High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer†

Okji Park, Jung-In Lee, Myung-Jin Chun, Jin-Tak Yeon, Seungmin Yoo, Sinho Choi, Nam-Soon Choi* and Soojin Park*

We report a simple route for synthesizing titanium silicide-coated Si anodes via the silicothermic reduction process of TiO$_2$-coated Si. The titanium silicide enhances the electrical conductivity of Si nanoparticles and provides a highly stable solid electrolyte interface layer during the cycling, resulting in excellent electrochemical performances and significantly improved high thermal stability.

Rechargeable lithium-ion batteries (LIBs) have been developed as the most promising power source technology for portable electronics (e.g., cell phones, laptop computers, digital cameras, etc.) and vehicles (e.g., hybrid vehicle, electric vehicle, etc.). In the last decade, substantial efforts have been devoted to the replacement of conventional carbon-based anode materials in LIBs with alternatives that allow a high energy density.

Silicon is an attractive anode material for next-generation LIBs owing to its abundant availability, its low discharge potential (~0.4 V vs. Li/Li$^+$) and high theoretical gravimetric capacity (3579 mAh g$^{-1}$ at room temperature). However, the practical use of Si anode material in LIBs is hindered by its poor cyclability resulting from the low intrinsic electrical conductivity and the huge volume change (>300%). The use of nanostructured materials is an effective approach to solve this issue. Nanostructured Si anode materials, including nanoparticles, nanowires, nanotubes, hollow spheres, and porous structures, showed significantly improved cycle performances by accommodating the large volume change.

An alternative approach for improving the stability of Si is to use surface coating. The surface of an electrode material can greatly influence the electrochemical properties. Considering the potentials at which the Si host alloys with lithium, electrolyte components, especially carbonate esters, will be inevitably reduced into species that are structurally similar to that identified on graphitic anodes. However, fresh Si surfaces are created repeatedly in each cycle and due to the local instability caused by the huge volume change associated with the lithium insertion/extraction process, an additional reduction of electrolytes takes place to cover those newly exposed surfaces. This continuous process consumes the limited Li$^+$ source, builds up a thick solid electrolyte interface (SEI) layer on the Si active materials, and would eventually disable the cell. Therefore, a uniform and compact SEI layer on the electrode surface may enhance the efficiency and cycling stability of the electrode. Typically, carbon-based materials, metal particles, metal oxide particles, and conductive polymers have been used as coating materials to enhance the electrical conductivity of Si and to form a stable SEI layer, resulting in improved electrochemical performances.

As another simple method, a silicothermic reduction process can provide an attractive means to coat titanium silicide (Ti,Si$_y$) on the surface of Si. Since the Ti,Si$_y$ is light-weight, highly electrically conductive, and thermally stable, when it is combined with Si particles significantly improved electrochemical performances can be expected. For example, Zhou et al. reported the synthesis of Ti,Si$_y$ nanonets and Si nanoparticles via a chemical vapor deposition process. The hetero-nanostructured anode materials exhibited remarkable electrochemical performances, including high capacity and long cycling life. However, the amount of inactive Ti,Si$_y$ should be minimized to make high energy density LIBs.

Herein, we report a simple synthesis of Ti,Si$_y$-coated Si nanoparticles via a silicothermic reduction process, in which Si acts as the reducing agent, while titanium oxide is used as a source material of Ti.$^+$ The titanium silicide enhances the electrical conductivity of Si nanoparticles and provides a highly stable SEI layer during the cycling, resulting in superior electrochemical performances including a high reversible capacity (1470 mAh g$^{-1}$) and a high rate capability (1150 mAh g$^{-1}$ at 20 C rate). Moreover, the Ti,Si$_y$-coated Si electrodes showed significantly improved high thermal stability, compared to bare Si electrodes.

The synthetic approach of Ti,Si$_y$-coated Si nanoparticles is briefly described in the schematic illustration of Fig. 1. We developed a simple wet-chemical synthetic route to evenly coat...
TiO₂ onto the surface of Si particles by controlled hydrolysis of the titanium precursors. A subsequent two-step annealing process led to the formation of Ti₅Si₄-coated Si particles. A detailed explanation of the synthetic procedures is given in the experimental section.

