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Abstract

In this paper, a semiparametric single-index model is investigated. The link

function is allowed to be unbounded and has unbounded support that answers

a pending issue in the literature. Meanwhile, the link function is treated as a

point in an infinitely many dimensional function space which enables us to derive

the estimates for the index parameter and the link function simultaneously. This

approach is different from the profile method commonly used in the literature.

The estimator is derived from an optimization with the constraint of identification

condition for index parameter, which is a natural way but ignored in the literature.

In addition, making use of a property of Hermite orthogonal polynomials, an

explicit estimator for the index parameter is obtained. Asymptotic properties for the

two estimators of the index parameter are established. Their efficiency is discussed

in some special cases as well. The finite sample properties of the two estimates are

demonstrated through an extensive Monte Carlo study and an empirical example.
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1 Introduction

Single-index models have been studied extensively in the econometrics and statistics literature in

the past thirty years or so and cover many classic parametric models by using a general function

form g0 (x′θ0). Among all methods, one important class of estimation methods is based on using

a nonparametric kernel method, (e.g. Ichimura (1993), Härdle, W. and Hall, P. and Ichimura,

H. (1993), Carroll et al. (1997), Chapter 2 of Gao (2007) and Lee (2015), for example). A

detailed review on how to employ kernel methods to estimate single-index models can be found

in Xia (2006). Building on the above literature and imposing similar boundedness conditions

to those in Xia (2006), Cai et al. (2015) recently have introduced variable selection procedure

to the single-index model by employing the kernel based on method. However, their setting is

slightly different from the above works, because they essentially consider a varying-coefficient

function but use single-index as the driving force for the coefficient function. Alternatively,

sieve methods provide good approximations to unknown functions and are of computational

convenience (see Chen (2007) for an extensive review). To the best of our knowledge, however,

limited studies are available for sieve-based estimation for single-index models. The existing

literature includes Yu and Ruppert (2002) for using penalised spline estimation to investigate

partially linear single-index models, Dong et al. (2015) and Dong et al. (2016) for employing

Hermite polynomials to study single-index models in panel data and nonstationary time series

models, respectively.

In the literature for single-index models, researchers usually need to assume either the

boundedness of the support of the link function or the boundedness of the link function itself.

For instances, Assumptons 5.2 and 5.3 of Ichimura (1993) impose the compactness on both the

parameter space and the support of the regressors, implying that the link function is defined

on a compact set. Condition C2 of Xia (2006) and Assumption A of Cai et al. (2015) directly

require the boundedness of the link function, although they are defined on the entire real line.

More recently, Dong et al. (2016) also require the link function to be smooth and integrable,

which basically implies the boundedness of the link function itself.

Moreover, in nonparametric context of using a sieve method, in order to deal with the issue

of unboundedness for the support of the regression function under study, Chen and Christensen

(2015) truncate the unbounded support by a compact set depending on the sample size. Similar

concerns have recently been raised by Hansen (2015), where the author points out that in

nonparmetric sieve regression there may only be very limited studies available about the case

of unbounded regressors.

Furthermore, we employ an optimization with constraint of the identification condition to

derive the estimator of the index parameter. This natural approach is ignored in the literature,

and also gives rise to a challenge for asymptotic theory of our estimator as both the estimator
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and the parameter belong to a proper subspace of the parameter space. By contrast, the

existing literature uses a semiparametric least squares estimate, θ, for θ0 and then derives a

standardized version of the form θ/‖θ‖.
Thus, one of the main contributions of this paper is to deal with the unboundedness support

case for the link function in a cross-sectional model of the form:

y = g0(x′θ0) + e, (1.1)

where the samples {yi, xi}Ni=1 are observable, and for identifiability suppose θ0 = (θ0,1, . . . , θ0,d)
′

satisfies ‖θ0‖ = 1 with θ0,1 > 0 and the link function g0(w) ∈ L2 (R, exp(−w2/2)). Note that

Hilbert space L2 (R, exp(−w2/2)) covers all polynomials, all power functions and all bounded

functions on R, to name a few.

Note also that the function space L2 (R, exp(−w2/2)) is of infinite many dimension, where

Hermite polynomials form a complete orthonormal basis. From a geometric point of view, the

link function g0(w) has infinite many coordinates, but the ones far behind take much less role

in the determination of g0(w). After truncation on the coordinates, g0(w), along with θ0, is

being treated approximately as a finite-dimensional parameter and hence both θ0 and g0(·) are

estimated simultaneously. This gives the first pair of estimates for (θ0, g0(·)).
With the help of Hermite polynomial’s property, semiparametric model (1.1) is parameter-

ized completely. This gives the second pair of estimates for (θ0, g0(·)) to be studied below. The

benefit is two-fold. One is that we are able to have a closed-form estimate for θ0; another is

that, like a parametric model, we need not impose the compactness on the parameter space

where θ0 belongs to. These two improvements being offered by this paper cannot be achieved

in the existing literature where θ0 is estimated based on the assumption of the compactness of

the parameter space, see, for example, Dong et al. (2016).

In summary, the main contributions of this paper are given as follows.

• Unlike what has been done in most of the literature, the first estimation method requires

neither the boundedness of the support of the regression function nor the boundedness of

the regression function itself.

• The estimator derived from an optimization under constraint ‖θ0‖ = 1 can have a super

convergence rate OP (N−1) along with the direction of θ0, while it has root-N rate along

all other directions orthogonal to θ0.

• Meanwhile, the second estimation method offers a closed-form estimator for θ0 via an

ordinary least squares (OLS). As a consequence, the closed-form OLS estimate makes it

convenient for both the establishment of an asymptotic theory and the ease of practical

implementation.
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The organization of this paper is given as follows. Section 2 proposes two estimation methods

and then establishes the corresponding asymptotic theory. Section 3 evaluates the finite-sample

properties for the proposed estimation methods and theory. Section 4 provides an empirical

study based on U.S. banking industry. Section 5 concludes the paper with some comments. All

the mathematical proofs are given in an appendix.

Throughout this paper, λmin(A) and λmax(A) denote the minimum and maximum eigenval-

ues of a square matrix A, respectively; both M ’s and O(1)’s denote positive constants which

may be different at each appearance; ‖ · ‖ defines the Euclidean norm; bac ≤ a means the

largest integer not exceeding a. For a given function g(w), its first and second derivatives are

denoted by g(1)(w) and g(2)(w), while for notational convenience, sometimes g(0)(w) represents

g(w) itself; and when there is no misunderstanding,
∫
g(w)dw replaces

∫
R g(w)dw. The same

applies to multiple integrals.

2 Estimation Methods

It is known that Hermite polynomials form a complete orthogonal system in the Hilbert space

L2 (R, exp(−w2/2)) with each element defined by

Hm(w) = (−1)m · exp(w2/2) · d
m

dwm
exp(−w2/2), m = 0, 1, 2, . . . (2.1)

The orthogonality of this system reads
∫
Hm(w)Hn(w) exp(−w2/2)dw = m!

√
2πδmn, where δmn

is the Kronecker delta. Further define hm(w) = 1√
m!
Hm(w), so that {hm(w)} becomes an orthog-

onal basis in the Hilbert space L2 (R, exp(−w2/2)) satisfying
∫
hm(w)hn(w) exp(−w2/2)dw =

√
2πδmn. Hence, for any g(w) ∈ L2 (R, exp(−w2/2)), we have an orthogonal series expansion

in terms of hm(w) as follows:

g(w) =
∞∑
m=0

cmhm(w), with cm(g) =
1√
2π

∫
g(w)hm(w) exp(−w2/2)dw. (2.2)

Define function norm ‖ · ‖L2 as ‖g‖L2 =
{

1√
2π

∫
|g(w)|2 exp(−w2/2)dw

}1/2

. It follows from

Parseval’s equality that ‖g‖2
L2 =

∑∞
m=0 c

2
m. Since the right-hand side is the square norm of

{cm,m = 0, 1, . . .} in sequence space `2, the equality, along with Riesz-Fischer theorem, implies

that ‖ · ‖L2 and ‖ · ‖`2 are isomorphic, so a function g can be identified by its associated

coefficients {cm,m = 0, 1, . . .}. From a geometric point of view, the infinite-dimensional point

g ∈ L2(R, exp(−w2/2)) has coordinates {cm,m = 0, 1, . . .}. Thus, in order to express g, it

suffices to determine its coordinate sequence {cm,m = 0, 1, . . .}.
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For any truncation parameter k ≥ 1, split the orthogonal series expansion into two parts,

g(w) =gk(w) + δk(w), gk(w) = H(w)′Ck, δk(w) =
∞∑
m=k

cmhm(w),

H(w) = (h0(w), . . . , hk−1(w))′ , Ck = (c0, . . . , ck−1)′.

(2.3)

By virtue of (2.3) and Lemma A.3 below, respectively, g0(x′iθ0) in model (1.1) can have two

representations:

g0 (x′iθ0) = g0,k(x
′
iθ0) + δ0,k (x′iθ0) , (2.4)

g0 (x′iθ0) =
k−1∑
m=0

∑
|p|=m

am,p (θ0) Hp (xi) + δ0,k (x′iθ0) , (2.5)

where equation (2.5) is derived from (2.4) using Lemma A.3,

g0,k(x
′
iθ0) = H(x′iθ0)′C0,k, δ0,k(x

′
iθ0) =

∞∑
m=k

c0,mhm(x′iθ0),

C0,k = (c0,0, . . . , c0,k−1)′, c0,m =
1√
2π

∫
g0(w)hm(w) exp

(
−w2/2

)
dw,

am,p(θ0) =

√(
m

p

)
c0,mθ

p
0,

(
m

p

)
=

m!∏d
j=1 pj!

, θp0 =
d∏
j=1

θ
pj
0,j,

Hp (xi) =
d∏
j=1

hpj (xi,j) , xi = (xi,1, . . . , xi,d)
′ , p = (p1, . . . , pd)

′ ,

|p| = p1 + . . .+ pd and pj’s for j = 1, . . . , d are non-negative integers.

The expansions (2.4) and (2.5) allow us to use two different methods to recover θ0 and g0

in what follows.

2.1 Extremum Estimation Method

With the expansion (2.4), the nonparametric function g0 is parameterized by {cm,m = 0, 1, . . .}.
Thus, the unknown parameter θ0 and nonparametric function g0 together can be viewed as a

point in an infinite-dimensional Euclidean space, the 2-fold Cartesian product space by Rd and

L2 (R, exp(−w2/2)). The space is equipped with norm ‖ · ‖2 given by

‖(θ, g)‖2 =

(
‖θ‖2 +

∞∑
m=0

c2
m(g)

)1/2

, (2.6)

4



where cm(g)’s are the coefficients in the expansion of g and defined in (2.2). Clearly, ‖ · ‖2

satisfies the definition of a norm and is similar to Newey and Powell (2003, p. 1569).

Suppose that Θ ⊂ Rd, Θ is compact and θ0 ∈ Θ. Suppose further that G is a subset of

L2 (R, exp(−w2/2)) such that g0 ∈ G and supg∈G ‖g‖L2 < B1 < ∞ for some sufficiently large

constant B1.

Model (1.1) implies that L(θ, g) := E[y − g(x′θ)]2 arrives the minimum at (θ0, g0). After

taking into account the identification restriction, we introduce the following population version

of the objective function with Lagrange multiplier as

Wλ(θ, g) = L(θ, g) + λ(‖θ‖2 − 1), (2.7)

where (θ, g) ∈ Θ×G.

Analogous to (2.7), we denote the corresponding sample version of the objective function

as

WN,λ(θ, g) = LN(θ, g) + λ(‖θ‖2 − 1), (2.8)

where (θ, g) ∈ Θ × Gk, Gk is defined as Gk = G ∩ span{h0(w), h1(w) . . . , hk−1(w)}, k is the

truncation parameter, and LN(θ, g) = 1
N

∑N
i=1 [yi − g(x′iθ)]

2. More importantly, an executable

version of (2.8) is given by

WN,λ(θ, Ck) = LN(θ, g) + λ(‖θ‖2 − 1), (2.9)

where LN(θ, g) = 1
N

∑N
i=1 [yi −H(x′iθ)

′Ck]
2, and H(w) and Ck have been defined in (2.3).

Mathematically, the estimates of θ0 and Ck are given by the following minimization:

(θ̃, C̃k) = argmin
Ωk, λ

WN,λ(θ, Ck), (2.10)

where Ωk = {(θ, Ck) : θ ∈ Θ, ‖Ck‖ ≤ B1} ⊆ Rd+k. It is noteworthy that (2.10) can easily be

implemented by using function “fmincon” in Matlab. Thus, define g̃k(w) = C̃ ′kH(w) for any

w ∈ R, and (θ̃, g̃k(w)) is the estimate of (θ0, g0(w)).

To establish the main results of this paper, we now introduce the following conditions.

Assumption 1:

1. Suppose that {xi, ei} is independent and identically distributed (i.i.d.) across i = 1, . . . , N .

Moreover, E[e1|x1] = 0 a.s. and E[e2
1|x1] = σ2

e a.s., where σ2
e is a positive constant.

2. Suppose L(θ, g) := E[y− g(x′θ)]2 defined above (2.7) has a unique minimum (i.e. σ2
e) on

Θ×G at (θ0, g0). For ∀g ∈ G, the first derivative g(1)(w) always exists. Moreover, there
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exists a constant M satisfying

(a) max{(θ,g)∈Θ×G}E
∥∥x1x

′
1{g(1)(x′1θ)}2

∥∥ ≤M ;

(b) sup{(θ,w)∈Θ×R} exp (w2/2) fθ(w) ≤ M , where fθ(w) defines the probability density

function (pdf) of w = x′1θ for each given θ ∈ Θ.

