continued with the wavelet entropy by comparing the classification results

of 5 and 3 bands wavelet entropy using the same graph in Fig. 5.8. Again, the graphs

show slightly different accuracy between 5 and 3 bands wavelet entropy. Those 2 features

maintain significant increase of accuracies between 12 and 3s windows.
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To investigate whether the difference of accuracy between 3 and 5 bands wavelet entropy

is significant or not, a t-test was conducted with the hypothesis that, ”The difference

of accuracy between 3 and 5 bands entropy features is not significant”. The result is

shown in Table 5.1 for valence emotion. The table provides p-value more than 0.05 for

all window size which means that the difference is not significant. The p-value for the 3

other emotions are also consistent with no significant difference.

Table 5.1: t-test of 3 vs. 5 bands wavelet entropy features for valence emotion with
hypothesis that, ”The difference of accuracy between 3 and 5 bands entropy features is

not significant” (p > 0.05)

Window Accuracy 3 bands Accuracy 5 bands p-value
(s) (%±std) (%±std)
60 sec 67.1 ± 3.0 67.7 ± 1.8 0.18
30 sec 68.1 ± 1.7 68.0 ± 1.5 0.59
20 sec 69.3 ± 1.3 68.8 ± 1.3 0.95
15 sec 69.2 ± 1.1 69.4 ± 1.1 0.27
12 sec 69.3 ± 0.8 69.5 ± 1.1 0.22
10 sec 69.5 ± 0.9 69.7 ± 0.8 0.19
8 sec 69.4 ± 0.8 69.6 ± 0.6 0.24
6 sec 69.7 ± 0.8 69.8 ± 0.9 0.33
4 sec 69.8 ± 0.6 69.8 ± 0.4 0.48
3 sec 69.7 ± 0.5 70.0 ± 0.3 0.14
2 sec 69.7 ± 0.4 69.9 ± 0.3 0.61
1 sec 69.7 ± 0.3 69.8 ± 0.2 0.07

5.4.4 Comparison of MAE to other Features

We continue our analysis with the MAE feature. We focus on the comparison of the MAE

to other available features. We begin the analysis by observing in-depth the classification

results ofMAE compared toMTD, wavelet entropy, and FFT PSD features using the same

Fig. 5.8.

The graph in Fig. 5.8 shows thatMAE is superior to those other features. The accuracy of

MAE is leading by about 10% at the maximum compared to other features. The accuracy

of MAE reaches a peak at 79.2%.

To complete the analysis, we also give more attention to the comparison of our proposed
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MAE feature with FFT PSD feature which has been selected to represent non-wavelet

feature. We take the t-test with the hypothesis that, ”The difference of accuracy between

MAE and FFT PSD feature is significant” and present the results in Table 5.2 for the

liking emotion. The results of the p-value supports the hypothesis that the difference is

signifcant for all 4 emotions between 2 and 30s.

Table 5.2: t-test ofMAE vs. FFT PSD feature for liking emotion with hypothesis that,
”The difference of accuracy betweenMAE and FFT PSD features is significant”

(p< 0.05)

Window Accuracy MAE Accuracy FFT PSD p-value
(s) (%±std) (%±std)
60 sec 66.4 ± 2.7 69.0 ± 2.8 1.00
30 sec 73.4 ± 2.0 70.9 ± 1.5 9.90 e-08
20 sec 77.6 ± 1.6 72.0 ± 0.9 3.83 e-24
15 sec 79.4 ± 1.6 72.2 ± 1.1 5.32 e-22
12 sec 80.0 ± 1.2 72.5 ± 1.1 1.09 e-20
10 sec 81.4 ± 1.4 72.8 ± 1.1 6.22 e-22
8 sec 81.1 ± 1.1 73.3 ± 0.7 1.47 e-24
6 sec 81.5 ± 0.7 73.2 ± 0.7 1.21 e-28
4 sec 81.2 ± 0.7 73.5 ± 0.5 9.25 e-32
3 sec 79.8 ± 0.5 73.5 ± 0.6 1.73 e-28
2 sec 77.4 ± 0.4 73.8 ± 0.4 4.43 e-26
1 sec 73.3 ± 0.2 73.7 ± 0.2 1.00

5.4.5 Analysis of Training and Testing Time: Finding Window with Less Process-

ing Time

In order to provide more beneficial information to support the proposed method, we con-

duct additional experiments to obtain the information on the processing time for both

training and testing for all 7 features using SVM classifier. The results are presented in 2

line graphs as shown in Fig. 5.9. The graphs were generated using the weighted average

of training and testing time of 4 emotions for 7 features.

The first graph illustrates the training time, while the second represents the testing time.

Both graphs demonstrate a similar trend for all 7 features. The first graph shows that the

training time of EEG-emotion signal at 4s to 60s window is less than 100 seconds. On the
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contrary, at 3s to 1s window the training time is much higher than 100s even rising up to

800s.

The testing time shows a similar trend to the training time, only that the time required

is less (<< than 1s) and is not really significant compared to the training time. By con-

sidering this event, the accommodation of 4s window or above will keep the training and

testing time at the shorter duration.

Figure 5.9: Graphichal reprentation of optimal training and testing time in EEG-emotion
recognition for 7 features using weighted average of 4 emotions.

5.4.6 Suggested optimal window selection (OWS) in EEG emotion recognition us-

ing 7 features for all emotions

We come to the suggestion of the optimal window selection (OWS) to be used in EEG

emotion recognition using 7 different features. Based on the analysis of weighted average

accuracy and the training and testing time for all features, we developed a colour graph

image which we named Optimal Window Selection (OWS) colour graph as illustrated in

Fig. 5.10.

The OWS color graph represents the weighted average accuracy of 4 emotions for all

7 features. This OWS colour graph can be divided into 3 main regions. Using those 3

regions, the optimal window can be identified as follows:

1. The first region between 60 and 15s keeps the lowest classification results with

slightly faster training and testing time.
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2. The second region between 12 and 4s holds the highest classification results with

shorter training and testing time. Also in this region, the classification results are

improved between 3% to 15% compared to the lowest region which can be achieved

using any of the features.

3. The third region between 3 and 1s, although some features have slightly higher

accuracy, however, this region suffers from very long delay due to longer training

and testing time.

Therefore, our recommendation for Optimal Window Selection (OWS) in EEG emo-

tion classification is the second region between 4 to 12s (encircled in the green dotted

box). Within this region, we can obtain highest classification results and at the same time

achieve shorter training and testing time for all 7 features. Also in this region, the MAE

demonstrates the highest classification results among other features with accuracy as high

as 79.2% at 6s window.

Figure 5.10: Suggested optimal window selection (OWS) color graph. The numbers in
the graph reflect the weighted average accuracy of 4 emotions for each 7 features. The
color heatmap expresses various levels of accuracy yield by window size between 1s and
60s for each of the 7 features, where darker colors represent higher accuracy. Referring

to the graph, the optimal window can be identified.
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5.5 Summary

Implementation of Optimal Window Selection (OWS) method in Electroencephalogra-

phy (EEG) emotion recognition was performed using Support Vector Machine (SVM)

to identify High/Low state of 4 dimensional plane emotions, namely: Arousal, Valence,

Dominance, and Liking.

Combination ofMean wavelet Approximation coefficients and wavelet Entropy (MAE),

naive Mean of the Time Domain signal (MTD), wavelet Power Spectral Density (PSD)

and wavelet entropy were explored as the features.

The investigation reveals that wavelet PSD and wavelet entropy features provide equal

results. Frequency bands reduction can be implemented to both wavelet features using

only 3 out of 5 bands which also give equal results.

Further comparison to other non wavelet features using Fast Fourier Transform Power

Spectral Density (FFT PSD) reveals that the proposedMAE feature is outperformed.

Using optimal window selection (OWS) color graph, the optimal window can be iden-

tified. The OWS color graph suggests that the optimal window is between 4 and 12s.