Fig. 1 presents a transmission electron microscope (TEM) image of Si nanoparticles, showing that the particles consist of a crystalline Si core (ranging from 30 to 100 nm in diameter) and an amorphous TiO₂ shell with thickness of ~1 nm (Inset of Fig. 1a). When equal amounts of titanium tetrabutoxide and H₂O were refluxed in a mixture of ethylene glycol/ethanol in the presence of 1 g Si particles, the amorphous TiO₂ precursor was evenly coated on the surface of the Si particles with an average thickness of ~10 nm (Inset of Fig. 1b). When the annealing temperature was increased to 1000 °C, the intensity of the TiSi₂ peak was significantly increased (black line in Fig. 2a), while a weak peak of Ti₅Si₃ phase was detected at 42°, as indicated in the inset of Fig. 2a. When the annealing temperature was increased to 1000 °C, the intensity of the TiSi₂ peak was significantly increased (black line in Fig. 2a), while a weak peak of Ti₅Si₃ phase was detected at 42°, as indicated in the inset of Fig. 2a. The Ti₅Si₃ and Ti₅Si₄ phases were formed as the TiSi₂ phase was further reacted with additional Ti, as marked in the Ti–Si binary phase diagram.37

To investigate the formation mechanism of Ti₅Si₄-coated Si nanoparticles, we obtained X-ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) results. XRD patterns of TiO₂-decorated Si annealed at 450 °C showed that crystalline Si peaks were clearly observed (black line in Fig. 2a), while a weak peak of crystalline TiSi₂ phase was detected at 42°, indicating that Ti–Si bonds may be formed (Fig. 2b).38 From the binding energies of Si 2p appearing at 99 eV represent silicon species in the Ti₅Si₄ layer, indicating that Ti₅Si₄-coated Si is successfully synthesized (Fig. 2b). Also, based on the XPS spectra ranging from 103.5 to 101 eV, pure SiO₂ exists in the outermost shell and Ti-associated SiO₂ in the inner layers was detected with a short time etching, implying that Si–O–Ti bonds may be formed (Fig. 2b).38 The XPS spectra of the Ti 2p core level reconfirmed the formation of Si-doped TiO₂ and Ti₅Si₄ phases. In the outermost shell regions, the peaks appearing at 458.5 and 464.3 eV correspond to the core level of Ti 2p of TiO₂.

Fig. 2 Characterization of Ti₅Si₄-coated Si nanoparticles. (a) XRD patterns show Ti₅Si₄-coated Si particles annealed at 450 °C (black line) and 1000 °C (red line). In the inset, Ti₅Si₂, Ti₅Si₃, and Ti₅Si₄ phases were clearly observed. (b) XPS spectra of the Si 2p core level shows existence of a Ti₅Si₄ layer and a formation of Ti–O–Si. XPS depth profiling data indicates the successful synthesis of Ti₅Si₄ layers on the surface of Si particles. XPS spectra of (c) O 1s and (d) Ti 2p core levels confirm the formation of strong bonding between Si and TiO₂ (Ti–O–Si) and Ti₅Si₄ phases.
2 peaks corresponding to the Si-dope TiO2 and the Ti5Si3 were gradually increased through deep depth profiling (Fig. 2d). 40 The formation of Ti5Si3 layers can be described as follows: (i) When the TiO2 coating layers were heated to >900 °C, the dissociation of TiO2 is fast, leaving oxygen vacancies; 41 (ii) At the same temperature, Si atoms easily diffuse into the dissociated and remaining TiO2 layers to make TiSi2 layers; (iii) The little remaining oxygen may react with the Si to make SiO at the shell regions, in which the SiO will be evaporated at >900 °C; (iv) Finally, the Ti5Si3 and TiSi2 phases are formed by the reaction of the preformed TiSi2 phase and additional dissociated Ti.

