Alkaloid-Like Molecules as AChE Inhibitors and Anticancer Agents for Therapeutic Relief of Alzheimer's Disease and Cancer

A thesis submitted in fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

From

University of Technology Sydney

Steven Gareth Williams

B. Sci Applied Chemistry (Hons)

Supervisor: Associate Professor Alison T. Ung Co-supervisors: Dr Jason Ashmore and Dr Ronald Shimmon

School of Mathematical and Physical Sciences
January 2017

Declaration / Certificate of authorship and originality

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all the information sources and literature used are indicated in the thesis.

Steven Williams

January 2017

This research is supported by an Australian Government Research Training Program Scholarship.

Acknowledgments

First and foremost I would like to thank my supervisors, Associate Professor Alison Ung, Dr Jason Ashmore and Dr Ronald Shimmon for helping me through this project from start to finish. In particular to Alison for the endless hours of work, support and guidance she has provided me with to bring this thesis to fruition. Your significant contribution of personal time has not gone unnoticed. I would also like to take this chance to thank the University of Technology Sydney for the opportunity to carry out this research that has helped me to learn and grow as a scientist and for the funding provided to make it possible.

I would like to thank my friends and family for their support over the last three years, in particular my Dad for always trying to relieve the stresses of time by taking care of household tasks and cooking for me without ever asking for help for all the time I lived with him over the period of this project as well as trying to help by reading over my work to find grammatical errors, despite how tedious it must be to read pages and pages of work not in your field. To the research group and organic lab group, Xixi Xu (partner in crime), Curtis Pazderka, Matt Payne, Matt Phillips, Callum Clarke, Alex Angeloski, Ariane Roseblade, Dan Pasin (and the rest of the 'o-o' forensic family) and all the honours people who passed through over the years, for the hours of garbage we would talk about during lunch but also all the adventures we had outside of uni, without you guys I don't think I would have made it through the last three years. To Sarah Fox, for the tedious proof reads that have kept me up to the highest quality work. To all the guys at St. Ives Rugby for the hours of stress relief provided by you and the club. There are many more that could be mentioned but will not be forgotten.

I am in great debt to Dr Mohan Bhadbhade for his tireless efforts in not only running the X-ray crystallography for me but also helping me understand how to analyse the data on my visits to UNSW, use the crystallography software and preparing the cif files required for publication of crystals grown during this project. The same extends to Emeritus Professor Roger Bishop from UNSW for his generous contribution of nitriles used in this project, for passing on his wisdom and insight into the Ritter chemistry and for reviewing the work published from this project.

The following people also require a special mention; Dr Tristan Rawling for teaching me how to perform all the cell work and his constant support and advice in regards to the many things I would ask him, especially when they were often not related to this project, Associate Professor Andrew McDonagh for his support, advice and for assessing and reviewing

my internal assessments, Dr David Bishop, Alexander Angeloski and Dr Regina Verena Taudte for their technical support for the GC-MS and QTF instruments, Dr Blair Nield for helping me understand the enzyme kinetics, Tanya Badal for teaching me the experimental procedure and data analysis for STD NMR even though this work did not make the cut for this thesis, Ariane Roseblade for helping me with cell work and showing me flow cytometry but also for always being up for a chat and relieving the stresses of research by always helping me see we are in the same boat and the boat ride will end soon enough, Joyce To for induction on the plate readers, Mercedes Ballesteros and Sarah Osvath for PC2 lab inductions and technical support in those labs, Dr Tapan Rai for help with understanding the statistical analysis of biological data collected, Anthea Harris for her endless alternative ideas and approaches when I was stuck for ideas and for letting me use her instruments, Dr Thanapat Sastraruji for helping me understand the data analysis process for the Ellman assay and the UTS Science IT department, in particular Keith Fung and Dobby (Thomas Dobson) for always making time to help me, chat about the rugby and giving me ice cream from your fridge.

Table of Contents

Declaration / Certificate of authorship and originality	i
Acknowledgments	ii
Table of Contents	iv
List of Figures	x
List of Schemes	xiv
List of Tables	xviii
List of Abbreviations	xx
Publications from this Thesis	xxiii
Abstract	xxiv
CHAPTER 1: Introduction	1
1.1 A Brief Overview of Medicinal Chemistry	1
1.1.1 Drug Development	1
1.1.2 Structure-based Design	1
1.1.3 Molecular Modelling	2
1.1.4 Discovering a Hit	2
1.2 Natural Products in Drug Discovery	3
1.2.1 Alkaloids	4
1.2.2 Pharmacology of Alkaloids and Drug Development	4
1.2.3 Challenges in Using Natural Products for Drug Discovery	5
1.3 Alkaloid-like Molecules	5
1.3.1 Alkaloid and Alkaloid-like Drug Development	5
1.3.2 Introduction to Alkaloids as Anticancer Drugs	7
1.4 Cancer	9
1.4.1 A Brief History of the Developments in Chemotherapy	10
1.4.2 Mechanisms of Chemotherapy	11
1.4.3 Issues with Current Chemotherapies	14
1.4.4 Breast Cancer	15
1.5 Alzheimer's Disease	16
1.5.1 AChE and Alzheimer's Disease	18
1.5.2 AChE Structure and Functionality	19
1.5.3 Treatment of Alzheimer's Disease	22
1.5.4 AChE Inhibitors	22

