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An electrically small rectenna was designed and tested at the global positioning system (GPS) L1

frequency (1.5754 GHz). The metamaterial-inspired near-field resonant parasitic antenna size

(ka � 0.467) and its direct match to the input impedance of the rectifying circuit decreased the

whole size of the rectenna (ka � 0.611). The simulated and measured rectifying efficiencies were,

respectively, 75.7% and 79.6% when the input power to the rectifying circuit was 0.0 dBm

(1 mW). The highest rectifying efficiency, 84.7%, was achieved at the GPS L1 frequency for a

3.0 dBm input power. The simulated and measured results are in good agreement. VC 2011
American Institute of Physics. [doi:10.1063/1.3637045]

Rectennas, which is short for rectifying antennas, have

received much attention for their use in wireless power trans-

mission (WPT) systems.1,2 They are promising elements for

power harvesting and scavenging, especially for micro-

system applications in wireless sensor networks and on

unmanned aerial vehicles (UAVs). To evaluate the rectenna

designs, their rectifying efficiencies and compact sizes are

two significant figures of merit. The antenna, which is typi-

cally bigger than the rectifying circuit, is one of the critical

components of the rectenna system. On the one hand, the im-

pedance matching between it and the rectifying circuit

always affects the overall rectifying efficiency. Furthermore,

its size typically dominates the overall size of the rectenna.

The basic structure of a rectenna is shown in Fig. 1(a).

The antenna is the interface between the external electro-

magnetic (EM) environment and the rectifying circuit. It

plays the significant role of receiving the EM signals and

converting them into voltages and currents. Consequently, it

also has important consequences in the requisite impedance

matching to the rectifying circuit. The rectifying circuit con-

sists of a band-pass filter, a Schottky diode, and a low pass

filter. To increase the rectifying efficiency when the input

power is low, a Schottky diode with a low built-in voltage

and high breakdown voltage is always selected.3 However,

harmonic signals will be generated because the diode has

nonlinear characteristics, and hence, could be radiated by the

antenna back into the ambient space and absorbed by the

board material. These harmonic generation and absorption

processes can dramatically decrease the rectifying efficiency.

Consequently, a band pass filter and a low pass filter are usu-

ally incorporated between the antenna and the diode, and

between the diode and the load, respectively, to prevent any

harmonics from flowing back into the antenna and forward

into the load.

The emergence of metamaterials (MTMs) has provided

a promising methodology to design electrically small anten-

nas (ESAs).4 The ESAs in Refs. 4 and 5 are constructed as a

combination of electrically small driven and metamaterial-

inspired near-field resonant parasitic (NFRP) elements. The

NFRP elements are generally single epsilon-negative (ENG)

or mu-negative (MNG) based unit cells of a metamaterial,

not a complete bulk medium. In Refs. 6–8, an extended ver-

sion of an S-shaped resonator has been found to yield a dou-

ble negative (DNG) metamaterial (i.e., permittivity and
permeability are negative). As a result, the S-shaped unit cell

could be used as a NFRP element.

We combined such an S-shaped NFRP element and a

driven printed monopole element to achieve an ESA that

was matched to a 50 X and then directly to the input imped-

ance of the rectifying circuit without any external matching

network. Rather than a capricious choice for this proof-of-

concept study, the GPS L1 frequency was selected because

of past experiences with such narrow bandwidth systems4,5

and the availability of related low and high power sources.

