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ABSTRACT
Incorporating the side information of text corpus, i.e., au-
thors, time stamps, and emotional tags, into the traditional
text mining models has gained significant interests in the
area of information retrieval, statistical natural language
processing, and machine learning. One branch of these works
is the so-called Author Topic Model (ATM), which incor-
porates the authors’s interests as side information into the
classical topic model. However, the existing ATM needs to
predefine the number of topics, which is difficult and inap-
propriate in many real-world settings. In this paper, we pro-
pose an Infinite Author Topic (IAT) model to resolve this
issue. Instead of assigning a discrete probability on fixed
number of topics, we use a stochastic process to determine
the number of topics from the data itself. To be specific, we
extend a gamma-negative binomial process to three levels in
order to capture the author-document-keyword hierarchical
structure. Furthermore, each document is assigned a mixed
gamma process that accounts for the multi-author’s contri-
bution towards this document. An efficient Gibbs sampling
inference algorithm with each conditional distribution being
closed-form is developed for the IAT model. Experiments
on several real-world datasets show the capabilities of our
IAT model to learn the hidden topics, authors’ interests on
these topics and the number of topics simultaneously.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining; I.2.6 [Artificial

Intelligence]: Learning
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1. INTRODUCTION
Traditional text mining algorithms only model the text

corpus with two levels: document-word. Topic models are
commonly regarded as the efficient tools for the text mining
by learning the hidden topics [15]. Recently, interests have
been paid on the side information of the text corpus, which
includes the conferences of the papers [21], time stamps [24],
authors [18, 20], entities [9], emotion tags [1] and other la-
bels [28]. The incorporation of these side information into
the classical topic models benefits a lot of real-world tasks.
Among them, Author Topic Model (ATM) [18, 20, 17] is
proposed by adding a set of variables to the original topic
model aiming to indicate and inference the interests of au-
thors together with the hidden topics.

The ability to jointly learn the hidden topics and authors’
interests on these topics has a variety of application sce-
narios. For example, 1) an academic recommendation sys-
tem can recommend authors and/or papers with similar re-
search interests to that of the input author; 2) detecting the
most and least surprising papers for an author [20]; 3) in
an author-topic-based paper browser, a set of papers can be
ranked according to authors and topics; 4) authors disam-
biguation [26].

One drawback of the existing author topic model is that
the number of hidden topics needs to be fixed in advance.
This number is normally chosen with domain knowledge. By
fixing the number of topics, ATM can then adopt Dirichlet
and Multinomial distributions with the pre-defined dimen-
sion. However, limiting each document to have exactly fixed
number of topics is apparently unrealistic for many real-
world applications. In this paper, we propose an infinite
author topic (IAT) model to relax this assumption. Instead
of using fixed-dimensional distributions, stochastic processes
are used: to be specific, the gamma-negative binomial pro-
cess [27] is extended to three levels for capturing the hierar-
chical structure: author-document-keyword. In this model,
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each document is assigned with a gamma process to express
the interest of this document on the hidden topics instead of
a vector with a fixed dimension. This gamma process can be
simply considered as an infinite discrete distribution, and is
parameterized by a base measure (another gamma process)
that denotes the interest of the author of this document on
the hidden topics. However, a document normally has mul-
tiple authors, so we assign a document a mixed gamma pro-
cess that is based on all the gamma processes of the authors
of this document. Furthermore, introducing mixed gamma
process will lead to intricacies in terms of model inference.
Therefore, an efficient Gibbs sampling with closed-form con-
ditional distributions is developed for the proposed model.
Experiments on the two real-world datasets show the capa-
bility of our model to learn both the hidden topics and the
number of topics, simultaneously.

The main contributions of this paper are,

1. propose a new nonparametric Bayesian model to relax
the fixed topic number assumption of the traditional
author topic models;

2. design an efficient Gibbs sampling inference algorithm
for getting the solution of the proposed model.

The rest paper is structured as follows. Section 2 briefly
introduces the related work. Section 3 describes some pre-
liminary knowledge. The IAT model is proposed and pre-
sented in Section 4 with its Gibbs sampling inference algo-
rithm. Section 5 describes the IAT model experimental re-
sults using real-world datasets. Finally, Section 6 concludes
this study with a discussion on future directions.

2. RELATED WORK
In this section, we briefly review the related work of this

study. The first part is about the topic models, and the
second part is about nonparametric Bayesian learning.

