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Abstract

Orthogonality has different definitions in geometry, statistics and cal-

culus. This thesis studies how to incorporate orthogonality to fa-

cial image restoration and retrieval tasks. A facial image restoration

method and three retrieval methods were proposed.

Blur in facial images significantly impedes the efficiency of recogni-

tion approaches. However, most existing blind deconvolution meth-

ods cannot generate satisfactory results, due to their dependence on

strong edges which are sufficient in natural images but not in facial

images. A novel method is proposed in this report. Point spread

functions (PSF) are represented by the linear combination of a set

of pre-defined orthogonal PSFs and similarly, an estimated intrinsic

sharp face image (EI) is represented by the linear combination of a

set of pre-defined orthogonal face images. In doing so, PSF and EI

estimation is simplified to discovering two sets of linear combination

coefficients which are simultaneously found by the proposed coupled

learning algorithm. To make the method robust to different kinds of

blurry face images, several candidate PSFs and EIs are generated for

a test image, and then a non-blind deconvolution method is adopted

to generate more EIs by those candidate PSFs. Finally, a blind im-

age quality assessment metric is deployed to automatically select the

optimal EI.

On the other hand, the orthogonality is incorporated into the pro-

posed Unimodal image retrieval method. Hashing methods have been

widely investigated for fast approximate nearest neighbor searching in

large datasets. Most existing methods use binary vectors in lower di-

mensional spaces to represent data points that are usually real vectors

of higher dimensionality. The proposed method divides the hashing



process into two steps. Data points are first embedded in a low-

dimensional space, and the Global Positioning System (GPS) method

is subsequently introduced but modified for binary embedding. Data-

independent and data-dependent methods are devised to distribute

the satellites at appropriate locations. The proposed methods are

based on finding the tradeoff between the information losses in these

two steps. Experiments show that the data-dependent method out-

performs other methods in different-sized datasets from 100K to 10M.

By incorporating the orthogonality of the code matrix, both data-

independent and data-dependent methods are particularly impressive

in experiments on longer bits.

In social networks, heterogeneous multimedia data correlates to each

other, such as videos and their corresponding tags in YouTube and

image-text pairs in Facebook. Nearest neighbor retrieval across mul-

tiple modalities on large data sets becomes a hot yet challenging prob-

lem. Hashing is expected to be an efficient solution, since it represents

data as binary codes. As the bit-wise XOR operations can be fast han-

dled, the retrieval time is greatly reduced. Few existing multi-modal

hashing methods consider the correlation among hashing bits. The

correlation has negative impact on hashing codes. When the hashing

code length becomes longer, the retrieval performance improvement

becomes slower. The proposed method incorporates a so-called min-

imum correlation constraint which can be treated as a generalization

of orthogonality constraint. Experiments show the superiority of the

proposed method becomes greater as the code length increases.

Deep neural network is expected to be an efficient way for multi-modal

hashing. We propose a hybrid neural network which consists of a con-

volutional neural network for facial images and a full-connected neural

network for tags or labels. The minimum correlation regularization is

imposed on the parameters of output layers. Experiments validates

the superiority of the proposed hybrid neural network.
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