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Summary. Designing  filters exploiting  the  sparseness of the  information  matrix  for 
efficiently solving the simultaneous localization and mapping (SLAM) problem has 
attracted  significant  attention  during  the recent past.  The  main  contribution  of this 
paper is a review of the various sparse information filters proposed in the literature to 
date, in particular,  the compromises used to achieve sparseness. Two of the most recent 
algorithms that the authors have implemented, Exactly Sparse Extended Information 
Filter  (ESEIF) by Walter  et al.  [5] and the D-SLAM by Wang  et al.  [6] are discussed 
and analyzed in detail.  It is proposed that  this analysis can stimulate developing a 
framework suitable for evaluating  the relative merits of SLAM algorithms. 

 
 

1    Introduction 
 

Use  of an Extended  Information Filter  (EIF)   to  solve SLAM to  gain compu- 
tational savings has been demonstrated by a number of researchers.  A  notable 
result has been that from Thrun et al. [2] where  a sparsification process is used to 
reduce the number of non-zero elements in the information matrix. Another way 
to ensure that  the information matrix is sparse is to include both features and 
a sequence of robot poses in the state vector [13]  [3].  Alternatively  SLAM can 
also be formulated with a state vector containing only robot poses, as shown in 
the Exactly  Sparse Delayed State Filter (ESDSF) [4]. Very recently, two SLAM 
algorithms, which can achieve exactly sparse information matrix without includ- 
ing previous robot poses in the state vector, were developed  independently. One 
is the Exactly  Sparse Extended Information Filter (ESEIF) by Walter et al. [5] 
and the other is the D-SLAM by Wang et al. [6]. 

All above algorithms rely on the sparse structure of the information matrix to 
achieve computational benefits. Sparseness is achieved through various tradeoffs. 
Although the estimation process becomes efficient, probabilistic data association 
requires the recovery of the relevant elements of the state as well as the associ- 
ated covariance matrix, and may have a significant impact on the computational 
cost of a practical implementation. Although each algorithm claims different ad- 
vantages,  no comprehensive examination is so far available to  make clear the 
relative merits and the compromises used. This paper addresses this important 
issue by providing a classification and a qualitative analysis of SLAM algorithms 
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Table 1. A  summary of sparse information filters used in SLAM – here N is the total 
number of 2D features and M  is the number of selected 3D robot poses 
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of state vector 
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Covariance  recovery 
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ESEIF [5] 
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based on sparse information filters published to date. ESEIF and D-SLAM are 
analyzed in detail and a quantitative  comparison is provided.  It  is hoped that 
this paper will stimulate further research towards the development of a compre- 
hensive strategy and benchmark datasets for evaluating SLAM algorithms under 
a variety of different conditions. 

The  paper is organized as follows.  Section 2 summarizes different sparse in- 
formation filters for SLAM. Simulation and experiment comparisons of ESEIF 
and D-SLAM are provided in Section 3. Section 4 concludes the paper. 

 
 

2    Summary of Sparse  Information  Filters  in SLAM 
 

This section classifies the sparse information filters published so far based on the 
strategy used to achieve sparseness. Only the algorithms based on a filtering pro- 
cess are discussed. Other valuable contributions that use sparse representations 
such as [10], [1], [11] and [9] are not examined. 

 
 

2.1     Approximate the Information Matrix in  EIF  SLAM 
 

An  empirical finding that  normalized information matrix obtained when the 
SLAM problem is formulated in the information form is approximately sparse, 
motivates  the  work by  Thrun  et  al.  [2], Sparse Extended  Information  Filter 
(SEIF). Theoretical explanation for this observation was later presented by Frese 
[13].  Sparsification essentially removes the  weak links in the  information ma- 
trix  by setting elements that  are smaller than a given threshold to zero,  while 
strengthening other links to make up for the effect of this change. 

State  estimates  for  robot  pose and  a  subset  of  features that  are  needed 
for  computing  Jacobians  are  recovered by  solving  a  set  of  linear  equations 
with a sparse coefficient matrix using relaxation. Data  association is solved by 



 
 

approximating the data association probability that  an observation under con- 
sideration originates from a feature in the map and using the standard maximum 
likelihood method.  However,  Walter  et al.  [5]  demonstrates that  the sparsifica- 
tion process leads to inconsistent estimates. 

 
 

2.2     Including Previous Robot Poses and  Features in the State 
Vector 

 
When all the previous robot poses and all the features are included in the state 
vector, the SLAM problem becomes a static estimation problem. This situation 
is discussed in Frese [13]. A considerable amount of off-diagonal elements in the 
information matrix are exactly zero and the information matrix is exactly sparse. 
This state vector is used in Square Root SAM [3]. 

