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Abstract

Minimax and its generalization to mixed strategy Nash equilibrium is the

cornerstone of our understanding of strategic situations that require decision

makers to be unpredictable. Using a dataset of nearly half a million serves

from over 3000 matches, we examine whether the behavior of professional ten-

nis players is consistent with the Minimax Hypothesis. The large number of

matches in our dataset requires the development of a novel statistical test,

which we show is more powerful than the tests used in prior related studies.

We find that win rates conform remarkably closely to the theory for men, but

conform somewhat less neatly for women. We show that the behavior in the

field of more highly ranked (i.e., better) players conforms more closely to theory.
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1 Introduction

von Neumann’s Minimax Theorem for two-player zero-sum games and Nash’s general-

ization to equilibrium in n-player non-zero sum games are the foundations of modern

game theory. Nash equilibrium and its extension to decision making in dynamic

settings or settings with incomplete information are routinely applied in theoretical

models and are the basis of much of our understanding of strategic interaction. Here

we test the predictive accuracy of the theory using data from the field.

Laboratory experiments have been enormously successful in providing tightly con-

trolled tests of game theory. The results of these experiments, however, have not been

supportive of the theory for games with a mixed-strategy Nash equilibrium: student

subjects do not mix in the equilibrium proportions and subjects exhibit serial corre-

lation in their choices rather than the serial independence predicted by the theory.

Data from professional sports, however, has been far more supportive of theory.

Using poker as a motivating example, Walker and Wooders (2001) argue that while

the rules of a game which requires players to be unpredictable may be simple to

understand, it is far more diffi cult to understand how to play well. Student subjects

no doubt understand the rules, but they have neither the experience, the time, nor

the incentive to learn to play well. In professional sports, in contrast, players have

typically devoted their lives to the game and they have substantial financial incentives.

The present paper re-evaluates the question of whether the behavior of sports

professionals conforms to theory using a unique dataset from Hawk-Eye, a computer-

ized ball tracking system employed at Wimbledon and other top championship tennis

matches. It make several contributions: With a large dataset and a new statistical

test we introduce, it provides a far more powerful test of the theory than in any prior

study. It also provides a broader test of the theory by analyzing both first and sec-

ond serves, for both men and women. Finally, combining the Hawk-Eye data with a

dataset on player rankings, it shows that even tennis professionals differ in the degree

to which their behavior conforms to theory: the behavior in the field of higher ranked

players conforms more closely to theory.

A critique of the results of prior studies has been that they have low power to reject

the null hypotheses implied by the theory.1 Walker and Wooders (2001), for example,

study a dataset comprised of approximately 3000 serves made in 10 championship

1See Kovash and Levitt (2009), for example.
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tennis matches. Chiappori, Levitt, and Groseclose (2002) and Palacios-Huerta (2003)

study 459 and 1417 penalty kicks, respectively. Our dataset contains the precise

trajectory and bounce points of the tennis ball for nearly 500,000 serves from over

3000 professional tennis matches, and thereby allows for an extremely powerful test

of the theory.

The large number of matches in our dataset requires that we develop a novel

statistical test for our analysis. When the number of points in each match is small

relative to the overall number of matches, as it is in our dataset, we show that the

test introduced in Walker and Wooders (2001) is not valid: it rejects the implication

of the minimax hypothesis that winning probabilities are equalized, even when the

null is true. The new test that we develop, based on the Fisher exact test, rejects

the true null hypothesis with probability of exactly α at the α significance level. We

show via Monte Carlo simulations that our test, as an added bonus, is substantially

more powerful than the test used in Walker and Wooders (2001) and the subsequent

literature.2

An unusual feature of our test is that the test statistic itself is random, and thus

a different p-value is realized each time the test is conducted. It would be perfectly

valid to run the test once and reject the null hypothesis if the p-value is less than

the significance level. It is more informative, however, to report the empirical density

of p-values obtained after running the test many times, and this is what we do.

When reporting our results we will make statements such as “the empirical density

of p-values places an x% weight on p-values below .05.”

We find that the win rates of male professional tennis players are consistent with

the minimax hypothesis. Despite the enormous power of our statistical test —due

to the large sample size and the greater power of the test itself —we can not reject

the null hypothesis that winning probabilities are equalized across the direction of

serve. We do not reject the null for either first or second serves. For first serves, the

empirical density of p-values places no weight on p-values below .05 (i.e., the joint

null hypothesis is never rejected at the 5% significance level). For second serves, it

places almost no weight on p-values below .05.

The win rates for female players, by contrast, conform somewhat less neatly to

theory. The empirical density function of p-values places a 44.9% weight on p-values

2The Walker and Wooders test is valid for their data set, in which the number of points in each

match is large relative to the number of matches.

3



below .05 for first serves, and a 16.0% weight on p-values below .05 for second serves.

Nonetheless, the behavior of female professional tennis players over 150,000 tennis

serves conforms far more closely to theory than the behavior of subjects in compara-

ble laboratory tests of the minimax hypothesis. Applying our test to the data from

O’Neill’s (1987) classic experiment, for example, we obtain an empirical density func-

tion of p-values that places probability one on p-values less than .05. Hence the null

hypothesis that winning probabilities are equalized is resoundingly rejected based on

the 5250 decisions of O’Neill’s subjects while we obtain no such result for women,

despite having vastly more data.

A second implication of the minimax hypothesis is that the players’ choices of

direction of serve are serially independent. We reject serial independence for both

men and women, for both first and second serves. Players switch the direction of their

serve too frequently to be consistent with randomness. Negative serial correlation in

the direction of serve is more pronounced for women than men, and the difference is

statistically significant.

We conjecture that men’s greater physical strength causes men’s payoffs in the

contest for each point to be more sensitive to departures from equilibrium play than

in women’s tennis. In our dataset, the average speed of the first serve for men is 160

kph, while for women it is 135 kph.3 In men’s tennis, the server wins 64% of all the

points when he has the serve, while in women’s tennis the server only wins 58% of the

points. It is evident that the serve is relatively more important than in men’s than

women’s tennis. A receiver in men’s tennis who fails to play minimax (and equalize

the server’s winning probabilities) is much more vulnerable to being exploited by the

server. Consequently, there is a stronger selection pressure against male receivers who

fail to equalize the server’s winning probabilities. Likewise, in men’s tennis, a server

who is predictable because he fails to randomize in the direction of his serve is much

more vulnerable to exploitation by the receiver.

We also find evidence that the behavior of higher ranked (i.e., better) players

conforms more closely to the minimax hypothesis. Higher-ranked male players exhibit

less serial correlation in their first serve than lower ranked players. For female players,

by contrast, rank does not have a statistically significant effect on the degree of serial

correlation, again perhaps a consequence of the smaller importance of the serve in

3For first serves by men, on average only 0.45 seconds elapses between the serve and the first

bounce.
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women’s tennis. In each case, as one might expect, the rank of the receiver has

no statistically significant effect on the degree of serial correlation exhibited by the

server.

To further investigate the effect of ability on behavior, we divide the data into

two subsamples based on the receiver’s rank. (It is important to keep in mind that it

is the receiver’s strategy that determines whether winning probabilities are equalized

across directions of serve.) In one subsample the receiver was a “top”player, i.e.,

above the median rank, and in the other the receiver was a “non-top”player. We test

the hypothesis that winning probabilities are equalized across the direction of serve

on each subsample separately. For men, win rates conform closely to the minimax

hypothesis on each subsample.

As noted above, win rates conform to the minimax hypothesis somewhat less

neatly for women than for men. Significantly, in women’s matches in which the

receiver is a “top”player, we do not come close to rejecting the hypothesis that win-

ning probabilities conform to the minimax hypothesis, while the equality of winning

probabilities is resoundingly rejected for the subsample in which the receiver is not

a top player. This result show that behavior of women conforms more closely to the

minimax hypothesis for better receivers.

Related Literature

Walker and Wooders (2001), henceforth WW, was the first paper to use data

from professional sports to test the minimax hypothesis. It found that the win rates

of male professional tennis players conformed to theory, in striking contrast to the

consistent failure of subjects to follow the equilibrium mixtures (and equalize payoffs)

in laboratory experiments. Even tennis players, however, switch the direction of their

serve too often to be consistent with the random play predicted by the theory. WW

find, however, that professionals deviate far less from random play than do student

subjects in comparable laboratory experiments.

Hsu, Huang, and Tang (2007), henceforth HHT, broaden the analysis of WW by

considering data from women’s and junior’s matches in addition to data from men’s

matches. In a sample of 9 women’s matches, 8 juniors matches, and 10 men’s matches,

HHT find also found that win rates conformed to the theory. The greater power of

our statistical test means that it potentially overturns their conclusions and indeed

in some instances it does. Our test, applied to their data for women and juniors,

5



puts weights of 18.5% and 49.6%, respectively, on p-values of less than .05. On the

other hand, applying our test to WW’s data or HHT’s data for men, we reaffi rm

their findings that the behavior of male professional tennis players conforms to the

minimax hypothesis. In both cases, the empirical density of p-value assigns zero

probability to p-values below .05.