2.1 Topic Models
Topic models [2] are Bayesian models with fixed-dimensional

probability distributions. They are originally designed for
the text mining task, which aim to discover the hidden top-
ics in the text corpus to assist document clustering or clas-
sification. Due to their good extendibility and powerful rep-
resentation, they have been successfully applied to many
research areas, including analysis in image [12], video [10],
genetics [5] and music [13]. Among these extensions, author
topic models [18, 20, 17] were proposed to infer the hidden
topics and author interests. The documents are supposed to
be generated by its authors according to their interests over
the hidden topics. This model will be explained with more
details in Section 3.

ATM has attracted a lot of attentions from researchers
working in the text mining area, because it provides an el-
egant way to incorporate the side (in this case, author) in-
formation of the documents for topic learning. This model
can be extend to incorporate other side information of text
corpus, such as emotional tags [1], conferences[21] and time
stamps [24].

2.2 Nonparametric Bayesian Learning
Nonparametric Bayesian learning is a key approach for

learning the number of mixtures in a mixture model (also
called model selection problem). Without predefining the
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Figure 1: Classical Author-Topic Model

number of mixtures, this number is supposed to be inferred
from the data, i.e., let the data speak.

The idea of nonparametric Bayesian learning is to use the
stochastic processes to replace the traditional fixed-dimensional
probability distributions, such as Multinomial, Poisson, and
Dirichlet. In order to avoid the limitation associated with
fixed dimensions, Multinomial Process (MP), Poisson Pro-
cess (PP) [8] and Dirichlet Process (DP) [22] are used to
replace former distributions because of their infinite proper-
ties.

The merit of these stochastic processes is that they let
the data to determine the number of factors (in text min-
ing task, topics). DP is a good alternative for the models
with Dirichlet distribution as the prior. Many probabilistic
models with fixed dimensions have been extended to the infi-
nite ones by the help of stochastic processes: Gaussian Mix-
ture Model (GMM) is extended to Infinite Gaussian Mix-
ture Model (IGMM) [16] using DP; Hidden Markov Model
is extended with infinite number of hidden states using Hi-
erarchial Dirichlet Process [23, 7]. Through the posterior
inference (i.e., Markov chain Monte Carlo (MCMC) [11]),
the number of the mixtures can be inferred. Other popular
processes include beta process, gamma process, poisson pro-
cess, multinomial process, negative binomial process (NBP)
[27, 3] have also been used in the machine learning commu-
nities recently.

To summarize, nonparametric Bayesian learning [4] has
been successfully used to extend many finite models and ap-
plied to many real-world applications. However, to the best
of our knowledge, there has not been any works proposed to
use NBP for author topic modelling. This paper addresses
this shortcoming by proposing a mixed gamma negative bi-
nomial process to extend the finite author topic model to
the infinite one.

3. PRELIMINARY KNOWLEDGE
This section briefly introduces the related models which

will be used in the rest of sections.

3.1 Author Topic Model
The Author Topic Model [18, 20, 17] aims to learn the

hidden topics from the papers and more importantly learn
the authors’ interests on these topics. Based on the classical
LDA [2], a set of new variables are introduced to indicate
the authors’ interests. The graphical representation of the
model is shown in Fig. 1, and the generative procedure is



as follows,

ρa
i.i.d
∼ Dirichlet(α)

φk
i.i.d
∼ Dirichlet(β)

xd,n ∼ Unif(ad)

zd,n ∼ Discrete(ρxd,n
)

wd,n ∼ Discrete(φzd,n)

(1)

where {ρa}
A
a=1 denote the authors’ interests on the top-

ics and ad denotes the authors of a document. We can
see from the Eq.(1) that the ATM is constructed by the
fixed-dimensional probability distributions. One issue of this
model is that the number of topics needs to be predefined,
because the dimensions of the probability distributions need
to be predefined. However, it is very difficult and not ap-
propriate to predefine the topic number in many real-world
scenarios.

3.2 Gamma Negative Binomial Process

3.2.1 Gamma Process
A gamma process GaP (α,H) [19] is a stochastic process,

where H is a base (shape) measure and α is the concentra-
tion (scale) parameter. It also corresponds to a complete
random measure. Let Γ = {(πi, θi)}

∞

i=1 be a random real-
ization of a Gamma process in the product space R+ × Θ.
Then, we have

Γ ∼ GaP (α,H)

=
∞
∑

i=1

πiδθi
(2)

where δ(·) is an indicator function, πi satisfies an improper
gamma distribution gamma(0, α), and θi ∼ H . After the
normalization of the {π}, we can get the famous Dirichlet
process [22].