	1.5.5 SAR of AChE Inhibitors	24
	1.5.6 Other Applications of AChE Inhibitors	25
	1.5.7 Other Treatments for Alzheimer's Disease	26
	1.5.8 AChE Inhibitor Design by Molecular Modelling	27
C	HAPTER 2: An Alkaloid-like 3-Azabicyclo[3.3.1]non-3-ene Library Obtained from the Bridge	ed
R	itter Reaction	31
	2.1 General Introduction	31
	2.2 Introduction to Ritter Reactions	31
	2.2.1 Background	31
	2.2.2 Ritter Reaction Conditions and Mechanism	31
	2.2.3 Bridged Ritter Reactions	33
	2.3 Synthesis of Alkaloid-like Molecules with the 3-azabicyclo[3.3.1]non-3-ene Core Structure	35
	2.3.1 Preparation of 6-N-amides, 6-alkene and 6-alcohols with 3-azabicyclo[3.3.1]non-ene Core Structure	
	2.3.2 Outcomes of the Bridged Ritter Reactions with (-)-β-pinene	38
	2.3.3 Preparation of 3-Azabicyclo[3.3.1]non-3-en-6-yl) acetate Products	50
	2.3.4 Investigation of Reaction Time	54
	2.3.5 Influence of the Nitriles	54
	2.3.6 Proposed Mechanism for the Bridged Ritter Reaction with (-)-β-pinene	55
	2.3.7 Attempted Bridged Ritter Reactions	56
	2.3.8 Alternative Bridged Ritter Reaction Catalysis	62
	2.4 Mixed Bridged Ritter Reactions	64
	2.4.1 Outcomes of the Controlled Mixed Ritter Reaction	66
	2.4.2 Outcomes of the One-Pot Mixed Ritter Reaction	66
	2.5 Conclusions and Future Directions	72
C	HAPTER 3: Synthesis of Alkaloid-like Molecules via Derivatisation of 3-azabicyclo[3.3.1]nor	า-3-
e	nes	74
	3.1 General Introduction	74
	3.2 Reduction of Cyclic Imines	75
	3.2.1 Crystal Packing of (+)-101l and (+)-101b	78
	3.3 Amide Deprotection of (+)-102m.	81
	3.4 Reductive <i>N</i> -Alkylation of <i>N</i> -3 Amines	81
	2.5. Attempted Derivatication Practions	92

	3.5.1 Amide Hydrolysis	82
	3.5.2 N-6 Amine Derivatisation and Rational Drug Design	84
	3.5.2.1 Petasis-Borono Mannich Multicomponent Reaction of (+)-103m	85
	3.5.2.3 Reductive <i>N</i> -alkylation of (+)-105I with Benzaldehyde	88
	3.5.3 Alkene Reactions	90
	3.5.4 Reaction of (+)-101I with Benzenesulfonyl Chloride	91
	3.5.5 Imine Reactions with (+)-60a	92
	3.6 Reaction of (+)-59I with DMAD	94
	3.7 Conversion of Imine to Nitrone and Subsequent 1,3-Dipolar Cycloaddition of Maleic Anhydride	95
	3.8 1,3-Dipolar Cycloaddition of Cyclic Nitrones with Maleic Anhydride	97
	3.9 Conclusions and Future Directions	97
СН	IAPTER 4: Anticancer Biological Results	99
	4.1 General Introduction to Assessment of Cytotoxicity	99
	4.1.1 MTS Assay	99
	4.1.2 Screening for Cytotoxicity	100
	4.1.3 Dose-response analysis of cytotoxicity	102
	4.1.4 SAR of Cytotoxic Activity Against MDA-MB-231	105
	4.2 External Screening of Cytotoxicity	106
	4.3 Conclusions and Future Directions	107
СН	IAPTER 5: AChE inhibition biological results	108
	5.1 Introduction to Alzheimer's Disease and AChE inhibition	108
	5.1.1 Ellman Assays	108
	5.1.2 TLC Bioautographic Method	109
	5.1.3 Other AChE Inhibition Methods	110
	5.2 Review and Validation of Ellman Methods	110
	5.3 AChE Inhibition Results	114
	5.3.1 Ellman Assay Results	116
	5.4 Assessment of Rationally Designed AChE Inhibitors	118
	5.5 Conclusions and Future Directions	120
СН	IAPTER 6: External Broad Screening	122
	6.1 General Introduction	. 122
	6.2 The In Vitra Screening Process	122

