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Abstract

Keypoint localization aims to locate points of interest from the in-

put image. This technique has become an important tool for many

computer vision tasks such as fine-grained visual categorization, ob-

ject detection, and pose estimation. Tremendous effort, therefore, has

been devoted to improving the performance of keypoint localization.

However, most of the proposed methods supervise keypoint detectors

using a confidence map generated from ground-truth keypoint loca-

tions. Furthermore, the maximum achievable localization accuracy

differs from keypoint to keypoint, because it is determined by the un-

derlying keypoint structures. Thus the keypoint detector often fails

to detect ambiguous keypoints if trained with strict supervision, that

is, permitting only a small localization error. Training with looser su-

pervision could help detect the ambiguous keypoints, but this comes

at a cost to localization accuracy for those keypoints with distinctive

appearances. In this thesis, we propose hierarchically supervised nets

(HSNs), a method that imposes hierarchical supervision within deep

convolutional neural networks (CNNs) for keypoint localization. To

achieve this, we firstly propose a fully convolutional Inception network

with several branches of varying depths to obtain hierarchical feature

representations. Then, we build a coarse part detector on top of each

branch of features and a fine part detector which takes features from

all the branches as the input.

Collecting image data with keypoint annotations is harder than with

image labels. One may collect images from Flickr or Google images

by searching keywords and then perform refinement processes to build

a classification dataset, while keypoint annotation requires human to

click the rough location of the keypoint for each image. To address the



problem of insufficient part annotations, we propose a part detection

framework that combines deep representation learning and domain

adaptation within the same training process. We adopt one of the

coarse detector from HSNs as the baseline and perform a quantita-

tive evaluation on CUB200-2011 and BirdSnap dataset. Interestingly,

our method trained on only 10 species images achieves 61.4% PCK

accuracy on the testing set of 190 unseen species.

Finally, we explore the application of keypoint localization in the

task of fine-grained visual categorization. We propose a new part-

based model that consists of a localization module to detect object

parts (where pathway) and a classification module to classify fine-

grained categories at the subordinate level (what pathway). Exper-

imental results reveal that our method with keypoint localization

achieves the state-of-the-art performance on Caltech-UCSD Birds-

200-2011 dataset.
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