3.2.2 Negative Binomial Process
A negative binomial process NBP (p,G0) [27] is also a

stochastic process parameterized by a base measure G0 and
p. Similar with the gamma process, a realization of negative
binomial process X = {(ni, θi)}

∞

i=1 is also a set of points in
product space Z+ ×Θ. Then, we have

X ∼ NBP (p,G0)

=

∞
∑

i=1

niδθi
(3)

where {ni} are integers, so negative binomial process is nor-
mally used for the counting model [3]. Compared with Pois-
son process which is also suitable for the counting model,
negative binomial process has a better variance-to-mean ra-
tio (VMR) and the overdispersion level [27].

3.2.3 Gamma-Negative Binomial Process
Normally, negative binomial process is used as the likeli-

hood part of a Bayesian model. Like a negative binomial
distribution x ∼ NB(r, p) which has two parameters: r > 0
and p ∈ [0, 1], there are two kinds of priors for a negative bi-
nomial process: one is Gamma process [27] as shown in Eq.
(3); the other is the Beta process [3] as X ∼ NBP (B, r).
In this paper, we use the Gamma process prior. A gamma-
negative binomial process-based topic model is proposed in
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Figure 2: Gamma-Negative binomial process topic model

Table 1: Notations used in this paper

Notation description
D number of documents
A number of authors
N number of words
AD author-document mapping matrix
DN document-word mapping matrix
Ad number of authors of document d

[27] as shown in Fig. 2 and it can be represented as,

Γ ∼ GaP (c0,H)

Xd ∼ NBP (pd,Γ)
(4)

where the base measure of the negative binomial process
Γ is a random measure from a gamma process. Xd is for
each document, and this hierarchial form makes the docu-
ments share a same base measure Γ. This gamma-negative
binomial process can be equivalently augmented as gamma-
gamma-poisson process,

Γ ∼ GaP (c0,H)

Γd ∼ GaP

(

1− pd
pd

,Γ

)

Xd ∼ PP (Γd)

(5)

where Xd ∼ PP (Γd) is a Poisson process with parameter Γd.
This augmentation, which is useful for the close-form model
inference algorithm design, is equal to gamma-negative bi-
nomial process model in distribution.

In this paper, we will build an infinite author topic model
based on this gamma-negative binomial process model.

4. INFINITE AUTHOR TOPIC MODEL
In this section, we first propose our infinite author topic

(IAT) model, and then introduce its Gibbs sampling strategy
to inference the proposed model.
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Figure 3: Gamma-Gamma-Negative Binomial Process
Model (3GNB) (left one) and Infinite Author Topic Model
(IAT) (right one)

4.1 Model Description
Consider the gamma-negative binomial process topic model

in Eqs. (4) and (5) again: despite its successful, this model
however is fundamentally the same as the basic topic models,
which are used for modeling the data of two level hierarchy:
document-keyword. Our aim is to extend topic model into
three-level hierarchy: author-document-keyword. So we add
another gamma process level to capture the additional (au-
thor) level based on the gamma-negative binomial process
topic model in Eq.(5) analogues to the hierarchical form of
Hieratical Dirichlet Process [23],

Γ0 ∼ GaP (c0,H)

Γa ∼ GaP (ca,Γ0)

Γd ∼ GaP ((1− pd)/pd,Γ
d
a)

Xd ∼ PP (Γd)

(6)

where Γa is the new added level for the authors. We call this
model three-level gamma-negative binomial process topic
model (3GNB), which is graphically shown in the left sub-
figure of Fig. 3. However, there is a problem in 3GNB that
it requires each document with only one author.

In the 3GNB model, each document is assigned a realiza-
tion of gamma process,

Γd =

∞
∑

k=1

πd,kδθk (7)

where θk denotes the kth topic and πd,k is the weight of kth

topic. {πd,k}
∞

k=1 can be viewed as the interest of document
d on the topics. The number of topics can potentially be
infinite and therefore justifies the infinity in the summation.
However, since the data is limited, the learned topics will be
also limited. Similar to the document, each author is also
assigned a realization of gamma process,

Γa =

∞
∑

k=1

πa,kδθk (8)

where {πa,k}
∞

k=1 is the weight of interests of author a on
the topics. In the 3GNB model, the base measure for a
Γd is from its author Γa. It can be seen as the ‘interest
inheritance’.