3. (a) Let k be divergent with N such that k/N → 0 as N →∞;

(b) All derivatives g
(j)
0 (w) ∈ L2 (R, exp(−w2/2)) for j = 0, 1, . . . , r and r ≥ 2.

Assumption 1.1 can be further relaxed to take into account heteroskedasticity. For example,

one can assume E[e2
i |xi] = σ2(xi) for i = 1, . . . , N , and all the proofs will go through with some

suitable modification. Moreover, we may also consider a cross-sectional dependence (CSD)

case where ei = σ(xi)ξi, in which {ξi, i ≥ 1} is a sequence of random errors with E[ξi] = 0,

E[ξ2
i ] = 1 and γij = E[ξi ξj] 6= 0 when i 6= j. Since establishing the corresponding theory for this

cross-sectional dependence setting involves much more techniques than what will be involved

in this paper, this paper focuses on the i.i.d. setting, and the CSD case will be left for future

research. Assumption 1.2.b rules out heavy-tailed distributions, which is due to the fact that

g0 is potentially unbounded. Assumption 1.3.a is standard in the literature. The smoothness

condition in Assumption 1.3.b ensures the orthogonal series expansion of g0 converges with

certain rate. Indeed, by virtue of Lemma A.1, ‖g0 − g0,k‖2
L2 =

∑∞
m=k c

2
0,m = O(k−r) and

‖g(1)
0 − g

(1)
0,k‖2

L2 =
∑∞

m=k c
2
0,mm = o(1) as k →∞. Furthermore, in order to simplify the analysis

and notation under a general sieve space, the norm provided in Assumption 3 of Newey (1997)

can be adopted. Below we explain why Assumptions 1.2.a is reasonable in Remark 1.

Remark 1. Assumption 1.2.a covers some conditions commonly used in the existing literature

as special cases.

1. If Assumption 5.3.1 of Ichimura (1993) holds, i.e. x belongs to a compact set, then we

can write

E
∥∥x1x

′
1{g(1)(x′1θ)}2

∥∥ ≤ O(1)E
∣∣g(1)(x′1θ)

∣∣2 = O(1)

∫ {
g(1)(w)

}2
fθ(w)dw

≤ O(1)

∫ {
g(1)(w)

}2
exp(−w2/2) · exp(w2/2)fθ(w)dw

≤ O(1)

∫ {
g(1)(w)

}2
exp(−w2/2)dw,

where fθ(w) is the same as that defined in Assumption 1.2.b. Then in this case, Assump-

tion 1.2.a reduces to requiring g(1)(w) ∈ L2(R, exp(−w2/2)) for ∀g ∈ G.

2. If Condition C2 of Xia (2006) holds, i.e. g(1)(w) is bounded on R, then we can write

E
∥∥x1x

′
1{g(1)(x′1θ)}2

∥∥ ≤ O(1)E‖x1‖2.
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Then we need only to bound the second moment of x1.

Since our link function can potentially be an unbounded function defined on the whole real

line, we adopt the current form of Assumption 1.2.a.

With Assumption 1 in hand, we now summarize the consistency of (2.10) below.

Theorem 2.1. Let Assumption 1 hold. As N →∞, we have

∥∥(θ̃, g̃k)− (θ0, g0)
∥∥

2
→P 0,

where g̃k = C̃ ′kH(w), H(w) and C̃k are denoted by (2.3) and (2.10), respectively.

We now move on to establish an asymptotic normality. Before doing so, we introduce the

following conditions.

Assumption 2:

Let ε be a relatively small positive number and M be a positive constant. Suppose that the

following conditions hold:

1. Any function g(·) that belongs to G = {g : ‖g − g0‖L2 ≤ ε} is twice differentiable on R.

2. For Ω(ε) = {(θ, g) : ‖(θ, g)− (θ0, g0)‖2 ≤ ε},

(a) sup
(θ,g)∈Ω(ε)

E
∥∥g(2)(x′1θ)x1x

′
1

∥∥2 ≤M ;

(b) sup
(θ,g)∈Ω(ε)

∥∥∥∥∥ 1

N

N∑
i=1

(
g(1)(x′iθ)

)2
xix
′
i − E

[(
g(1)(x′1θ)

)2
x1x

′
1

] ∥∥∥∥∥ = oP (1) ;

(c) sup
(θ1,g1),(θ2,g2)∈Ω(ε)

∥∥∥∥∥ 1

N

N∑
i=1

g1(x′iθ1)g
(2)
2 (x′iθ2)xix

′
i − E

[
g1(x′1θ1)g

(2)
2 (x′1θ2)x1x

′
1

] ∥∥∥∥∥ = oP (1).

3. Let Σ1(θ) = E[Ḣ(x′1θ)Ḣ(x′1θ)
′] and Σ2(θ0) = E

[
Ḣ(x′1θ0)Ḣ(x′1θ0)′‖x1‖2

]
, in which Ḣ(w) =(

h
(1)
1 (w), . . . , h

(1)
k−1(w)

)′
. Suppose that sup{θ: ‖θ−θ0‖≤ε} λmax (Σ1(θ)) ≤M1 and λmax (Σ2(θ0)) ≤

M2 for some 0 < M1,M2 <∞.

4. Suppose that (i) E
[
δ

(1)
0,k(x

′
1θ0)

]4

= o(1) and (ii) N/kr → 0.

Assumption 2.1 is standard in the literature and states that in a small neighbourhood of g0

all functions are twice differentiable.

For Assumption 2.2.a, arguments similar to those given in Remark 1 apply. Assumptions

2.2.b and 2.2.c are the same as Assumption 2 of Yu and Ruppert (2002), and require the

uniform convergence in a small neighbourhood of (θ0, g0). We can further decompose these two
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conditions by using Lemma A2 of Newey and Powell (2003), and prove the uniform convergence

by following a procedure similar to those given for Theorem 2.1. However, it will result in a

quite lengthy development. For simplicity, we use Assumptions 2.2.a and 2.2.b in this paper.

Assumption 2.3 is in the same spirit as Assumption 2 in Newey (1997) and Assumption 3.iv in

Su and Jin (2012).

Assumption 2.3 is unnecessary at all, if the norm given in Assumption 3 of Newey (1997) is

adopted.

In Assumption 2.4, conditions E
[
δ

(1)
0,k(x

′
1θ0)

]4

= o(1) and N/kr → 0 ensure not only both

δ
(1)
0,k(w) and δ0,k(w) are sufficiently small respectively, but also they can be smoothed out when

we establish the asymptotic normality. This is the so-called under–smoothing condition in the

literature.

In order to establish our asymptotic theory for the estimator, the score function and hessian

matrix (the first and the second derivatives of WN,λ(θ, Ck), respectively) are investigated first

in Lemma A.2 below. Due to the constraint ‖θ0‖ = 1 in the optimization (2.10), there is a

projection matrix Pθ0 = Id − θ0θ
′
0 involved after carefully organising the score function. Note

that Pθ0 will project any vector into the orthogonal complement space of θ0, denoted by θ⊥0 ,

and θ⊥0 is (d−1)-dimensional. Simple algebra shows Pθ0 has eigenvalues 0, 1, . . . , 1, where 0 has

eigenvector θ0 and each eigenvalue 1 corresponds to an eigenvector orthogonal to θ0, denoted

by pj, j = 1, · · · , d− 1. Put P1 = (p1, . . . , pd−1) of d× (d− 1). It then leads to Pθ0 = P1P
′
1 by

a spectral decomposition and P ′1P1 = Id−1 straight away.

Note that (θ0, P1) is an orthogonal matrix that forms a new coordinate system in Rd, under

which θ̃ − θ0 is expressed as

θ̃ − θ0 = (P1P
′
1 + θ0θ

′
0)(θ̃ − θ0) = P1[P ′1(θ̃ − θ0)] + θ0(θ′0θ̃ − 1)

= (p1, . . . , pd−1)(αN,1, . . . , αN,d−1)′ + αN,0θ0

= αN,1p1 + · · ·+ αN,d−1pd−1 + αN,0θ0, (2.11)

where we denote αN,0 = θ′0θ̃− 1 and (αN,1, . . . , αN,d−1)′ = P ′1(θ̃− θ0), viz., they are coordinates

of θ̃ − θ0 under the new system. We now establish the following results.

Theorem 2.2. Let Assumptions 1 and 2.1-2.3 hold.

1.
(
θ̃ − θ0

)′
θ0 = −1

2
‖θ̃ − θ0‖2.

2. In addition, let Assumption 2.4 hold. Then as N →∞,

√
N
(
P ′1(θ̃ − θ0)− 2(P ′1V P1)−1P ′1SN(g̃k)

)
→D N(0, σ2

e(P
′
1V P1)−1),

where V = E
[
{g(1)

0 (x′1θ0)}2x1x
′
1

]
and SN(g̃k) = 1

N

∑N
i=1 [g0(x′iθ0)− g̃k(x′iθ0)] g̃

(1)
k (x′iθ0)xi.
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We need fairly detailed explanation on the theorem in the following two remarks.

Remark 2. As can be seen from the proof, the first result of Theorem 2.2 is purely due to the

constraint ‖θ̃‖ = 1 in the optimization (2.10). In the new coordinate system of Rd, θ̃′θ0 is the

coordinate of θ̃ at the axis of θ0. Clearly, |θ̃′θ0| ≤ ‖θ̃‖‖θ0‖ = 1 by Cauchy-Schwarz inequality

and the equality holds as long as θ̃ = θ0. Hence, 1−θ̃′θ0 measures the metric from the coordinate

to the surface of the unit ball. Therefore, the first result indicates that, along the direction θ0, θ̃

converges with a quicker rate than that in all other directions orthogonal to θ0. More precisely,

taking orthogonal expansion (2.11) into account, we have ‖θ̃−θ0‖2 = ‖P ′1(θ̃−θ0)‖2 +(θ′0θ̃−1)2,

which, by plugging the first result, yields

1− θ′0θ̃ =
1

1 + θ′0θ̃
‖P ′1(θ̃ − θ0)‖2 =

1

2
‖P ′1(θ̃ − θ0)‖2(1 + oP (1))

due to Theorem 2.1. It follows from the second result that 1 − θ′0θ̃ can have convergence rate

OP (N−1) especially in the situation discussed in the next remark.

Actually, the essential reason that we only consider the normality of P ′1(θ̃ − θ0) is because

both θ̃ and θ0 belong to the unit ball of Rd due to ‖θ̃‖ = ‖θ0‖ = 1 and the unit ball, as a subspace

of Rd, has dimension d − 1. Without P1 that transforms θ̃ − θ0 into Rd−1, it is impossible to

establish the normality of θ̃ − θ0.

This fact is also verified from the proof of the theorem. Indeed, as stated before, the score
∂WN,λ

∂θ
contains the projection matrix Pθ0 such that the score belongs to θ⊥0 , a (d−1)-dimensional

subspace. Hence, the corresponding covariance matrix must be singular. This means, in order

to obtain the normality, the score also needs to be rotated by P1 into (d− 1)-vector.

If
√
NP ′1SN(g̃k) →P 0, then we have

√
NP ′1(θ̃ − θ0) →D N(0, σ2

e(P
′
1V P1)−1). In this case,

our estimate of P ′1θ̃ is asymptotically efficient, because σ2
e(P

′
1V P1)−1 reaches the information

lower bound in the semiparametric sense (c.f. Carroll et al. (1997); Xia (2006)). Condition

(2.6) of Theorem 2 in Chen et al. (2003) shares a similar issue on imposing a restriction like
√
NSN(g̃k)→P 0, and they argue that the verification of this type of condition is in some cases

difficult, and is itself the subject of a long paper as in Newey (1994). Although it is easy to

show that SN(g̃k) is exactly 0 uniformly in N when g̃k = g0, we cannot further decompose
√
NP ′1SN(g̃k) without more restrictive requirements. Newey (1994) does provide some assump-

tions (i.e. “Linearization” condition of Assumption 5.1) to deal with terms like
√
NP ′1SN(g̃k),

but our simulation suggests that (2.10) does not always outperform the closed-form estimator

provided below, which is very likely due to the fact that the biased term
√
NP ′1SN(g̃k) does not

converge to 0 sufficiently fast. Therefore, we state Theorem 2.2 as it stands. In what follows

we give one more example where the bias term in the theorem is negligible too.
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Remark 3. We now consider a special case where
√
NP ′1SN(g) is indeed negligible on a neigh-

bourhood of g0, {g : ‖(g − g0)g(1)‖L2 ≤ εN}, where εN is a sequence of positive numbers and

εN → 0 as N →∞. Suppose that E[x1] = 0 and E[x1x
′
1] = Id. Hence E[P ′1x1x

′
1θ0] = P ′1θ0 = 0,

which indicates that P ′1x1 and x′1θ0 are uncorrelated. If we further suppose that x1 is normally

distributed and all elements of x1 are independent of each other, then uncorrelatedness implies

independence here. Thus, for each given g ∈ {g : ‖(g − g0)g(1)‖L2 ≤ εN}, we have

E
∥∥∥√NP ′1SN(g)

∥∥∥2

=
1

N
E

∥∥∥∥∥
N∑
i=1

[g0(x′iθ0)− g(x′iθ0)] g(1)(x′iθ0)P ′1xi

∥∥∥∥∥
2

=
1

N

N∑
i=1

E
[
(g0(x′iθ0)− g(x′iθ0)) g(1)(x′iθ0)

]2
E ‖P ′1xi‖

2

= O(1)E
[
(g0(x′1θ0)− g(x′1θ0)) g(1)(x′1θ0)

]2
= O(1)

∫ [
(g0(w)− g(w))g(1)(w)

]2
fθ0(w)dw ≤ O(εN), (2.12)

where fθ0(w) is a normal density function as w = x′1θ0 is normal. Thus, we obtain that for

each g in the given neighbourhood,
√
NP ′1SN(g) = oP (1). By using the proof similar to Lemma

A2 of Newey and Powell (2003), it is easy to see that supg∈{g:‖(g−g0)g(1)‖L2≤εN}

∥∥∥√NP ′1SN(g)
∥∥∥ =

oP (1). Noticing that εN is a arbitrary positive number, we can use, for example, εN = 1
lnN

or

εN = ‖g̃k − g0‖νL2 with ν being a sufficiently small positive number, which are certainly much

slower than ‖g̃k − g0‖L2 by Section 2.3 with g̃k being defined in Theorem 2.1 already. In other

words, g̃k certainly falls in {g : ‖(g − g0)g(1)‖L2 ≤ εN} with probability one. Thus, under this

very special circumstance, the bias term in Theorem 2.2 is removable.