The overall reaction to form Ti5Si3 is denoted in the following equations: 42

\[
\begin{align*}
 Ti + 2Si \rightarrow TiSi_2 \\
 TiO_2 + 4Si \rightarrow TiSi_2 + 2SiO \uparrow (>900 ^\circ C) \\
 yTiSi_2 + (2x - y)Ti \rightarrow 2Ti_xSi_y
\end{align*}
\]

The electrochemical performance of the Ti5Si3-coated Si particles (Ti contents of 2.3 wt%) as the anodes in LIBs was tested by galvanostatic discharging and charging at a 0.1–20 C rate in the range of 0.005 V to 1.2 V. The first discharge and charge capacity of bare Si at a 0.1 C rate are 1950 and 1550 mAh g\(^{-1}\), corresponding to a coulombic efficiency of 79.4% (Fig. 3a). Whereas, the first charge capacity of the Ti5Si3-coated Si at a 0.1 C rate is 1470 mAh g\(^{-1}\) with an increased coulombic efficiency of 83.5% (Fig. 3b). The enhanced coulombic efficiency of the first cycle may be due to the uniform Ti5Si3 coating layer, which can maintain a SEI layer on the surface of the Si particles and reduce the direct contact between Si and the electrolyte.

When the Ti5Si3-coated Si electrode was cycled to 90 cycles at a rate of 0.2 C (lithiation) and 0.5 C (delithiation), a high reversible capacity of 1430 mAh g\(^{-1}\) was exhibited, corresponding to the capacity retention of >99% (compared to initial capacity) (Fig. 3c). In contrast, the bare Si electrode showed a fast capacity fading with capacity retention of 51% after 70 cycles (Fig. 3c). It is attributed to poor electrical conductivity and the formation of an unstable SEI layer. 7 Cross-sectional SEM images of bare and Ti5Si3-coated Si showed the thickness of the electrodes before and after cycling. The bare Si electrode showed the volume expansion of 62.3%, while the Ti5Si3-coated Si exhibited less volume expansion (30%) due to the coating effect and the stable SEI layer (Fig. S2, ESI).

Moreover, rate capabilities of both electrodes were investigated at various C rates (0.2–20 C rate) between 1.2 V and 0.005 V with a fixed discharging rate of 0.2 C. The bare Si electrodes exhibited the capacity retention of 66.7% at a high rate of 10 C, compared to that of the 0.2 C rate (Fig. 3d). In contrast, the Ti5Si3-coated Si electrode showed significantly enhanced rate capabilities. Even at a high rate of 20 C, the capacity retention of the Ti5Si3-coated Si was 87.8% (Fig. 3d). These results suggest that the Ti5Si3 coating layers play an important role in exhibiting superior electrochemical properties, including highly stable cycling and an excellent rate capability. Since the Ti5Si3 layers were strongly attached to the Si interface during the silicothermic reduction process, the Ti5Si3-coated Si electrodes may exhibit a highly stable cycling. Moreover, the electrical conductivity of the electrodes prepared with bare Si was 4.23 × 10\(^{-5}\) S cm\(^{-1}\), while the Ti5Si3-coated Si electrode showed a significant improvement (1.87 × 10\(^{-4}\) S cm\(^{-1}\)), indicating that the Ti5Si3 layer served as the effective path for electrical conduction.

To prove the stable cycling of Ti5Si3-coated Si electrodes, the XPS spectra were obtained before and after cycling. Interestingly, the SEI layer did not discernibly change between the 1st and 40th cycles, supporting good capacity retention of the Si anodes with the Ti5Si3 coating layer (Fig. S3 and S4, ESI).

In addition, the effect of the Ti5Si3 coating on the thermal properties of the fully lithiated Si electrode was investigated by differential scanning calorimetry (DSC). 43 Heating of the fully lithiated bare Si electrode resulted in distinct and sharp exothermic peaks at around 107, 187, 251, and 262 °C (Top in Fig. 4a). It is reasonable that the first exothermic peaks at 100–130 °C correspond to thermal decomposition of metastable SEI components. 43 Heat evolution (55 J g\(^{-1}\)) for the first exothermic peak of the fully lithiated Ti5Si3-coated Si was larger than that of fully lithiated bare Si (37 J g\(^{-1}\)) in the presence of an electrolyte. In order to clarify this point, the XPS analysis of the SEI on bare and Ti5Si3-coated Si electrodes was performed. From the XPS results, it was clearly seen that a LiPF6 salt, which is thermally unstable and highly reactive with trace water, is trapped in the SEI on the coated Si after 1 cycle (Fig. S3, ESI). It should be noted that PF5 formed from LiPF6 decomposes to POF3 in the presence of water traces (in an electrolyte and an electrode) and the reactive POF3 in the electrolyte reacts with carbonate solvents, such as EC and DEC to produce CO2 and OPF2ORF at elevated temperatures, as illustrated in the ESI (Fig. S5, ESI). This kind of reaction may generate additional exothermic heat and results in augmentation of heat evolution for the first exothermic peak of the fully lithiated Ti5Si3-coated Si.