In order to model in the setting where a document is with
multiple authors, we combine all the gamma processes of
every authors of a document together by

Γd
a = Γa1

⊕ Γa2
⊕ · · · ⊕ ΓaAd

(9)

where Ad is the number of authors of document d, ⊕ is
the convex combination (each gamma process is with same
weight in this paper) and Γd

a is the mixed prior for Γd. We
can see the mixed gamma process Γd

a as the mixed interests
of all the authors of a document. Then, the revised model
is as follow

Γ0 ∼ GaP (c0,H)

Γa ∼ GaP (ca,Γ0)

Γd
a = Γa1

⊕ Γa2
⊕ · · · ⊕ ΓaAd

Γd ∼ GaP ((1− pd)/pd,Γ
d
a)

Xd ∼ PP (Γd)

and the graphical representation is shown in Fig. 3. Some
frequently used notations are explained in Table 1.

4.2 Model Inference
It is difficult to perform posterior inference under infinite

mixtures, a common work-around solution in nonparametric
Bayesian learning is to use a truncation method. Truncation
method is widely accepted, which uses a relatively big K
as the (potential) maximum number of topics. Under the
truncation, the model can be expressed below as a good
approximation to the infinite model,

γ0 ∼ Gamma(e0, 1/f0)

r0,k|γ0, c0 ∼ Gamma(γ0/K, 1/c0)

ra,k|r0, ca ∼ Gamma(r0,k, 1/ca)

pd ∼ beta(a0, b0)

rda,k = ra1,k ⊕ ra2,k ⊕ · · ·

rd,k|ra, pd ∼ Gamma(rda,k, pd/(1− pd))

nd,k ∼ Pois(rd,k)

Nd =
K
∑

k=1

nd,k

θ1:K ∼
1

γ0
H

zd,n ∼ Multi(rd,1/
∑

rd, rd,2/
∑

rd, rd,3/
∑

rd, · · · )

wd,n ∼ θzd,n

where γ0 =
∫

dH is the total mass of measure H , and the
parameters are given the appropriate priors. Here, H is a



N-dimensional Dirichlet distribution, and each θ is a topic
that is a N-dimensional vector.

The difficult part of the inference for this model is the
mixed part Γd

a or rda. Since rda = ra1
⊕ ra2

⊕ · · · is the
mixed value, it is hard to infer the posterior of ra through its
likelihood. In order to resolve this issue, we firstly introduce
the Additive Property of the negative binomial distribution,

Theorem 1. If Xi follows a negative binomial distribu-
tion with parameters ri and p and if the various Xi are inde-
pendent, then

∑

Xi follows a negative binomial distribution
with parameters

∑

ri and p.

In the model, we have

rd,k|{ra}, pd ∼ Gamma(rda,k, pd/(1− pd))

nd,k ∼ Pois(rd,k)
(10)

(in distribution) equal to

nd,k ∼ NB(rda,k, pd) (11)

and according to THEOREM 1, it is further (in distribution)
equal to

na
d,k ∼ NB

(

ra,k
Ad

, pd

)

nd,k =
∑

a

na
d,k

(12)

where Ad is the number of authors in document d.
We have split nd,k the number of words assigned to topic

k in document d into a number Ad of independent variables
{na

d,k}. Here, na
d,k denotes the number of words assigned to

topic k from author a in document d. From Eq.(12), we can
see that we have the likelihood part of the ra, so we can
update/inference the ra using na

d. Introducing the auxiliary
variables {na

d,k} helps us resolve the difficult inference prob-
lem brought by the mixed gamma process. Note that the
independence between the elements of {na

d,k} is very impor-
tant, which facilitates us update each na

d,k independently.
According to the relationship between the negative bino-

mial distribution and the gamma-poisson distribution, for
each na

d,k, we have:

na
d,k ∼ NB(

ra,k
Ad

, pd)

=⇒ rad,k ∼ Gamma(
ra,k
Ad

, pd/(1− pd)), na
d,k ∼ Pois(rad,k)

(13)
We want to highlight that rad,k is different from rda,k: rda,k
is the mixed Gamma process of multiple author Gamma
processes Γa of Gamma process Γd of document d and rad,k
is the interest of document d on topic k inherited from author
a.