Chiappori, Levitt, and Groseclose (2002), henceforth CLG, study a dataset of

every penalty kick occurring in French and Italian elite leagues over a three year

period (459 penalty kicks), and test whether play conforms to the mixed strategy

Nash equilibrium (and minimax solution) of a parametric model of a penalty kick

in soccer in which the kicker and goalkeeper simultaneously choose Left, Center, or

Right. A challenge in using penalty kicks to test theory is that most kickers take few

penalty kicks and, furthermore, a given kicker only rarely encounters the same goalie.

The later is important since the contest between a kicker and goalie varies with the

players involved, as do the equilibrium mixtures and payoffs.4 A key contribution

of CLG is the precise identification of the predictions of the minimax hypothesis

that are robust to aggregation across heterogeneous contests. It finds that the data

conforms to the qualitative predictions of the model, e.g., kickers choose “center”

more frequently than goalies.5

Palacios-Huerta (2003) studies a group of 22 kickers and 20 goalkeepers who have

participated in a relatively large number of penalties (each participated in at least 30

penalty kicks over a five year period) in a dataset comprised of 1417 penalty kicks.

The null hypothesis that the probability of scoring is the same for kicks to the left

and to the right is rejected at the 5% level for only 2 of the kickers.6 Importantly,

his analysis ignores that a kicker generally faces different goalkeepers (and different

goalkeepers face different kickers) at each penalty kick.

In professional tennis, unlike soccer, we observe a large number of serves, taken

in an identical situations (e.g., Federer serving to Nadal from the “ad”court), over

4CLG provide evidence that payoffs in the 3× 3 penalty kick game vary with the kicker, but not
with the goalie.

5In a linear probability regression they find weak evidence against the hypothesis that kickers

equalize payoffs across directions based on the subsample of 27 kickers with 5 or more kicks. This

null is rejected at the 10% level for 5 of kickers, whereas only 2.7 rejections are expected.
6PH aggregates kicks to the center and kicks to a player’s “natural side”and thereby makes the

game a 2× 2 game.
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a period of several hours.7 It is plausible therefore to assume that the relationship

between the players’actions and the probability of winning the point is the same in

every such instance, and thus the data from a single match can be used to test the

minimax hypothesis. There is no need to aggregate data as in CLG or PH.

The present paper is less closely related to a literature that examines the effect of

experience in the field on behavior in the laboratory (see, e.g., Cooper, Kagel, Lo and

Gu (1999), Van Essen and Wooders (2015)). Palacios-Huerta and Volij (2010) report

evidence that professional soccer players behave according to the minimax hypothesis

when playing abstract normal form games in the laboratory. Levitt, List, and Reiley

(2011) are, however, unable to replicate this result, while Wooders (2010) argues

that Palacios-Huerta and Volij (2010)’s own data is inconsistent with the minimax

hypothesis.

In Section 2 we present the model of a serve in tennis and the testable hypotheses

of the minimax hypothesis. In Section 3 we describe our data. In Section 4 we describe

our test of the hypothesis that winning probabilities are equalized and we present our

results, while in Section 5 we report the results of our test that the direction of serve

is serially independent. In Section 6 we establish that the behavior of higher ranked

players conforms more closely to theory than for lower ranked players. In Section 7

we show that (i) the WW test of equality of winning probabilities is valid when the

number of points in each match is large relative to the number of matches, but is

not valid conversely, (ii) our new test is valid when the number of matches is small

(as in WW) or large, (iii) our new test is more powerful than the test used WW and

subsequent studies, and we (iv) apply the test to the data from HHT.

2 The Serve in Tennis

We model each point in a tennis match as a 2 × 2 normal-form game. The server

chooses whether to serve to the receiver’s left (L) or the receiver’s right (R). The

receiver simultaneously chooses whether to overplay left (L) or right (R). The prob-

ability that the server ultimately wins the point when he serves in direction s and

the receiver overplays direction r is denoted by πsr. Hence the game for a point is

represented as in Figure 1.

7Typical experimental studies of mixed-strategy play likewise feature a fixed pair of players

playing the same stage game repeatedly over a period of an hour or two.
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Receiver

L R

Server L πLL πLR

R πRL πRR

Figure 1: The Game for a Point

Since one player or the other wins the point, the probability that the receiver wins

the point is 1 − πsr, and hence the game is completely determined by the server’s

winning probabilities.

The probability payoffs in Figure 1 will depend on the abilities of the two players in

the match and, in particular, on which player is serving. In tennis, the player with the

serve alternates between serving from the ad court (the left side of the court) and from

the deuce court (the right side). Since the players’abilities may differ when serving

or receiving from one court or the other, the probability payoffs in Figure 1 may

also depend upon whether the serve is from the ad or deuce court. The probability

payoffs differ for men and women.8 At the first serve, the probability payoffs include

the possibility that the server ultimately wins the point after an additional (second)

serve.

If the first serve is a fault, then the server gets a second, and final, serve. The server

chooses whether to serve L or R and the receiver simultaneously chooses whether to

overplay L or R. If the second serve is also a fault, then server loses the point. Since

the second serve is the final serve, the probability payoffs for a second serve will be

different than those for a first serve.9

We assume that within a given match, the probability payoffs are completely

determined by which player has the serve, whether the serve is from the ad or deuce

court, and whether the serve is a first or second serve. Thus, there are eight distinct

“point” games in a match. We assume that in every point game πLL < πLR and

πRR < πRL, i.e., the server wins the point with lower probability (and the receiver

with higher probability) when the receiver correctly anticipates the direction of the

8As noted in the Introduction, men win 64% of the points when they have the serve, while women

win only 56%.
9Indeed, first and second serves are played differently. In our data set, the average speed of a

first serve is 160 kph and of the second serve is 126 kph (35.3% of first serves fault, but only 7.5%

of second serves fault).
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serve. Under this assumption there is a unique Nash equilibrium and it is in (strictly)

mixed strategies.10

A tennis match is a complicated extensive form game: The first player to win at

least four points and to have won two more points than his rival wins a game. The

first player to win at least six games and to have won two games more than his rival

wins a set. In a five set match, the first player to win three sets wins the match. The

players, however, are interested in winning points only in so far as they are the means

by which they win the match. The link between the point games and the overall

match is provided in Walker, Wooders, and Amir (2011) which defines and analyzes

a class of games (which includes tennis) called Binary Markov games. They show that

minimax (and equilibrium) play in the match consists of playing, at each point, the

equilibrium of the point game in which the payoffs are the winning probabilities πsr.

Thus play depends only on which player is serving, whether the point is an ad-court

or a deuce-court point, and whether the serve is a first or second serve; it does not

otherwise depend on the current score or any other aspect of the history of play prior

to that point.

Two testable implications come from the theory. According to the minimax hy-

pothesis, a player obtains the same payoff from all actions chosen with positive prob-

ability. Thus, the server’s payoff at the first serve, i.e., the probability of winning

the point at the first serve, is the same for serves left and for serves right, when

delivered from the same court. Likewise, his probability of winning the point at the

second serve is the same for serves left and serves right, when delivered from the

same court. A second implication of the theory, which comes from the analysis of

the extensive form game representing a match, is that the direction of the serve is

serially independent.

In addition to varying the direction of the serve, the server can also vary its type

(flat, slice, kick, topspin) and speed. In a mixed-strategy Nash equilibrium, all types

of serves which are delivered with positive probability have the same payoff. Therefore

it is legitimate to pool, as we do, all serves of different types but in the same direction.

Our test of the hypothesis that the probability of winning the point is the same for

serves left and serves right can be viewed as a test of the hypothesis that all serves

in the support of the server’s mixture have the same winning probability.

10Nash equilibrium and minimax coincide in two-player constant sum games, such as this one.
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3 The Data

Hawk-Eye is a computerized ball tracking system used in professional tennis and

other sports to precisely record the trajectory of the ball. Our dataset consists of the

offi cial Hawk-Eye data for all matches played at the international professional level,

where this technology was used, between March 2005 and March 2009.11 Most of the

matches are from Grand Slam and ATP (Association of Tennis Players) tournaments

Overall, the dataset contains 3, 172 different singles matches. Table 1 provides a

breakdown of the match characteristics of our data.