In this region, an increase of accuracy between 3% and 15% can be obtained depend on

the features used. Also inside the region, the training and testing time can be mantained

shorter. This optimal window can be applied in general to all 4 emotions: Arousal, Va-

lence, Dominance, and Liking.

In detail, the advantage of OWS is the replication of pseudo-stationary signal within the

selcted optimal window that has a desirable statistical property. This statistical property

improves the classification accuracy regardless of the features used.

Further work includes the exploration of the OWS with other classifiers as well as deep

belief network for optimization, and also implementation of dimensional reduction to

MAE features.
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Conclusions and Future Direction

6.1 Discussion

Communication in nonverbal language involve many different aspects that have a signif-

icant role in communicating the feeling, attitudes and emotions and manifest as phys-

ical appearance such as facial expression and physiological signal including Electroen-

cephalography (EEG) signal or brain wave (Sutter, 2010; Foley & Gentile, 2010).

The availability of methods to measure the emotions with various different perspectives

open the possibilities to recognize diverse categories of emotion which can be imple-

mented in many applications to help people better understand the human emotion in re-

lation to another person or in dealing with certain situations and provide solutions to the

problem related to them (Caicedo & Beuzekom, 2006). In this thesis, 2 appealing ex-

amples of emotion recognition method using the facial expression and EEG emotion are

examined.

Facial expression recognition involves various frameworks along with face detection and

recognition using a geometric based or appearance based features extraction mechanism

with each having its advantages and disadvantages (Shan et al., 2009; Donato et al., 1999).

In the case of appearance based method, a sophisticated feature known as Histograms of

Oriented Gradient (HOG) (Dalal & Triggs, 2005) has been implemented for face recog-

nition with very successful results which offers a potential solution for facial expression
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recognition.

The challenges in facial emotion recognition system is related to feature, feature dimen-

sion, and classification processing time which can be elaborated in one sentence that is,

‘how to obtain reliable features in facial emotion recognition using an appearance based

method that has very low dimension and consumes less training and testing time’.

One important factor that should be considered in developing a facial expression recogni-

tion system is the availability of a common database that satisfies the various requirements

to be used as a benchmark for the research experiment. The Extended Cohn–Kanade

(CK+) database (Kanade et al., 2000) is a good alternative for that purpose.

On the other hand, electroencephalography (EEG) emotion recognition requires many

components and processes to collect the EEG signals, starting with the equipment prepa-

ration, signal processing and conditioning, feature extraction, number of electrodes and

their positioning, as well as frequency bands allocation and selection (Jenke et al., 2014b).

Another important parameter that needs attention is the time-varying and non-stationary

characteristics of the EEG signals (Picard et al., 2001). This issue can be handled with

window segmentation strategy with proper selection of window size to improve the per-

formance (Kaplan et al., 2005).

A sophisticated feature extraction method in EEG emotion recognition is using Discrete

Wavelet Transform (DWT) to collect relative energy and entropy with the advantage of

time-frequency localization, multiscale zooming, and multirate filtering. These advan-

tages make it possible to extract the useful information from non-stationary signals (Rosso

et al., 2001b).

The necessity for a reliable database in EEG emotion recognition is also an issue. Only a

few EEG emotion databases meet the expectations, and the Database for Emotion Analy-

sis Using Physiological Signals (DEAP)(Koelstra et al., 2012) becomes the most favored.

The challenges in EEG emotion recognition system is concerned with the selection of

features that is able to represent both time and frequency domain, the preference of fre-

quency components selected from various subbands, and the positioning of EEG channel
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at certain positions with a definite number of channels. More specifically, the challenge is,

‘What feature is to be used to collect information in time and frequency domain allocated

at specific EEG frequency subbands with finite number of EEG channels.

Another critical challenge to be settled is, ‘How to resolve the non-stationary characteris-

tics of the EEG signals by obtaining optimum window size to maximize the information

extraction with a specific window size that needs to be just right: not too short or too

long’.

An additional problem that needs solving is the optimization of classification process us-

ing Support Vector Machine (SVM) classifier. A solution using a particle swarm ensemble

clustering algorithm called the Ensemble Rapid Centroid Estimation (ERCE) algorithm

(Yuwono et al., Jun. 2014, 2014) is offered in this thesis.

6.2 Conclusion

This thesis contributes a number of solutions to answer the problems as described in

the discussion above. We offer the solution for each challenge by developing methods

and strategies to overcome the problems. The solutions are summarized in the following

paragraph.

1. Challenges in Facial Expression Recognition

To answer the challenge for the need of a reliable feature to be used in Facial Expression

Recognition we developed an appearance based feature which we called Edge of His-

togram Oriented Gradient (E-HOG) (Candra et al., 2016) which has been implemented

to classify the dataset acquired from the Extended Cohn-Kanade dataset (Kanade et al.,

2000) with classification result as up to 96.4% that makes this proposed (E-HOG) a very

high potential feature for facial expression recognition.

The challenge in feature dimension reduction and time efficiency in classification pro-

cessing for facial expression recognition is answered with an improved E–HOG with a

very low dimension called Reduced dimension of Edge-Histogram of Oriented Gradients
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(RED E-HOG) (Candra et al., (Submitted)b). The dimension of the feature is reduced

from thousands to tens using a combination of PCA and LDA as the dimensionality re-

duction technique. Using 10 dimensions of RED E-HOG trained with multi-class SVM,

7 facial expressions have been successfully recognized with the accuracy of 99.6%. The

comparison toward other features reveals that RED E-HOG Face features outperforms.

This result is supported by the analysis of scatter plots for RED E–HOG features which

show that RED E–HOG feature provides distinct boundary and distance for the repre-

sented facial expressions so that they can be recognized easily by the SVM classifier.

Significant improvement in training and testing time was also obtained by RED E-HOG

compared to ORI E-HOG. The results indicate that RED E-HOG feature (specifically

RED E-HOG Face) is feasible and efficient for facial expression recognition.

2. Challenges in EEG Emotion Recognition

In dealing with the challenge in EEG emotion recognition we utilized Discrete Wavelet

Transform (DWT) to extract wavelet feature that preserved time and frequency informa-

tion represented in relative energy and entropy. We implemented the wavelet features to

a discrete EEG-emotion recognition system and successfully classified 4 discrete emo-

tions of happy, sad, angry, and relaxed from arousal–valence dimensional plane using the

DEAP dataset (Koelstra et al., 2012).

We also discovered that using only 3 frequency subbbands of alpha, beta, and gamma

is adequate for discrete EEG-emotion recognition system, while the delta and theta sub-

bands can be eliminated.

Besides, we also recommend the reduction of channels from 32 to 18 using only EEG

channels of Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, P3, P4, O1,

O2 with 3 subbands wavelet entropy features for our discrete EEG-emotion recognition

method, giving average sensitivity and specificity of 77.4% and 69.1%, respectively.

In summary, we provide an answer for feature with time and frequency information using

the wavelet feature, together with frequency band reduction from 5 to 3 and channel

reduction from 32 to 18.
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To overcome the non-stationary characteristics of the EEG signals, we introduced Optimal

Window Selection (OWS) method in EEG emotion recognition to identify High/Low state

of 4 dimensional plane emotions, namely: of Arousal, Valence, Dominance, and Liking

classified with Support Vector Machine (SVM). Using the OWS colour graph, the optimal

window can be identified.

Based on the OWS colour graph we suggest that the optimal window can be allocated at 4

to 12s. Using this region, the classification results increase about 3% and 15% depending

on the features used. The training and testing time can also be made shorter within the

region. The optimal window is applicable to all Arousal, Valence, Dominance, and Liking

emotions.

At a more advanced level, the OWS gives an advantage of the replication of pseudo -

stationary signal that secures a desirable statistical property. Within the selected optimal

window this statistical property improves the classification accuracy regardless of the

features used.