Given that we have shown several cases where the bias term is oP (1), we have the following

corollary.

Corollary 2.1. Let Assumptions 1 and 2 hold.

1. As N →∞, we have
(
θ̃ − θ0

)′
θ0 = OP

(
1
N

)
.

2. In addition, suppose that in Theorem 2.2, the bias term
√
NP ′1SN(g̃k)

→P 0, then we have as N →∞,

√
NP ′1(θ̃ − θ0)→D N(0, σ2

e(P
′
1V P1)−1), (2.13)

where V = E
[
{g(1)

0 (x′1θ0)}2x1x
′
1

]
.

The proof of the corollary is omitted as it is clear from Theorem 2.2 and Remark 2. We

will then move on to study the decomposition (2.5) in the next subsection.
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2.2 Closed-Form Estimation Method

In order to establish a consistent closed-form estimate for θ0 through (2.5), we explore the idea

of double series expansion allured in Dong et al. (2015) for the general single-index modelling

of cross-sectional data. We first define an ordering relationship with respect to p in (2.5).

Definition 2.1. Let Pm = {p : |p| = m}, where m is a non-negative integer. Suppose that

p̂, p̌ ∈ Pm. We say p̂ = (p̂1, . . . , p̂d) < p̌ = (p̌1, . . . , p̌d) if p̂j = p̌j for all j = 1, . . . , l − 1 and

p̂l < p̌l, where 1 < l ≤ d.

By Definition 2.1, we list all Hp (xi)’s in descending order with respect to Pm = {p : |p| = m}
for m = 0, 1, · · · , k − 1 below.

• As m = 0, p in (2.5) has only one realization p = (0, 0, . . . , 0)′. Thus,

Hp(xi) ≡ 1 and a0,p(θ0) = c0,0. (2.14)

• As m = 1, p in (2.5) has d possibilities:

p = (1, 0, . . . , 0)′, Hp(xi) = xi,1, a1,p(θ0) = c0,1θ0,1,

...

p = (0, . . . , 0, 1)′, Hp(xi) = xi,d, a1,p(θ0) = c0,1θ0,d. (2.15)

• As m = 2, . . . , k − 1, we have m∗ :=
(
m+d−1
d−1

)
possibilities of vector p:

p = (m, 0, . . . , 0)′, Hp (xi) = hm (xi,1) , am,p(θ0) = c0,mθ
m
0,1,

p = (m− 1, 1, 0, . . . , 0)′ , Hp (xi) = hm−1 (xi,1)h1 (xi,2) , am,p(θ0) =
√
mc0,mθ

m−1
0,1 θ0,2,

...

p = (0, . . . , 0,m)′ , Hp (xi) = hm (xi,d) , am,p(θ0) = c0,mθ
m
0,d. (2.16)

Therefore, a detailed ordering for all p’s in (2.14)-(2.16) is as follows:

P0 : p1 = (0, 0, . . . , 0),

P1 :


p2 = (1, 0, . . . , 0),

...

pd+1 = (0, 0, . . . , 1),

...
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Pk−1 :



p (d+k−2)!
d!(k−2)!

+1
= (k − 1, 0, . . . , 0),

p (d+k−2)!
d!(k−2)!

+2
= (k − 2, 1, . . . , 0),

...

p (d+k−1)!
d!(k−1)!

= (0, 0, . . . , k − 1).

(2.17)

Then it allows us to rewrite model (1.1) as

yi = Z (xi)
′ β0,K + δ0,k (x′iθ0) + ei, (2.18)

where Z(xi) = (z1(xi), . . . , zK(xi))
′, each zj(xi) for j = 1, . . . , K represents Hp (xi) associated

with p based on (2.14)-(2.17), and β0,K is a K × 1 vector consisting of the corresponding

coefficients am,p(θ0)’s. Moreover, it is easy to check that the cardinality of Pm = {p : |p| = m}
in Definition 2.1 is

(
m+d−1
d−1

)
for m = 0, 1 . . . , k − 1, so we can calculate the length of Z(w) as

K =
∑k−1

m=0

(
m+d−1
d−1

)
= (d+k−1)!

d!(k−1)!
= O

(
kd
)
.

Notice that in equation (2.18), the regressors {xi, i ≥ 1} contained in {Z(xi), i ≥ 1} and

the unknown parameter β0,K are separated completely and form an approximate linear model.

Since all the functions in the vector Z(·) are known, model (2.18) is actually parametrically

linear. Hence, the OLS method gives an estimate of the form:

β̂K =

(
N∑
i=1

Z (xi)Z (xi)
′

)−1 N∑
i=1

Z (xi) yi. (2.19)

In order to investigate (2.19), we first introduce the following conditions.

Assumption 3: Let f(·) be the pdf of x1.

1. Suppose exp (‖x‖2/2) f(x) ≤M uniformly on Rd.

2. Suppose 0 < ρ1 ≤ λmin (Zx) uniformly in k, where λmin (Zx) denotes the minimum eigen-

value of Zx, Zx = E
[
Z (x1)Z (x1)′

]
, and ρ1 is a positive constant.

3. Let Ψ(N, k) = 1
N

∑K
m=1

∑K
n=1

∫
Rd |Hpm (z)|2 |Hpn (z)|2 f(z)dz, where pm and pn are de-

fined in (2.17) for m,n = 1, . . . , K. As (N, k)→ (∞,∞), suppose Ψ(N, k)→ 0.

Assumption 3.1 imposes some restriction on the pdf of x, and excludes heavy-tailed distri-

butions. Assumption 3.2 is standard in the literature (e.g. Assumption 2 of Newey (1997) and

Assumption 3.iii of Su and Jin (2012)). Again, in this paper, we consider the function space

L2(R, exp(−w2/2)) rather than L2(R), thereby we use Hermite polynomials instead of Hermite

functions to decompose the link function. It entails that Hpm(z)’s are not uniformly bounded
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as those used in Dong et al. (2016), which is the reason why we introduce Assumption 3.3

herewith.

Remark 4. For Ψ(N, k), there are two ways to simplify the notation:

1. Impose a stronger version of Assumption 3.1 as follows:

• Suppose exp(‖x‖2)f(z) ≤M uniformly on Rd.

Then, we are able to further organise Ψ(N, k):

Ψ(N, k) =
1

N

K∑
m=1

K∑
n=1

∫
Rd
|Hpm (x)|2 |Hpn (x)|2 exp(−‖x‖2) · exp(‖x‖2)f(x)dx

≤ O(1)
1

N

K∑
m=1

K∑
n=1

∫
Rd
|Hpm (x)|2 |Hpn (x)|2 exp(−‖x‖2)dx

≤ O(1)
K

N

K∑
m=1

∫
Rd
|Hpm (x)|2 exp(−‖x‖2/2)dx = O

(
K2

N

)
= O

(
k2d

N

)
.

2. We can follow Assumption 3.iii of Su and Jin (2012), i.e. assuming E|Hp (x) |4 is uni-

formly bounded.

Either restriction above will make Ψ(N, k) reduce to k2d

N
under the restrictive condition on

the pdf of x1. Indeed, as the link function g0(w) is potentially non-integrable and unbounded,

one may need to impose some restrictions on the pdf of the regressors.

Lemma 2.1. Under Assumptions 1.1, 1.3 and 3, as N →∞,

∥∥β̂K − β0,K

∥∥ = OP

(√
kd

N

)
+OP (k−r/2).

Notice that the leading term of the rate in Lemma 2.1 is kd/2N−1/2, which indicates the

curse of dimensionality caused by the decomposition (2.5), and thus is a price we have to pay

for establishing a consistent closed-form estimate for θ0. On the other hand, it allows us to drop

the assumption “Θ is a compact set” and avoid being bothered by the residual term V −1SN(g̃k)

involved in Theorem 2.2.

We are ready to proceed further to establish an asymptotically consistent estimate for θ0.

A case of c0,1 6= 0. In view of (2.15), the 2nd to (d+ 1)th elements of β̂K are the estimates

of c0,1θ0,1, . . . , c0,1θ0,d. Moreover, because of Lemma 2.1 and ‖β̂dK − βd0,K‖ ≤ ‖β̂K − β0,K‖,
where β̂dK and βd0,K denote vectors of the 2nd to (d+ 1)th elements of β̂K and β0,K , respectively,

the estimates of c0,1θ0,1, . . . , c0,1θ0,d are consistent. Therefore, it follows from the identification

condition and the continuous mapping theorem that ‖β̂dK‖ =
(∑d+1

j=2 β̂
2
K,j

)1/2

→P |c0,1|, where
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β̂K,j denotes the jth element of β̂K . Since θ0,1 > 0, β̂K,2 6= 0 and β̂K,2 has the same sign as c0,1

with a probability approaching one, we define the estimate of θ0 as

θ̂ =
1

ĉ1

Qβ̂K , (2.20)

where ĉ1 = sgn(β̂K,2)‖β̂dK‖ and Q =
(
0d×1, Id, 0d×(K−d−1)

)
. With the above set-ups, the

following theorem establishes an asymptotic normality for θ̂ given in (2.20).

Theorem 2.3. Under Assumptions 1.1, 1.3 and 2.4.ii and 3. As N →∞,

√
N
(
θ̂ − θ0

)
→D N

(
0, σ2

ec
−2
0,1Ω1

)
,

where Ω1 = limk→∞QZ−1
x Q′, and Zx = E[Z(x1)Z(x1)′] is defined in Assumption 3.

According to Theorem 2.3, it is obvious that for the closed-form estimate (2.20), the asymp-

totic efficiency is heavily affected by c0,1. We will further confirm this argument in the Monte

Carlo study later on.

Remark 5. Although the asymptotic covariance matrix in Theorem 2.2 is one dimension lower

than that in Theorem 2.3, we still take a further look at if they do share certain similarity in

terms of efficiency. Since they both share the same term σ2
e , we will ignore it in the following

discussion. For the asymptotic covariance matrix given in Theorem 2.3 (i.e. c−2
0,1 Ω1), we now

reshuffle Z(x1) a little bit and let the first d elements be x1 = (x1,1, . . . , x1,d)
′. This can easily

be achievable, because the order of Z(x1) is totally subjective. Then we need only to consider

c−2
0,1Q̃Z−1

x Q̃′, where Q̃ =
(
Id, 0d×(K−d)

)
. Partition Zx = E[Z(x1)Z(x1)′] as

Zx =

 Zx,11 Zx,12

Zx,21 Zx,22

 ,

where Zx,11 is the d× d principal sub-matrix of Zx. Then Z−1
x can be expressed as

Z−1
x =

 Z̃−1
x,11 Z̃−1

x,11Zx,12Z−1
x,22

Z−1
x,22Zx,21Z̃−1

x,11 Z−1
x,22 + Z−1

x,22Zx,21Z−1
x,11Zx,12Z−1

x,22

 ,

where Z̃x,11 = Zx,11 −Zx,12Z−1
x,22Zx,21 and Zx,11 = E[x1x

′
1]. Thus, we are able to write

c−2
0,1Q̃Z−1

x Q̃′ = c−2
0,1Z̃

−1
x,11 = c−2

0,1

(
Zx,11 −Zx,12Z−1

x,22Zx,21

)−1
. (2.21)

Based on the above partition, it is clear that the difference between two asymptotic covariance
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matrices lies at the difference between

(P ′1V P1)−1 and c−2
0,1

(
Zx,11 −Zx,12Z−1

x,22Zx,21

)−1
. (2.22)

In general, it is hard to compare them and let alone the fact (P ′1V P1)−1 is one dimension lower.

We now focus on some special cases below.

Further suppose that the elements, x1,1, · · · , x1,d, of x1 = (x1,1, . . . , x1,d)
′ are independent

of each other and the density of each element x1,j for j = 1, . . . , d is fj(x) = 1√
2π

exp(−x2/2).

Then it is easy to check that Zx,12 and Zx,12 become 0 matrices, so the comparison (2.22)

immediately reduces to

(P ′1V P1)−1 =

{
P ′1E

[ (
g

(1)
0 (θ′0x1)

)2

x1x
′
1

]
P1

}−1

and c−2
0,1 Id. (2.23)

Therefore, it is clear that if |g(1)
0 (w)| is bounded away from zero and above from infinity,

two estimates have equivalent efficiency (up to a constant) ignoring the difference in dimen-

sions. In particular, for the linear models g0(w) = c0,1w + c0,0, we can see (P ′1V P1)−1 =

(c2
0,1P

′
1E[xx′]P1)−1 = c−2

0,1 Id−1, which means both estimates are exactly the same in terms of the

forms of asymptotic covariance matrices.

We now focus on testing c0,1 (i.e. H0 : c0,1 = 0; H1 : c0,1 6= 0), which is equivalent to

testing the joint significance of Qβ0,K due to the fact that ‖θ0‖ = 1. It is easy to show that

σ̂2
e =

1

N

N∑
i=1

(
yi −Z(xi)

′β̂K

)2

→P σ
2
e ,

Ξ̂ = σ̂2
eQ

(
1

N

N∑
i=1

Z(xi)Z(xi)
′

)−1

Q′ →P σ
2
e Ω1, (2.24)

which gives Ξ̂−1/2 ·
√
N
(
Qβ̂K −Qβ0,K

)
→D N (0, Id). The significance test can be established

by the following corollary.