In [3], SLAM is formulated as a linear least squares problem and is solved by 
factorizing the smoothing information matrix using Choleskey or QR  factoriza- 
tion in a batch or incremental manner. Exact  state and covariance recovery can 
be achieved by exploiting the special sparse structure of the factorization matrix 
resulting from the QR  factorization [7].  The  advantage of the SAM   algorithm 
is that  the quality of the estimate can be better than traditional EKF SLAM 
since in each step the estimates of all previous robot poses are updated together 
with the feature location estimates through the smoothing process. Thus the 
linearization error is reduced. Therefore,  the  SAM algorithm is less prone to 
estimator inconsistency that  can arise due to linearization errors than all other 
EIF  algorithms discussed in this paper. 

However, the  sparseness of the  information matrix  is achieved through in- 
creasing the state dimension, which keeps increasing even when robot is revis- 
iting  previously explored regions. Therefore,  the  computational cost increases 
over time and is not bounded by the number of features in the environment. 

 
 

2.3     Including Only  Robot Poses in  the  State Vector 
 

By  computing the relationship between two consecutive robot poses using the 
observation made at each pose, SLAM can be solved using a state vector con- 
taining only robot poses. The resulting information matrix is exactly sparse, as 
shown in the Exactly  Sparse Delayed State  Filter (ESDSF) [4]. 

A suboptimal partial state recovery is achieved by keeping the irrelevant states 
fixed at their current estimates and solving a set of sparse equations relating the 
state,  the information matrix  and the information vector.  Data  association is 
solved by estimating a bound for the covariance matrix.  The  key advantage of 
ESDSF is  that  it  is suitable  for the  scenarios where features are difficult  to 
extract or the number of features is too large as compared with robot poses, as 
demonstrated by the excellent maps shown in [4]. 

However, the resulting “map” is only an alignment of a sequence of observa- 
tions (such as images or laser scans). There are no statistical map updates, thus 
improvements to the state estimates achieved through feature location updates 



 
 

in traditional SLAM is not present. Extent  of the information loss due to this 
has not yet been analyzed. 

 
 

2.4     Including Only  Features in  the  State Vector 
 

D-SLAM, recently proposed by Wang et al. [6] uses a state vector that only con- 
tains the feature locations to generate maps of an environment. Robot location 
estimate is obtained through a concurrent yet separate process. 

In D-SLAM mapping,  the original measurements relating the robot and fea- 
tures are first transformed into  relative distances and angles among features. 
Then  these transformed measurements are fused into the map using EIF. It  is 
shown that  only the features that  are observed at  the same time instant have 
links in the information matrix making it exactly sparse. The extent of sparseness 
is governed by the sensor range and feature density.  Localization is performed 
by combining two estimates: one is obtained by solving a “kidnapped robot 
problem”; the other is obtained by a local EKF SLAM where only the features 
currently observed are retained in the state vector. The two correlated estimates 
are fused by Covariance Intersection (CI)  [6]. 

Exact state and covariance recovery is achieved by preconditioned Conjugated 
Gradient (PCG). A good preconditioner produced by an iterative Cholesky fac- 
torization method by exploiting the similarity between the information matrices 
of successive steps is used to make the PCG efficient. Data  association is solved 
by a combination of the standard maximum likelihood approach and a chi-square 
test. 

There is some information loss in D-SLAM, and this is further addressed in 
Section 3. 

 
 

2.5     Periodic Marginalization of Robot Pose 
 

The ESEIF algorithm by Walter et al. [5] achieves sparse information matrix by 
periodically marginalizing out and relocating robot. 

Similar  to  SEIF,  ESEIF exploits the  fact  that  when the  robot location  is 
marginalized out from the state vector, new links will only be built up among the 
features that  were previously linked with the robot in the information matrix. 
The  set of features that  are linked with the robot is called “active  features”. 
Thus  the information matrix  will be sparse if the number of “active  features” 
is bounded. In  contrast to the sparsification process in SEIF, ESEIF controls 
the number of “active features” by “kidnapping” the robot when the number of 
“active features” is about to become larger than a predefined threshold Γa . This 
is followed by “relocating” the robot using a set of selected measurements. Thus, 
the EIF  information matrix is kept sparse without any approximations that can 
lead to inconsistency. The extent of sparseness is controlled by the active feature 
bound Γa , the sensor range and feature density. 

There is some information loss in ESEIF due to “kidnapping” and “relocating” 
the robot. This is further addressed in Section 3. 



 
 

3    Comparison  of Information  Loss  in ESEIF and 
D-SLAM 

 
ESEIF [5] and D-SLAM [6] have been selected for a detailed comparison as both 
these algorithms have a state vector of the same character and do not use any 
approximations to achieve sparseness. As  the authors do not have access to an 
efficient implementation of ESEIF, a quantitative analysis of the computational 
cost can not be presented. This  section, therefore, focuses on the extent of in- 
formation loss. 