	6.2.1 In Silico Screening Results	122
	6.2.2 Therapeutic Screening Targets and Results	125
6	.3 Summary and Conclusion of Broad Screening Results	. 130
CHA	PTER 7: Computer-Aided Molecular Modeling	132
7	1 General Introduction	. 132
7	.2 Evaluation of Drug-Like Properties	132
	7.2.1 Evaluation of ADMET Descriptors	134
7	3 Ligand Docking and Interactions	139
	7.3.1 Preparing for Docking	139
	7.3.2 Docking and Scoring Method Validation	141
	7.3.3 Alkaloid-like Library AChE Docking Results	144
7	.4 Docking Result Directed Rational Drug Design of a Better AChE Inhibitor	. 148
7	.5 Conclusion	. 155
CHA	PTER 8: Conclusion and Future Directions	156
8	1 Chemical Synthesis Conclusions	156
8	2 Biological Assays Conclusions	157
8	3 Future Directions	. 158
CHA	PTER 9: Experimental	160
9	1 General Experimental	160
	9.1.1 Nuclear Magnetic Resonance (NMR) Spectroscopy	160
	9.1.2 Mass Spectrometry (MS)	160
	9.1.3 Chromatography	161
	9.1.4 Infrared Spectroscopy	161
	9.1.5 Melting Points	161
	9.1.6 Optical Rotation	161
	9.1.7 Plate Readers for Bio-Assays	161
	9.1.8 Reagents and Solvents	162
	9.1.9 Partial Characterisation	162
9	2 General Chemical Reaction Methods	162
	9.2.1 Standard Bridged Ritter Reaction Conditions	162
	9.2.2 Alternative Condition Bridged Ritter Reactions	. 169
	9.2.3 Polar Bridged Ritter Reaction Conditions	169
	9.2.4 Mixed Ritter Reactions	171

9.2.5 Hydride Reduction Reactions	173
9.3 Miscellaneous Chemical Reaction Methods	177
9.3.1 Mild Amide De-protection of (+)-101m	177
9.3.2 C-6 Amide Hydrolysis with HCI	178
$9.3.3~S_N 2$ reaction of C-6 Amines with Benzyl Bromide	179
9.3.4 Reductive Alkylation of (+)-101I	179
9.3.5 Reductive N-alkylation of N-6 Amine (+)-105l with Anisaldehyde	180
9.3.6 Conversion of (+)-59I Imine to Nitrone	181
9.3.7 DMAD addition of (+)-59l	182
9.4 Attempted Reactions	183
9.4.1 Bridged Ritter Reaction with Forced Oxidation	183
9.4.2 Bridged Ritter Reaction with Alternative Catalysts	183
9.4.3 Controlled Mixed Ritter Reactions	184
9.4.4 Reaction of (+)-101l with Benzenesulfonyl Chloride	185
9.4.5 Petasis-Borono Mannich Multicomponent Reaction	185
9.4.6 C-6 Amide Hydrolysis with NaOH	186
9.4.7 C-6 Alkene Reactions with (+)-60l	186
9.4.8 Reactions with (+)-60a Imine	186
9.4.9 1,3-Dipolar Cycloaddition of (+)-128 with Maleic Anhydride	187
9.4.10 Hinsberg Reaction of (+)-101I with Benzenesulfonyl Chloride	188
9.4.11 Methylchlorine Elimination of IBA with Base	188
9.5 X-ray Structure Analysis	188
9.5.1 Diffraction Data Collection	188
9.5.2 Solution and Refinement	189
9.5.3 Crystal Structure Data	195
9.6 Biological Assays	195
9.6.4 MTS Assay	195
9.6.5 External Cancer Cell Growth Inhibition Assay	195
9.6.6 AChE TLC Bioautographic Method	196
9.6.7 Ellman Assay Procedure	197
9.7 Molecular Modeling	197
CHAPTER 10: Appendices	198
10.1 Docking Parameters	198
	192

10.1.2	Ligand Minimisation	198
10.1.3	Ligand Preparation	198
10.1.4	Docking with CDOCKER	199
10.1.5	In Situ Ligand Minimization	199
10.1.6	Ligand Scoring	200
10.2 Com	nmon Feature Pharmacophore Generation	202
CHAPTER 13	1: References	204