Corollary 2.2. Let the conditions of Theorem 2.3 hold. Under the null (i.e. H0 : c0,1 = 0),

Nβ̂′KQ
′Ξ̂−1Qβ̂K →D χ2(d), where Ξ̂ is defined in (2.24).

A general case that c0,m0 6= 0 with m0 ≥ 1 an integer. Such m0 does exist, other-

wise g0 becomes a constant function. Note that the coefficients for hm0(xi,1), . . . , hm0(xi,d)

are c0,m0θ
m0
0,1 , . . . , c0,m0θ

m0
0,d by (2.16). The corresponding estimates of these coefficients are the

mth
1 , . . . ,m

th
d elements of β̂K , respectively, where m1 = (d+m0−1)!

d!(m0−1)!
+ 1, m2 = m1 + (d+m0−1)!

(d−1)!m0!
−

(d+m0−2)!
(d−2)!m0!

+1, m3 = m2 + (d+m0−2)!
(d−2)!m0!

− (d+m0−3)!
(d−3)!m0!

+1, . . ., md = (d+m0)!
d!m0!

. Since m0 is fixed, it follows
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from Lemma 2.1 and the continuous mapping theorem that
(∑d

i=1(β̂2
K,mi

)1/m0

)m0/2

→P |cm0|
by the identification restriction imposed on θ0, where β̂K,mj denotes the mth

j element of β̂K for

j = 1, . . . , d. Hence, by the same reason as the case of c0,1 6= 0, a consistent estimate for c0,m0

is ĉm0 = sgn(β̂K,m1)
(∑d

i=1(β̂2
K,mi

)1/m0

)m0/2

.

Meanwhile, because again β̂K,m1 is the consistent estimate of c0,m0θ
m0
0,1 , it follows from the

continuous mapping theorem that θ̂0,1 = (β̂K,m1/ĉm0)
1/m0 is a consistent estimate for θ0,1. Let

us construct Q in the same fashion as before such that Qβ̂K consists of the mth
1 , (m1 +1)th, · · · ,

(m1 +d−1)th elements in β̂K . These elements are the estimates of c0,m0θ
m0
0,1 ,
√
m0c0,m0θ

m0−1
0,1 θ0,2,

· · · , √m0c0,m0θ
m0−1
0,1 θ0,d, respectively. With ĉm0 and θ̂0,1 at hand, we are finally able to define

an estimate for θ0 of the form:

θ̂ = Q̂1Q β̂K and Q̂1 = diag

(
1

ĉm0 θ̂
m0−1
0,1

,
θ̂0,1

√
m0β̂m1

, · · · , θ̂0,1
√
m0β̂m1

)
. (2.25)

The following theorem establishes another asymptotic normality for θ̂ of (2.25).

Theorem 2.4. Suppose that m0 ≥ 1 is an integer such that c0,m0 6= 0. Under the conditions of

Theorem 2.3, as N →∞, the estimate of (2.25) obeys

√
N
(
θ̂ − θ0

)
→D N(0, σ2

eΩ2),

where Q1 = c−1
0,m0

θ−mo+1
0,1 diag(1,m

−1/2
0 , . . . ,m

−1/2
0 ), Ω2 = limk→∞Q1QZ−1

x Q′Q1, and Zx is de-

noted in Assumption 3.

Again, for the closed-form estimate given by (2.25), the asymptotic efficiency is heavily

affected by c0,m0 . Also, we can compare the efficiency for Theorem 2.2 and Theorem 2.4 for

some special cases as in Remark 5.

Following the spirit of Corollary 2.2, in order to test if c0,m0 = 0, we need only to implement

the following test.

Corollary 2.3. Let the conditions of Theorem 2.4 hold. For a fixed positive integer m0 ≥ 1,

under the null (i.e. H0 : c0,m0 = 0), Nβ̂′KQ
′Ξ̂−1Qβ̂K →D χ2(d), where Ξ̂ is defined in (2.24)

and Q is denoted in (2.25).

Notice that Theorem 2.4 and Corollary 2.3 simply reduce to Theorem 2.3 and Corollary

2.2, respectively, when m0 = 1. When we need to implement the closed-form estimate, how

to choose m0 remains unknown to us. One fact is that smaller m0 involves less computation,

which may lead to more accurate approximation in practice.
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2.3 Estimation of the link function

Based on the two methods provided in Sections 2.1 and 2.2, we now assume that we already

obtain a consistent estimate, still denoted by θ̂, which satisfies θ̂ − θ0 = OP

(
1√
N

)
. To recover

the unknown link function, θ̂ is plugged in (2.9) and then the estimator of C0,k is obtained as

Ĉk =

[
N∑
i=1

H(x′iθ̂)H(x′iθ̂)
′

]−1 N∑
i=1

H(x′iθ̂)yi. (2.26)

The following assumption is necessary to facilitate the development.

Assumption 4: Let ε be a relatively small positive number. As (N, k) → (∞,∞), let

Φ(N, k)→ 0 uniformly in θ ∈ {θ : ‖θ − θ0‖ < ε}, where

Φ(N, k) =
1

N

k∑
m=1

k∑
n=1

∫
R
h2
m(z)h2

n(z)fθ(z)dz,

where fθ(z) is the pdf of z = x′θ as defined in Assumption 1.

Assumption 4 is in the same spirit as Assumption 3.3. The discussion similar to those given

in Remark 4 applies here. Further investigating (2.26) with Assumption 4, we then obtain the

following theorem.

Theorem 2.5. Assume that θ̂−θ0 = OP

(
1√
N

)
. Under Assumptions 1, 2.3 and 4, as N →∞,

1. ‖Ĉk − C0,k‖ = OP

(√
k
N

)
+OP

(
k−r/2

)
, where Ĉk is denoted in (2.26);

2. ‖ĝk(w)− g0(w)‖L2 = OP

(√
k
N

)
+OP

(
k−r/2

)
, where ĝk(w) = Ĉ ′kH(w).

So far, we have successfully established a consistent closed-form estimates for θ0 and then

the link function g0. In the next section, we will evaluate the proposed model and the estimation

methods using an extensive Monte Carlo study.

3 Monte Carlo Study

In this section, we perform a Monte Carlo study to investigate the finite sample properties of

our estimates based on 10,000 replications. The data generating process (DGP) for model (1.1)

is as follows:

Let θ0 = (θ0,1, θ0,2)′ = (0.8,−0.6)′. For regressor xi, suppose that xi = (xi,1, xi,2)′ with

xi,1 ∼ N(1, 1) and xi,2 ∼ N(0, 4). For the error term, assume ei ∼ N(0, 1). In order to

examine the arguments that we made under Theorems 2.3 and 2.4, we consider the next

4 options for g0(w):

17



(a). g0(w) = 0.5(h1(w) + h3(w)) = 0.5(w3 − 2w),

(b). g0(w) = 10(h1(w) + h3(w)) = 10(w3 − 2w),

(c). g0(w) = 0.5 exp(w),

(d). g0(w) = 10 exp(w).

(3.1)

Throughout the whole simulation process, the truncation parameter is always chosen as

k = bN1/4c (see the Monte Carlo studies of Su and Jin (2012) and Dong et al. (2016) for

similar setting). Although k = bN1/4c may not be an optimal choice, the asymptotic results

above remain valid. For the case of nonparametric models, while existing studies have examined

the choice of optimal truncation parameter (e.g. Gao et al. (2002)), it does not seem that there

is such work available about how to choose an optimal k for the single-index model to the best

of our knowledge. Thus we leave it for future work.

3.1 Hypothesis Test

In order to investigate the finite sample properties of the hypothesis test given in Corollary 2.3,

we implement the following three hypotheses for each generated data set:

Hypothesis 1 : “H0 : c0,1 = 0, H1 : c0,1 6= 0”;

Hypothesis 2 : “H0 : c0,2 = 0, H1 : c0,2 6= 0”;

Hypothesis 3 : “H0 : c0,3 = 0, H1 : c0,3 6= 0”.

Specifically, for each replication, we calculate the test statistic by Corollary 2.3 and compare

it with the critical value (at 5% significant level) with respect to the distribution of χ2(2). After

10,000 replications, we then report the probability that we reject null. According to the four

options defined in (3.1), we expect to reject both “H0 : c0,1 = 0” and “H0 : c0,3 = 0” for all

(a) − (d) (i.e. testing power). Also, we expect to accept “H0 : c0,2 = 0” for (a) and (b) (i.e.

testing size) and reject “H0 : c0,2 = 0” for (c) and (d) (i.e. testing power). The results are

reported below in Table 1.

As we can see from Table 1, the proposed test (i.e. Corollary 2.3) has good size and power

values, which are close to what we expect at 5% significant level.
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Table 1: The Size and Power of Hypothesis Tests

Null Hypothesis

g0(w) in (3.1) N c0,1 = 0 c0,2 = 0 c0,3 = 0

(a) 400 1.0000 0.0556 1.0000

800 1.0000 0.0572 1.0000

1600 1.0000 0.0509 1.0000

(b) 400 1.0000 0.0563 1.0000

800 1.0000 0.0571 1.0000

1600 1.0000 0.0510 1.0000

(c) 400 0.9996 0.9956 0.9998

800 1.0000 1.0000 0.9964

1600 1.0000 1.0000 1.0000

(d) 400 0.9997 0.9974 0.9999

800 1.0000 1.0000 0.9998

1600 1.0000 1.0000 1.0000

1Cells in the box indicate size.

3.2 Bias and RMSE

For each option of g0(w) given in (3.1), we estimate θ0 by θ̂, denoted for either θ̃ in (2.10) or

θ̂ in (2.25) for notational simplicity.3 We consider the case of m0 = 1, 2, 3. Moreover, for each

generated data set and each estimate θ̂ = (θ̂1, θ̂2)′, we record the bias and squared bias for

θ̂j with j = 1, 2. After 10,000 replications, we report the mean bias and root mean squared

error (RMSE) results in Table 2 below. Note that compared to (b) and (d) in (3.1), options (a)

and (c) have relatively small c0,1 and c0,3. Therefore, if we can choose m0 correctly, we expect

the closed-form estimates to have better performances for options (b) and (d). Specifically, for

m0 = 1, 3, we expect the closed-form estimators to have smaller bias and RMSE for options (b)

and (d); although we fail to reject “H0 : c0,2 = 2” at a quite high probability for options (a)

and (b), we still report the bias and RMSE for these two cases as a comparison.

As can be seen from Table 2, the estimates in the dark cells have relatively large bias and

RMSE values. Apart from the dark cells, RMSEs generally decrease as the sample size increases.

For the closed-form estimates, the overall RMSEs for options (b) and (d) are much smaller than

those of options (a) and (c). Although we have pointed out that the asymptotic covariance of

Theorem 2.2 reaches the information lower bound, it seems that (2.10) does not out-perform

(2.25) in general. One possible reason is due to the bias caused by the term (P ′1V P1)−1P ′1SN(g̃k)

in Theorem 2.2.

3By (1) of Theorem 2.1, we can explicitly calculate the fast rate of 1− θ̃′θ0 for the method studied in Section

2.1, because θ0 is known and θ̃ is achievable for our simulation study. As the value of 1− θ̃′θ0 is already reflected
by the biases and RMSEs reported in Table 2, we do not calculate it again for the purpose of conciseness.
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Table 2: Bias and MSE

Estimator (2.10) (2.25)

mo = 1 mo = 2 mo = 3

go(w) in (3.1) N θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2 θ̂1 θ̂2

Bias (a) 400 -0.0008 0.0001 -0.0065 -0.0010 0.0024 0.6012 -0.0036 -0.0022

800 -0.0006 -0.0003 -0.0032 -0.0001 0.0001 0.5865 -0.0028 -0.0014

1600 -0.0005 -0.0001 -0.0019 -0.0004 0.0005 0.6012 -0.0017 -0.0013

(b) 400 -0.0004 0.0012 0.0000 0.0000 0.0023 0.6029 0.0000 0.0000

800 -0.0008 -0.0006 0.0000 0.0000 -0.0006 0.5864 0.0000 0.0000

1600 -0.0006 -0.0001 0.0000 0.0000 0.0010 0.6018 0.0000 0.0000

(c) 400 -0.0019 -0.0004 -0.0031 0.0003 -0.0149 -0.0005 -0.0353 -0.0154

800 -0.0013 -0.0005 -0.0012 0.0000 -0.0056 -0.0021 -0.0421 -0.0116

1600 -0.0006 -0.0001 -0.0007 -0.0001 -0.0030 -0.0013 -0.0208 -0.0095

(d) 400 -0.0013 0.0004 -0.0003 0.0008 -0.0043 0.0027 -0.0066 -0.0036

800 -0.0010 0.0001 -0.0001 -0.0001 -0.0002 0.0001 -0.0049 -0.0002

1600 -0.0009 0.0000 0.0001 0.0001 0.0000 0.0000 0.0002 0.0007

RMSE (a) 400 0.0238 0.0279 0.0593 0.0753 0.2580 0.8068 0.0345 0.0442

800 0.0168 0.0199 0.0437 0.0567 0.2625 0.7967 0.0327 0.0420

1600 0.0158 0.0190 0.0306 0.0401 0.2571 0.8090 0.0214 0.0279

(b) 400 0.0243 0.0374 0.0028 0.0038 0.2578 0.8083 0.0017 0.0022

800 0.0159 0.0204 0.0021 0.0028 0.2626 0.7973 0.0016 0.0021

1600 0.0178 0.0232 0.0015 0.0020 0.2566 0.8091 0.0010 0.0014

(c) 400 0.0312 0.0408 0.0436 0.0586 0.0988 0.1162 0.1402 0.1356

800 0.0224 0.0293 0.0266 0.0351 0.0502 0.0626 0.1684 0.1583

1600 0.0173 0.0218 0.0183 0.0243 0.0351 0.0453 0.1023 0.1063

(d) 400 0.0277 0.0431 0.0207 0.0310 0.0602 0.0800 0.0528 0.0594

800 0.0226 0.0332 0.0061 0.0080 0.0138 0.0178 0.0581 0.0648

1600 0.0198 0.0314 0.0018 0.0025 0.0049 0.0065 0.0154 0.0178

1Dark cells demonstrate what happens to bias and RMSE, if we still use (2.25) after failing to reject the null.
2Cells in boxes highlight the best estimates for each case in terms of RMSE.