Fig. 3 Electrochemical performances of Ti5Si3-coated Si and bare Si anodes. First cycle voltage profiles of (a) bare Si and (b) Ti5Si3-coated Si are obtained at 0.1 C (1st cycle) in the range of 0.005–1.2 V. (c) Cycling performances of both electrodes are obtained at 0.1 C (first cycle) and 0.2 C (from second cycle). (d) Rate capabilities of Ti5Si3-coated Si (solid circle) and bare Si (solid square) were obtained at 0.2 C–20 C rates.
Conclusions

We successfully synthesized titanium silicide coated silicon particles via a silicothermic reduction process of Si and TiO₂. The TiO₂ layers were evenly coated on the surface of Si in a solution, and subsequent thermal annealing led to the formation of titanium silicide coated Si particles. Since titanium silicide are electrically conductive and form a highly stable SEI layer, Ti₅Siₓ-coated Si electrodes exhibit high electrochemical performances, including a high specific capacity and an excellent rate capability. Also, the Ti₅Siₓ-coated Si electrodes showed significantly improved thermal stability, compared to non-coated Si electrodes. This process opens up a way to make other silicon-based anode materials for high performance lithium-ion batteries.

Acknowledgements

This work was supported by the MKE/TRC program of NIPA (NIPA-2012-C1090-1200-0002) and the Conversing Research Center Program through the Ministry of Education, Science and Technology (2011K000637).

Notes and references

† Preparation of Ti₅Siₓ-coated Si particles: Si nanopowder (Sigma-Aldrich, 50 nm in size) was cleaned in acetone and isopropl alcohol and dried under nitrogen. In a typical synthesis, 0.2 mL of titanium tetrabutoxide and 0.2 mL of H₂O were refluxed in ethylene glycol/ethanol (16 mL/4 mL) at 80 °C for 6 h in the presence of 1 g Si particles. As-synthesized TiO₂-coated Si powders were cleaned with ethanol several times and dried at 80 °C for 12 h. Subsequently, the TiO₂-coated Si particles were thermally annealed in a quartz furnace at 450–1000 °C for 1 h under argon stream to make Ti₅Siₓ-coated Si particles.

Characterization of Ti₅Siₓ-coated Si particles: The crystal structures of the Ti₅Siₓ-coated Si sample were measured by a high power X-ray diffractometer (XRD) on a Rigaku D/MAX at 2500 V using Ni-filtered Cu-Kα radiation. TEM images were taken in the bright-field mode using JEM 1400 (JEOL) operated at 120 kV accelerating voltages.

Thermal analyses of lithiated Ti₅Siₓ-coated Si particles: To measure the thermal properties of lithiated Si electrodes with electrolytes, coin cells were charged to 0.005 V vs. Li/Li⁺ and then carefully opened in a dry room. The retrieved electrodes were rinsed in a DMC solvent to remove residual electrolyte and then dried. The resulting lithiated silicon electrode was sealed together with an electrolyte in a hermetic stainless-steel pan (Perkin Elmer). All of the DSC (METTLER TOLEDO DSC 1) measurements were carried out at a heating rate of 5 °C min⁻¹ in a range of 30–400 °C. The amount of entrapped electrolyte was 50 wt% based on the lithiated silicon material.

Electrochemical performance: An electrochemical cell test was performed using coin-type half cells (2016R type) by assembly in an argon-filled glove box. Ti₅Siₓ-coated Si and bare Si electrodes for the cell test were composed of Si active material (70 wt%), super P carbon black (10 wt%), and poly(acrylic acid)/sodium carboxymethyl cellulose (wt/wt, 50/50) binder (20 wt%). The electrolyte was composed of 1.3 M LiPF₆ in a mixture of ethylene carbonate/diethylene carbonate (ED/DEC, 30/70 vol.%) with 5 wt% fluoroethylene carbonate (FEC) additive. The cells were cycled at a rate of 0.1–20 C in the range of 0.005 and 1.2 V.