In addition, we explored 6 various wavelet features for the OWS investigation, namely:

combination of Mean wavelet Approximation coefficients and wavelet Entropy (MAE),

naive Mean of the Time Domain signal (MTD), wavelet Power Spectral Density (PSD),

and wavelet entropy. The investigation reveals that wavelet PSD and wavelet entropy have

equal results either using 3 or 5 frequency subbands. This means that subbands reduction

can be implemented to both wavelet features.

The comparison ofMAE with Fast Fourier Transform Power Spectral Density (FFT PSD)

as a non-wavelet feature affirms that the proposedMAE feature outperforms.

3. Support Vector Machine Optimization

In all the experiments, the classification using optimized SVM with a RBF kernel trained

with SMO algorithm provides reliable classification results which shows that the esti-

mation of RBF kernel parameters using a particle swarm ensemble clustering algorithm

called the Ensemble Rapid Centroid Estimation (ERCE) algorithm (Yuwono et al., 2014)

is effective. The advantage of the method is related to the capability of the algorithm
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to estimate the number of clusters directly from the data using swarm intelligence and

ensemble aggregation.

6.3 Limitation of The Research

In our discrete EEG emotion recognition method, the investigation using ROC curve and

NMI method reveals that the method has a limitation of transient patterns and quasi-stable

states that may exist in the EEG that has been overlooked in both energy and entropy

formulations. Having this in mind, it is worth considering incorporating EEG microstates

and/or brain connectivity features.

MAE feature still needs improvement in terms of its high dimensionality, which requires

the implementation of dimensionality reduction to improve the dimension and classifica-

tion processing time, while also considering the reduction of subbands and channels.

Both facial expression and EEG emotion recognition methods developed in this thesis

depend on publicly available databases which have a few limitations such as separated

databases which make the comparison or combination of the 2 methods become imprac-

tical. In addition, the availability of a real time EEG instrument which is still counted as a

high end device, makes the implementation for general application in real time processing

become expensive and inefficient.

Also, EEG recording requires very subtle handling of the recording process to obtain a

noise free EEG signal which also mean less muscle activity especially muscles related

to the face, eyes, and mouth. In contrast, facial expression needs expressive visualiza-

tion of the emotion which also means very active facial muscles that create noise for the

EEG. Therefore, to record the facial expression together with the EEG signal will need a

powerful preprocessing algorithm for artifact removal.

Besides, the combination of both RED E–HOG and MAE in real time applications re-

quires collection of a new database that meets the expectations such as synchronized facial

expressions and EEG signals, noise free EEG signals, and expressive facial appearance,

which requires complicated equipment, proper environmental settings, and an adequate
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number of participants.

6.4 Future Directions

The methods developed for both facial expression and EEG emotion and their theoretical

analysis are still undergoing improvement to tackle the aforementioned limitation which is

still far from nishing. One major goal includes the implementation of other sophisticated

classiers such as deep belief network which has shown promising results among other

implemented classication algorithms.

The improvements of both RED EHOG for facial expression and MAE features for EEG

emotion to be implemented for real time application and the comparison with the cutting-

edge algorithms will be the next target of exploration. These developments will need the

collection of new and more reliable datasets that can be used for these two recognition

methods. The availability of such datasets will open the possibility of combining facial

expressions with EEG emotions as a hybrid emotional recognition method.

The combination of both facial expression and EEG emotion recognition system will cre-

ate a powerful tool for emotion recognition in a way that the EEG emotion recognition

will validate the facial expression recognition and reduce its weaknesses relate to falsica-

tion of facial expressions.

In addition, scientists now have more concern in the development of applications that

make more contribution to the physical and mental wellbeing across all cultures and na-

tions. Therefore, future directions include the implementation of the facial expression and

EEG emotion recognition method in biomedical engineering to identify people associated

with specific emotional disorders.
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Appendix

Matlab Code for The Experiment

Code 1

c l e a r a l l ;

c l o s e a l l ;

% Take numbers o f image t o be p r o c e s s e d

f o r i =1:150

f = d i r ( ’ . . . / 0 1 Anger / ∗ . png ’ ) ;
r i d x = i

%Read and d s i p l a y image

I = imread ( f ( r i d x ) . name ) ;

t r y

%De t e c t and d i s p l a y f a c e

f a c eD e t e c t o r = v i s i o n . C a s c a d eOb j e c tDe t e c t o r ( ’ Fronta lFaceLBP ’ ) ;

bboxes = s t e p ( f a c eDe t e c t o r , I ) ;

%I f bboxes more t h an one choose t h e l a s t

[ c ]= s i z e ( bboxes ) ;

i f c ( 1 , 1 ) > 1

n=c ( 1 , 1 ) ;

f o r i n =1: n

bboxes1 =bboxes ( in , : ) ;

end

bboxes=bboxes1 ;
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e l s e

bboxes=bboxes ;

end

IF a c e s = i n s e r t O b j e c t A n n o t a t i o n ( I , ’ r e c t a n g l e ’ , . . .

bboxes , ’ Face ’ ) ;

%Res i z e image based on t h e f a c e d e t e c t e d and round up

% th e d e t e c t e d window to 212 x212

[ x ]= bboxes ;

bboxes2= round ( 2 0 0 / x ( 1 , 3 )∗ bboxes ) ;
bboxes3 =[ bboxes2 ( 1 , 1 ) , bboxes2 ( 1 , 2 ) , 2 1 2 , 2 1 2 ] ;

I2= im r e s i z e ( I , 2 0 0 / x ( 1 , 3 ) ) ;

I F a c e s2 = i n s e r t O b j e c t A n n o t a t i o n ( I2 , ’ r e c t a n g l e ’ , . . .

bboxes3 , ’ Face ’ ) ;

%P r e p a r i n g image f o r mouth eyes and mouth d e t e c t i o n

Faces= I2 ( bboxes3 ( 1 , 2 ) : bboxes3 ( 1 , 2 )+ bboxes3 ( 1 , 4 ) , . . .

bboxes3 ( 1 , 1 ) : bboxes3 ( 1 , 1 )+ bboxes3 ( 1 , 3 ) ) ;

Faces3= I2 ( bboxes3 ( 1 , 2 ) + 2 2 : bboxes3 ( 1 , 2 ) . . .

+ bboxes3 (1 ,4)−11 , bboxes3 ( 1 , 1 ) + 3 0 : bboxes3 ( 1 , 1 ) . . .

+bboxes3 (1 , 3 ) −43 ) ;
s i z e ( Faces3 ) ;

%Face Canny

FaceCanny = im2 s i n g l e ( edge ( Faces3 , ’ canny ’ ) ) ;

%Ca l l Eye d e t e c t i o n f u n c t i o n s e t p a r ame t e r

e y eDe t e c t o r = v i s i o n . C a s c a d eOb j e c tDe t e c t o r ( ’ EyePa i rBig ’ ) ;

e y eDe t e c t o r . MinSize = [11 4 5 ] ;

e y eDe t e c t o r . MergeThresho ld = 1 ;

%Ca l l Mouth d e t e c t i o n f u n c t i o n and s e t p a r ame t e r

mou thDe t ec t o r = v i s i o n . C a s c a d eOb j e c tDe t e c t o r ( ’Mouth ’ ) ;

mou thDe t ec t o r . MinSize = [15 2 5 ] ;

mou thDe t ec t o r . MergeThresho ld = 16 ;

%De t e c t Eye p a i r s
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Faces1=Faces ( 4 0 : 1 2 5 , 1 : 2 1 2 ) ;

bboxEye = s t e p ( ey eDe t e c t o r , Faces1 ) ; % De t e c t Eye P a i r

%De t e c t mouth

Faces2=Faces ( 1 3 0 : 2 1 2 , 1 : 2 1 2 ) ;

bboxMouth = s t e p ( mouthDe tec to r , Faces2 ) ; % De t e c t mouth

%Di sp l a y r e s u l t o f eyes and mouth d e t e c t i o n

bboxEye = [ bboxEye ( 1 , 1 ) , bboxEye ( 1 , 2 ) , 1 2 8 , 4 0 ] ;

bboxMouth = [ bboxMouth ( 1 , 1 ) , bboxMouth ( 1 , 2 ) , 8 0 , 3 6 ] ;

% Crop image a t t h e eye p a i r

Eyeim=Faces1 ( bboxEye ( 1 , 2 ) : bboxEye ( 1 , 2 ) . . .