4 Empirical Study

In this section, we provide an application of the single-index model proposed in this paper to the

analysis of large commercial banks in the U.S. Compared with the conventional fully-parametric

translog cost function. Model (1.1) is suitable for modelling the production technology, because

the single-index setting (i.e., g0(x′θ0)) is more flexible than the commonly-used translog linear

form, which limits the variety of shapes the cost function is permitted to take.

The dataset used in this application is obtained from the Reports of Income and Condition

(Call Reports) published by the Federal Reserve Bank of Chicago. More specifically, we focus

on the data of 2004 only and examine large banks with assets of at least $1 billion. To select

the relevant variables, we follow the commonly-accepted intermediation approach (Sealey and

Lindley, 1977). On the input side, three inputs are included: (1) the quantity of labor; (2)
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the quantity of purchased funds and deposits; and (3) the quantity of physical capital, which

includes premises and other fixed assets. On the output side, three outputs are specified:

(1) consumer loans; (2) securities, which includes all non-loan financial assets; and (3) non-

consumer loans, which is composed of industrial, commercial, and real estate loans. All the

quantities are constructed as in Berger and Mester (2003).

Traditionally, when one models the translog cost function in the field of production econo-

metrics, a common approach is

ln
C

w3

= α0 +
2∑
j=1

αj ln
wj
w3

+
3∑

m=1

γm ln ym + e, (4.1)

where we divide C, w1 and w2 by w3 to maintain linear homogeneity with respect to input

prices (see Feng and Zhang (2012) for similar treatment on the homogeneity); C is total cost;

ym for m = 1, . . . , 3 are variables representing outputs; and wj for j = 1, . . . , 3 are variables

representing input prices. Then in order to capture the non-linearity of regressors, one can

further introduce interaction terms, quadratic terms or even higher order polynomials to (4.1)

(see Feng and Serletis (2008) and Feng and Zhang (2012) for some detailed examples). Although

introducing interaction terms and polynomials to the system is convenient for the purpose

of modelling the non-linearity of the regressors, it is impossible to exhaust all the possible

functional forms for (4.1) in practice.

In order to allow for a flexible functional form for the translog cost function, we propose

using a single-index model of the form:

ln
C

w3

= C

(
w1

w3

,
w2

w3

, y1, y2, y3

)
+ e = g0(x′θ0) + e, (4.2)

where x = (ln w1

w3
, ln w2

w3
, ln y1, ln y2, ln y3, 1)′, C(·) represents the normalized cost function,

and e is a random error.

For the purpose of comparison and selection of an optimal truncation parameter, we first

estimate (4.1) by OLS, and estimate (4.2) by (2.10) and (2.19) under different k’s. For each

estimation method, we calculate the root of prediction mean of squares (RPREMS) by the next

formula:

RPREMS =

√√√√ 1

N

N∑
i=1

(ŷ−i − yi)2, (4.3)

where ŷ−i denotes the leave-one-out estimate (i.e. we implement estimation without the ith

individual, and then use the estimate and observation on the ith individual to calculate the

prediction error). More details and discussions on using RPREMS as a criterion to measure
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the performances of different methods can be seen in Chu et al. (2016).

Table 3: Root of Prediction Mean of Squares (RPREMS)

Model (4.1) with OLS 0.1961

k = 2 k = 3 k = 4 k = 5

Model (4.2) with Method (2.10) 0.1961 0.1921 0.2472 0.5462

Model (4.2) with Method (2.19) 0.1961 0.1952 0.1952 0.1958

As we can see from Table 3, the single-index setting with the method (2.10) provides the

best RPREMS when k = 2. Generally speaking, all models and methods work well, but the

single-index model fits the dataset slightly better in terms of RPREMS. This is not surprising,

as (4.1) is just a special case of (4.2) by setting the truncation parameter k to 2. That is also

why the three numbers in the second column of Table 3 are identical. It is noteworthy that for

method (2.10) the RPREMES goes up very quickly as k increases, which matches Lemma 2.1

well and is due to the curse of dimensionality caused by expansion (2.5).

Below we report the results of the optimal estimate in terms of RPREMES (i.e. model

(4.2) with method (2.10) and k = 2). The estimated parameters and their corresponding

standard deviations are reported in the Table 4. Moreover, we plot the estimated link function

ĝ(w) = 22.0732 · h0(w)− 4.2859 · h1(w) + 0.9606 · h2(w) (solid line) and the corresponding 95%

confidence bands (dash lines) in Figure 1 based on 300 replications using the wild bootstrapping

technique. Given the value of θ̂ shown in Table 4, the majority of x′iθ̂ with i = 1, . . . , 466 fall

in the interval [4, 5.6] in our data set, so we concentrate on this particular interval as we plot

the estimated curve below. As shown in Figure 1, the link function (the solid line) is indeed a

nonlinear curve.

Table 4: Parameter Estimates

Regressor ln w1
23

ln w2
23

ln y1 ln y2 ln y3 constant

Est 0.6796 -0.3532 0.1792 0.2333 -0.4782 0.3134

Std 0.0412 0.0035 0.1029 0.0676 0.1102 0.0026

After obtaining the estimates of θ̂ and ĝ(w), one then can follow the traditional methods

used in production econometrics to calculate some interesting results like return to scales,

technical change, and so forth (e.g. Feng and Zhang (2012) and Henderson et al. (2015)). We

omit these results here, as they are not the main focus of this paper.
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Figure 1: The Estimated Link Function ĝ(w)

5 Conclusion

In this study, a cross-sectional single-index model y = g0(x′θ0) + e is considered. Two kinds

of estimation methods have been proposed. The first kind of estimator derived from an op-

timization with constraint of identification condition possesses two different convergence rates

along the direction θ0 and that orthogonal to θ0. The second kind of estimator is of closed-form

which is derived from a simple linear model and hence relaxes the compactness condition on

the parameter space. The corresponding asymptotic properties for the estimates have been

established. The finite sample properties of the two estimates have been evaluated through an

extensive Monte Carlo study and then an empirical dataset.

In some special situations we have compared the asymptotic efficiency of the estimates (2.10)

and (2.25), but it is still an open question in general. Additionally, we have also implemented

an extensive simulation study for the purpose of comparison. To conclude, in order to get a

reliable estimate in practice, one may need to get an initial estimate from (2.25), and then

use the initial values to start estimation procedure for (2.10) (or some kernel based method

documented in Xia (2006)4).
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Appendix A: Proofs

Lemma A.1. Let g(i)(w) ∈ L2(R, exp(−w2/2)) where 0 ≤ i ≤ r and r ≥ 1. Then ‖δk(w)‖2L2 = O(k−r)

and ‖δ′k(w)‖2L2 = o(1) as k →∞.

4It is noteworthy that the two algorithms studied in Xia (2006) both have requirements on the initial
estimates.
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Proof of Lemma A.1:

By definition, Hj(w) = (−1)jew
2/2(e−w

2/2)(j), and integration by parts we have

cj(g) =

∫
g(w)hj(w)e−w

2/2dw =
(−1)j

bj

∫
g(w)d(e−w

2/2)(j−1)

=
(−1)j

bj

∫
g(1)(w)(e−w

2/2)(j−1)dw = −bj−1

bj

(−1)j−1

bj−1

∫
g(1)(w)hj−1(w)e−w

2/2dw

=− 1√
j
cj−1(g(1)),

where bj =
√
j! and cj−1(g(1)) is the coefficient of the expansion of g(1)(w). Hence, it follows from

induction that for j ≥ r,

cj(g) = (−1)r
1√

j · · · (j − r)
cj−r(g

(r)). (A.1)

Observe that, for k > r,

|γk(w)|2 =

∫
γ2
k(w)e−w

2/2dw =

∞∑
j=k

c2
j (g) =

∞∑
j=k

1

j · · · (j − r)
c2
j−r(g

(r))

≤O(k−r)
∞∑
j=k

c2
j−r(g

(r)) = o(k−r),

since
∑∞

j=k c
2
j−r(g

(r)) = o(1) due to Parseval’s equality
∑∞

j=r c
2
j−r(g

(r)) = ‖g(r)(w)‖2L2 <∞.

In addition, noting that h′j(w) =
√
jhj−1(w),

|γ(1)
k (w)|2 =

∫
|γ(1)
k (w)|2e−w2/2dw =

∞∑
j=k

c2
j (g)j =

∞∑
j=k

1

j
c2
j−1(g(1))j =

∞∑
j=k

c2
j−1(g(1)) = o(1).

The proof is then completed. �

Proof of Theorem 2.1:

It is easy to see WN,λ(θ, g) and WN,λ(θ, Ck) defined in (2.8) and (2.9) are interchangeable (i.e.

LN (θ, g) and LN (θ, Ck) are interchangeable). Furthermore, note the term λ(‖θ‖2 − 1) in (2.8)

and (2.9) are independent of the sample {yi, xi}Ni=1. Thus, we focus on LN (θ, g) first and show

maxΘ×G |LN (θ, g)− L(θ, g)| →P 0 by using Lemma A2 of Newey and Powell (2003).

Condition (1) of Lemma A2 of Newey and Powell (2003) holds according to Assumption 1.2. By

Weak Law of Large Numbers (WLLN), it is easy to know LN (θ, g) = L(θ, g)(1+oP (1)), which indicates

that condition (ii) of Lemma A2 of Newey and Powell (2003) holds. We then just need to show the

continuity of L1(θ, g), which then indicates that the continuity of LN (θ, g) holds with probability

approaching to 1 (i.e. condition (iii) of Lemma A2 of Newey and Powell (2003) holds). Further note

that L(θ, g) = L1(θ, g) + σ2
e , where L1(θ, g) = E[g0(x′1θ0) − g(x′1θ)]

2. Thus, we just need to focus on

the continuity of L1(θ, g) below. To do so, for any given (θ1, g1) and (θ2, g2) belonging to Θ×G, write

|L1(θ1, g1)− L1(θ2, g2)| ≤ |L1(θ1, g1)− L1(θ1, g2)|+ |L1(θ1, g2)− L1(θ2, g2)| . (A.2)
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For the first term on right hand side (RHS) of (A.2), write

|L1(θ1, g1)− L1(θ1, g2)|

=
∣∣∣E [(g0(x′1θ0)− g1(x′1θ1)

)2 − (g0(x′1θ0)− g2(x′1θ1)
)2]∣∣∣

=
∣∣E [(g2(x′1θ1)− g1(x′1θ1)

)
·
(
2g0(x′1θ0)− g1(x′1θ1)− g2(x′1θ1)

)]∣∣
≤
{
E
[
g2(x′1θ1)− g1(x′1θ1)

]2 · E [2g0(x′1θ0)− g1(x′1θ1)− g2(x′1θ1)
]2}1/2

,

where the inequality follows from Cauchy-Schwarz inequality. We then focus on

E
[
g2(x′1θ1)− g1(x′1θ1)

]2
and E

[
2g0(x′1θ0)− g1(x′1θ1)− g2(x′1θ1)

]2
respectively. Note that

E
[
g2(x′1θ1)− g1(x′1θ1)

]2
=

∫
(g1(w)− g2(w))2fθ1(w)dw

=

∫
(g1(w)− g2(w))2 exp(−w2/2) · exp(w2/2)fθ1(w)dw

≤ O(1)

∫
(g1(w)− g2(w))2 exp(−w2/2)dw = O(1)‖g1 − g2‖2L2 ,

where the inequality follows from Assumption 1.2.

For ∀(θ, g) ∈ Θ×G,

E[g(x′1θ)]
2 =

∫
(g(w))2fθ(w)dw =

∫
(g(w))2 exp(−w2/2) · exp(w2/2)fθ(w)dw

≤ O(1)

∫
(g(w))2 exp(−w2/2)dw = O(1)‖g‖2L2 ≤ O(1),

where the first inequality follows from Assumption 1.2, and the second inequality follows from Θ×G
being compact set. Similarly, we have

E
[
2g0(x′1θ0)− g2(x′1θ1)− g1(x′1θ2)

]2
≤ 8E

[
g0(x′1θ0)

]2
+ 4E

[
g2(x′1θ1)

]2
+ 4E

[
g1(x′1θ2)

]2 ≤ O(1).