 
 

3.1     Comparison Using 1D  Simulations 
 

An  analysis of the mapping performance of ESEIF and D-SLAM based on a 
linear one-dimensional form of the SLAM problem is presented below.  The  1D 
simulation is used so that the effects due to linearization errors are avoided. 

The  scenario consists of a set of uniformly distributed features arranged on 
a straight line with a interval of 1m.  The robot, moving forward and backward 
along this  line,  can measure the  distances to  features within its  sensor range 
(9m).  At  each time step,  robot observes 9 features. The  robot only makes one 
observation before moving. 

Four  parameters are considered: the  active  feature bound  Γa , the  process 
noise, the robot speed and the time steps. Extensive simulations were conducted 
by varying these parameters over a large range of values. The trace of the sub- 
matrix of the covariance matrix corresponding to all features from ESEIF, Pmm , 
and the trace of the covariance matrix from D-SLAM mapping,  P , are used to 
indicate the accumulated information.  The  results obtained are summarized in 
Table 2, from which the following conclusions can be drawn. 

(1) When the active feature bound Γa  is smaller than the number of feature 
in each observation, ESEIF performs worse than D-SLAM, because in this case 
robot is marginalized out and relocated at each step in ESEIF. When the active 
feature bound Γa  is gradually increased, number of instances where the robot 
needs to  be relocated reduces and at  some point ESEIF map becomes better 
than that obtained using D-SLAM. 

(2) When all other parameters are fixed, the larger the robot speed, the larger 
the range of Γa  in which D-SLAM map is better (compare rows 4 − 6 with rows 
1 − 3 in Table 2).  This is because when robot runs faster, robot relocation step 
becomes more frequent resulting in more information loss. 

(3) When all other parameters are fixed and the process noise is small enough, 
ESEIF map is always better than D-SLAM as long as Γa  is at least equal to the 
the number of features in one observation (see rows 10 − 12 in Table 2).  When 
all other parameters are fixed, the larger the process noise, the larger the range 
of Γa  in which D-SLAM map is better (compare rows 7 − 9 with rows 1 − 3 
in Table 2). With  larger process noise, process model contains less information, 
thus the information loss in D-SLAM is less. 

(4) When other parameters are fixed, the smaller the time steps,  the larger 
the range of Γa  in which ESEIF map is better (compare rows 13 − 15 with rows 



 
 
 

Table 2. Evaluation  of mapping in ESEIF and D-SLAM using 1D simulations 
 

Test 
No. 

Active  feature 
bound Γa 

Process 
noise (m/s) 

Speed 
(m/s) 

Time 
steps 

D-SLAM 
trace of P 

ESEIF 
trace of Pmm 

Trace  ratio 
D−SLAM 

ESEI F 

1 
2 
3 

 
4 
5 
6 

 
7 
8 
9 

 
10 
11 
12 

 
13 
14 
15 

8 
10 
11 

 
8 

23 
24 

 
8 

33 
34 

 
8 
9 

10 
 

8 
13 
14 

0.5 
0.5 
0.5 

 
0.5 
0.5 
0.5 

 
2 
2 
2 

 
0.2 
0.2 
0.2 

 
0.5 
0.5 
0.5 

1 
1 
1 

 
2 
2 
2 

 
1 
1 
1 

 
1 
1 
1 

 
1 
1 
1 

280 
280 
280 

 
280 
280 
280 

 
280 
280 
280 

 
280 
280 
280 

 
600 
600 
600 

0.087099 
0.087099 
0.087099 

 
0.423266 
0.423266 
0.423266 

 
0.087099 
0.087099 
0.087099 

 
0.087099 
0.087099 
0.087099 

 
0.236643 
0.236643 
0.236643 

0.099094 
0.087564 
0.087074 

 
0.518746 
0.423358 
0.423229 

 
0.104539 
0.087105 
0.087097 

 
0.089111 
0.083668 
0.08311 

 
0.281696 
0.23673 

0.236378 

0.87895 
0.99468 
1.00029 

 
0.87895 
0.99978 
1.00009 

 
0.83317 
0.99994 
1.00002 

 
0.97743 
1.04101 
1.04801 

 
0.84006 
0.99963 
1.00112 

 
 

1 − 3 in Table 2). This is due to the different accumulation speed of information 
loss in the two algorithms. 

 
 

3.2     Comparison Using 2D  Simulations 
 

A 2D simulation using larger number of features was conducted to further com- 
pare the two algorithms. The  environment used is a 35 meter square with 144 
features arranged in uniformly spaced rows and columns. The robot tra jectory 
are shown in Figures 1(a) and 1(d). A sensor with a field of view of 180 degrees 
and a range of 6 meters is simulated to generate relative range and bearing 
measurements between the robot and the features. 