Due to the non-conjugacy of gamma distribution and neg-
ative binomial distribution, it is difficult to update ra with
a gamma prior. In order to make the inference with only
close-formed conditional distributions, we use the following
results on the negative binomial process,

Theorem 2. [14, 27] If X follows a negative binomial
distribution X ∼ NB(r, p) with parameters r and p, then X
can also be generated from a compound poisson distribution
as

X =
l
∑

t=1

ut, t
i.i.d
∼ Log(p), l ∼ poiss (−rln(1− p)) (14)

where Log() is a Logarithmic distribution. Furthermore, this
poisson-logarithmic bivariate count distribution, p(X, l), can
be expressed as

X ∼ NB(r, p), l ∼ CRT (X, r) (15)

where CRT denotes Chinese restaurant Table distribution.
With THEOREM 2, the Eq. (13) is also equal to

na
d,k ∼ NB(

ra,k
Ad

, pd)

=⇒ na
d,k ∼

lad,k
∑

1

log(pd), lad,k ∼ Pois(−
ra,k
Ad

· ln(1− pd))

=⇒ lad,k ∼ CRT (na
d,k,

ra,k
Ad

), na
d,k ∼ NB(

ra,k
Ad

, pd)

(16)
Finally, we can update all na

d,k by,

(na1

d,k1
, na1

d,k2
, · · · , naA

d,K) ∼ Mult(nd,
ra1

d,k1

r
,
ra1

d,k2

r
, · · · ,

raA

d,K

r
)

r =
∑

a

∑

k

rad,k

(17)
and for each word n in a document d, we can assign it to a
topic k and author a by

p(zd,n = k, id,n = a) ∝
rad,k
r

nd,k =
∑

n

δ(zd,n = k)

na,k =
∑

d

∑

n

δ(zd,n = k AND id,n = a)

(18)
With these changes of variables, the original model is re-

formulated as,

γ0 ∼ Gamma(e0, 1/f0)

r0,k|γ0, c0 ∼ Gamma(γ0/K, 1/c0)

pd ∼ beta(ad,0, bd,0)

ra,k|r0, ca ∼ Gamma(r0,k, 1/ca)

rda,k = ra1,k ⊕ ra2,k ⊕ · · ·

rd,k|ra, pd ∼ Gamma(rda,k, pd/(1− pd))

rad,k ∼ Gamma(
ra,k
Ad

, pd/(1− pd)), a ∈ Ad

zad,n ∼ Discrete(
rad,k
r

, · · · )

nd,k =
∑

n

δ(zd,n = k)

na,k =
∑

d

∑

n

δ(zd,n = k AND id,n = a)

na
d,k =

∑

n

δ(zd,n = k AND id,n = a)

Nd =
∑

n

∑

a

zad,n

(19)

In the following, a Gibbs sampling algorithm is designed
for the posterior inference and all the conditional distribu-
tions are listed.

Sampling z

p(zd,n = k, id,n = a| · · · ) ∝ θk,n · rad,k (20)



Sampling rad

p(rad,k| · · · ) ∝ Gamma(
ra,k
Ad

+ na
d,k, pd) (21)

where na
d,k is the number of words in document d with author

a and topic k.
Sampling lad

p(lad,k| · · · ) ∝ CRT

(

na
d,k,

ra,k
Ad

)

(22)

Sampling pd

rda,k = ra1,k ⊕ ra2,k ⊕ · · ·

p(pd| · · · ) ∝ Beta

(

a0 +
∑

k

nd,k, b0 +
∑

k

rda,k

)

p(rd,k| · · · ) ∝ Gamma(rda,k + nd,k, pd)

(23)

Sampling ra

p(ra,k| · · · )

∝ Gamma

(

r0,k +
∑

d with a

lad,k,
1

ca −
∑

d with a
1

Ad
· ln(1− pd)

)

(24)
Sampling la

p(la,k| · · · ) ∝ CRT

(

∑

d with a

lad,k, r0,k

)

(25)

Sampling r0,k

p(r0,k| · · · ) ∝ Gamma

(

γ0/K +
∑

a

la,k,
1

c0 −
∑

a
ln(1− pa)

)

(26)
where

pa =
−
∑

d with a
1

Ad
ln(1− pd)

ca −
∑

d with a
1

Ad
ln(1− pd)

(27)

Sampling l′k

p(l′k| · · · ) ∝ CRT

(

∑

a

la,k, γ0/K

)

(28)

Sampling γ0

p(γ0| · · · ) ∝ Gamma

(

e0 +
∑

k

l′k,
1

f0 − ln(1− p′)

)

(29)

where

p′ =
−
∑

a ln(1− pa)

c0 −
∑

a
ln(1− pa)

(30)

Sampling θk

p(θk| · · · ) ∝ H(θk)
∏

d

θzd,n=k,n (31)

We can see from these conditional distributions that all of
them are closed-form which is very easy to updated and im-
plemented. Note that the sampling of the CRT distribution
can be found in [27]. The whole procedure is summarized in
Algorithm 1.