+ bboxEye ( 1 , 4 ) , bboxEye ( 1 , 1 ) : bboxEye ( 1 , 1 )+ bboxEye ( 1 , 3 ) ) ;

% Eye Canny

EdEyeim = im2 s i n g l e ( edge ( Eyeim , ’ canny ’ ) ) ;

% Crop image a t t h e mouth

Mouthim=Faces2 ( bboxMouth ( 1 , 2 ) : bboxMouth ( 1 , 2 ) . . .

+bboxMouth ( 1 , 4 ) , bboxMouth ( 1 , 1 ) : bboxMouth ( 1 , 1 ) . . .

+bboxMouth ( 1 , 3 ) ) ;

% Mouth Canny

EdMouthim = im2 s i n g l e ( edge (Mouthim , ’ canny ’ ) ) ;

c a t c h

c o n t i n u e

end

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Compute HOG f e a t u r e s

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% HOG S t anda r d f e a t u r e s

% Face HOG wi th Canny

c e l l S i z e = 4 ;

hogFaceCanny = v l hog ( FaceCanny , c e l l S i z e , ’ ve rbose ’ ) ;

FaceimhogCanny = v l hog ( ’ r ende r ’ , hogFaceCanny , ’ ve rbose ’ ) ;

%Face HOG wi t h ou t canny
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hogFace = v l hog ( im2 s i n g l e ( Faces3 ) , c e l l S i z e , ’ ve rbose ’ ) ;

Faceimhog = v l hog ( ’ r ende r ’ , hogFace , ’ ve rbose ’ ) ;

% Eye HOG wi th canny

hogEyeCanny = v l hog ( EdEyeim , c e l l S i z e , ’ ve rbose ’ ) ;

EyeimhogCanny = v l hog ( ’ r ende r ’ , hogEyeCanny , ’ ve rbose ’ ) ;

%Eye HOG wi t h ou t canny

hogEye = v l hog ( im2 s i n g l e ( Eyeim ) , c e l l S i z e , ’ ve rbose ’ ) ;

Eyeimhog = v l hog ( ’ r ende r ’ , hogEye , ’ ve rbose ’ ) ;

%Mouth HOG wi th canny

hogMouthCanny = v l hog ( EdMouthim , c e l l S i z e , ’ ve rbose ’ ) ;

MouthimhogCanny = v l hog ( ’ r ende r ’ , hogMouthCanny , . . .

’ ve rbose ’ ) ;

%Mouth HOG wi t h ou t canny

hogMouth = v l hog ( im2 s i n g l e ( Mouthim ) , c e l l S i z e , . . .

’ ve rbose ’ ) ;

Mouthimhog = v l hog ( ’ r ende r ’ , hogMouth , ’ ve rbose ’ ) ;

%Cr e a t e HOG a r r a y

%With Canny

Face imhogmatr ixCanny ( : , i ) = hogFaceCanny ( : ) ;

Eyeimhogmatr ixCanny ( : , i )= hogEyeCanny ( : ) ;

Mouthimhogmatr ixCanny ( : , i )= hogMouthCanny ( : ) ;

%Withou t Canny

Face imhogmat r ix ( : , i ) = hogFace ( : ) ;

Eye imhogmat r ix ( : , i )= hogEye ( : ) ;

Mouthimhogmatr ix ( : , i )= hogMouth ( : ) ;

% Combine eyes and mouth wi th Canny

EyesandMouthhogmatr ixCanny ( : , i )= [ hogEyeCanny ( : ) ; . . .

hogMouthCanny ( : ) ] ;

% Combine eyes and mouth w i t h ou t Canny

EyesandMouthhogmatr ix ( : , i )= [ hogEye ( : ) ; hogMouth ( : ) ] ;

d i s p ( [ ’ Chosen f i l e i s : ’ f ( r i d x ) . name ] ) ;
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l b l =1 %Anger

namaf i l eEye im ( i )= c e l l s t r ( f ( r i d x ) . name ) ;

l a b e l ( i )= l b l ;

%Cr e a t e f i l e

FileName =[ namaf i l eEye im ] ;

%Save f i l e

s ave ( ’ CKAngernew150 . mat ’ , ’ FileName ’ ) ;

s ave ( ’ hogmatrixCKAngernew150 . mat ’ , ’ l a b e l ’ , . . .

’ Faceimhogmatr ixCanny ’ , ’ Eyeimhogmatr ixCanny ’ , . . .

’ MouthimhogmatrixCanny ’ , ’ EyesandMouthhogmatr ixCanny ’ , . . .

’ Face imhogmat r ix ’ , ’ Eyeimhogmatr ix ’ , ’ Mouthimhogmatr ix ’ , . . .

’ EyesandMouthhogmatr ix ’ ) ;

end

Code 2

c l e a r ;

c l c ;

c l o s e a l l ;

%addpa th ( ’ . . / code ’ ) ;

l o ad ‘EHOGFace . mat ’ ;

%d=100;

%d=500;

d =1000;

d a t a =X’ ;

%% Gauss i an k e r n e l PCA

DIST= d i s t a n c eMa t r i x ( d a t a ) ;

DIST (DIST==0)= i n f ;

DIST=min (DIST ) ;

p a r a =5∗mean (DIST ) ;
d i s p ( ’ Pe r f o rm ing Gauss i an k e r n e l PCA . . . ’ ) ;

[Y3 , e i gVe c t o r ]=kPCA( da ta , d , ’ g au s s i a n ’ , p a r a ) ;
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X=Y3 ’ ;

s ave ( ’ kpcafacenewdim1000 . mat ’ , ’X’ , ’ y ’ ) ;

Code 3

c l e a r ;

c l c ;

i n d a t a = l o ad ( ’ pca f aceehog100 . mat ’ ) ;

model = l d a ( i n d a t a , 10 ) ;

o u t d a t a = l i n p r o j ( i n d a t a , model ) ;

f i g u r e ; p p a t t e r n s ( o u t d a t a ) ;

X= r e a l ( o u t d a t a .X ) ;

y= o u t d a t a . y ;

s ave ( ’ ldapca facenewdim10 . mat ’ , ’X’ , ’ y ’ ) ;

Code 4

%%

c l e a r a l l

c l o s e a l l

% f i l e = MTDPerson{n } . mat
n = 1 ;

N = 32 ;

v a r i a n c e T a r g e t = 9 7 . 5 ;

f i l e n ame = ’MAEPerson ’ ;

g e tDa t a = @( n ) l o ad ( s p r i n t f ( ’% s%d . mat ’ , f i l e name , n ) ) ;

g e t R e s u l t s = @( n ) l o ad ( s p r i n t f . . .

( ’ R e s u l t%s%d . mat ’ , f i l e name , n ) ) ;

pcaTrans fo rm = @(X, pcaMat r ix , mu , nPC ) . . .

b sx fun (@minus , X, mu) ∗ pcaMa t r i x ( : , 1 : nPC ) ;

%% g e t t i n g t h e pca t r a n s f o rm a t i o n ma t r i x and
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% app rox ima t e mean

Xa l l = [ ] ;

f o r i = 1 :N

d a t a = ge tDa t a ( i ) ;

%y = c a t e g o r i c a l ( d a t a . ya ) ’ ;

Xi = d a t a .X’ ;

Xa l l = c a t ( 1 , Xal l , Xi ) ;

end

% compute t h e p r i n c i p a l component t r a n s f o rm a t i o n ma t r i x

[ co e f f , s co r e , l a t e n t , t s q u a r e d , e xp l a i n ed ,mu] = pca ( Xa l l ) ;

%[ e x p l a i n e d ] = pca ( Xa l l ) ;

v a r i a n c eEx p l a i n e d = cumsum ( e x p l a i n e d ) ;

p l o t ( v a r i a n c eEx p l a i n e d )

nPC = 1 + f i n d ( d i f f ( v a r i a n c eE x p l a i n e d > v a r i a n c e T a r g e t ) . . .