Female Male All

Carpet 35 174 209

Surface Clay 130 366 496

Grass 95 204 299

Hard 917 1251 2168

Best of 3 1177 1400 2577

5 0 595 595

Davis Cup (Fed Cup) 8 18 26

Grand Slam 458 526 984

Olympics 19 16 35

Events ATP (Premier) 662 101 763

International - 473 473

Master - 825 825

Hopman Cup 30 36 66

Total 1117 1995 3172

Table 1: Match Characteristics

As the use of the Hawk-Eye system is usually limited to the main tournaments,

the dataset contains a large proportion of matches from top tournaments (e.g., Grand

Slams). Within tournaments, the matches in our dataset are more likely to feature

top players as the Hawk-Eye system is used on the main courts and was often absent

fromminor courts at the time of our sample. As a consequence, the matches contained

in the dataset tend to feature the best male and female players.
11Hawk-Eye has been used to resolve challenges to line calls since 2006, which is evidence of the

greater reliability of Hawk-Eye to human referees.
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For each point played, our dataset records the trajectory of the ball, as well as

the player serving, the current score, and the winner of the point.12 When the server

faults as a result of the ball failing to clear the net, then we extrapolate the path of

the serve to identify where the ball would have bounced had the net not intervened.

Figure 2 is an representation of a tennis court and shows the actual (in blue) and

imputed (in red) ball bounces of first serves by men, for serves delivered from the

deuce court. The dashed lines in the figure are imaginary lines —not present on an

actual court —that divide the two “right service”courts and are used to distinguish

left serves from right serves.

Our analysis focuses on the location of the first bounce following a serve. As is

evident from Figure 2, such serves are typically delivered to the extreme left or the

extreme right of the deuce court. We classify the direction of a serve —left or right

—from the server’s perspective: A player serving from the left hand side of the court

delivers a serve across the net into the receiver’s right service court. A bounce above

the dashed line (on the right hand side of Figure 2) is classified as a serve to the left,

and a bounce below the dashed line is classified as a serve to the right. Likewise, for

a player serving from the right hand side of the court, a bounce below the dashed line

(on the left hand side of Figure 2) is classified as a left serve, while a bounce above

is classified as a right serve.13

One could more finely distinguish serve directions, e.g., left, center, and right, but

doing so would not impact our hypothesis tests. So long as left and right are both

in the support of the server’s equilibrium mixture, serves in each direction have the

12Hawkeye records the path of the ball as a sequence of arcs between impacts of the ball with

a racket, the ground, or the net. Each arc (in three dimensions) is decomposed into three arcs,

one for each dimension —the x-axis, the y-axis, and the z-axis. Each of these arcs is encoded as a

polynomial equation with time as a variable. For each arc in three dimensions we have therefore

three polynomial equations (typically of degree 2 or 3) describing the motion of the ball in time and

space.
13More precisely, Hawk-Eye records each impact of the ball with the court by 50 coordinate pairs

(x, y) that describe the perimeter of the elipse-shaped bounce point, where all distances are measured

in meters from the center of the court (with coordinates x = y = 0). A tennis court is 27 feet (8.2296

meters) wide. The deuce court is half as wide, i.e., 4.1148 meters. Hence in the deuce court on the

left hand side of Figure 2 we have −4.1148 ≤ y ≤ 0. To classify the direction of the serve, we select
one of the 50 (x, y) pairs at random. For x < 0, a serve is to the right if y > −2.0574 and to the
left if y < −2.0574.
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same theoretical winning probability.

Figure 2: Ball Bounces for Deuce Court First Serves by Men

Second serves are delivered at slower speeds than first serves and are less likely to be

a fault, but are also typically delivered to the left or right. See Appendix B, Figure

B5.

We observe a total of 465,262 serves in the cleaned data. While Hawk-Eye auto-

matically records bounce data, the names of the players, the identity of the server

and the score are entered manually. This leads to some discrepancies as a result of

data entry errors. To ensure that the information we use in our analysis is correct,

we check that the score evolved logically within a game: the game should start at 0-0,

and the score should be 1-0 if the server wins the first point and 0-1 if the receiver

wins the point. We do this for every point within a game. If there is even one error

within a game, we drop the whole game. While conservative, this approach ensures

that our results are based on highly accurate data. Table 2 reports the number of

first and second serves for men and women that remain. A detailed description of

12



the data cleaning process is provided in Appendix A.

Serve Gender Serves Point Games

1st serve Male 226,298 7,198

Female 110,886 4,108

2nd serve Male 86,702 7,198

Female 41,376 4,108

Table 2: Number of Serves and Point Games

4 Testing for Equality of Winning Probabilities

According to the minimax hypothesis, the probability that the server wins the point

is the same for serves left and for serves right. In the data, for each “point game” i

we observe the number of serves to the left and right, niL and n
i
R. Let n

i
jS and n

i
jF

denote the number of serves in direction j ∈ {L,R} for which the ultimate outcome
was S (success) —the server won the point, or F (failure) —the receiver won the point,

respectively. Thus the data for point game i can be represented in the table below

L R

S niLS niRS niS = niLS + niRS

F niLF niRF niF = niLF + niRF

niL = niLS + niLF niR = niRS + niRF

We first describe our test for whether the server’s winning probabilities are equal

in an individual point game. From this test we construct a test of that winning

probabilities are the same for serves right and serves left in every point game.

Individual Play and The Fisher Exact Test

Let pij denote the true, but unknown, probability that the server will win the

point when the first serve is in direction j. We use the Fisher exact test to test the

null hypothesis that piL = piR = pi for point game i, i.e., the probability that the

server wins the point is the same whether serving to the left or to the right. The

beauty of the Fisher exact test is that it does not require knowledge of the true (but

unknown) value of pi. Moreover, it is an exact test as does not rely on the asymptotic

distribution of the test statistic. As we shall see, the later is essential for constructing
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a valid test of the joint hypothesis of the equality of winning probabilities, given the

large number of point games in our sample.

Let f(nLS;nS, nL, nR) denote the probability, under the null, that the server wins

nLS serves to the left, conditional on winning nS serves in total, after delivering nL
and nR serves to the left and to the right, respectively, i.e., f(nLS;nS, nL, nR) ≡
Pr(nLS|nS, nL, nR). This conditional probability is computed as follows:

f(nLS;nS, nL, nR) ≡
Pr(nLS, nS, nL, nR)

Pr(nS, nL, nR)
=
B(nLS;nL, p)B(nRS;nR, p)

B(nS;nL + nR, p)
,

where nRS = nS − nLS and B(njS;nj, p) is the binomial probability of winning njS
of nj serves in direction j ∈ {L, r} when the winning probability is p. The equality
follows from the fact that the binomial processes for serves left and serves right are

independent. By direct calculation we have

f(nLS;nS, nL, nR) =

(
nL
nLS

)
pnLS(1− p)nL−nLS

(
nR
nRS

)
pnRS(1− p)nR−nRS(

nL+nR
nS

)
pnS(1− p)nL+nR−nS

=

(
nL
nLS

)(
nR
nRS

)(
nL+nR
nS

) .

Of critical importance, this conditional probability is exact for finite samples and

does not depend on p.14 Let F (nLS;nS, nL, nR) be the associated c.d.f., i.e.,

F (nLS;nS, nL, nR) =
∑nLS

k=max(nS−nR,0)
f(k;nS, nL, nR).

In its standard application, the Fisher exact test rejects the null hypothesis at the

5% significance level if F (nLS;nS, nL, nR) ≤ .025 or F (nLS;nS, nL, nR) ≥ .975. For

any given marginal distribution (identified by nS, nL, and nR), since the density f is

discrete, a 5% test will not typically have a size of exactly 5%.

We employ a randomized test in order to obtain a test of exactly the correct

size. For each point game i, let ti be the random test statistic given by a draw

from the distribution U [0, F (niLS;n
i
S, n

i
L, n

i
R)] if n

i
LS takes its minimum value, i.e.,

niLS = niS−niR, and from the distribution U [F (niLS−1;niS, niL, niR), F (niLS;niS, niL, niR)]
14The density is defined for nLS ∈ {max(nS − nR, 0), . . . ,min(nS , nL)}. We require in particular

that nLS ≥ max(nS−nR, 0), i.e., the number of winning left serves must be (i) non-negative, and (ii)
at least as great at the total number of winning serves minus the number of right serves. Likewise,

we require nLS ≤ min(nS , nL), i.e., the number of winning left serves can not exceed either the

number of winning serves overall or the number of left serves.
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otherwise. Under the null hypothesis that piL = piR, the test statistic t
i is distributed

U [0, 1].15 Hence rejecting the null hypothesis if ti ≤ .025 or ti ≥ .975 yields a test of

exactly size .05. We refer to this test as the randomized Fisher exact test. The ti’s

obtained from this test will be used in the next section to test the joint null hypothesis

that piL = piR for every i.

An Illustrative Example

Consider the hypothetical data below, for three different point games, all of which

have the same marginal distributions.

L R

S 4 6 10

F 11 0 11

15 6

f(4; 10, 15, 6) = .0039

F (4; 10, 15, 6) = .0039

L R

S 8 2 10

F 7 5 11

15 6

f(8; 10, 15, 6) = .2737

F (8; 10, 15, 6) = .9063

L R

S 10 0 10

F 5 6 11

15 6

f(10; 10, 15, 6) = .0085

F (10; 10, 15, 6) = 1.00

The hypothetical data considers three (nLS = 4, 8, and 10) of 7 possible realizations of

nLS (i.e., nLS = 4, . . . , 10) consistent with the marginal distributions of the example.