In this simulation, all the parameters are set to values for an indoor scenario. 
The standard deviations of the noises in robot speed and turnrate are 0.05 m/s 
and 4 degree/s respectively, and those of the noises in sensor range and bearing 
are 0.1 m and 1 degree respectively.  Robot  explores in the environment at the 
speed of 0.4 m/s for 533 time steps. At  each time step,  robot can observe 5 − 6 
features. Γa  is set to be 10. 

As expected, with small process noise and robot speed, ESEIF provides more 
accurate map than  D-SLAM as shown in Figures 1(a) and 1(d).  This  can be 
seen more clearly in Figures 1(c) and 1(f ). Both  algorithms provide consistent 
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Fig. 1.  Simulation  results 

 
 

robot location estimation. However, robot location estimation in D-SLAM is 
more accurate as shown in Figures 1(b) and 1(e). 

 
 

3.3     Experimental Comparison 
 

The  large-scale outdoor Victoria  Park  data  set [14]  is also used for the com- 
parison. As  the ground truth  is not available,  it is impossible to use this data 
set for evaluating whether a given algorithm is consistent.  Furthermore,  some 
sparse information filter based SLAM papers use this  data  set with different 
pre-defined data  associations, and  different noise parameters. It  is,  therefore, 
unreasonable to compare the outcomes from this data set except as a proof that 
the algorithms concerned are able to deal with some of the practical issues such 
as non-stationery ob jects  and spurious measurements. Interestingly,  the  gross 
character of the vehicle tra jectories reported in some publications differs from 
the results presented by  the original authors who collected this data.  Figures 
extracted from the original publications of D-SLAM and ESEIF are presented 
to highlight these issues. 
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Fig. 2.  Outdoor,  large-scale implementation  using Victoria Park  data  set 

 
 

3.4     Analysis of Comparison Results between ESEIF and  D-SLAM 
 

Since D-SLAM transforms the original measurements to relative distances and 
angles among features, the information from process model is lost in mapping, 
as compared with traditional EKF SLAM. In localization,  the information loss 
comes from using CI,  which is a conservative way to fuse two pieces of information 
with unknown correlations. The main factors that affect the extent of information 
loss include: process and sensor noises, feature density,  and time steps before 
robot starts moving. This is analyzed in detail in [6]. 

In ESEIF, when marginalizing out and relocating robot, the information from 
process model is lost. This process results in poor robot location estimation for 
the following step and the loss of the correlations between robot and features, 
as compared with traditional EKF SLAM. These correlations together with the 
robot uncertainty govern the improvement to the feature location estimates. In- 
formation is also lost due to the fact that one part of measurements (zα in [5]) is 
used in normal update and another part (zβ  in [5]) is used in relocating robot. 
During  this process, the implicit information that  these two parts of measure- 
ments are made from the same robot location is not exploited. The main factor 
governing the extent of information loss is how often robot is kidnapped and re- 
located. This is mainly determined by the active feature bound Γa , sensor range 
and the robot speed. 

 

 
4    Conclusions  and Discussions 

 
Following the pioneering work by Thrun et al. [2], many different sparse informa- 
tion filters have been developed for SLAM. This paper summarized the relative 
merits of different sparse information filters. Especially, the extent of information 
loss of D-SLAM and ESEIF is compared in detail. 



 
 

When  the  number of robot poses (at  which observations are made) is not 
significant as compared with the total number of features, including all the robot 
poses in the state vector will produce better estimation than traditional EKF 
SLAM due to the smoothing of previous robot poses [3]. In the case when features 
are difficult to extract or the number of features is too large as compared with 
robot poses. The view-based ESDSF [4] is a good option since only robot poses 
are included in the state  vector.  When  the number of robot poses is large as 
compared with the total number of features, ESEIF [5] and D-SLAM [6] are two 
efficient exactly sparse information filters. 

Overall,  sparse information filters provide promising solutions for the SLAM 
problems. The computational saving is significant although there are some trade- 
offs. More  work is necessary to  further investigate the  recovery of  state  and 
covariance matrix such that real time data association can be achieved. Further- 
more, it  is perhaps a  critical  requirement that  SLAM researchers  collaborate 
to generate a set of benchmark data  sets, both simulated and real-life, as well 
as performance metrics so that  plethora of emerging SLAM algorithms can be 
compared in a consistent setting. The recently proposed sparse information fil- 
ters based on submaps, Tectonic  SAM  [17],  Treemap [18],  D-SLAM local map 
joining [15], Sparse local submap joining filter (SLSJF) [16], which are not dis- 
cussed in this paper due to the space limitation, introduce significant flexibilities 
in achieving the sparseness and the comparison of these algorithms remain the 
future work. 
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