== 1 ) ;

d i s p ( s p r i n t f ( ’ t h e minimum number o f p r i n c i p a l components . . .

r e q u i r e d t o encode %.2 f%% of i n p u t v a r i a n c e i s %d \n ’ , . . .

v a r i a n c eT a r g e t , nPC ) )

%% f i t a l o g i s t i c r e g r e s s i o n on each pe r son and

%save t h e r e s u l t s

f o r i = 1 :32

d a t a = ge tDa t a ( i ) ;

X = d a t a .X’ ;

p r o j e c t i o n = pcaTrans fo rm (X, coe f f , mu , nPC ) ;

y = [ d a t a . ya ’ , d a t a . yd ’ , d a t a . y l ’ , d a t a . yv ’ ] − 1 ;

y l o g i t = l og ( eps+y ) − l og (1−(y−eps ) ) ;
B = z e r o s (1 + nPC , 4 ) ;

f o r j = 1 :4

b = r i d g e ( y l o g i t ( : , j ) , p r o j e c t i o n , 0 . 00001 , 0 ) ;

B ( : , j ) = b ;

end
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b i a s = ones ( s i z e (X, 1 ) , 1 ) ;

y h a t = l o g s i g ( c a t ( 2 , b i a s , p r o j e c t i o n ) ∗ B ) ;

cp = c l a s s p e r f ( y , round ( y h a t ) ) ;

r e s u l t . d a t a = d a t a ;

r e s u l t . mappingMatr ix = B;

r e s u l t . c l a s s p e r f = cp ;

s ave ( s p r i n t f ( ’ R e s u l t%s%d . mat ’ , f i l e name , i ) , . . .

’− s t r u c t ’ , ’ r e s u l t ’ )

end

%% f o r each r e s u l t s g e t t h e B mat r ix , c o n c a t e n a t e

%them f o r c l u s t e r i n g

BMat r i ce s = z e r o s ( ( nPC + 1 )∗4 , 3 2 ) ;
BMatricesRaw = {} ;
a c c u r a cy = z e r o s ( 1 , 3 2 ) ;

b a l ancedAccu r acy = z e r o s ( 1 , 3 2 ) ;

f o r i = 1 :32

r e s u l t = g e t R e s u l t s ( i ) ;

BMatricesRaw{ i } = r e s u l t . mappingMatr ix ;

BMat r i ce s ( : , i ) = r e s u l t . mappingMatr ix ( : ) ;

cp = r e s u l t . c l a s s p e r f ;

a c cu r a cy ( i ) = cp . S e n s i t i v i t y ∗ cp . p r e v a l e n c e . . .

+ cp . s p e c i f i c i t y ∗ (1 − cp . p r e v a l e n c e ) ;

b a l ancedAccu r acy ( i ) = ( cp . S e n s i t i v i t y . . .

+ cp . s p e c i f i c i t y ) / 2 ;

end

%% c l u s t e r t h e mapping ma t r i c e s based on how

% c l o s e l y c o r r e l a t e d t h ey a r e

f i g u r e ( 1 )

h i s t ( a c cu r a cy )

% p l o t t h e dendrogram

f i g u r e ( 2 )
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Z = l i n k a g e ( t a nh ( BMat r i ce s ) ’ , ’ ward ’ , ’ e u c l i d e a n ’ ) ;

t h = 18 ;

dendrogram (Z , 32 , ’ c o l o r t h r e s h o l d ’ , t h )

l a b e l s = c l u s t e r (Z , ’ Cu to f f ’ , th , ’ c r i t e r i o n ’ , ’ d i s t a n c e ’ ) ;

l i s t = [ 13 , 18 , 24 , 4 , 12 , 21 , 2 , 6 , 1 5 ] ;

f i g u r e ( 4 ) ;

f o r i = 1 : l e n g t h ( l i s t )

s u b p l o t ( 1 , l e n g t h ( l i s t ) , i ) ; imagesc ( BMatricesRaw . . .

{ l i s t ( i )} , [−150 1 5 0 ] ) ;

s e t ( gca , ’ x t i c k ’ , 1 : 4 , ’ x t i c k l a b e l ’ , . . .

{ ’ a ’ , ’d ’ , ’ l ’ , ’ v ’ } )
co lormap ho t

end

Code 5

c l o s e a l l ;

c l e a r a l l ;

c l c ;

f o r y =1:9 %Number o f p a r t i c i p a n t

l o ad ( [ ’ s0 ’ num2s t r ( y ) ’ . mat ’ ] ) ;

f o r k =1:40 %Number o f v ideo

f o r i =1:32 %Number o f ch anne l

c l o s e a l l

d a t a 1 { i }= r e s h a p e ( d a t a ( k , i , 1 : 8 0 6 4 ) , 1 , 8 0 6 4 ) ;
rdxn = da t a 1 { i } ;% ; ( 1 : 8 0 6 4 ) ;
l e n g t h ( rdxn )

N= l e n g t h ( rdxn ) ;

n2 =0 : (N−1 ) / 2 ; % f o r po s i t i v eFFT f u n c t i o n

f s =128;

[ YfreqDomainL , f r equencyRange ] = po s i t i v eFFT ( rdxn , 1 2 8 ) ;

% FFT i s symmetr ic , throw away
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l e n g t h ( f r equencyRange )

x a x i s =n2∗ f s /N; % second h a l f

l e n g t h ( x a x i s )

K=round (N/ f s )

%sampl ing r a t e 128hz , s i g n a l from 0−64hz
%d1 = 33−64hz gamma
%a1 = 0−32hz
%d2 = 17−32hz −− b e t a

%a2 = 0−16hz
%d3 = 9−16hz −− a l ph a

%a3 = 0−8hz
%d4 = 5−8hz −− t h e t a

%a4 =0−4hz
%d5 = 3−4hz −−d e l t a
%a5 =0−2hz −−d e l t a
%gamma 33−64
%a l ph a 8−13
%be t a 13−30
%d e l t a 1−4
%t h e t a 4−8
x d e l t a = x a x i s ( 1 : (K∗ 4 ) ) ;
l e n g t h ( x d e l t a )

x t h e t a = x a x i s ( (K∗4+1 ) : (K∗ 8 ) ) ;
l e n g t h ( x t h e t a )

x a l pha= x a x i s ( (K∗8+1 ) : (K∗ 1 3 ) ) ;
l e n g t h ( x a l pha )

xb e t a = x a x i s ( (K∗13+1 ) : (K∗ 3 0 ) ) ;
l e n g t h ( xb e t a )

xgamma= x a x i s ( (K∗30+1 ) : (K∗ 6 4 ) ) ;
l e n g t h ( xgamma )

MXL = abs ( YfreqDomainL ) ; % Take magni tude

132



Appendix A.