Then, we have shown

|L1(θ1, g1)− L1(θ1, g2)| ≤ O(1)‖g1 − g2‖L2 . (A.3)

We now consider the second term on RHS of (A.2):

|L1(θ1, g2)− L1(θ2, g2)|

=
∣∣∣E [(g0(x′1θ0)− g2(x′1θ1)

)2 − (g0(x′1θ0)− g2(x′1θ2)
)2]∣∣∣

=
∣∣E [(g2(x′1θ2)− g2(x′1θ1)

)
·
(
2g0(x′1θ0)− g2(x′1θ1)− g2(x′1θ2)

)]∣∣
≤
{
E
[
g2(x′1θ2)− g2(x′1θ1)

]2 · E [2g0(x′1θ0)− g2(x′1θ1)− g2(x′1θ2)
]2}1/2

.
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Similar to the above, it is easy to show E [2g0(x′1θ0)− g2(x′1θ1)− g2(x′1θ2)]2 is bounded uniformly

on Θ×G, so we just need to focus on E [g2(x′1θ2)− g2(x′1θ1)]2. Write

E
[
g2(x′1θ2)− g2(x′1θ1)

]2
= E

[
(θ2 − θ1)′x1x

′
1(θ2 − θ1)

{
g

(1)
2 (x′1θ

∗)
}2
]

≤ ‖θ2 − θ1‖2E
∥∥∥x1x

′
1

{
g

(1)
2 (x′1θ

∗)
}2
∥∥∥ ≤ O(1)‖θ2 − θ1‖2,

where θ∗ lies between θ1 and θ2, and the second inequality follows from Assumption 1.2. Therefore,

we have

|L1(θ1, g2)− L1(θ2, g2)| ≤ O(1)‖θ2 − θ1‖. (A.4)

By (A.3), (A.4) and the fact that L(θ, g) = L1(θ, g) + σ2
e , we immediately obtain

|L(θ1, g1)− L(θ2, g2)| ≤ O(1) ‖(θ1, g1)− (θ2, g2)‖2 ,

which indicates the continuity of L(θ, g). Then we have shown maxΘ×G |LN (θ, g)− L(θ, g)| →P 0.

It is easy to see that for (2.8), WN,λ(θ0, g0) = σ2
e + oP (1) regardless of the value of λ. If (θ̃, g̃) 6→P

(θ0, g0), then we have WN,λ(θ̃, g̃) > σ2
e with probability approaching 1 based on the above analysis,

which violates the definition of (2.10). Therefore, we must have (θ̃, g̃) →P (θ0, g0). The proof is now

completed. �

Remark 6. By definition of (2.10), we have

0 =
∂

∂θ
W
N,λ̃

(θ̃, C̃k), 0 =
∂

∂Ck
W
N,λ̃

(θ̃, C̃k), 0 =
∂

∂λ
W
N,λ̃

(θ̃, C̃k).

Note that 0 = ∂
∂λWN,λ̃

(θ̃, C̃k) gives ‖θ̃‖2 − 1 = 0. Thus, multiplying θ̃′ for both sides of 0 =

∂
∂θWN,λ̃

(θ̃, C̃k) immediately gives

λ̃ =
1

N

N∑
i=1

[
yi − g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ̃)x

′
iθ̃. (A.5)

According to Assumptions 1 and 2, we provide the next lemma before prove the asymptotic

normality for θ̃.

Lemma A.2. Suppose Assumptions 1 and 2.1-2.3 hold. Let V = E

[(
g

(1)
0 (x′1θ0)

)2
x1x

′
1

]
. For

WN,λ(θ, Ck) denoted in (2.9), as N →∞,

1.
∂2WN,λ

∂θ∂θ′

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

→P 2V , where θ lies between θ0 and θ̃;

2. In addition, let Assumption 2.4 hold.

√
NP ′1

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+ P ′1
√
N2SN (g̃k)→D N(0, 4σ2

eP
′
1V P1),

where SN (g̃k) = 1
N

∑N
i=1 [g0(x′iθ0)− g̃k(x′iθ0)] g̃

(1)
k (x′iθ0)xi and P1 is defined above (2.11).
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Proof of Lemma A.2:

Since θ lies between θ0 and θ̃, it is easy to know ‖(θ, g̃k)−(θ0, g0)‖2 →P 0 by Theorem 2.1. Thus, it

is reasonable to focus on a sufficiently small neighbourhood of (θ0, g0) in the following proof. Then the

analysis is similar to the arguments of (2.19)-(2.21) of Amemiya (1993), and part (b) of Lemma B.1

of Yu and Ruppert (2002). Note that one can easily extend the arguments (2.19)-(2.21) of Amemiya

(1993) to the current setting by treating β and ‖ · ‖ of Amemiya (1993) as (θ, g) and ‖ · ‖2 of this

paper respectively, which then becomes exactly the same as Lemma A.2 of Newey and Powell (2003).

It then allows us to write, for example,

1

N

N∑
i=1

(
g(1)(x′iθ)

)2
xix
′
i

∣∣∣
(θ,g)=(θ,g̃k)

= E

[(
g(1)(x′1θ)

)2
x1x

′
1

] ∣∣∣
(θ,g)=(θ,g̃k)

+ oP (1)

by Assumption 2.2, which further allows us to simplify the analysis by focusing on the expectation

like the right hand side above (c.f. Lemma A.2 of Newey and Powell (2003)). Also, in the following

derivations, we will repeatedly use notation gk(w) = H(w)′Ck, which has been defined in (2.3).

(1). We now start focusing on
∂2WN,λ

∂θ∂θ′ |(θ,Ck,λ)=(θ,C̃k,λ̃)
.

∂2WN,λ

∂θ∂θ′

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

=

{
2

N

N∑
i=1

(
g

(1)
k (x′iθ)

′
)2
xix
′
i −

2

N

N∑
i=1

(
yi − gk(x′iθ)

)
g

(2)
k (x′iθ)xix

′
i + 2λId

}∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

:= 2J1,N

∣∣∣
(θ,Ck)=(θ,C̃k)

− 2J2,N

∣∣∣
(θ,Ck)=(θ,C̃k)

+ 2λId

∣∣∣
λ=λ̃

, (A.6)

where the definitions of J1,N and J2,N should be obvious, and gk is denoted in (2.3).

For J1,N , write

J1,N =
1

N

N∑
i=1

(
g

(1)
k (x′iθ)

)2
xix
′
i =

1

N

N∑
i=1

(
g

(1)
0 (x′iθ0)

)2
xix
′
i (A.7)

+
1

N

N∑
i=1

(
g

(1)
k (x′iθ)

′
)2
xix
′
i −

1

N

N∑
i=1

(
g

(1)
0,k(x

′
iθ)
)2
xix
′
i

+
1

N

N∑
i=1

(
g

(1)
0,k(x

′
iθ)
)2
xix
′
i −

1

N

N∑
i=1

(
g

(1)
0 (x′iθ)

)2
xix
′
i

+
1

N

N∑
i=1

(
g

(1)
0 (x′iθ)

)2
xix
′
i −

1

N

N∑
i=1

(
g

(1)
0 (x′iθ0)

)2
xixi

:=
1

N

N∑
i=1

(
g

(1)
0 (x′iθ0)

)2
xix
′
i + J11,N + J12,N + J13,N , (A.8)

where g0,k is denoted in (2.4); the definitions of J11,N , J12,N and J13,N should be obvious. By As-

sumption 2.2, we know

1

N

N∑
i=1

(
g

(1)
0 (x′iθ0)

)2
xix
′
i = E

[(
g

(1)
0 (x′1θ0)

)2
x1x

′
1

]
+ oP (1) .
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We then focus on J11,N to J13,N respectively. For J11,N , we write

‖J11,N‖ |(θ,Ck)=(θ,C̃k)

=

∥∥∥∥∥ 1

N

N∑
i=1

(
Ḣ(x′iθ)

′C
)2
xix
′
i −

1

N

N∑
i=1

(
Ḣ(x′iθ)

′C0,2:k

)2
xix
′
i

∥∥∥∥∥ ∣∣∣(θ,C)=(θ,C̃2:k)

≤
∥∥∥∥E [(Ḣ(x′1θ)

′C
)2
x1x

′
1

]
− E

[(
Ḣ(x′1θ)

′C0,2:k

)2
x1x

′
1

]∥∥∥∥ ∣∣∣(θ,C)=(θ,C̃2:k)
+ oP (1)

=
∥∥∥E [(C − C0,2:k)

′Ḣ(x′1θ)Ḣ(x′1θ)
′(C + C0,2:k)x1x

′
1

]∥∥∥ ∣∣∣
(θ,C)=(θ,C̃2:k)

+ oP (1)

≤
{
E
∣∣∣(C − C0,2:k)

′Ḣ(x′1θ)
∣∣∣2E ∥∥∥Ḣ(x′1θ)

′(C + C0,2:k)x1x
′
1

∥∥∥2
}1/2 ∣∣∣

(θ,C)=(θ,C̃2:k)
+ oP (1)

≤
{

(C − C0,2:k)
′E
[
Ḣ(x′1θ)Ḣ(x′1θ)

′
]

(C − C0,2:k)
}1/2

·
{

2E
∥∥∥g(1)

k (x′1θ)xx
∥∥∥2

+ 2E
∥∥∥g(1)

0,k(x
′
1θ)x1x

′
1

∥∥∥2
}1/2 ∣∣∣

(θ,C)=(θ,C̃2:k)
+ oP (1)

≤ O(1)‖C̃2:k − C0,2:k‖+ oP (1) ≤ O(1)‖g̃k − g0‖L2 + oP (1) = oP (1),

where C0,2:k and C̃2:k denote the vectors consisting of the 2nd to kth elements of C0,k and C̃krespectively,

the first inequality follows from Assumption 2.2, the second inequality follows from Cauchy-Schwarz

inequality, the fourth inequality follows from Assumptions 1.2 and 2.3, and the last equality follows

from Theorem 2.1.

For J12,N , write

‖J12,N‖ |θ=θ =

∥∥∥∥∥ 1

N

N∑
i=1

(
g

(1)
0,k(x

′
iθ)
)2
xix
′
i −

1

N

N∑
i=1

(
g

(1)
0 (x′iθ)

)2
xix
′
i

∥∥∥∥∥ ∣∣∣θ=θ
≤
∥∥∥∥E [{(g(1)

0,k(x
′
1θ)
)2
−
(
g

(1)
0 (x′1θ)

)2
}
x1x

′
1

]∥∥∥∥ ∣∣∣θ=θ + oP (1)

=
∥∥∥E [(g(1)

0,k(x
′
1θ)− g

(1)
0 (x′1θ)

)(
g

(1)
0,k(x

′
1θ) + g

(1)
0 (x′1θ)

)
x1x

′
1

]∥∥∥ ∣∣∣
θ=θ

+ oP (1)

=
∥∥∥E [δ(1)

0,k(x
′
1θ)
(
g

(1)
0,k(x

′
1θ) + g

(1)
0 (x′1θ)

)
x1x

′
1

]∥∥∥ ∣∣∣
θ=θ

+ oP (1)

≤ E
∥∥∥δ(1)

0,k(x
′
1θ)g

(1)
0,k(x

′
1θ)x1x

′
1

∥∥∥ ∣∣∣
θ=θ

+ E
∥∥∥δ(1)

0,k(x
′
1θ)g

(1)
0 (x′1θ)x1x

′
1

∥∥∥ ∣∣∣
θ=θ

+ oP (1)

≤
{
E
∣∣∣δ(1)

0,k(x
′
1θ)
∣∣∣2E ∥∥∥g(1)

0,k(x
′
1θ)x1x

′
1

∥∥∥2
}1/2 ∣∣∣

θ=θ

+

{
E
∣∣∣δ(1)

0,k(x
′
1θ)
∣∣∣2E ∥∥∥g(1)

0 (x′1θ)x1x
′
1

∥∥∥2
}1/2 ∣∣∣

θ=θ
+ oP (1) = oP (1),

where the first inequality follows from Assumption 2.2, the third equality follows from (2.4), the third

inequality follows from Cauchy-Schwarz inequality, and the last equality follows from Assumption 1.2

and Lemma A.1.

For J13,N , write

‖J13,N‖ |θ=θ =

∥∥∥∥∥ 1

N

N∑
i=1

(
g

(1)
0 (x′iθ)

)2
xix
′
i −

1

N

N∑
i=1

(
g

(1)
0 (x′iθ0)

)2
xix
′
i

∥∥∥∥∥ ∣∣∣θ=θ
≤
∥∥∥∥E [(g(1)

0 (x′1θ)
)2
x1x

′
1

]
− E

[(
g

(1)
0 (x′1θ0)

)2
x1x

′
1

]∥∥∥∥ ∣∣∣θ=θ + oP (1)
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=
∥∥∥E [(g(1)

0 (x′1θ)− g
(1)
0 (x′1θ0)

)(
g

(1)
0 (x′1θ) + g

(1)
0 (x′1θ0)

)
x1x

′
1

]∥∥∥ ∣∣∣
θ=θ

+ oP (1)

=
∥∥∥E [g(2)

0 (x′1θ
∗)
(
x′1θ − x′1θ0

) (
g

(1)
0 (x′1θ) + g

(1)
0 (x′1θ0)

)
x1x

′
1

]∥∥∥ ∣∣∣
θ=θ

+ oP (1)

≤
{
‖θ − θ0‖E

[∥∥∥g(2)
0 (x′1θ

∗)x1

∥∥∥∥∥∥(g(1)
0 (x′1θ) + g

(1)
0 (x′1θ0)

)
x1x

′
1

∥∥∥]} ∣∣∣
θ=θ

+ oP (1)

≤

[
‖θ − θ0‖

{
E
∥∥∥g(2)

0 (x′1θ
∗)x1

∥∥∥2
E
∥∥∥g(1)

0 (x′1θ)x1x
′
1

∥∥∥2
}1/2

] ∣∣∣
θ=θ

+ oP (1)

+

[
‖θ − θ0‖

{
E
∥∥∥g(2)

0 (x′1θ
∗)x1

∥∥∥2
E
∥∥∥g(1)

0 (x′1θ0)x1x
′
1

∥∥∥2
}1/2

] ∣∣∣
θ=θ

+ oP (1) = oP (1),

where θ∗ lies between θ and θ0, the first inequality follows from Assumption 2.2, the second equality

follows from Mean Value Theorem, the third inequality follows from triangular inequality and Cauchy-

Schwarz inequality, and the last equality follows from Assumption 1.2 and the fact that ‖θ−θ0‖ →P 0.