For this hypothetical data, at the 5% significance level the Fisher exact test rejects

the null hypothesis that piL = piR for the data only for the left-most (nS = 4) and

the right-most (nS = 10) tables: the data in the left-most table favors the alternative

hypothesis that piL < piR, while the data on the right-most table favors the alternative

piL > piR. The size of this test, however, is only .0039 + .0085 = 0.0124.

The randomized Fisher exact test likewise rejects the null hypothesis with prob-

ability 1 if nS = 4 or nS = 10. If nS = 5 then ti is a drawn from

U [F (4; 10, 15, 6), F (5; 10, 15, 6)] = U [.0039, .0550]

and the null is rejected if ti ≤ .025. This occurs with probability .413. Likewise, if

nS = 9 then ti v U [.9064, .9915] and the null is rejected if ti ≥ .975. This occurs with

probability .194. Otherwise, for nS ∈ {6, 7, 8}, we have .025 < ti < .975 and the null

is not rejected. Hence the size of the test is

f(4; 10, 15, 6) + .413f(5; 10, 15, 6) + .194f(9; 10, 15, 6) + f(10; 10, 15, 6) = .05.

15The proof is elementary and omitted. See Wooders (2008) footnote 9 for the proof of the

analogous result for the randomized binomial test.
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One can think of a realization of nS = 5 or nS = 9, while not being suffi ciently

extreme to lead to an outright rejection the null, as providing some evidence against

it and thus the null is rejected with positive probability.

Table 3 shows the percentage of points games for which equality of winning prob-

abilities is rejected for the Hawk-Eye data, for men and women and for both first and

second serves. For point game i, the null hypothesis is rejected at the 5% significance

level if either ti ≤ .025 or ti ≥ .975. Since ti is random, each percentage is computed

for 5000 trials; the table reports the mean and standard deviation (in parentheses)

of these trials. For men, for both first and second serves, the (mean) frequency at

which the null is rejected at the 5% significance level is very close to 5%, the level

expected if the null is true.16 For women, the null is rejected at a somewhat higher

than expected rate (5.35%) on first serves, and a slightly lower than expected rate

(4.86%) for second serves.

Significance Level

Setting # Point Games 5% 10%

Men (1st Serve) 7,198 5.06% (0.16) 10.01% (0.20)

Men (2nd Serve) 7,198 5.02% (0.23) 10.13% (0.30)

Women (1st Serve) 4,108 5.35% (0.22) 10.50% (0.28)

Women (2nd Serve) 4,108 4.86% (0.30) 9.64% (0.40)

Table 3: Rejection Rate (Fisher exact Test) for H0 : p
i
L = piR (5000 trials)

At the individual level, the rate at which equality of winning probabilities is rejected

at the 5% or 10% significance level seems —to the eye —to be roughly consistent with

the theory.

Aggregate Play and the Joint Null Hypothesis

We next consider the joint null hypothesis that piL = piR for each point game

i. WW test this hypothesis by applying the Kolmogorov—Smirnov (KS) test to the

empirical distribution of the p-values, one for each point game, obtained from the

16Since each point game has fewer observations of second serves than first serves, the stochastic

nature of the t’s will tend to be more important for second serves. This is evidenced by the higher

standard deviations for second serves. Likewise, since we tend to observe fewer serves for women,

the standard deviations are higher for women.

16



Pearson Goodness of fit test. Under the joint null hypothesis, each p-value is asymp-

totically uniformly distributed. They find that the null is resoundingly rejected for

O’Neill’s (1987) experimental data, whereas the null is not rejected when applied to

the serve and return data from professional tennis.17 Other authors have followed this

approach to test for equality of winning probabilities in professional soccer (Palacios-

Huerta (2003)) and laboratory experiments with human subjects (Levitt-List-Reiley

(2010), Van Essen and Wooders (2015)).

Here we construct a new test of the joint null hypothesis that piL = piR for each

point game i. Since our test is constructed from the randomized Fisher exact test, it

has the crucial advantage that the t values (the analogue to the p-values in WW) are

uniformly distributed under the null hypothesis for finite samples. In particular, it

does not rely on the asymptotic distribution of a test statistic. Moreover, as we will

show later, the test we construct is more powerful than the WW test.

To illustrate, we begin by applying this new test to the WW data. As described

earlier, for each point game i, let ti be the random test statistic given by a draw from

the distribution U [0, F (niLS;n
i
S, n

i
L, n

i
R)] if n

i
LS takes its minimum value of n

i
LS = niS−

niR, and from the distribution U [F (n
i
LS−1;niS, niL, niR), F (niLS;niS, niL, niR)] otherwise.

Under the null hypothesis that piL = piR, the test statistic t
i is distributed U [0, 1].

Since the ti’s are i.i.d. draws from a continuous distribution, we can test the joint

hypothesis by applying the KS test to the empirical c.d.f. of the t values. Formally,

the KS test is as follows: The hypothesized c.d.f. for the t-values is the uniform

distribution, F (x) = x for x ∈ [0, 1]. The empirical distribution of the 40 t-values
(one for each point game in the WW dataset), denoted F̂ (x), is given by F̂ (x) =
1
40

∑40
i=1 I[0,x](t

i), where I[0,x](ti) = 1 if ti ≤ x and I[0,x](ti) = 0 otherwise. Under

the null hypothesis, the test statistic K =
√
40 supx∈[0,1] |F̂ (x) − x| has a known

asymptotic distribution (see p. 509 of Mood, Boes, and Graybill (1974)).

Figure 3(a) shows one realization of the empirical distribution of t values for the

WW data. For this realization, the value of the test statistic is K = .787 and the

associated p-value is .565. Thus the new test confirms the WW finding that the joint

null hypothesis of equality of winning probabilities for first serves does not even come

17For the 50 “point games”in O’Neill’s data, the KS test statistic is k = 1.704 (p-value of .006),

while for the 40 point games in Walker and Wooders’data set the KS test statistic is k = .670

(p-value of .76).
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close to being rejected for male professional tennis players.18

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (5000 trials)

Figure 3: KS test of H0 : p
i
L = piR ∀i (WW data)

Since the t values are stochastic, the empirical c.d.f. and the KS test p-value

reported in Figure 3(a) are also random. It is natural to question the robustness

of the conclusion that the joint null hypothesis is not rejected. Figure 3(b) shows

the empirical density of the p-values obtained after 5000 repetitions of the KS test.

To construct the density, the horizontal axis is divided into 100 equal-sized bins

[0, .01], [.01, .02], . . . , [.99, 1.0] and so, if 5000 p-values were equally distributed across

bins, then there would be 50 p-values per bin. The vertical height of each bar in

the histogram is the number of p-values observed in the bin divided by 50. By

construction, the area of the shaded region in Figure 3(b) is one, and hence it is an

empirical density. The bins to the left of the vertical lines at .05 and at .10 contain,

respectively, p-values for which the null is rejected at the 5% and 10% level.

Figure 3(b) shows that the p-values are concentrated around .6, and hence are far

from the rejection region. In 5000 repetitions of the KS test, the joint null hypothesis

of equality of winning probabilities is not once rejected at the 10% significance level.

Hence the failure to reject the joint null hypothesis of equality of winning probabilities

is indeed completely robust to the realization of the t values.

Before proceeding it is important to emphasize several aspects of our test. First,

it is a valid test in the sense that if the null hypothesis is true (i.e., piL = piR ∀i)
then the p-value obtained from the KS test is asymptotically uniformly distributed

18In WW (2001), the value of the KS test statistic was .670 and the associated p-value was .76.
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(as the number of point games grows large). Second, once the data has been realized,

the distribution of p-values obtained from running the test repeatedly (as in Figure

3(b)) depends on the data, and there is no longer reason to expect the KS p-values to

be uniformly distributed. Finally, as the number of serves in each point game grows

large, then the intervals U [F (niLS − 1;niS, niL, niR), F (niLS;niS, niL, niR)] from which the
t values are drawn shrink and the empirical density of the KS p-values collapses to a

degenerate distribution.

Figure 4 shows the result of applying the same test to the Hawk-Eye data for first

serves by men. As noted in Table 2, this test is based on 226,298 first serves in 7,198

point games. Figure 4(a) shows a realization of the empirical c.d.f. of t values (in

red) and the theoretical c.d.f. (in blue). The empirical and theoretical c.d.f.s very

nearly coincide. The value of the KS test statistic is K = .818 and the associated

p-value is .515. Despite its enormous power, the test does not come close to rejecting

the null hypothesis.

Figure 4(b) shows that this conclusion is robust to the realizations of the t values.