List of Figures

Figure 1.1 Common alkaloids	4
Figure 1.2 Erythroxylon coca. ^[16]	5
Figure 1.3 The 3-aza-bicyclo[3.3.1]nonane core structure found in alkaloids	6
Figure 1.4 Structural comparisons of cyclic imines 10 and 11 with known Aristotelia alkaloids	. 6
Figure 1.5 <i>Picea abies</i> . [31]	7
Figure 1.6 The Catharanthus roseus flower and the structure of vincristine 14, vinblastine 15	
and vinorelbine 16 .	8
Figure 1.7 The structure of the hexacyclic pyrrole alkaloid lamellarin D 17	9
Figure 1.8 The formation and spread of cancer. [40]	10
Figure 1.9 The structure of sulfur and nitrogen mustards	10
Figure 1.10 Structures of folic acid 22 and methotrexate 23 .	11
Figure 1.11 Structures of uracil 24 and 5-fluorouracil 25	11
Figure 1.12 Stages of the cell cycle.	12
Figure 1.13 The structures of different alkaloid chemotherapy agents.	13
Figure 1.14 The structure of the variolin A 32 and B 33 alkaloids and first kinase inhibitor,	
imatinib 34	14
Figure 1.15 Simplified structure of the monoclonal antibody Trastuzumab	16
Figure 1.16 Pathology of Alzheimer's disease. [64]	18
Figure 1.17 ACh and AChE in the synaptic cleft. [69]	19
Figure 1.18 1EVE: TcAChE with Donepezil in the binding site (sphere highlighted in red),	
generated using Discovery Studio 4.5	20
Figure 1.19 AChE active site interactions responsible for the hydrolysis of acetylcholine. $^{ ilde{[71]}}$	20
Figure 1.20 The PAS site of TcAChE, generated using Discovery Studio 4.5	21
Figure 1.21 AChE active site residues coloured according to site type. [75]	22
Figure 1.22 Alkaloid AChE inhibitors	23
Figure 1.23 Structures of significant activity relationships	25
Figure 1.24 Stemofoline 44 and didehydrostemofoline 45 alkaloids	25
Figure 1.25 Memantine 48 and structurally similar alkaloid-like molecules.	26
Figure 2.1 Transition state: hydrogen sulfate counter ion pairing with the carbenium ion	32
Figure 2.2 Product core numbering and nitrile letter assignment.	38
Figure 2.3 ORTEP diagram for compound (+)-59b.	40
Figure 2.4 Colours obtained from the purification of the crude product of the bridged Ritter	
reaction with succinonitrile	43

Figure 2.5 ORTEP diagram of (-)-66h molecule in the crystal structure of racemic, showing the
intramolecular H-bonding between NHO=C
Figure 2.6 Enantiomers of (-)-66h (grey) and (+)-66h (magenta, glide plane related) in the unit
cell looking down the <i>a</i> axis
Figure 2.7 ORTEP diagram for the compound (+)-67
Figure 2.8 AChE protein file 1DX6 containing 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethanol
(pink) in the gorge leading down to the active site where Galantamine (red) interacts 58
Figure 2.9 ORTEP diagram of the crystal structure of compound (+)-80
Figure 2.10 Mass spectrum for the mixed product (+)-80, showing the identifying fragment 69
Figure 2.11 Mass spectrum for the mixed product (+)-79, showing the identifying fragment 70
Figure 2.12 TIC chromatogram for the mixed bridged Ritter products of acetonitrile and
benzonitrile
Figure 3.1 NOESY correlations for compound (-)-102l generated by Spartan Pro 8. (AM1) 77
Figure 3.2 ORTEP diagram of (+)-101l (left) and (+)-101b (right), showing the configuration of
stereocenter at C-4
Figure 3.3 The NHO=C and CHO=C hydrogen bonding observed in the crystal structures of
a, compound (+)-101l and b, compound (+)-101b
Figure 3.4 Space filling diagrams of (+)-101I (left) and (+)-101b (right), showing the crowding of
the amine NH
Figure 3.5 Imino-alkene (+)-60l with the alkene bond represented as a resonance stabilised
structure
Figure 3.6 Overlayed ¹ H NMR spectra of (+)-60m at 5 °C temperature intervals to observe a
chance in integral values of the C-7 CH and C-6 α CH $_2$ resonances
Figure 4.1 All compounds % viability at 50 μM . Data represented is the mean of replicate $\pm SD$.
Figure 4.6 The structures of compounds for visual comparison of SAR properties 103
Figure 4.2 MDA-MB-231 cytotoxicity dose-response curve for (+)-59m
Figure 4.3 MDA-MB-231 cytotoxicity dose-response curve for (+)-60m
Figure 4.4 MDA-MB-231 cytotoxicity dose-response curve for (+)-101m
Figure 4.5 The effects of (+)-60m on MDA-MB-231 cells after 48 hours. Images were viewed at
10 x magnification using light microscopy. A) (+)-60m at 50 μ M; B) (+)-60m at 10 μ M; C)
healthy untreated control cells
Figure 5.1 Example of the TLC bioautographic with the Galantamine control 110
Figure 5.2 Example Lineweaver-Burk Plot for competitive inhibitors