MX1L = 2∗MXL; % Mu l t i p l y by 2 t o t a k e i n t o

l e n g t h (MX1L)

f i g u r e ;

%p l o t ( n2∗ f s /N,MX1L) ;
MX1Ldelta = MX1L( ( 1 : (K∗ 4 ) ) ) ;
MX1Ltheta = MX1L( (K∗4+1 ) : (K∗ 8 ) ) ;
MX1Lalpha = MX1L( (K∗8+1 ) : (K∗ 1 3 ) ) ;
MX1Lbeta = MX1L( (K∗13+1 ) : (K∗ 3 0 ) ) ;
MX1Lgamma = MX1L( (K∗30+1 ) : (K∗ 6 4 ) ) ;
p l o t ( xax i s ,MX1L) ;

f i g u r e , p l o t ( x d e l t a , MX1Ldelta ) ;

f i g u r e , p l o t ( x t h e t a , MX1Ltheta ) ;

f i g u r e , p l o t ( xa lpha , MX1Lalpha ) ;

f i g u r e , p l o t ( xbe ta , MX1Lbeta ) ;

f i g u r e , p l o t ( xgamma ,MX1Lgamma ) ;

% ene rgy t r a p z

e d e l t a p = t r a p z ( ( MX1Ldelta ) ) ;

e t h e t a p = t r a p z ( ( MX1Ltheta ) ) ;

e a l p h a p = t r a p z ( ( MX1Lalpha ) ) ;

e b e t a p = t r a p z ( ( MX1Lbeta ) ) ;

e gammap= t r a p z ( (MX1Lgamma ) ) ;

sumenergyp= e d e l t a p + e t h e t a p + e a l p h a p + e b e t a p +e gammap ;

e d e l t a p = e d e l t a p / sumenergyp ;

e t h e t a p = e t h e t a p / sumenergyp ;

e a l ph ap= e a l p h a p / sumenergyp ;

e b e t a p = e b e t a p / sumenergyp ;

egammap=e gammap / sumenergyp ;

E f f t p =[ e d e l t a p , e t h e t a p , ea lphap , ebe t ap , egammap ]

f i g u r e ;

b a r ( E f f t p ) ;

E n f f t t r a p ( i , : ) = E f f t p ;
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% Energy sum

e d e l t a =sum ( abs ( ( MX1Ldelta ) ) . ˆ 2 ) ;

e t h e t a =sum ( abs ( ( MX1Ltheta ) ) . ˆ 2 ) ;

e a l p h a =sum ( abs ( ( MX1Lalpha ) ) . ˆ 2 ) ;

e b e t a =sum ( abs ( ( MX1Lbeta ) ) . ˆ 2 ) ;

e gamma=sum ( abs ( (MX1Lgamma ) ) . ˆ 2 ) ;

sumenergy= e d e l t a + e t h e t a + e a l p h a + e b e t a +e gamma ;

e d e l t a = e d e l t a / sumenergy ;

e t h e t a = e t h e t a / sumenergy ;

e a l p h a = e a l p h a / sumenergy ;

e b e t a = e b e t a / sumenergy ;

egamma=e gamma / sumenergy ;

E f f t =[ e d e l t a , e t h e t a , ea lpha , ebe t a , egamma ]

f i g u r e ;

b a r ( E f f t ) ;

E n f f t ( i , : ) = E f f t ;

[ y d e l t a , y t h e t a , y a l pha , y be t a , y gamma ] . . .

=wave l e t ene rgy decompose2mod i fy ( rdxn ) ;

E=[ y d e l t a , y t h e t a , y a l pha , y be t a , y gamma ]

f i g u r e ;

b a r (E ) ;

Ewave le t ( i , : ) = E ;

end

E n f f t t r a p s = r e s h a p e ( E n f f t t r a p , 1 , 3 2 ∗ 5 ) ;
E n f f t s = r e s h a p e ( En f f t , 1 , 3 2 ∗ 5 ) ;
Ewave l e t s = r e s h a p e ( Ewavele t , 1 , 3 2 ∗ 5 ) ;
p e r s o n d i r = s p r i n t f ( ’ Pe r son%d ’ , y ) ;

mkdir ( p e r s o n d i r ) ;

%

cd ( p e r s o n d i r )

p a t h =pwd
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%

cd . .

%

fname = [ ’ person ’ num2s t r ( y ) ’ v ideo ’ num2s t r ( k ) . . .

’ a l l c h a nn e l 1m i n s ’ ’ . mat ’ ] ;

% %f i l e n ame = ge t ( h a nd l e s . fname , ’ S t r i n g ’ ) ;

f i l e a n d f o l d e r =( f u l l f i l e ( pa th , fname ) ) ;

s ave ( f i l e a n d f o l d e r , ’ E n f f t t r a p ’ , ’ En f f t ’ , ’ Ewavele t ’ , . . .

’ E n f f t t r a p s ’ , ’ En f f t s ’ , ’ Ewave le t s ’ ) ;

end

end

Code 6

c l c ;

c l e a r a l l

f o r n =1:32 %Number o f p a r t i c i p a n t

f o r m=1:2

f o r x =1:40 %Number o f v i deo

l o ad ( [ ’ person ’ num2s t r ( n ) ’ v ideo ’ num2s t r ( x ) . . .

’ a l l c h a n n e l 3 0 s e c . mat ’ ] ) ;

l e n = s i z e ( r e s h a p e ( Ewave le t (m, : , : ) , 3 2 , 5 ) ) ;

l e n1 = l e n ( 1 ) ;

l e n2 = l e n ( 2 ) ;

Ewave l e t s = r e s h a p e ( Ewave le t (m, : , : ) , 3 2 , 5 ) ;

f o r i =1 : l e n1

i f i ==1

Ewavele t new= ( Ewave l e t s ( 1 , 1 : 5 ) ) ;

e l s e

Ewavele t new= h o r z c a t ( Ewavele t new , Ewave l e t s ( i , 1 : 5 ) ) ;

end

end
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% Ewavele t new= Ewavele t new ’ ;

Ewavele t new1= log ( Ewavele t new ) ;

Ewavele t new2= Ewavele t new ;

Ewavele t new3= (−exp ( Ewavele t new1 ) . ∗ Ewavele t new1 . . .
. / l og ( 2 ) ) ’ ;

X1 ( : , x )= Ewavele t new3 ; %Ent ropy

X2 ( : , x )= Ewavele t new2 ; %Energy

l o ad ( [ ’ l a b e l p e r s o n ’ num2s t r ( n ) ’ a l l v i d e o . mat ’ ] )

y1 ( : , x )= l a b e l s 1 ( x , 1 ) ;

y2 ( : , x )= l a b e l s 2 ( x , 1 ) ;

y3 ( : , x )= l a b e l s 3 ( x , 1 ) ;

y4 ( : , x )= l a b e l s 4 ( x , 1 ) ;

s e gmen t d i r = s p r i n t f ( ’ Segment%d ’ ,m) ;

mkdir ( s e gmen t d i r ) ;

%

cd ( s e gmen t d i r )

p a t h =pwd

%

cd . .

fname =[ ’ Wavele t5BandsPerson ’ num2st r ( n ) . . .

’ f e a t u r e 3 0 s e c 2 s t a t eA l l Emo t i o nS egmen t ’ num2s t r (m) ’ . mat ’ ] ;

f i l e a n d f o l d e r =( f u l l f i l e ( pa th , fname ) ) ;

s ave ( f i l e a n d f o l d e r , ’X1 ’ , ’X2 ’ , ’ y1 ’ , ’ y2 ’ , ’ y3 ’ , ’ y4 ’ )

end

end

end

Code 7

c l o s e a l l ;

c l e a r
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c l c

f o r n =1:2

l o ad ( [ ’ Re su l tWave l e t 5Band sPe r s on041316263130 s e c2 s t a t eA l l ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

l l e n = s i z e (X1 ) ;

l e n1 = l e n ( 1 ) ;

l e n2 = l e n ( 2 ) ;

X1=X1 ;

X2=X2 ;

y=ya ;

y=yv ;

y=yd ;

y= y l ;

i f n==1

X new1= X1 ;

X new2= X2 ;

ya new= ya ;

yv new= yv ;

yd new= yd ;

y l new= y l ;

e l s e

X new1= h o r z c a t ( X new1 ,X1 ) ;

X new2= h o r z c a t ( X new2 ,X2 ) ;

ya new= h o r z c a t ( ya new , ya ) ;

yv new= h o r z c a t ( yv new , yv ) ;

yd new= h o r z c a t ( yd new , yd ) ;

y l new= h o r z c a t ( yl new , y l ) ;

end

end

X1=X new1 ;

X2=X new2 ;
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ya=ya new ;

yv=yv new ;

yd=yd new ;

y l =yl new ;

save ( ’ CombineFea tu reWave le t5Bands30secAl lSegmen tAl l . mat ’ , ’ . . .