Our rectenna design is based on 0.5-oz (0.017 mm thick

copper), 31-mil (0.7874 mm), Rogers DuroidTM 5880 sub-

strate (er¼ 2.2, lr¼ 1.0, and loss tangent¼ 0.0009) as the

board material. The low input power, rectifying circuit

design was based on the Skyworks SMS7630 Schottky

diode. The agilent advanced design system (ADS) was

exploited to design the rectifying circuit. Its harmonic bal-

ance (HB) simulator was selected to predict the rectifier

performance, including the harmonics generation and the

absorption process. To simplify the design of the low pass

filter between the diode and the resistive load, an 82 nH se-

ries inductor was chosen to prevent the harmonics from

reaching the load. From source pull and load pull simula-

tion results in ADS, a 1540 X resistor was chosen as the

resistive load to optimize the output power. The subsequent

input impedance of the antenna was predicted to be

Zin¼ (29.5 þ j 171.55) X. Because this source impedance

is an ideal value, it achieves the highest rectifying effi-

ciency. This input impedance value was then used to design

the ESA. The ADS circuit model of the optimized rectify-

ing circuit is shown in Fig. 1(b).

a)Author to whom correspondence should be addressed. Electronic mail:

ziolkowski@ece.arizona.edu.

0003-6951/2011/99(11)/114101/3/$30.00 VC 2011 American Institute of Physics99, 114101-1

APPLIED PHYSICS LETTERS 99, 114101 (2011)

http://dx.doi.org/10.1063/1.3637045
http://dx.doi.org/10.1063/1.3637045
http://dx.doi.org/10.1063/1.3637045
http://dx.doi.org/10.1063/1.3637045


The electrically small, metamaterial-inspired S-shaped,

NFRP antenna was designed using ANSYS/ANSOFT’s high

frequency structure simulator (HFSS). The design goals

were an input impedance equal to (29.5 þ j 171.55) X while

maintaining an electrically small size and high overall effi-

ciency. The width and length of the S-shaped NFRP element

provide the main contributions to the inductance of the

antenna, while the distances between its vertical legs and the

distances between its horizontal legs and the ground plane

dominantly affect the capacitance of the antenna. Although

there are several parameters available with the NFRP ele-

ment to adjust the input impedance, it is nonetheless difficult

to obtain the required high ratio of the reactance to the resist-

ance, i.e., 5.8:1 (i.e., 171.55:29.5). We found that if the

driven printed monopole was designed with a two-cane top-

loading, this high impedance ratio could be obtained. Fur-

thermore, we found that even though the antenna was physi-

cally separated from the circuit elements, the performance of

the rectenna system was sensitive to the size of ground plane

which is common to both the antenna and the rectifying

circuit. The ground plane size itself is not negligible in com-

parison to the size of the S-shaped NFRP element. Conse-

quently, to consider the ground plane effects on the antenna

performance, we incorporated a same-sized ground plane

without any of the circuit elements in the HFSS simulation

model. Fig. 2(a) presents the antenna structure with the

extended ground plane which was used to achieve its final

design and whose one-port model was then used in the ADS

simulations to optimize the rectifying circuit design. We

note that the presence of the extended ground plane had to

be de-embedded to the location of the input points of the

actual rectifying circuit before creating the one-port model.

Fig. 2(b) shows the 3D radiation pattern of the S-shaped

NFRP antenna predicted by HFSS. As one can see from Fig.

2(a), because the NFRP element is asymmetric with respect

to the z-axis, the radiation pattern is tilted with respect to it

and, hence, to the two-cane driven monopole. The simulated

vector current distribution on the S-shaped NFRP element is

presented in Fig. 2(c). One can see that the currents on the

outside vertical legs of the S-shaped NFRP element flow in

opposite directions to those on the middle vertical leg. Due

to the resulting destructive interference of the fields gener-

ated by these opposite current flows, the radiation efficiency

is only near 70%. Table I summarizes the HFSS predicted

performance values, i.e., the simulated peak gain, the radia-

tion efficiency, and the input impedance from fundamental

through third harmonics, as well as the ADS predicted recti-

fying efficiency.