Figure 5.3 Lineweaver-Burk plot of the Ellman assay kinetics experiment data	112
Figure 5.4 Michaelis-Menten plot of the Ellman assay kinetics experiment data	112
Figure 5.5 Dose-response curves for the % inhibition of active compounds	117
Figure 5.6 Structures of compounds that showed AChE inhibition with the Ellman assay	117
Figure 5.7 Molecular modeling guided rational drug designed compounds (+)-112 and (+)-	114
and Ellman assay AChE inhibition IC ₅₀ values	119
Figure 5.8 Dose-response curve for the IC ₅₀ value calculated for (+)-112	120
Figure 5.9 Dose-response curve for the IC ₅₀ value calculated for (+)-114	120
Figure 6.1 Compounds submitted to OIDD program that are undergoing in vitro screening.	124
Figure 6.2 Compounds submitted to OIDD program that failed in silico screening	125
Figure 6.3 3D representation of OIDD primary screening results for each compound and	
corresponding assay.	131
Figure 7.1 Summary of a standard drug discovery pipeline	132
Figure 7.2 ADMET plot of alkaloid-like molecules synthesised.	139
Figure 7.3 Summarised outline of the protocols used for docking in Discovery Studio 4.5	141
Figure 7.4 Crystal structure binding interactions of Galantamine in the AChE active site for	
protein file PDB: 1DX6	142
Figure 7.5 Binding interactions for docked of Galantamine in the AChE active site for prote	ein
file PDB: 1DX6.	143
Figure 7.6 Superimposed Galantamine from the x-ray structure (green) and docked (blue)	143
Figure 7.7 2D representation of the binding pose for (-)-65j in the AChE active site	145
Figure 7.8 2D representation of the binding pose for (+)-59n in the AChE active site	146
Figure 7.9 2D representation of the binding pose for (+)-60n in the AChE active site	146
Figure 7.10 3D surface representation of the protein and the docked pose of (-)-65j, looking	ng
down the gorge from the top of the entrance.	147
Figure 7.11 3D surface representation of the protein and the docked pose of (-)-65j, looking	ng
side-on at the gorge with N3 and C6 labelled	147
Figure 7.12 Best theoretical docking products of the Petasis reaction.	150
Figure 7.13 Best theoretical docking products from N-alkylation	151
Figure 7.14 2D docking pose of 2-naphthylboronic acid, glyoxylic acid and 111	152
Figure 7.15 2D docking pose of 2-naphthylboronic acid, formaldehyde and 110	152
Figure 7.16 2D docking pose of 2-naphthylboronic acid, formaldehyde and 105n Petasis	
Droduct	150

Figure 7.17 ADMET plot for the proposed docked compounds, with the best scoring	
compounds listed in Table 7.6 highlighted in yellow	155
Figure 9.1 Layout of TLC bioautograph showing the inhibition of acetylcholinesterase activit	У
by an inhibitor (0.5-1000 ng) with Galantamine as a positive control	197

List of Schemes

Scheme 1.1 Total synthesis of (+)-aristoteline 8	7
Scheme 1.2 Hydrolysis of ACh by AChE.	19
Scheme 1.3 Total Synthesis of Galantamine	24
Scheme 1.4 Useful alkaloid-like molecules formed via the bridged Ritter reaction	28
Scheme 1.5 The bridged Ritter reaction between (-)- eta -pinene and nitrile with functionalit	y –R.
	29
Scheme 2.1 General Ritter reaction	31
Scheme 2.2 Example Ritter reaction between butanol and 2-hydroxypropanenitrile. $^{ extstyle ex$	32
Scheme 2.3 Ritter reaction mechanism	33
Scheme 2.4 An example intramolecular cyclisation Ritter reaction	34
Scheme 2.5 General scheme for the bridged Ritter reaction between (-)- eta -pinene and var	ious
nitriles under the standard reaction conditions.	34
Scheme 2.6 General scheme for the bridged Ritter reaction between (-)- eta -pinene and var	ious
nitriles under the mild reaction conditions.	36
Scheme 2.7 The bridged Ritter reaction between (-)- β -pinene and trimethylsilyl cyanide	39
Scheme 2.8 The bridged Ritter reaction between (-)-β-pinene and propionitrile	39
Scheme 2.9 The bridged Ritter reaction between (-)-β-pinene and butyronitrile	41
Scheme 2.10 The bridged Ritter reaction between (-)- β -pinene and valeronitrile	41
Scheme 2.11 The bridged Ritter reaction between (-)- β -pinene and succinonitrile	42
Scheme 2.12 Hydrolysis of (-)-60d nitrile to form the amide derivative	42
Scheme 2.13 Proposed mechanism for the formation of tri-cyclic alkaloid-like products from	om
the intramolecular cyclisation of nitrile and carbocation	43
Scheme 2.14 The bridged Ritter reaction between (-)- β -pinene and 3,4-dimethoxybenzon	itrile.
	44
Scheme 2.15 The bridged Ritter reaction between (-)- β -pinene and cinnamonitrile	45
Scheme 2.16 The bridged Ritter reaction between (-)-β-pinene and benzyl cyanides 4-	
bromophenylacetonitrile and 4-nitrophenylacetonitrile.	45
Scheme 2.17 Autoxidation of benzylic products.	46
Scheme 2.18 The bridged Ritter reaction between (-)-β-pinene and methyl cyanoacetate	and
ethyl cyanoacetate	47
Scheme 2.19 Interconversion of the enol and keto forms of (-)-60g and (-)-60h	48
Scheme 2.20 A possible mechanism for the rearmament of cyanoacetate product (-)-66h.	48