X1 ’ , ’X2 ’ , ’ ya ’ , ’ yv ’ , ’ yd ’ , ’ y l ’ ) ;

Code 8

c l e a r

f o r n = 1 :2

l o ad ( [ ’ Wav e l e t 5B and sP e r s o n 4 f e a t u r e 3 0 s e c 2 s t a t eA l l ’ ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

X12=X1 ;

X22=X2 ;

y21= y1;% va l e n c e

y22= y2;% a r o u s a l

y23= y3;%dominance

y24= y4;% l i k i n g

l o ad ( [ ’ Wave l e t 5Band sP e r s o n13 f e a t u r e 30 s e c 2 s t a t eA l ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

X13=X1 ;

X23=X2 ;

y31= y1 ;

y32= y2 ;

y33= y3 ;

y34= y4;%

load ( [ ’ Wav e l e t 5Band sP e r s o n 16 f e a t u r e 3 0 s e c 2 s t a t eA l l ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

X14=X1 ;

X24=X2 ;

y41= y1 ;
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y42= y2 ;

y43= y3 ;

y44= y4 ;

l o ad ( [ ’ Wav e l e t 5Band sP e r s o n 26 f e a t u r e 3 0 s e c 2 s t a t eA l l ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

X15=X1 ;

X25=X2 ;

y51= y1 ;

y52= y2 ;

y53= y3 ;

y54= y4 ;

l o ad ( [ ’ Wav e l e t 5Band sP e r s o n 31 f e a t u r e 3 0 s e c 2 s t a t eA l l ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ) ;

X16=X1 ;

X26=X2 ;

y61= y1 ;

y62= y2 ;

y63= y3 ;

y64= y4 ;

yv=doub l e ( [ y21 , y31 , y41 , y51 , y61 ] ) ;% va l e n c e

ya=doub l e ( [ y22 , y32 , y42 , y52 , y62 ] ) ;% a r o u s a l

yd=doub l e ( [ y23 , y33 , y43 , y53 , y63 ] ) ;% dominance

y l =doub l e ( [ y24 , y34 , y44 , y54 , y64 ] ) ;% l i k i n g

X1=doub l e ( [ X12 , X13 , X14 , X15 , X16 ] )% ; ,X6 , X7 ] ) ; % ,X3 , X5 ] ) ;

X2=doub l e ( [ X22 , X23 , X24 , X25 , X26 ] )% ; ,X6 , X7 ] ) ; % ,X3 , X5 ] ) ;

f i l e n ame =[ ’ Resu l tW5BandsPe r son041316263130sec2s t a t eAl ’ . . .

num2s t r ( n−1) ’ . mat ’ ] ;

s ave ( f i l ename , ’ ya ’ , ’ yv ’ , ’ yd ’ , ’ y l ’ , ’X1 ’ , ’X2 ’ ) ;

end

Code 9
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f u n c t i o n [ I n o rma l i z e d VoI ] = nmi (A, B)

% Nomalized mutua l i n f o rm a t i o n between two ma t r i c e s

a s s e r t ( l e n g t h (A) == l e n g t h (B ) ) ;

A = A ( : ) ; % make i t a column v e c t o r

B = B ( : ) ; % make i t a column v e c t o r

n = l e n g t h (A ) ; % number o f e l emen t s

% Find t h e number o f m i x t u r e s i n A and B

A unique = un ique (A ) ;

B unique = un ique (B ) ;

% C a l c u l a t e t h e ma r g i n a l e n t r o py of A and B

Ma = s i n g l e ( b sx fun (@eq ,A, A unique ’ ) ) ;

Mb = s i n g l e ( b sx fun (@eq ,B , B unique ’ ) ) ;

Pa = sum (Ma ) / n ;

Pb = sum (Mb) / n ;

Ha = −sum ( Pa .∗ l og2 ( Pa + eps ) ) ;

Hb = −sum ( Pb .∗ l og2 ( Pb + eps ) ) ;

% C a l c u l a t e t h e j o i n t en t ropy ,

Pab = Ma’∗Mb/ n ;
Hab = −sum ( Pab ( : ) . ∗ l og2 ( Pab ( : ) + eps ) ) ;

% C a l c u l a t e t h e mutua l i n f o rm a t i o n

I ab = Ha + Hb − Hab ;

% Normal i ze u s i ng S t r e h l−Ghosh
I n o rma l i z e d = I ab / s q r t ( eps + Ha∗Hb ) ;
% Va r i a t i o n o f I n f o rma t i o n

VoI = 1 − I ab / Hab ;

Code 10

c l e a r a l l ;

c l o s e a l l ;

l o ad MAESeg6sec4EmotionsPerson0107162023272830Arranged

n ch = s i z e (X , 1 ) ;
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% X = 1 i f X>median (X) , e l s e X = 0

X d i s c r e t i z e d = bsx fun (@gt , median (X, 2 ) ,X ) ;

% compute t h e mutua l i n f o rm a t i o n

%(from t h e j o i n t p r o b a b i l i t y ma t r i x )

% between X {0 ,1} a g a i n s t Y {1 ,2 , 3 , 4}
NMI X agains t Y = a r r a y f u n (@( i ) . . .

nmi ( X d i s c r e t i z e d ( i , : ) , y ) , 1 : n ch ) ;

i n3band= r e s h a p e ( NMI X against Y ’ , 1 0 , 3 2 ) ’ ;

f i g u r e , b a r ( in3band )

l egend ( ’ Alpha ’ , ’ Beta ’ , ’Gamma’ )

x l a b e l ( ’ Channel ’ )

y l a b e l ( ’NMI( channe l , emot ion ) ’ )

% compute t h e mutua l i n f o rm a t i o n

%(from t h e j o i n t p r o b a b i l i t y ma t r i x )

% between X {0 ,1} a g a i n s t Y {1 ,2} ,
% between X {0 ,1} a g a i n s t Y {1 ,3} ,
% between X {0 ,1} a g a i n s t Y {1 ,4} ,
% between X {0 ,1} a g a i n s t Y {2 ,3} ,
% between X {0 ,1} a g a i n s t Y {2 ,4} , and
% between X {0 ,1} a g a i n s t Y {3 ,4}
comb i n a t i o n s = combntns ( un ique ( y ) , 2 )

f o r i = 1 : l e n g t h ( c omb i n a t i o n s ) ;

c l a s s e s = ismembc ( y , c omb i n a t i o n s ( i , : ) ) ;

NMI X aga ins t Y indv ( : , i ) = a r r a y f u n (@( i ) . . .

nmi (X\ d i s c r e t i z e d ( i , c l a s s e s ) , y ( c l a s s e s ) ) , 1 : n ch ) ;

s t r { i } = s p r i n t f ( ’Emo #%d vs #%d ’ , c omb i n a t i o n s ( i , 1 ) , . . .

c omb i n a t i o n s ( i , 2 ) ) ;

end

% p l o t t h e c umu l a t i v e NMI, p e r f e c t mutua l i n f o rm a t i o n

%shou ld add up t o 6

f i g u r e ;
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ba r ( NMI X aga ins t Y indv ( 1 : 8 0 , : ) , ’ s t a cked ’ ) ;

f i g u r e ;

b a r ( NMI X aga ins t Y indv ( 8 1 : 1 6 0 , : ) , ’ s t a cked ’ ) ;

f i g u r e ;

b a r ( NMI X aga ins t Y indv ( 1 6 1 : 2 4 0 , : ) , ’ s t a cked ’ ) ;

f i g u r e ;

b a r ( NMI X aga ins t Y indv ( 2 4 1 : 3 2 0 , : ) , ’ s t a cked ’ ) ;

f i g u r e ;

b a r ( NMI X aga ins t Y indv ( 1 : 3 2 0 , : ) , ’ s t a cked ’ ) ;

l e g end ( s t r , ’ l o c a t i o n ’ , ’ n o r t h e a s t o u t s i d e ’ )

x l a b e l ( ’ F e a t u r e \# ’ )
y l a b e l ( ’NMI( channe l , emot ion ) ’ )