In only one instance (.02%) of 5000 trials of the KS test is the null hypothesis rejected

at the 5% level. In only .24% of the trials is it rejected at the 10% level. The mean

p-value is .689, which is far from the rejection region.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (5000 trials)

Figure 4: KS test for Men of H0 : p
i
L = piR ∀i (Hawk-Eye, First Serves)

WW studied only first serves since there were few second serves in their data.

Figure 5 shows the result of applying our test to the Hawk-Eye data for 86,702

second serves by men from 7,198 point games. For a typical realization of the t

values, such as the one shown in Figure 5(a), the joint null hypothesis of equality of
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winning probabilities is not rejected. Figure 5(b) shows the density of p-values from

the KS tests after 5000 trials. Only for a small fraction of these trials (2.72%) is the

joint null rejected at the 5% level. The mean p-value is .497.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (5000 trials)

Figure 5: KS test for Men of H0 : p
i
L = piR ∀i (Hawk-Eye, Second Serves)

While the data for both first and second serves is strikingly consistent with the

theory, comparing Figures 4(b) and 5(b) reveals that the result is slightly less ro-

bust for second serves. This is a consequence of the fact that there are fewer

second serves than first serves in each point game. Thus the intervals U [F (niLS −
1;niS, n

i
L, n

i
R), F (n

i
LS;n

i
S, n

i
L, n

i
R)] from which the t values are drawn tend to be larger

for second serves, and the empirical c.d.f. of t values is more random.19

Our data also allow a powerful test of whether the play of women conforms to

the minimax hypothesis. In the Hawk-Eye data for women, there are 110,886 first

serves and 41,376 second serves, obtained in 4,108 point games. For women, while

the empirical and theoretical c.d.f.s of t-values appear to the eye to be close, for many

realizations of the t’s the distance between them is, in fact, suffi ciently large that the

joint null hypothesis of equality of winning probabilities is rejected. Figures 6 and 7

show, respectively, the results of KS tests of the hypothesis that piL = piR for all i, for

first and second serves, respectively. For first serves, the null is rejected at the 5%

and 10% significance level in 44.92% and 73.46% of 5000 trials, respectively.

The results for second serves are more ambiguous. While the p-values shown in

19In a point game with nL left serves, nR right serves, and nS successful serves, there are

min(nS , nL)− max(nS − nR, 0) + 1 distinct intervals from which t values are drawn.
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Figure 7(b) tend to be small, the mean p-value is .254. The null hypothesis tends not

to be rejected at the 5% level: in only 16.90% of the trials is the p-value below .05.

(a) An empirical c.d.f. of p-values (b) Density KS test p-values (5000 trials)

Figure 6: KS test for Women of H0 : p
i
L = piR ∀i (Hawk-Eye, First Serves)

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (5000 trials)

Figure 7: KS test for Women of H0 : p
i
L = piR ∀i (Hawk-Eye, Second Serves)

In sum, male professional tennis players show a striking conformity to the theory

on both first and second serves. The behavior of female professional tennis players

conforms less closely to the theory, especially on first serves.

The behavior of female professional tennis players, however, conforms far more

closely to equilibrium than the behavior of student subjects in comparable laboratory
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tests of mixed-strategy Nash play. Figure 8(a) shows a representative empirical c.d.f.

of 50 t-values obtained from applying our test to the data from O’Neill’s (1987)

classic experiment. The joint null hypothesis of equality of winning probabilities is

decisively rejected, with a p-value of .01. The empirical density function in Figure

8(b) shows that rejection of the null at the 5% significance level is completely robust

to the realization of the t-values —at this significance level the null is certain to be

rejected.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (5000 trials)

Figure 8: KS test of H0 : p
i
L = piR ∀i (O’Neill’s (1987) experimental data)

5 Serial Independence

We test the hypothesis that the server’s choice of direction of serve is serial indepen-

dent. For each point game i, let si = (si1, . . . , s
i
niL+n

i
R
) be the sequence of first-serve

directions, in the order in which they occurred, where sin ∈ {L,R}. Let ri denote
the number of runs in si. (A run is a maximal string of identical symbols, either

all L’s or all R’s.) Under the null hypothesis of serial independence, the probabil-

ity that there are exactly r runs in a randomly ordered list of nL occurrences of L

and nR occurrences of R is known. Denote this probability by fR(r;nL, nR) and let

FR(r;nL, nR) denote the associated c.d.f. At the 5% significance level, the null is

rejected if FR(r;nL, nR) ≤ .025 or if 1 − FR(r − 1;nL, nR) ≤ .025, i.e., if the prob-

ability of r or fewer runs is less than .025 or the probability of r or more runs less

less than .025. In the former case, the null is rejected since there are too few runs,

i.e., the server switches the direction of serve too infrequently to be consistent with
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randomness. In the later case, the null is rejected as the server switches direction too

frequently.

To test the joint null hypothesis that first serves are serially independent, we em-

ploy the randomized test introduced in WW. In particular, for each point game i we

draw the random test statistic ti given by a draw from U [FR(r
i−1;niL, niR), FR(ri;niL, niR)].

Under the joint null hypothesis of serial independence, each ti is distributed U [0, 1].

We then apply the KS test to the empirical distribution of the t values.

Figure 9 shows representative empirical c.d.f.s of t-values for first serves (left

panel) and for second serves (right panel) for the Hawk-Eye data for men. The KS

test rejects the joint null hypothesis of serial independence, for both first and second

serves, with p-values virtually equal to zero.20 (We omit the empirical density of the

KS test p-values since the null is rejected for every realization of the t’s.) In each case,

the empirical c.d.f. lies below the theoretical c.d.f., and hence the null is rejected as

a consequence of too much switching, i.e., there are more than the expected number

of large t-values. These results confirm the WW finding of negative serial correlation

of first serves by men.

(a) First Serve: Empirical c.d.f. of t-values (b) Second Serve: Empirical c.d.f. of t-values

Figure 9: KS test for Men of H0 : s
i is serial independent ∀i (Hawk-Eye)

Figure 10 shows representative empirical c.d.f.s of t-values for first and second

serves by women for the Hawk-Eye data. Women also exhibit negative serial correla-

20At the individual player level, serial independence is rejected in point game i at the 5% signif-

icance level if ti ≤ .025 or ti ≥ .975. For first serves, we reject serial independence as a result too

few runs (i.e., ti ≤ .025) for 2.9% of the point games, and reject it as a result of too many runs (i.e.,

ti ≥ .975) for 7.0% of the point games.
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tion in the direction of serve, for both first and second serves, with the null of serial

independence rejected at virtually any significance level.

(a) First Serve: Empirical c.d.f. of t-values (b) Second Serve: Empirical c.d.f. of t-values

Figure 10: KS test for Women of H0 : s
i is serial independent ∀i (Hawk-Eye)

Comparing Figures 10(a) and 11(a) one might be tempted to conclude the women

exhibit more serial correlation in first serves than men. While this conclusion is

correct, as we shall see shortly, it is premature: when the server’s choice of direction

of serve is not serially independent in point game i, then the distribution of ti will

tend to depend on the number of first serves. Since we observe different numbers of

first serves for males and females and, indeed, different numbers of first serves for

different players, a direct comparison of the c.d.f.s is not meaningful.

Comparing Male and Female Players

To determine the degree of serial correlation in first serves, and whether the dif-

ference between male and female players is statistically significant, we compute, for

every point game, the Pearson product-moment correlation coeffi cient between suc-

cessive serves.21 Figure 11 shows the empirical densities of correlation coeffi cients

for male and female tennis players for first serves. When computing the correlation

coeffi cients for O’Neill’s subjects we distinguish only between Joker and non-Joker

21When all serves are the same direction we take the correlation coeffi cient to be one.
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choices.

(a) Men (Hawk-Eye) (b) Women (Hawk-Eye) (c) O’Neill

Figure 11: Empirical density of correlation coeffi cients, first serves

The mean correlation coeffi cient for men is −0.086 and for women is −0.150, a statis-
tically significant difference using a two-sample t test.22 In fact, the empirical c.d.f.

of correlation coeffi cients for men first-order stochastically dominates the same c.d.f.

for women.23 For O’Neill’s (1987) subjects, comprised of an unknown mixture of men

and women, the mean is −0.113. Comparing students to tennis players, the difference
of the means is not statistically for either men or women, likely a consequence of the

small sample size for students.

Table 4 shows the result of a logit regression for first serves in which the dependent

variable is the direction of the current serve and the independent variables are the

direction of the prior serve (from the same point game) and the direction of the

prior serve interacted with gender. We use a fixed effect logit using only within point

22The two-sample t test yields a test statistic of −14.16 and p-value of 4.57× 10−39.
23The null hypothesis that the correlation coeffi cients of males and females are drawn from the

same distribution is decisively rejected by the two-sample KS test (D = 0.1322, KS p-value of

5.61× 10−40).
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variations to cancel out for variation in the equilibrium mixture across point games.24

Rightt−1 −0.659
(p < 0.001)

Rightt−1 ×male 0.329

(p < 0.001)

Nserves 325, 394

Fixed Effect point game

Table 4: Serial Correlation and Gender

The coeffi cient estimate on Rightt−1×male is statistically significant and positive, in-
dicating that men exhibit less negative serial correlation in their choices than women.