Scheme 2.21 Expected outcome from the bridged Ritter reaction between (-)- β -pinene and
potassium cyanide
Scheme 2.22 Actual outcome from the bridged Ritter reaction between (-)- β -pinene and
potassium cyanide
Scheme 2.23 A proposed mechanism for the formation of compound (+)-67 54
Scheme 2.24 Proposed mechanism for the bridged Ritter reaction with (-)- β -pinene
Scheme 2.25 Attempted bridged Ritter reaction between (-)- β -pinene and 3-
methoxypropionitrile
Scheme 2.26 Attempted bridged Ritter reaction between (-)- β -pinene and 4-
aminobenzonitrile
Scheme 2.27 Protection of 4-aminobenzonitrile with acetic anhydride
Scheme 2.28 Attempted bridged Ritter reaction between (-)- β -pinene and N-(4-
cyanophenyl)acetamide
Scheme 2.29 Attempted bridged Ritter reaction between (-)-β-pinene and aminoacetonitrile
hydrogen sulfate
Scheme 2.30 Attempted bridged Ritter reaction between (-)- β -pinene and N-
(cyanomethyl)acetamide 60
Scheme 2.31 General scheme for attempted bridged Ritter reactions between (-)- β -pinene and
terminal chloronitrile's where chain length = n
Scheme 2.32 Halide elimination of the bridged Ritter reaction product and $\it N$ -isobornylamides.
62
Scheme 2.33 Attempted bridged Ritter reaction between (-)-β-pinene and bromoacetonitrile.
62
Scheme 2.34 Halide elimination of (+)-59m to give the alkene product
Scheme 2.35 Attempted bridged Ritter reaction between (-)- β -pinene and acetonitrile with I_2
catalyst63
Scheme 2.36 The bridged Ritter reaction between (-)- β -pinene and acetonitrile with copper
triflate catalyst
Scheme 2.37 The bridged Ritter reaction between (-)- β -pinene and acetonitrile with zinc
triflate catalyst
Scheme 2.38 General reaction scheme for a controlled mixed Ritter reaction
Scheme 2.39 General reaction scheme for a one-pot mixed Ritter reaction
Scheme 2.40 Attempted controlled mixed Ritter reactions
Scheme 3.1 Scaffold derivatisation <i>via</i> the imine functionality

Scheme 3.2 Scaffold derivatisation via the alkene functionality	. 75
Scheme 3.3 Scaffold derivatisation <i>via</i> the amine functionality.	. 75
Scheme 3.4 Reduction of imino-amide scaffolds to amino-amides.	. 76
Scheme 3.5 Reduction of imino-alkene scaffolds to amino-alkenes.	. 76
Scheme 3.6 Amide deprotection of amino-amide (+)-101m to diamine (+)-103m	. 81
Scheme 3.7 Reductive N-methylation of amino-amide (+)-101l to (+)-104l.	. 82
Scheme 3.8 Expected outcome of the amide hydrolysis of (+)-59I and (+)-101I by NaOH	. 83
Scheme 3.9 Imine-Enamine tautomerisation that protects the imine from hydrolysis	. 83
Scheme 3.10 Expected outcome of the amide hydrolysis of (+)-59I and (+)-101I by HCl	. 84
Scheme 3.11 Actual outcome of the amide hydrolysis of (+)-101I by HCl.	. 84
Scheme 3.12 The hydride reduction of (+)-105l to give (+)-103l	. 84
Scheme 3.13 Attempted Petasis reaction of (+)-103m with glyoxylic acid and 2-naphthylboro	onic
acid	. 86
Scheme 3.14 Petasis reaction of (+)-103m with formaldehyde and 2-naphthylboronic acid	. 86
Scheme 3.15 Petasis reaction of (+)-105l with formaldehyde and 2-naphthylboronic acid	. 87
Scheme 3.16 Reductive N -alkylation of 6-N amine (+)-105l with p -anisaldehyde	. 88
Scheme 3.17 Reductive <i>N</i> -alkylation of 6-N amine (+)-105l with benzaldehyde	. 89
Scheme 3.18 Reaction of (+)-103I with benzyl bromide	. 89
Scheme 3.19 Potential proposed reaction of (+)-105l with benzyl bromide	. 89
Scheme 3.20 Conversion of the internal alkene 116 into the internal alkene (+)-60m	. 91
Scheme 3.21 The attempted reaction of (+)-101I with benzenesulfonyl chloride	. 92
Scheme 3.22 Reaction of (+)-60a with 3-mercaptopropionic acid	. 93
Scheme 3.23 Attempted reaction of (+)-60a with ethyl acetoacetate	. 93
Scheme 3.24 Attempted reaction of (+)-60a with malonic acid	. 94
Scheme 3.25 The reaction of (+)-59I with DMAD to give (-)-121.	. 94
Scheme 3.26 Imine to nitrone conversion by methyltrioxorhenium catalysed urea hydrogen	
peroxide. ^[160]	. 95
Scheme 3.27 Tungstate catalysed oxidation of structurally similar amines with hydrogen	
peroxide. ^[161]	. 95
Scheme 3.28 Synthesis of nitrone (+)-125 via oxaziridine 124 from reacting (+)-59I with m-	
СРВА	. 96
Scheme 3.29 Formation of 126 and 127 from <i>N</i> -oxide (+)-125	. 96
Scheme 3.30 Synthesis of nitrone (+)-125 using the method by Soldaini et al. [160]	. 97
Scheme 3.31 Attempted 1,3-dipolar cycloaddition of maleic anhydride to (+)-125	. 97