Based on the above derivations, we have shown J1,N |(θ,C)=(θ,C̃k)
→P V . We now turn to J2,N and

write

J2,N |(θ,Ck)=(θ,C̃k)

=

{
1

N

N∑
i=1

eig
(2)
k (x′iθ)xix

′
i +

1

N

N∑
i=1

(
g0(x′iθ0)− gk(x′iθ)

)
g

(2)
k (x′iθ)xix

′
i

}∣∣∣
(θ,Ck)=(θ,C̃k)

:= J21,N

∣∣∣
(θ,Ck)=(θ,C̃k)

+ J22,N

∣∣∣
(θ,Ck)=(θ,C̃k)

,

where the definitions of J21,N and J22,N should be obvious.

By Assumption 1 and the proof similar to that given in Theorem 2.1, it is easy to show that

J21,N = OP

(
1√
N

)
uniformly.

For J22,N , write

J22,N =
1

N

N∑
i=1

g0(x′iθ0)g
(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

g0(x′iθ)g
(2)
k (x′iθ)xix

′
i

+
1

N

N∑
i=1

g0(x′iθ)g
(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

g0,k(x
′
iθ)g

(2)
k (x′iθ)xix

′
i

+
1

N

N∑
i=1

g0,k(x
′
iθ)g

(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

gk(x
′
iθ)g

(2)
k (x′iθ)xix

′
i

:= J221,N + J222,N + J223,N .

For J221,N , write

‖J221,N‖|(θ,Ck)=(θ,C̃k)

=

∥∥∥∥∥ 1

N

N∑
i=1

g0(x′iθ0)g
(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

g0(x′iθ)g
(2)
k (x′iθ)xix

′
i

∥∥∥∥∥ ∣∣∣(θ,Ck)=(θ,C̃k)

≤
∥∥∥E [(g0(x′1θ0)− g0(x′1θ)

)
g

(2)
k (x′1θ)x1x

′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)
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=
∥∥∥E [g(1)

0 (x′1θ
∗)(x′1θ0 − x′θ)g(2)

k (x′1θ)x1x
′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

≤

[
‖θ0 − θ‖

{
E
∥∥∥g(1)

0 (x′1θ
∗)x1x

′
1

∥∥∥2
E
∥∥∥g(2)

k (x′1θ)x1

∥∥∥2
}1/2

] ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

= oP (1),

where θ∗ lies between θ and θ0, the first inequality follows from Assumption 2.2, the second equality

follows from Mean Value Theorem, the third inequality follows from Cauchy-Schwarz inequality, and

the last equality follows from Assumption 1.2 and the fact that ‖θ − θ0‖ →P 0.

For J222,N , write

‖J222,N‖ |(θ,Ck)=(θ,C̃k)

=

∥∥∥∥∥ 1

N

N∑
i=1

g0(x′iθ)g
(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

g0,k(x
′
iθ)g

(2)
k (x′iθ)xix

′
i

∥∥∥∥∥ ∣∣∣(θ,Ck)=(θ,C̃k)

≤
∥∥∥E [g0(x′1θ)g

(2)
k (x′1θ)x1x

′
1 − g0,k(x

′
1θ)g

(2)
k (x′1θ)x1x

′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

=
∥∥∥E [δ0,k(x

′
1θ)g

(2)
k (x′1θ)x1x

′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

≤
{
E
∣∣δ0,k(x

′
1θ)
∣∣2E ∥∥∥g(2)

k (x′1θ)x1x
′
1

∥∥∥2
}1/2 ∣∣∣

(θ,Ck)=(θ,C̃k)
+ oP (1) = oP (1),

where the first inequality follows from Assumption 2.2, the second inequality follows from Cauchy-

Schwarz inequality, and the last equality follows from Assumption 2.2 and Lemma A.1.

For J223,N , write

‖J223,N‖|(θ,Ck)=(θ,C̃k)

=

∥∥∥∥∥ 1

N

N∑
i=1

g0,k(x
′
iθ)g

(2)
k (x′iθ)xix

′
i −

1

N

N∑
i=1

gk(x
′
iθ)g

(2)
k (x′iθ)xix

′
i

∥∥∥∥∥ ∣∣∣(θ,Ck)=(θ,C̃k)

≤
∥∥∥E [H(x′1θ)

′C0,kg
(2)
k (x′1θ)x1x

′
1 −H(x′θ)′Ckg

(2)
k (x′θ)x1x

′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

=
∥∥∥E [(H(x′1θ)

′C0,k −H(x′1θ)
′Ck
)
g

(2)
k (x′1θ)x1x

′
1

]∥∥∥ ∣∣∣
(θ,Ck)=(θ,C̃k)

+ oP (1)

≤
{

(C0,k − Ck)′E
[
H(x′1θ)H(x′1θ)

′] (C0,k − Ck)E
∥∥∥g(2)

k (x′1θ)x1x
′
1

∥∥∥2
}1/2 ∣∣∣

(θ,Ck)=(θ,C̃k)
+ oP (1)

≤ O(1)‖C0,k − C̃‖+ oP (1) ≤ O(1)‖g̃k − g0‖L2 + oP (1) = oP (1),

where the first inequality follows from Assumption 2.2, the second inequality follows from Cauchy-

Schwarz inequality, the third inequality follows from (5) of Lemma A.4, and the fourth inequality

follows from the definition of ‖ · ‖L2 .

Based on the derivations for J221,N to J223,N , we obtain J22,N |(θ,Ck)=(θ,C̃k)
= oP (1). In connection

with J21,N |(θ,Ck)=(θ,C̃k)
= oP (1), we have J2,N |(θ,Ck)=(θ,C̃k)

= oP (1).

Similarly, we can show λ̃ = oP (1). Therefore, we have concluded
∂2WN,λ

∂θ∂θ′

∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

→P 2V ,

which immediately implies the first result of this lemma.
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(2). Expand
√
N

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

as follows:

√
N
∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

= − 2√
N

N∑
i=1

[
yi − g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi + 2

√
Nλ̃θ0

= − 2√
N

N∑
i=1

ei g̃
(1)
k (x′iθ0)xi −

2√
N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi + 2

√
Nλ̃θ0

= − 2√
N

N∑
i=1

eig
(1)
0 (x′iθ0)xi −

2√
N

N∑
i=1

ei

(
g̃

(1)
k (x′iθ0)− g(1)

0,k(x
′
iθ0)− δ(1)

0,k(x
′
iθ0)

)
xi

− 2√
N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi +

2√
N

N∑
i=1

[
yi − g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ̃)x

′
iθ̃θ0

= − 2√
N

N∑
i=1

eig
(1)
0 (x′iθ0)xi −

2√
N

N∑
i=1

ei

(
g̃

(1)
k (x′iθ0)− g(1)

0,k(x
′
iθ0)− δ(1)

0,k(x
′
iθ0)

)
xi

− 2√
N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi + θ0θ̃

′ 2√
N

N∑
i=1

[
yi − g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ̃)xi

= (−I + θ0θ̃
′)

2√
N

N∑
i=1

eig
(1)
0 (x′iθ0)xi

− 2√
N

N∑
i=1

ei

(
g̃

(1)
k (x′iθ0)− g(1)

0,k(x
′
iθ0)

)
xi +

2√
N

N∑
i=1

eiδ
(1)
0,k(x

′
iθ0)xi

− 2√
N

N∑
i=1

[
g0,k(x

′
iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi −

2√
N

N∑
i=1

δ0,k(x
′
iθ0)g̃

(1)
k (x′iθ0)xi

+θ0θ̃
′ 2√
N

N∑
i=1

ei

[
g̃

(1)
k (x′iθ̃)− g

(1)
0 (x′iθ0)

]
xi

+θ0θ̃
′ 2√
N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ̃)xi

= 2(−Id + θ0θ̃
′)J1N − 2J2N + 2J3N − 2J4N − 2J5N + 2θ0θ̃

′J6N + 2θ0θ̃
′J7N , (A.9)

where the definitions of J1N -J6N should be obvious.

Below we shall consider the terms on RHS of (A.9) one by one. By Lindeberg-Lévy CLT, it is easy

to show that J1N →D N(0, σ2
eV ).

For J2N , consider the next expression

E

∥∥∥∥∥ 2√
N

N∑
i=1

ei

(
g

(1)
k (x′iθ0)− g(1)

0,k(x
′
iθ0)

)
xi

∥∥∥∥∥
2

=
4

N

N∑
i=1

σ2
eE
∥∥∥Ḣ(x′iθ0)′ (C2:k − C0,2:k)xi

∥∥∥2

=
4

N

N∑
i=1

σ2
e (C2:k − C0,2:k)

′E
[
Ḣ(x′iθ0)Ḣ(x′iθ0)′‖xi‖2

]
(C2:k − C0,2:k)

≤ O(1)‖Ck − C0,k‖2 ≤ O(1)‖gk − g0‖2L2 ,
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where C2:k and C0,2:k define the vectors consisting of the 2nd to kth elements of Ck and C0,k, respec-

tively, and the first inequality follows from Assumption 2.3. In connection with Theorem 2.1 and the

arguments similar to those given in Remark 3, we obtain J2N = oP (1). Similarly, J6N = oP (1).

For J3N , we have

E

∥∥∥∥∥ 1√
N

N∑
i=1

eiδ
(1)
0,k(x

′
iθ0)xi

∥∥∥∥∥
2

≤ O(1)E
∥∥∥e1δ

(1)
0,k(x

′
1θ0)x1

∥∥∥2

≤ O(1)

{
E
∣∣∣δ(1)

0,k(x
′
1θ0)

∣∣∣4E ‖x1‖4
}1/2

= O(1)

(
E
∣∣∣δ(1)

0,k(x
′
1θ0)

∣∣∣4)1/2

= o(1).

Therefore, J3N = oP (1).

For J5N , write∥∥∥∥∥ 1

N

N∑
i=1

δ0,k(x
′
iθ0)g̃

(1)
k (x′iθ0)xi

∥∥∥∥∥ ≤ 1

N

N∑
i=1

∥∥∥δ0,k(x
′
iθ0)g̃

(1)
k (x′iθ0)xi

∥∥∥
≤

(
1

N

N∑
i=1

∥∥δ0,k(x
′
iθ0)

∥∥2

)1/2(
1

N

N∑
i=1

∥∥∥g̃(1)
k (x′iθ0)xi

∥∥∥2
)1/2

= OP (k−r/2),

where the last equality follows from the facts that E
[

1
N

∑N
i=1 ‖δ0,k(x

′
iθ0)‖2

]
= O(k−r) by Assumption

1.2 and Lemma A.1, and E

[
1
N

∑N
i=1

∥∥∥g̃(1)
k (x′iθ0)xi

∥∥∥2
]

= O(1) by Assumption 1.2. Thus, J5N =

OP

(√
Nk−r

)
= oP (1).

For J7N , write

1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ̃)xi

=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

] [
g̃

(1)
k (x′iθ0) + g̃

(1)
k (x′iθ̃)− g̃

(1)
k (x′iθ0)

]
xi

=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

] [
g̃

(2)
k (x′iθ

∗)(θ̃ − θ0)′xi

]
xi

+
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ0)xi

=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

]
g̃

(2)
k (x′iθ

∗)xix
′
i(θ̃ − θ0)

+
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ0)xi

=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0) + g̃k(x

′
iθ0)− g̃k(x′iθ̃)

]
g̃

(1)
k (x′iθ0)xi + oP (‖θ0 − θ̃‖)

=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi

+
1

N

N∑
i=1

[
g̃

(1)
k (x′iθ

∗
1)(θ0 − θ̃)′xi

]
g̃

(1)
k (x′iθ0)xi + oP (‖θ0 − θ̃‖)
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=
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi

+
1

N

N∑
i=1

g̃
(1)
k (x′iθ

∗
1)g̃

(1)
k (x′iθ0)xix

′
i(θ0 − θ̃) + oP (‖θ0 − θ̃‖), (A.10)

where θ∗ and θ∗1 both lie between θ̃ and θ0; the second and fifth equalities follow from Mean Value

Theorem; the the fourth equality follows from the proof similar to (1) of this lemma. Therefore, we

can write

θ0θ̃
′J7N − J4N = (−I + θ0θ̃

′)SN (g̃k) + θ0θ̃
′TN (g̃k)(θ0 − θ̃), (A.11)

where

SN (g̃k) =
1

N

N∑
i=1

[
g0(x′iθ0)− g̃k(x′iθ0)

]
g̃

(1)
k (x′iθ0)xi,

TN (g̃k) =
1

N

N∑
i=1

g̃
(1)
k (x′iθ

∗
1)g̃

(1)
k (x′iθ0)xix

′
i.

Notice that the matrix I − θ0θ̃ in front of J1N converges to the projection matrix Pθ0 = Id − θ0θ
′
0

in probability, which has eigenvalues 0, 1, . . . , 1 and 0 has eigenvector θ0. Therefore, in order to ensure

the asymptotic covariance matrix is non-singular, we need to rotate
∂WN,λ

∂θ . Let P1 = (p1, . . . , pd−1),

where p1, . . . , pd−1 are the eigenvectors associated with the non-zero eigenvalues of Pθ0 . Thus, we have

Pθ0 = P1P
′
1 and P ′1P1 = Id−1. Having said that, we then obtain that

√
NP ′1

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+
√
N2P ′1θ0θ̃

′TN (g̃k) + P ′1Pθ0
√
N2SN (g̃k)

=
√
NP ′1

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+ P ′1
√
N2SN (g̃k)→D N(0, 4σ2

eP
′
1V P1),

where the first equality follows from the fact that P ′1θ0 = 0.