The estimated magnitude of serial correlation is strategically significant. To illus-

trate, consider a female player who (unconditionally) serves right and left with equal

probability. If the prior serve was right, the estimates predict that the next serve will

be right with probability 0.418 if the server is male but will be right with probability

only 0.341 if the server is female.

6 Expertise and Conformity to Equilibrium

Receiver Expertise and Equality of Winning Probabilities

In Section 4 we established that the win rates of male professional tennis players

conform remarkably closely to theory, while the win rates for women conform some-

what less closely. In other words, in men’s tennis the receiver acts to equalize the

server’s winning probabilities, while this tends to be less true in women’s tennis. In

this section we consider whether the behavior of better (i.e., higher ranked) receivers

conforms more closely to theory.

The ATP (Association of Tennis Professionals) and the WTA (Women’s Tennis

Association) provide rankings for male and female players, respectively. Our analysis

in this section is based on the subsample of matches for which we were able to obtain

the receiver’s ranking at the time of the match. It consists of 96% of all point games

for men but, since the ranking data was unavailable for women for the years 2005 and

24Estimating the fixed effect logit regression requires that point games in which all first serves are

in the same direction be dropped from the sample.

26



2006, only 69% of the point games for women.25 The median rank for male players

is 22 and for female players is 17.

According to the minimax hypothesis, the player receiving the serve acts to equal-

ize the server’s winning probabilities. Thus to evaluate the effect of expertise on

behavior, we partition the data for first serves by men into two subsamples based on

whether the receiver was a “top”player (i.e., ranked 17 or higher) or a “non-top”

player (i.e., ranked below 17). The three panels of Figure 12 shows the empirical

c.d.f.s of p-values when testing the joint null hypothesis of equality of winning prob-

abilities for each subsample and for the sample of all point games for which we could

obtain the receiver’s rank.

(a) “Top”male receivers (b) “Non-top”male receivers (c) All male receivers

Figure 12: KS test of H0 : p
i
L = piR ∀i according to the receiver’s rank (5000 trials)

Panels (a) and (b) of Figure 12 show that the null hypothesis that winning prob-

abilities are equalized is not rejected when servers face either top or non-top male

receivers. The mean p-values are .458 and .548, respectively, and in only .48% and

.10% of the trials is the null rejected at the 5% significance level. Hence we do not

come close to rejecting the hypothesis that both top and non-top male receivers act

to equalize the server’s winning probability. This result matches our finding, reported

in Figure 4, that winning probabilities for male players are equalized on first serves,

consistent with the minimax hypothesis.26

Section 4 established (see Figures 6 and 7) that the behavior of female professional

tennis players conformed less neatly to the minimax hypothesis. For first serves, the

25The ATP/WTA ranking were obtained from http://www.tennis-data.co.uk/alldata.php.
26Figure 12(c) shows the empirical c.d.f. of p-values obtained when testing equality of winning

probabilities on the sample of all 6,902 point games for which we could obtain the receiver’s rank.

It matches the empirical c.d.f. reported in Figure 4(b) for all 7,198 point games.
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joint null hypothesis of equality of winning probabilities is rejected at the 5% level

in 44.92% of all trials, and the mean p-value is .076. However, for the subsample of

matches in which the receiver is ranked “top”(i.e., median or higher rank) the same

null hypothesis does not come close to being rejected, as shown in panel (a) of Figure

13. In contrast, the null is decisively rejected for the subsample in which the receiver

is ranked “non-top,”as shown in panel (b). Panel (c) shows the null hypothesis is

decisively rejected for the sample of all female players for whom we could obtain their

rankings, and is the analogue of Figure 6(b) which reports the results for all female

players.

(a) “Top”female receivers (b) “Non-top”female receivers (c) All female receivers

Figure 13: KS test of H0 : p
i
L = piR ∀i according to the receiver’s rank

These results suggest that the best female players, when receiving the serve, do act

to equalize the server’s winning probabilities, in accordance with the minimax hy-

pothesis.

Why do both top and non-top male receivers equalize the server’s winning prob-

abilities, while for women only top receivers do? We conjecture that the selection

pressure towards equilibrium is smaller for women than for men. A male receiver

who fails to equalize the server’s winning probabilities can readily be exploited since

men deliver serves at very high speed. Such a receiver will not be suffi ciently success-

ful to appear in our dataset. The serve in women’s tennis is much slower —fewer serves

are won by aces and the serve is more frequently broken. Return and volley play is

relatively more important in women’s tennis, and a good return and volley player can

be successful even if her play when receiving a serve is somewhat exploitable. The

best female players, nonetheless, do equalize the server’s winning probabilities.
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Server Expertise and Serial Correlation

In Section 5 we established that, inconsistent with the minimax hypothesis, both

men and women exhibit negative serial correlation in the direction of serve. Further-

more, women exhibit more negative serial correlation than men.

Optimal play for the server requires that the direction of serve be serially inde-

pendent, and this is true regardless of the receiver’s rank. Here we show that higher

ranked male players exhibit less serial correlation than lower ranked male players,

while the degree of serial correlation does not depend on rank for women. This pro-

vides evidence that when there is a strong selection effect, as there is for men, then

the behavior of better players conforms more closely to the minimax hypothesis.

Table 5 shows the results of logit regressions in which the dependent variable is

the direction of the current first serve and the independent variables are the direction

of the prior first serve (in the same point game), the direction of the prior serve

interacted with the server’s rank, and the direction of the prior serve interacted

with the receiver’s rank. We measure rank as proposed by Klaassen and Magnus

(2001), transforming the ATP/WTA rank of a player into the variable R̃ where R̃ =

8 − log2(ATP/WTA rank). Higher ranked players have higher values of R̃, e.g., the
players ranked first, second, and third have values of R̃ equal to 8, 7, and 6.415,

respectively.

Men Women

Rightt−1 −.577 −.689
(p < 0.001) (p < 0.001)

Rightt−1 × R̃server 0.067 0.008

(p < 0.001) (p = 0.359)

Rightt−1 × R̃receiver −0.002 0.004

(p = 0.628) (p = 0.610)

Nserve 207, 418 77, 508

Npointgame 6, 887 2, 901

Fixed Effect point game point game

Table 5: Serial Correlation and Player Rank

For men, the coeffi cient on Rightt−1 × R̃server is positive and statistically sig-

nificant. Men exhibit less correlation in their direction of serve as they are more
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highly ranked. For women, by contrast, the server’s rank is statistically insignificant.

As expected, the rank of the receiver is statistically insignificant for both men and

women.

7 Discussion

In this section we use Monte Carlo simulations to study the properties of the KS test

of the joint hypothesis of equality of winning probabilities. We show that the test

is valid when the empirical c.d.f. is generated from the Pearson goodness of fit test

p-values, so long as the number of point games is not too large (as it was in WW).

If, however, the number of points games is large, as it is for our Hawk-Eye data,

then the same test rejects the null even when it is true, and is thus not valid in our

context. We show, in contrast, that when the empirical c.d.f. is generated from the

randomized Fisher exact test t-values, then the test is valid, regardless of the number

of point games.

We show further that the KS test based on the randomized Fisher t-values is more

powerful than the tests used in the prior literature (the KS test based on the Pearson

goodness of fit p-values and the Pearson joint test).27 In Section 4 it was established

that this more-powerful test, when applied to the WW data, confirms their original

findings. (See Figure 3 and the associated discussion.) Here we show that the more

powerful test, when applied to HHT’s data, does not support their finding that the

serve and return play of female professional tennis players and of players in junior

matches is consistent with theory.

Valid Tests for Small and Large Samples

We first show that the KS test based on p-values from the Pearson goodness of

fit test is valid for sample sizes of the kind studied in WW. A valid test generates

p-values that are uniformly distributed when the null is true, and thus at the 5%

significance level, say, rejects the null with probability .05.

The WW dataset had 40 point games, with an average of 75.65 serves per game,

54% of the serves were to the left, and the server’s empirical winning probability

was .64. We simulate data to roughly match these aggregate characteristics. In the

simulated data there are 40 point games, every point game has 70 serves, each serve is

27See, for example, Table 1 and Figure 2 in WW.
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equally likely to be to the left or to the right, and a serve in either direction wins with

probability 2/3. In particular, the null hypothesis of equality of winning probabilities

is true for the simulated data.