Code 11

c l e a r ;

c l c ;

f o r loop1 =1:30

loop1

%t i c

d a t a = l o ad ( ’ Sub s e t 2Seg30 s e cArou s a l . mat ’ ) ; % load d a t a

o p t i o n s . s o l v e r = ’smo ’ ; % use SMO s o l v e r

o p t i o n s . k e r = ’ rb f ’ ; % use RBF k e r n e l

o p t i o n s . a r g =2 . 0 1 ; % k e r n e l a rgument %40.51

o p t i o n s .C = 1 0 . 0 1 ; % r e g u l a r i z a t i o n c o n s t a n t

%% Good RBF pa r ame t e r i s a p p r o x ima t e l y t h e c l u s t e r r a d i u s

% For s im p l i c i t y , I use sh i−mal ik no rma l i z ed c u t

K = 2 ; % number o f c l a s s e s

s igma = 9 . 0 5 7 ; % RBF r a d i u s ( g u e s s t im a t e r a d i u s )

% c a l c u l a t e t h e Normal ized Lap l a c i a n ma t r i x

D = d i s tm a t ( d a t a .X, d a t a .X , 2 ) ;

A=exp(−D/ sigma ˆ 2 ) ;
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%imagesc (A ) ;

D = d i ag (max ( 1 , sum (A , 1 ) ) ) ;

L nor = eye ( s i z e (A, 1 ) ) − Dˆ( −1 /2 )∗A∗Dˆ ( −1 / 2 ) ;
% Use Lanczos Algo r i t hm t o c a l c u l a t e t h e e i g e n v e c t o r and

%e i g e nv a l u e s , a r r a n g e d from sm a l l e s t t o l a r g e s t

[ e i g v e c t , e i g v a l ] = e i g s ( doub l e ( L nor ) ,K, ’SM’ ) ;

i n = doub l e ( e i g v e c t ( : , 2 :K ) ’ ) ;

% induce K−way cu t u s i n g kmeans

[ c l a s s l a b e l s ]= kmeanspp ( in ,K ) ;

% d i s p l a y t h e no rma l i z ed mutua l i n f o rm a t i o n ( a c cu r a cy ) o f

%t h e c l u s t e r i n g p r o c e s s (1 = 100%)

No rma l i z e d mu t u a l i n f o rma t i o n = nmi ( c l a s s l a b e l s , d a t a . y ) ;

d i s p (’−−− c l u s t e r i n g r e s u l t s −−−’);
f p r i n t f ( ’ no rma l i z ed mutua l i n f o rm a t i o n . . .

a g a i n s t ground t r u t h l a b e l s : %.3 f \n ’ , . . .
No rma l i z e d mu t u a l i n f o rma t i o n ) ;

c e n t r o i d s = a r r a y f u n (@( i ) mean ( d a t a .X( : , c l a s s l a b e l s == i ) , 2 ) , . . .

1 :max ( c l a s s l a b e l s ) , ’ un i f o rmou tpu t ’ , f a l s e ) ;

d i s t a n c e t o c e n t r o i d s = a r r a y f u n (@( i ) mean ( sum ( bsx fun . . .

(@minus , d a t a .X( : , c l a s s l a b e l s == i ) , c e n t r o i d s { i } ) . ˆ 2 , 1 ) ) , . . .
1 :max ( c l a s s l a b e l s ) ) ;

f p r i n t f ( ’ s u g g e s t e d k e r n e l r a d i u s = . . .

2∗ (max d e v i a t i o n from t h e c e n t r o i d s ) :

%.3 f \n ’ , s q r t (max ( d i s t a n c e t o c e n t r o i d s ) ) ∗ 2 ) ;
%% d i v i d e t o t r a i n i n g and t e s t s e t w i th 20\% p r o p o r t i o n

p r o p o r t i o n t r a i n i n g = 0 . 3 0 ; %0.2

c l e a r t r a i n i d x ;

t r a i n i d x = [ ] ;

f o r i = 1 :max ( d a t a . y )

I = f i n d ( d a t a . y == i ) ;

N = l e n g t h ( I ) ;
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t r p r o p = round ( p r o p o r t i o n t r a i n i n g ∗N) ;
t s t p r o p = N − t r p r o p ;

T = [ z e r o s ( 1 , t s t p r o p ) , ones ( 1 , t r p r o p ) ] ;

t r a i n i d x = c a t ( 2 , t r a i n i d x , T ( randperm (N ) ) ) ;

end

t r a i n i d x = t r a i n i d x == 1 ;

t e s t i d x = ˜ t r a i n i d x ;

d a t a t r a i n = s t r u c t ( ’X’ , d a t a .X( : , t r a i n i d x ) , ’ y ’ , . . .

d a t a . y ( : , t r a i n i d x ) ) ;

d a t a t e s t = s t r u c t ( ’X’ , d a t a .X( : , t e s t i d x ) , ’ y ’ , . . .

d a t a . y ( : , t e s t i d x ) ) ;

t i c

model = oaasvm ( d a t a t r a i n , o p t i o n s ) ; % t r a i n i n g

%% t r a i n i n g & t e s t a c cu r a cy

t r a i n i n g r e s u l t = c l a s s p e r f ( d a t a t r a i n . y , . . .

s vmc l a s s ( d a t a t r a i n .X, model ) )

t o c

t ime1= t o c

t i c

t e s t r e s u l t = c l a s s p e r f ( d a t a t e s t . y , . . .

s vmc l a s s ( d a t a t e s t .X, model ) )

t o c

t ime2= t o c

DT= t e s t r e s u l t . D i a g n o s t i c T a b l e

Tra inT ( loop1 )= t ime1

Tes tT ( loop1 )= t ime2

Accuracy ( loop1 )= t e s t r e s u l t . C o r r e c tR a t e

models ( loop1 )=model ;

S e n s i t i v i t y ( loop1 )= t e s t r e s u l t . S e n s i t i v i t y

S p e c i f i c i t y ( loop1 )= t e s t r e s u l t . S p e c i f i c i t y

DT ( : , : , l oop1 )=DT; %t e s t r e s u l t . D i a g n o s t i c T a b l e
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F1 ( loop1 )=2∗DT( 1 ) / ( 2 ∗DT(1 )+DT(2 )+DT( 3 ) )
[ ypred , d f c e ] = svmc l a s s ( d a t a t e s t .X, model ) ;

x t e s t ( : , : , l oop1 )= d a t a t e s t .X;

y t e s t ( : , : , l oop1 )= d a t a t e s t . y ;

yp red ( loop1 , : ) = ypred ;

end

meanAcc=mean ( Accuracy )

s tdAcc= s t d ( Accuracy )

meanSens=mean ( S e n s i t i v i t y )

s t dS en s = s t d ( S e n s i t i v i t y )

meanSpec=mean ( S p e c i f i c i t y )

s t dSpec = s t d ( S p e c i f i c i t y )

meanTrainT=mean ( Tra inT )

s t dT r a i nT = s t d ( Tra inT )

meanTestT=mean ( Tes tT )

s t dT e s tT = s t d ( Tes tT )

save ( ’ T r a i n i n gR e s u l t . mat ’ , ’ TrainT ’ , ’ TestT ’ , ’ Accuracy ’ , . . .

’ S e n s i t i v i t y ’ , ’ S p e c i f i c i t y ’ , ’DT’ , ’ F1 ’ , ’ models ’ , ’ S e n s i t i v i t y ’ , . . .

’ S p e c i f i c i t y ’ , ’DT’ , ’ F1 ’ , ’ ypred ’ , ’ x t e s t ’ , ’ y t e s t ’ , ’ meanAcc ’ , . . .

’ meanSens ’ , ’ meanSpec ’ , ’ meanTrainT ’ , ’ meanTestT ’ , . . .

’ s tdAcc ’ , ’ s t dSens ’ , ’ s tdSpec ’ , ’ s t dT r a i nT ’ , ’ s t dTe s tT ’ ) ;
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