The proof is then completed. �

Proof of Theorem 2.2:

(1). Notice that

θ̃′θ0 − 1 = (θ̃ − θ0)′θ0 = (θ̃ − θ0)′(θ0 − θ̃ + θ̃)

= −‖θ̃ − θ0‖2 + (θ̃ − θ0)′θ̃ = −‖θ̃ − θ0‖2 + (1− θ̃′θ0). (A.12)

Thus, we have 1− θ̃′θ0 = 1
2‖θ̃ − θ0‖2.

(2). Following the routine procedure documented in the literature (c.f. Yu and Ruppert (2002)),

write

0 = P ′1
∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ̃,C̃k,λ̃)
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= P ′1
∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+ P ′1
∂WN,λ

∂θ∂θ′

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

(
θ̃ − θ0

)
= P ′1

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+ P ′1
∂WN,λ

∂θ∂θ′

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

(P1P
′
1 + θ0θ

′
0)
(
θ̃ − θ0

)
= P ′1

∂WN,λ

∂θ

∣∣∣
(θ,Ck,λ)=(θ0,C̃k,λ̃)

+ P ′1
∂WN,λ

∂θ∂θ′
P1

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

P ′1

(
θ̃ − θ0

)
−1

2
‖θ̃ − θ0‖2P ′1

∂WN,λ

∂θ∂θ′

∣∣∣
(θ,Ck,λ)=(θ,C̃k,λ̃)

θ0, (A.13)

where θ lies between θ0 and θ̃; the third equality follows from Id = Pθ0 +θ0θ
′
0 = P1P

′
1 +θ0θ

′
0. Following

from (2.11), Lemma A.2 and (1) of this theorem, we immediately obtain that

√
N
(
P ′1(θ̃ − θ0)− 2(P ′1V P1)−1P ′1SN (g̃k)

)
→D N(0, σ2

e(P
′
1V P1)−1).

Then the proof is complete. �

Lemma A.3. Suppose that u = (u1, . . . , ud)
′, ν = (ν1, . . . , νd)

′ ∈ Rd and ‖ν‖ = 1. Then, for Hm(·)
defined in (2.1), we have Hm(u′ν) =

∑
|p|=m

(
m
p

)∏d
j=1Hpj (uj)

∏d
j=1 ν

pj
j , where p = (p1, . . . , pd), pj

for j = 1, . . . , d are all non-negative integers, |p| = p1 + · · ·+ pd and
(
m
p

)
= m!∏d

j=1 pj !
.

The detailed proof of this lemma has been given in Dong et al. (2015), thus omitted.

For notational simplicity, we denote some variables before proceed further. For θ ∈ Θ,

HN (θ)
N×k

=
(
H(x′1θ), . . . ,H(x′Nθ)

)
, GN (θ)

N×1

=
(
g0

(
x′1θ
)
, . . . , g0

(
x′Nθ

))′
,

DN
N×1

(θ) = (δ0,k(x
′
1θ), . . . , δ0,k(x

′
Nθ))

′, EN
N×1

= (e1, . . . , eN )′,

ZN
N×K

= (Z(x1), . . . ,Z(xN ))′. (A.14)

Lemma A.4. Under Assumptions 1, 3 and 4, we have

1.
∥∥ 1
NZ

′
NEN

∥∥ = OP

(√
kd

N

)
;

2.
∥∥ 1
NZNZ

′
N −Zx

∥∥ = oP (1), where Zx = E[Z(x1)Z(x1)′];

3.
∥∥ 1
NHN (θ)′EN

∥∥ = OP

(√
k
N

)
uniformly in θ;

4. supθ∈{θ:‖θ−θ0‖≤ε}
∥∥ 1
NHN (θ)HN (θ)′ − Σ(θ)

∥∥ = oP (1), where ε is a sufficiently small number.

Proof of Lemma A.4:

(1) Write

E

∥∥∥∥ 1

N
Z ′NEN

∥∥∥∥2

=
σ2
e

N2

K∑
m=1

N∑
i=1

E |zm (xi)|2 =
σ2
e

N

K∑
m=1

∫
Rd
|Hpm (z)|2 · f(z)dz

=
σ2
e

N

K∑
m=1

∫
Rd
|Hpm (z)|2 exp(−‖z‖2/2) · exp(‖z‖2/2)f(z)dz
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≤ O(1)
1

N

K∑
m=1

∫
Rd
|Hpm (z)|2 exp(−‖z‖2/2)dz

=
1

N

k−1∑
m=0

∑
|p|=m

 d∏
j=1

∫
R
h2
pj (w) exp(−w2/2)dw

 = O

(
K

N

)
, (A.15)

where f(·) denotes the pdf of x, and the fist inequality follows from Assumption 3.1.

(2) Write

E

∥∥∥∥ 1

N
ZNZ ′N −Zx

∥∥∥∥2

=
1

N

K∑
m=1

K∑
n=1

E|zm(x)zn(x)−Zx,mn|2

≤ 1

N

K∑
m=1

K∑
n=1

∫
Rd
|Hpm (z)|2 |Hpn (z)|2 f(z)dz = Ψ(N, k) = o(1), (A.16)

where pm with m = 1, . . . ,K is defined in (2.17); Zx,mn denotes the (m,n)th element of Zx; the last

equality follows from Assumption 3.3.

(3) Write

E

∥∥∥∥ 1

N
HN (θ)′EN

∥∥∥∥2

=
σ2
e

N2

N∑
i=1

E
∥∥H(x′iθ)

∥∥2
=
σ2
e

N
E
∥∥H(x′θ)

∥∥2

=
σ2
e

N

k−1∑
j=0

∫
h2
u(w)fθ(w)dw =

σ2
e

N

k−1∑
j=0

∫
h2
u(w) exp(−w2/2) · exp(w2/2)fθ(w)dw

≤ O(1)
1

N

k−1∑
j=0

∫
h2
u(w) exp(−w2/2)dw = O

(
k

N

)
,

where fθ(·) is denoted in Assumption 1.2, and the first inequality follows from Assumption 1.2. Then

the result follows from Lemma A2 of Newey and Powell (2003).

(4) By Assumption 1.1, we have

E

∥∥∥∥ 1

N
HN (θ)HN (θ)′ − Σ(θ)

∥∥∥∥2

=
1

N

k∑
m=1

k∑
n=1

E|hm(x′θ)hn(x′θ)− Σmn(θ)|2

≤ 1

N

k∑
m=1

k∑
n=1

∫
Rd
h2
m (w)h2

n (w) fθ(w)dw = Φ(N, k) = o(1), (A.17)

where Σmn(θ) denotes the (m,n)th element of Σ(θ); the last equality follows from Assumption 4. Then

the result follows from Lemma A2 of Newey and Powell (2003). �

Proof of Lemma 2.1:

Expanding (2.19), we obtain

β̂K − β0,K =

(
1

N

N∑
i=1

Z (xi)Z (xi)
′

)−1
1

N

N∑
i=1

Z (xi) ei

35



+

(
1

N

N∑
i=1

Z (xi)Z (xi)
′

)−1
1

N

N∑
i=1

Z (xi) δ0,k

(
x′iθ0

)
.

By Lemma A.4, we already have∥∥∥∥∥ 1

N

N∑
i=1

Z (xi) ei

∥∥∥∥∥ = OP

(√
kd

N

)
and

∥∥∥∥∥ 1

N

N∑
i=1

Z (xi)Z (xi)
′ −Zx

∥∥∥∥∥ = oP (1).

Then focus on 1
N

∑N
i=1Z (xi) δ0,k (x′iθ0). Write∥∥∥(Z ′NZN)−1Z ′NDN (θ0)

∥∥∥2
= DN (θ0)′ZN

(
Z ′NZN

)−1 (Z ′NZN/N)−1Z ′NDN (θ0)/N

≤ λ−1
min

(
Z ′NZN/N

)
· DN (θ0)′ZN

(
Z ′NZN

)−1Z ′NDN (θ0)/N

≤ λ−1
min

(
Z ′NZN/N

)
· λmax(W ) · ‖DN (θ0)‖2 /N, (A.18)

where the first inequality follows from Magnus and Neudecker (2007, exercise 5 on p. 267). Note that

W = ZN (Z ′NZN )−1Z ′N is symmetric and idempotent, so λmax(W ) = 1. By Assumption 1.1, it is

easy to know that E[‖DN (θ0)‖2 /N ] = E|δ0,k (x′θ0) |2 = O(k−r), where the last equality follows from

Lemma A.1. Therefore, ‖DN (θ0)‖2/N = OP (k−r). Moreover, by (2) of Lemma A.4 and Assumption

3.2, we know that λ−1
min (Z ′NZN/N) = OP (1). Thus, we obtain

∥∥∥(Z ′NZN )−1Z ′NDN (θ0)
∥∥∥ = OP (k−r/2).

According to the above derivations, we obtain ‖β̂K −β0,K‖ = OP

(√
kd

N

)
+OP (k−r/2). The proof

is then complete. �

Proof of Theorem 2.3:

Notice that we have denoted ZN , DN (θ0) and EN in (A.14). It follows from Lemma 2.1 and the

continuous mapping theorem that
(∑d+1

j=2 β̂
2
K,j

)1/2
→P |c0,1| in probability, so we need only to consider

√
NQ

(
β̂K − β0,K

)
and write

√
NQ

(
β̂K − β0,K

)
=
√
NQ

(
Z ′NZN

)−1Z ′NDN (θ0) +
√
NQ

(
Z ′NZN

)−1Z ′NEN . (A.19)

Note that K = O
(
kd
)

and Q = O (1). In connection with the proof of Lemma (2.1), it is

straightforward to obtain

∥∥∥√NQ (Z ′NZN)−1Z ′NDN (θ0)
∥∥∥ = OP

(
N1/2k−r/2

)
= oP (1),

where the last equality follows from the condition in the body of this theorem.

Then, in order to esatblish the normality, we need only to consider the second term on RHS of

(A.19):

√
NQ

(
Z ′NZN

)−1Z ′NEN = QZ−1
x

1√
N
Z ′NEN (1 + oP (1))

= QZ−1
x

1√
N

N∑
i=1

Z(xi)ei(1 + oP (1))→D N(0, σ2
e Ω1),
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where Ω1 = limk→∞ σ
2
eQZ−1

x Q′, the first equality follows from (2) of Lemma A.4, and the last line

follows from Assumption 1.1 and CLT.

Based on the above derivations, the proof is then completed. �

Proof of Theorem 2.4:

The proof of this theorem follows from exactly the same as that used for Theorem 2.3. �

Proof of Theorem 2.5:

(1). Write

Ĉk − C0,k =
[
HN (θ̂)′HN (θ̂)

]−1
HN (θ̂)′

(
GN (θ0)− GN (θ̂)

)
+
[
HN (θ̂)′HN (θ̂)

]−1
HN (θ̂)′DN (θ̂) +

[
HN (θ̂)′HN (θ̂)

]−1
HN (θ̂)′EN , (A.20)

where GN (θ), HN (θ), EN and DN (θ) have been defined in (A.14) respectively.

By the same procedure as (A.18), it is easy to know that∥∥∥∥[HN (θ̂)′HN (θ̂)
]−1

HN (θ̂)′DN (θ̂)

∥∥∥∥ = OP

(
k−r/2

)
.

By (4) of Lemma A.4 and Assumption 2.3, we have

∥∥∥∥[HN (θ̂)′HN (θ̂)
]−1

HN (θ̂)′EN
∥∥∥∥ = OP

(
k1/2

N1/2

)
.

Then, we need only to consider the next term. Write∥∥∥∥[HN (θ̂)′HN (θ̂)
]−1

HN (θ̂)′
(
G(θ0)− G(θ̂)

)∥∥∥∥2

≤
(
λmin

(
HN (θ̂)′HN (θ̂)/N

))−1
· λmax(W̃ ) ·

(∥∥∥G(θ0)− G(θ̂)
∥∥∥2
/N

)
,

where W̃ = HN (θ̂)
(
HN (θ̂)′HN (θ̂)

)−1
HN (θ̂)′. Notice that for ∀θ ∈ {θ : ‖θ − θ0‖ < ε}, we have

1

N
E
[
‖G(θ0)− G(θ)‖2

]
=

1

N

N∑
i=1

E
[
g0(x′iθ0)− g0(x′iθ)

]2
= E

[(
g

(1)
0 (x′1θ

∗)
)2

(θ0 − θ)′x1x
′
1(θ0 − θ)

]
= ‖θ0 − θ‖2E

∥∥∥∥(g(1)
0

(
x′1θ∗

) )2
x1x

′
1

∥∥∥∥
= O(1)‖θ0 − θ‖2,

where θ∗ lies between θ0 and θ, and the second equality follows from Assumption 1.1. Therefore, we

have

1

N

∥∥∥G(θ0)− G(θ̂)
∥∥∥2

= OP (1)‖θ0 − θ̂‖2.
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Since W̃ is symmetric and idempotent, λmax(W̃ ) = 1. Hence, we have∥∥∥∥[HN (θ̂)′HN (θ̂)
]−1

HN (θ̂)′
(
G(θ0)− G(θ̂)

)∥∥∥∥ = OP (1)‖θ0 − θ‖ = OP

(
1√
N

)
.

Based on the above derivations, the result follows.

(2). By the orthogonality, we write

‖ĝk(w)− g0(w)‖2L2 =

∫
R

(ĝk(w)− g0(w))2 · exp
(
−w2/2

)
dw

=

∫
R

[
H(w)′(Ĉk − C0,k) + δ0,k(w)

]2
· exp

(
−w2/2

)
dw

=O
(
‖Ĉk − C0,k‖2

)
+O

(
‖δ0,k(w)‖2L2

)
=OP

(
k

N

)
+OP

(
k−r
)

+O
(
k−r
)

= OP

(
k

N

)
+OP

(
k−r
)
,

where the fourth equality follows from the first result of this theorem and Lemma A.1. Then the proof

is completed. �
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