(a) An empirical c.d.f. of Pearson p-values (b) Density of KS test p-values (10,000 trials)

Figure 14: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 40 point games)

For each point game i, we compute the p-value from the Pearson goodness of fit

test of the hypothesis that piL = piR. Under the null, the p-value is (asymptotically)

uniformly distributed. Figure 14(a) shows an empirical c.d.f. of 40 such p-values

obtained from simulating the WW data once. Applying the KS test to the empirical

c.d.f. of p-values to test the null hypothesis that piL = piR for all i yields a test statistic

of K = .765 and associated p-value is .602.28

This KS test is valid if the associated p-values are uniformly distributed under

the null. To verify that they are, we simulated the data 10,000 times, each time

(i) generating an empirical c.d.f. of 40 p-values, (ii) applying the KS test to the

empirical c.d.f. to determine whether the 40 p-values are uniformly distributed, and

(iii) recording the associated p-value of the KS test.29 Figure 14(b) shows that the

empirical density of these p-values is indeed roughly uniform. At the 5% significance

level, the (true) joint null hypothesis of equality of winning probabilities is rejected

28The KS test p-value is asymptotically uniformly distributed provided that each pi in the empir-

ical c.d.f. is an independent draw from the same continuous distribution. In this application, the

Pearson pi’s are distributed U [0, 1] asymptotically (as the number of serves in point game i grows

large).
29Importantly, a new simulated data set is created in each trial. For the densities provide in

Section 4, by contrast, the data is fixed and the trials differ only in the realized t-values.
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in 4.48% of the trials. Likewise, at the 10% significance level the joint null is rejected

in 8.89% of the trials. Thus this test is valid for sample sizes of 40 point games.

Figure 15 reports the results of exactly repeating this process, but simulating data

for 7000 point games (rather than 40) in order to match the size of the Hawk-Eye

dataset. Figure 15(a) shows a representative empirical c.d.f. of 7000 p-values and

Figure 15(b) shows the empirical density of the KS test p-values after 10,000 trials.

It is immediately evident from Figure 15(b) that the empirical density of the KS test

p-values is not close to uniform. At the 5% significance level, for example, we see

that the KS test rejects the joint null hypothesis of equality of winning probabilities

in the majority of trials (53.63%), even though it is true! This test is not, therefore,

appropriate for datasets with a large number of point games.

(a) An empirical c.d.f. of Pearson p-values (b) Density of KS test p-values (10,000 trials)

Figure 15: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 7000 point games)

Why is the test valid when there are 40 points games, but not when there are

7000? Under the null hypothesis that piL = piR, the test statistic for the Pearson

goodness of fit test is asymptotically distributed chi-square one as the number of

serves in the point game grows large. Hence the p-values used to form the empirical

c.d.f.s in Figures 14(a) and 15(a) are also only asymptotically uniformly distributed

as well. When there are 7000 points games, the KS test is so powerful that it uncovers

that the p-values are not truly distributed uniformly (since we observe only a finite

number of serves in each point game). In particular, Figure 15(b) shows that when

applying the KS test to empirical c.d.f.s comprised of 7000 of these p-values, we reject

that they are uniformly distributed more often than not.
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Figure 16 shows the results of simulating 7000 point games exactly as above,

except that the KS test is based on the empirical distribution of the randomized

Fisher exact test t-values. (As established in Section 4, the t-values are uniformly

distributed under the null even for finite samples.) For each realization of 7000 t-

values, we compute the associated p-value from the KS test. Figure 16(b) shows that

the KS test performs as it should, with p-values that are distributed uniformly. The

KS test rejects the (true) joint null hypothesis at the 5% significance level in 4.55%

of 10,000 trials; at the 10% level it rejects the joint null hypothesis in 9.39% of the

trials.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure 16: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 7000 point games)

While we omit it here for brevity, Monte Carlo simulations show that the KS test

based on the empirical distribution of t-values also performs as it should for small

sample sizes as well.

For expositional convenience we have simulated data for homogeneous point games,

i.e., every point game has 70 serves, serves left and right are equally likely, and the

probability of winning a point is 2/3 for every serve. In Appendix B we show that the

results reported in this subsection are robust to simulating data that matches, point

game by point game, the observed characteristics of the WW data or the Hawk-Eye

data.

The Power of Our Test

We have established that the KS test of the joint null hypothesis of equality of

winning probabilities is valid for large samples when the empirical c.d.f. is based on
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the randomized Fisher exact test t-values, but not when it is based on the Pearson

goodness of fit p-values. Using t-values rather than p-values also yields a test that is

more powerful against the alternative hypothesis that the winning probabilities are

unequal for left and right serves, as we now establish via Monte Carlo simulations.

To evaluate the power of our tests, we follow WW and frame our discussion in

terms of the following hypothetical point game, where the entry in each cell is the

probability that the server wins the point.

Receiver

L R

Server L 0.58 0.79 0.53 1/3

R 0.73 0.49 0.46 1/3

2/3 1/3

In the game’s mixed-strategy Nash equilibrium, the receiver chooses L with probabil-

ity 2/3 and the server chooses L with probability 0.53 1/3. The probability the server

wins the point is 0.65 for a serve in either direction. Denote by θ the probability

that the receiver chooses L. Our null hypothesis H0 that pL = pR can equivalently

be viewed as the null hypothesis that θ = 2/3, i.e., the receiver’s equilibrium mix-

ture equalizes the server’s winning probabilities. Denote by Ha(θ) the alternative

hypothesis that the receiver chooses L with probability θ. Then the server’s winning

probabilities are

pL(θ) = .58θ + .79(1− θ)

and

pR(θ) = .73θ + .49(1− θ).

We conduct Monte Carlo simulations to compare the power of our test, i.e., the

probability that H0 is rejected when Ha(θ) is true, to the tests used in the prior

literature.

We first simulate data for 40 points games with payoffs as given above. In the

simulated data every point game has 70 serves, and serves in each direction are

equally likely.30 Figure 17(a) shows, as θ varies, the probability that the joint null

30To maintain conformity with the simulations discussed earlier in this section, we simulate the

data under the assumption that serves in each direction are equally likely. Simulating it with the

hypothetical point game’s .53 1/3 equilibrium mixture probably on left has a negligible impact on

the results.
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hypothesis H0 : p
i
L = piR ∀i ∈ {1, . . . , 40} is rejected when Ha(θ) : p

i
L = pL(θ) and

piR = pR(θ) ∀i ∈ {1, . . . , 40} is true, for several different tests. The power function in
red shows the probability of rejecting H0 when Ha(θ) is true for the KS test based on

the empirical distribution of the 40 p-values from the Pearson goodness of fit test.31

The power function in green is for the Pearson joint test, and is the analogue of the

power function shown in Figure 4 of WW. The power function in black is for the KS

test based on the empirical distribution of 40 t-values from the randomized Fisher

exact test. This last test is, by far, the most powerful. If, for example, Ha(.6) is

true, then the KS test based on the t’s rejects H0 at the 5% significance level with

probability .256, while the Pearson joint test and the KS test based on the p’s reject

H0 with probability .080 and .055, respectively.

(a) N = 40 (b) N = 7000

Figure 17: Power Functions for KS test based on t-values (black), p-values (red),

and Pearson joint (green)

Figure 17(b) shows the power function for the KS test based on the randomized

Fisher exact test t-values when data is simulated for 7000 point games, i.e., for

approximately the number of point games in our Hawk-Eye data. The power functions

for the Pearson joint test and the KS test based on the p-values from the Pearson

goodness of fit test are omitted since, as shown earlier, neither is a valid test (both

tests reject the null with high probability even when it is true). Table 3 provides

31For each value of θ ∈ {0, .01, .02, . . . , .99, 1} and for θ = 2/3 the data is simulated 1000 times.
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more detail about the power of the test for θ near its equilibrium value of 2/3.

True θ KS based on t’s KS based on p’s Pearson joint test

0.65 0.995 0.554 0.275

0.66 0.454 0.548 0.241

2/3 0.042 0.515 0.197

0.67 0.169 0.564 0.229

0.68 0.960 0.551 0.244

Table 6: Rejection rate for H0 at the 5% level, N = 7000

The first row of Table 6 shows that that if Ha(.65) is true, i.e., the server’s true

winning probability is pL(.65) = .6535 for serves left and pR(.65) = 0.6460 for serves

right, then H0 is rejected at the 5% level with probability .995. Our more powerful

test, coupled with a far larger dataset, yields a test of the joint null hypothesis of

equality of winning probabilities that is far more powerful than any reported in the

prior literature.

Re-Analysis of Prior Findings

WW found that the joint null hypothesis of equality of winning probabilities did

not come close to being rejected. In Section 4 we established above that the same

hypothesis is not rejected for the WW data even when using the more powerful

KS test based on the randomized Fisher exact test t-values (see Figure 3 and the

associated discussion).

HHT studies a dataset comprised of ten men’s matches, nine women’s matches,

and eight junior’s matches. The men’s and women’s matches are all from Grand

Slam finals, while the juniors matches include the finals, quarterfinals, and second-

round matches in both tournaments and Grand Slam matches. HHT found, using

the KS test based on p-values, that the joint null hypothesis of equality of winning

probabilities is not rejected for any one of their datasets, or all three jointly. The KS

statistics are 0.778 for men (p-value .580), 0.577 for women (p-value .893), 0.646 for

juniors (p-value .798), and 0.753 (p-value .622) for all 27 matches or 108 point games

combined. We show that this conclusion for women and juniors is not robust to using

the more powerful test based on the t-values.