Scheme 4.1 Mitochondrial cleavage of MTS 129 to formazan 130	100
Scheme 4.2 Reduction of resazurin 134 to resorufin 135 by NADH	106
Scheme 5.1 Hydrolysis of ATCh by AChE and the subsequent formation of yellow TNB (133).	108
Scheme 5.2 Hydrolysis of naphthyl acetate by AChE and the subsequent formation of the	
purple dye in the TLC bioautographic assay	109
Scheme 7.1 Reaction pathway to functionalise C-6 through amine 105	148
Scheme 7.2 The four different possible compounds that could be formed by derivatising the	: C-
6 amine <i>via</i> either the Petasis reaction, shown in green, or reductive <i>N</i> -alkylation, shown in	
blue	149

List of Tables

Table 2.1 List of products obtained from the bridged Ritter reaction between (-)- β -pinene and
the various nitriles used
Table 2.2 List of nitriles unsuccessfully used for the bridged Ritter reaction and the
hypothesised reasons. 57
Table 2.3 Nitrile combinations attempted with the one-pot mixed bridged Ritter reaction 72 $$
Table 3.1 Yields of amine-scaffolds obtained from the reduction of corresponding imines 77 $$
Table 3.2 Hydrogen-bond geometry for (+)-101l
Table 3.3 Hydrogen-bond geometry for (+)-101b
Table 4.1 MDA-MB-231 MTS screening results as % viability normalised to control 102
Table 4.2 MTS assay IC_{50} results with the standard errors
Table 4.3 Cytotoxicity results from external screening performed at BIOTEC 106
Table 5.1 Ellman assay kinetics experiment data
Table 5.2 Summary of differences in Ellman methods reported
Table 5.3 TLC bioautographic AChE inhibition assay results
Table 5.4 Ellman assay AChE inhibition results
Table 5.5 Comparison of functionality on AChE inhibitors
Table 5.6 AChE inhibition properties of (+)-112 and (+)-114, from the TLC bioautographic and
Ellman assays
Table 6.1 List of compounds that did not pass <i>in slico</i> screening
Table 6.2 Summary of primary screening results for OIDD endocrine & cardiovascular targets.
Table 6.3 Summary of primary screening results for OIDD neuroscience targets 127
Table 6.4 Summary of primary screening results for OIDD autoimmune targets
Table 6.5 Summary of primary screening results for OIDD oncology target
Table 6.6 Summary of primary screening results for OIDD tuberculosis target
Table 6.7 Summary of primary screening results for OIDD malaria target
Table 7.1 List of physicochemical properties corresponding to each compound made 133
Table 7.2 ADMET results of the alkaloid-like library
Table 7.3 Ludi_3 scores for the docked pose for each of the compounds synthesised 144
Table 7.4 List of docking scores for hypothetical products of the Petasis reaction 149
Table 7.5 List of docking scores for hypothetical products of reductive <i>N</i> -alkylation 150
Table 7.6 Evaluation of the best docking compounds ADMET descriptors
Table 9.1 X-ray crystal data for (-)-66h

Table 9.2 X-ray crystal data for (+)-101l.	191
Table 9.3 X-ray crystal data for (+)-101b .	192
Table 9.4 X-ray crystal data for (+)-67.	193
Table 9.5 X-ray crystal data for (+)-80.	194

List of Abbreviations

Å Angstrom

δ Chemical Shift (NMR)

 $\lambda \hspace{1cm} \text{Wavelength}$

 v_{max} Maximum absorbance

 $[\alpha]_D^{25}$ Specific rotation for a Na lamp at 589 nm at 25°C

[L] Ligand concentration

[M]⁺ Molecular ion

 $[M + H]^+$ Protonated molecular ion

ACh Acetylcholine

AChE Acetylcholinesterase
AChR Acetylcholine receptor

AD Alzheimer's disease

Ar Aromatic

Asp Aspartic acid

ATCh Acetylthiocholine

BChE Butyrylcholinesterase

br Broad (NMR)

c Concentration in g/100 mL

calc Calculated

CAS Catalytic Active Site

d Doublet (NMR)

Da Dalton

DCM Dichloromethane

dd Doublet of doublets (NMR)

ddd Doublet of doublets of doublets (NMR)

DEPT Distortionless enhancement by polarization transfer

DMAD Dimethyl acetylenedicarboxylate

DMSO Dimethyl sulfoxide

dq Doublet of quartets (NMR)
dsep Doublet of septets (NMR)
dsex Doublet of sextets (NMR)
dt Doublet of triplets (NMR)

DTNB 5,5'-Dithiobis(2-nitrobenzoic acid)

eeAChE Electric eel acetylcholinesterase (EC 3.1.1.7)