Combining and iterating between the rectifying circuit

and antenna designs, we completed the rectenna design. The

fabricated rectenna is shown in Fig. 3. The two-cane driven

FIG. 2. (Color online) The GPS L1 antenna design, including the ground

plane strip which has the same size as the rectifying circuit. (a) All dimen-

sions are in millimeter: H1¼ 31.176, H2¼ 14.95, H3¼ 1.5, H4¼ 4,

H5¼ 11.2, H6¼ 0.6, H7¼ 3.9, H8¼ 11.176, L1¼ 20, L2¼ 2.1336,

L3¼ 1.0732, L4¼ 0.6, L5¼ 11, L6¼ 1.5, and L7¼ 1.1; simulated (b) 3D

radiation pattern and (c) vector current distribution on the S-shaped NFRP

element at the GPS L1 frequency.

TABLE I. Simulated performance characteristics of the rectenna.

Rectenna performance characteristics Simulation results at 1.5754 GHz

Peak gain (dB) 1.063

Radiation efficiency (%) 66.5

1st Harmonic input impedance (X) 44.9 þ j 167.0

2nd Harmonic input impedance (X) 322.0 þ j 183.0

3rd Harmonic input impedance (X) 76.0 � j 24.0

Rectifying efficiency at 0 dBm (%) 75.7

FIG. 1. (Color online) Rectenna. (a) Basic structure and (b) ADS circuit

model of its rectifying circuit.

FIG. 3. (Color online) Front and back views of the fabricated GPS L1 rec-

tenna. Left: two-cane driven monopole and rectifying circuit; right: S-

shaped NFRP element and extended ground plane strip.
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monopole and rectifying circuit are on one side of the Duroid

5880 sheet, and the S-shaped NFRP element is on its other

side.

The rectenna measurement setup is shown in Fig. 4. We

physically fixed the tilt of the rectenna in the actual measure-

ments to about 45�, corresponding to the maximum of the

pattern shown in Fig. 2(c), to achieve the peak gain. The

power delivered to the rectifying circuit (Pinput) is calculated

from the Friis transmission equation:9

Pinput ¼ Effective Area � Incident Power Density

¼ Gr
k2

4p

� �
� GtPt

4pR2
; (1)

where Pt is the power transmitted by the calibrated gain horn

antenna, Gt is the gain of that horn antenna, Gr is the simu-

lated gain of the S-shaped NFRP antenna, and R is the dis-

tance between the horn antenna and rectenna. After

calculating the input power of the rectifying circuit, the final

rectifying efficiency is determined as

gð%Þ ¼ V2
L

RL
� 1

Pinput
� 100; (2)

where VL is the DC voltage on the resistor and RL is the resis-

tor value.

The rectifying efficiencies were measured at various

input powers when the frequency of the horn antenna was

fixed at 1.5754 GHz and at a fixed input power: Pinput¼ 0.0

dBm (1.0 mW), as the horn antenna frequency was scanned

from 1.4 to 1.8 GHz. Comparisons of the measured and

simulated power-dependent rectifying efficiencies are shown

in Fig. 5(a). It indicates that the highest rectifying efficiency,

84.7%, was achieved at the GPS L1 frequency when Pinput

was 3.0 dBm, while the rectifying efficiency was 79.6% at

GPS L1 frequency when Pinput was 0.0 dBm. The measured

efficiencies are slightly larger than their predicted values;

simulations confirm that this difference falls within the toler-

ance values of the diode characteristics given by the manu-

facturer. Comparisons of the measured and simulated

frequency-dependent rectifying efficiencies are shown in

Fig. 5(b). It illustrates that the measured and simulated

frequency-dependent results agree well with each other,

especially at 1.5754 GHz. These measured results indicate

that the metamaterial-inspired, S-shaped NFRP rectenna

achieves very high rectifying efficiency within an electrically

small size. Electrically small rectennas analogous to this

proto-typed example would be very good candidates for

WPT applications such as power harvesting and scavenging

systems.
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FIG. 4. (Color online) Rectenna measurement setup diagram.

FIG. 5. (Color online) Measured and simulated results. (a) Rectifying effi-

ciency at GPS L1 frequency versus input power at the rectifying circuit and

(b) rectifying efficiency versus frequency when the input power of the recti-

fying circuit is 0.0 dBm.
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