Figure 18(a) shows, for the HHT men’s data, a representative empirical c.d.f.

of t-values (left panel) and the empirical distribution of the p-values (right panel)
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obtained from 5000 trials of the KS test based on the randomized Fisher t-values.

The joint null hypothesis is not rejected once, even at the 10% level. Hence the more

powerful test supports HHT’s findings for men.

Figure 18(a): KS test for Men of H0 : p
i
L = piR ∀i (HHT data)

Figures 18(b) and (c) show for women and juniors, by contrast, the empirical

distributions of p-values are shifted sharply leftward (relative to the one for men)

and the same joint null hypothesis is frequently rejected. For women, for example, it

is rejected in 18.48% of 5000 trials at the 5% level and in 45.30% of all trials at the

10% level. The leftward shift of the empirical density of the p-values is even more

striking for juniors. For that data, the joint null is rejected at the 5% level in 49.56%

of the trials and at the 10% level in 77.48% of the trials.

Figure 18(b): KS test for Women of H0 : p
i
L = piR ∀i (HHT data)
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Figure 18(c): KS test for Juniors of H0 : p
i
L = piR ∀i (HHT data)

Thus the greater power of the KS test based on the t-values changes the conclusions

obtained from HHT’s data.

8 Conclusion

Using data from professional tennis, the present paper provides by far the most

powerful test of the minimax hypothesis hereto reported. The minimax hypothesis

provides two testable predictions: (i) the probability that the server wins the point

is the same for serves left and serves right, and (ii) the direction of serve is serially

independent. The data provides remarkably strong support for the hypothesis that

winning probabilities are equalized, especially for men. It also resoundingly rejects the

hypothesis that the direction of the serve is serially independent. Behavior conforms

more closely to the theory for men than women in both dimensions.

When the theory preforms poorly (e.g., equality of winning probabilities for

women) or fails (e.g., serial independence for men), we provide evidence that the

theory works better for more highly ranked players. To our knowledge the present

paper is the first to provide field evidence that more skilled players behave in the field

in closer conformity to the theory.
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9 Appendix A

9.1 Data Cleaning

There were several steps in the cleaning the data. The table below shows the numbers

of serves remain after each step. As noted in the text, we first eliminated from our

analysis every game in which the scoreline did not evolve logically. Row (i) shows

the number of first serves, second serves, and point games that remain. We then

eliminated those serves in which there is ambiguity regarding which player is serving

(Row (ii)), and serves in which there is ambiguity regarding whether the serve is a

first or second serve (Row (iii)). Finally, we drop those point games in which we

observe 10 or fewer serves (Row (iv)).32

Female Male

1st 2nd N 1st 2nd N

All 147,000 57,005 4,657 284,109 113,757 7,951

(i) Scoreline 115,014 44,082 4,511 230,305 91,341 7,690

(ii) Server? 113,125 43,387 4,511 228,802 90,739 7,690

(iii) 1st or 2nd? 113,121 42,180 4,511 228,785 87,732 7,690

(iv) ≥ 10 serves 110,886 41,376 4,108 226,298 86,702 7,198

Table A1: Number of serves and point games after data cleaning.

10 Appendix B: Not intended for publication

As a robustness check, here we reproduce the simulation results reported in Section 7,

but where now the simulated data matches the characteristics of the observed data,

point game by point game, rather than just in aggregate. Specifically, if point game i

has niR serves to the right, n
i
L serves to the left, and an empirical winning frequency

of p̂i, then the simulated data for point game i has niR serves to the right, n
i
L serves

to the left, and the probability of winning a point is p̂i for serves in each direction

(and hence the null hypothesis that piL = piR is true). The number of winning serves

to the right and left are therefore distributed, respectively, B(niR, p̂
i) and B(niL, p̂

i)

in the simulated data for point game i.

32Our results are robust to the choice of restrictions (e.g., more than 10, 20, or 30 serves).
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valid tests for small and large samples

The subsection “Valid Tests for Small and Large Samples”in Section 6 established

that the KS test of the null hypothesis of equality of winning probabilities (piL = piR

∀i) based on the p-values from the Pearson goodness of fit test is valid for “small”

samples (40 point games), but is not valid for “large”samples (7000 point games).

Figure B1(b), the analogue to Figure 14(b), shows that the empirical distribution of p-

values is approximately uniform when the simulated data matches the characteristics

of WW data, point game by point game. Thus our conclusion in Section 6 that the

KS test based on the p-values is a valid test for samples of the size studied in WW is

robust to how the data is simulated,

(a) An empirical c.d.f. of Pearson p-values (b) Density of KS test p-values (10,000 trials)

Figure B1: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 40 point games)

Figure B2(b) is the analogue of Figure 15(b). It shows that when data is simulated

(under the null hypothesis) to match the Hawk-Eye data, then the KS test based on

the p-values always rejects the null at the 5% significance level, and hence the test

is invalid. In the simulation results report is Figure 15(b), the (true) null is rejected

at the 5% level in only 53.63% of all trials. The failure of the KS test is even more

striking in Figure B2 since the Hawk-Eye data has a smaller number of serves per

point game —only 33 on average —than in the simulated data in Section 6, in which
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there were 70 serves per point game.

(a) An empirical c.d.f. of Pearson p-values (b) Density of KS test p-values (10,000 trials)

Figure B2: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 7000 point games)

Figure B3(b) is the analogue of Figure 16(b). It shows that when data is simulated

(under the null hypothesis) to match the Hawk-Eye data, then the KS test based

on the t-values rejects the null at the 5% significance level in 4.71% of the trials.

Moreover, it is visually evident that the empirical distribution of the KS test p-values

is uniformly distributed, as it should be theoretically. Hence our conclusion in Section

6 that the KS test based on the t-values is a valid test is robust to simulating the

data to match the Hawk-Eye data, point game by point game.

(a) An empirical c.d.f. of t-values (b) Density of KS test p-values (10,000 trials)

Figure B3: KS test of H0 : p
i
L = piR ∀i (Monte Carlo, 7000 point games)
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The Power of the Our Test

The subsection “The Power of Our Test”in Section 6 provided the power functions

for the Pearson joint test and the KS tests based on the Pearson p-values and the

Fisher exact t-values. It demonstrated that for “small”samples of 40 point games,

the test based on the t-values was substantially more powerful than the other two. In

addition, for “large”samples of 7000 point games, the test based on the t-values was

extraordinarily powerful —the joint null hypothesis of equality of winning probabilities

is almost surely rejected for even small departures from equilibrium play.

Figure B4 is the analogue to Figure 17 and shows that the power functions in

Figure 17 are largely unchanged when the data is simulated (under the null hypoth-

esis) to match characteristic of the WW data (Figure B4(a)) or the Hawk-Eye data

(Figure B4(b)).

(a) N = 40 (b) N = 7198

Figure B4: Power Functions for KS test based on t-values (black), p-values (red),

and Pearson joint (green)

Table B1 is the analogue Table 6. Comparing to the two tables reveals that the

KS test based on the t’s is slightly less powerful when the simulated data matches

the characteristics of the Hawk-Eye data. This is a consequence of the fact that

there were 70 serves per point game for the simulation results reported in Table 6,

while there are only 33 serves, on average, per point game in the Hawk-Eye data.

As noted previously, the Pearson goodness of fit p-values are only asymptotically

uniformly distributed Hence it is unsurprising that the Pearson joint test and the

KS test based on the Pearson p-values perform poorly given the smaller number of
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serves. Table B1 shows that the (true) joint null hypothesis of equality of winning

probabilities is rejected, at the 5% significant level, for sure by the KS test based

on the p’s and it is rejected with probability .713 by the Pearson joint test. These

results reaffi rm our conclusion that these tests are not valid for large samples.

True θ KS based on t’s KS based on p’s Pearson joint test

0.65 0.833 1 0.755

0.66 0.205 1 0.729

2/3 0.050 1 0.713

0.67 0.098 1 0.744

0.68 0.671 1 0.732

Table B1: Rejection rate for H0 at the 5% level, N = 7198

10.1 Ball Bounces

Figure B5 below shows actual and imputed ball bounces for male second serves from

the deuce court.

Figure B5: Ball Bounces for Deuce Court Second Serves by Men
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Figure B6: Ball Bounces for Ad Court First Serves by Men

Figure B7: Ball Bounces for Ad Court Second Serves by Men

Ball bounces for first and second serves by women are below.
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Figure B8: Ball Bounces for Deuce Court First Serves by Women

Figure B9: Ball Bounces for Deuce Court Second Serves by Women
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Figure B10: Ball Bounces for Ad Court First Serves by Women

Figure B11: Ball Bounces for Ad Court Second Serves by Women
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