EtOAc Ethyl Acetate
Equiv. Equivalents

F₂₅₄ Fluorescent at 254nm

FDA Food and Drug Authority

FTIR Fourier transform infrared spectroscopy

g Gram

GC-MS Gas chromatography-mass spectroscopy

Glu Glutamic acid

Gly Glycine

COSY Correlation spectroscopy

HSQC Heteronuclear single quantum correlation

hAChE Human acetylcholinesterase

His Histidine

HRMS High-resolution mass spectroscopy

HTS High throughput screening

Hz Hertz

IC₅₀ The half maximal inhibitory concentration

IR Infrared

J Coupling constant (NMR)

K_D Ligand dissociation constant

LRMS Low-resolution mass spectroscopy

m Multiplet (NMR)

m/z Mass to charge ratio

mg Milligrams
mL Millilitre
mmol Millimole

m.p. Melting point

NCE New Chemical Entity

ng Nanogram nmol Nanomole

NMR Nuclear Magnetic Resonance

NOE Nuclear Overhauser Effect

non nonet (NMR)

PAS Peripheral Active Site

PDB Protein database

Ph Phenyl

Phe Phenylalanine
ppm Part per million
Pet. spir. Petroleum spirits
PSA Polar surface area

q Quartet (NMR) qin Quintet (NMR)

Q-TOF Quadrupole Time-of-Flight

 R_f Retention factor R_t Retention time

r.t. Room temperature

s Singlet (NMR)

SAR Structure-activity relationship

s Second
Ser Serine
sp. Species

STD Saturation Transfer Difference

t Triplet (NMR)

TcAChE Torpedo californica acetylcholinesterase (EC 3.1.1.7)

td Triplet of doublets (NMR)

TLC Thin layer chromatography

TMS Trimethylsilane

Try Tryptophan

Tyr Tyrosine

U The enzyme unit

Publications from this Thesis

- An alkaloid-like 3-azabicyclo[3.3.1]non-3-ene library obtained from the bridged Ritter reaction, Steven Gareth Williams, Mohan Bhadbhade, Roger Bishop and Alison Thavary Ung, Tetrahedron 2017, 73, 116-128.
- Synthesis and Crystal Structure of Unexpected (1S,4R,5R,6S)-4-cyano-2,2,6-trimethyl-3-azabicyclo[3.3.1]nonan-6-yl acetate, Steven Gareth Williams, Mohan Bhadbhade, Roger Bishop and Alison Thavary Ung, Aus J Chem, *submitted*.

Presented Conference Posters with Accepted Abstracts from This Thesis

- Alkaloid-like molecules as AChE inhibitors. Steven Gareth Williams, Alison Thavary Ung.
 Presented at 'RACI Medicinal Chemistry and Chemical Biology NSW Symposium', 28
 September 2015, The University of Sydney, NSW, Australia.
- 2. Alkaloid-like Molecules for Drug Discovery. Steven Gareth Williams, Tristan Rawling and Alison Thavary Ung. Presented at 'RACI Medicinal Chemistry and Chemical Biology Meeting', 6-9 November 2016, Crowne Plaza Coogee Beach, Australia.

Abstract

Due to the prevalence of alkaloids in the chemical drug space and the broad range of biological properties held by the *Aristotelia* alkaloids, including anticancer properties, a library of structurally similar alkaloid-like compounds has been synthesised, containing the 3-azabicyclo[3.3.1]nonane architecture, in order to explore the cytotoxicity of it and its derivatives.

The 3-aza-bicyclo[3.3.1]nonane core was obtained via the bridged Ritter reaction with (-)- β -pinene and various nitriles to afford 18 compounds (Chapter 2). Several of the compounds obtained from the bridged Ritter reaction were derivatised to give an additional 17 compounds (Chapter 3). The information obtained from these reaction outcomes, were used to further understand the bridged Ritter reaction mechanism. X-ray crystallography was used for analysis of the projection of the scaffold and substituents within the 3D space of the crystal lattice to further understand the reactivity of the synthesised scaffolds.

The library of alkaloid-like compounds was tested for their biological properties. The breast cancer cell lines MDA-MB-231 and MCF-7 were investigated due to in-house data that showed activity for a related series of compounds (Chapter 4). The MDA-MB-231 cell line was tested in-house and 3 of 28 compounds showed significant activity in the reduction of cell viability, however, it is believed that they possess general toxicity, as opposed to having a cytotoxic nature. This library was deemed not viable for developing as cytotoxic agents within this project.

Acetylcholine esterase (AChE) was chosen as an alternative target to be screened against (Chapter 5). Two complementary assays were used to determine the activity were 9 of the 27 tested compounds showed weak activity. SAR data and molecular modeling was used to develop a rational drug design approach to synthesise an improved inhibitor. Two of the designed compounds were synthesised and evaluated for their AChE inhibition properties and both showed relative increase in activity compared to their precursors. In addition to the docking studies used to guide the design of improved AChE inhibitors, molecular modeling was utilised to assess the drug-like properties and ADMET descriptors for each of the synthesised compounds.

Lastly, broad screening of the biological properties of a selection of the synthesised compounds is currently being investigated by the services of the Lily OIDD program with 16 of the 31 submitted compounds are currently undergoing screening and results from five compounds have been returned so far.