Note that after we obtain all the samples of the posterior
p(θ, ra, rd, r0, z

a
d,n, pd, γ0, n

a
d,k|Nd, AD,DN, e0, f0, c0, ca, a0, b0)

Algorithm 1: Gibbs Sampler for IAT

Input: D, A, N , AD, DN
Output: Kreal, {θ}, {ra}, {rd}
initialization;
while iter ≤ maxiter do

for d = 1; d ≤ D do

for n = 1;n ≤ Nd do
Update zd,n and id,n by Eq. (20);

for a = 1; a ≤ Ad do
Update rad,k by Eq. (21); Update lad,k by Eq.
(22);

Update rd,k and pd by Eq. (23);

for a = 1; a ≤ A do
Update ra,k by Eq. (24); Update la,k by Eq.
(25);

Update r0,k by Eq. (26); Update l′k by Eq. (28);
Update γ0 by Eq. (29); Update θ by Eq. (31);
iter ++;

Identify Kreal;
Select the sample with largest likelihood and
K = Kreal;
return {θ}, {ra}, {rd};

Table 2: Statistics of Datasets

Datasets D A N
NIPS 1,740 2,037 13,649
DBLP 28,569 28,702 11,771

Table 3: Groups of Datasets DBLP

D training D test A N
group 1 1,072 319 1,115 3,783
group 2 1,071 316 1,094 3,782
group 3 1,075 305 1,071 3,788
group 4 1,076 339 1,104 3,823
group 5 1,079 310 1,111 3,841

Table 4: Groups of Datasets NIPS

D training D test A N
group 1 1,503 237 2,037 5,110
group 2 1,495 245 2,037 5,110
group 3 1,511 229 2,037 5,110

of latent variables and remove the burn-in stage, we firstly
identify the topic number with largest frequency as theKreal,
and then find the sample with largest likelihood and K =
Kreal from these samples. The output of Gibbs sampler are
the latent variables θ, ra and rd in this sample.

5. EXPERIMENTS
In this section, we evaluate the proposed infinite author

topic model (IAT), and compare it with the finite author-
topic model (ATM) on different datasets.

5.1 Datasets
Two public datasets used in this paper are:



• NIPS papers1 This dataset contains papers from the
NIPS conferences between 1987 and 1999. More de-
scription can be found in the [20];

• DBLP papers2 The abstracts and authors of papers
are extracted through DBLP interface from four ar-
eas: database, data mining, information retrieval and
artificial intelligence. More description can be found
in the [6].

Some statistics of two datasets are shown in Table 2. For
each dataset, we randomly select some documents as train-
ing data and test data. The Table 4 and Table 3 show
the selection results on two datasets. The number of se-
lected training and test documents are specialized in column
D training and column D test in Table 4 and 3. The re-
quirements of selections is: the training and test documents
must share some authors and some words. This requirement
makes sure the learned topics and authors’ interests can be
used to predict the test documents.

5.2 Evaluation Metrics
In order to evaluate the performance of the proposed model,

we calculate the perplexity of the test documents using the
learned topics and author interests on these topics. Per-
plexity is widely used in language modeling to assess the
predictive power of a model [20, 2]. It is a measure of how
surprising the words in the test documents are from the
model’s perspective. It can be computed as,

Perplexity = exp

(

−
∑

d

p(wd|ad)

)

= exp

(

−
∑

d

∑

k

p(wd|θk)p(θk|ad)

) (32)

where ad is the authors of test document d. The smaller
the value of perplexity is, the better the predictive ability
of a model has. Since we use the same test documents for
different models, the normalization is not considered because
it does not influence the model comparisons.

Another evaluation metric is the training data likelihood,

logLikelihood =
∑

d

log p(wd|θ, ra, rd) (33)

This is a measure of the probability of the training document
under the learned latent variables θ, ra and rd. It can be
understood as ‘how the model fits the training data’. The
bigger the value of likelihood is, the better a model fits the
training data.

5.3 Results Analysis
For the DBLP dataset, the results are all shown in Fig.

4. Each row of the Fig. 4 denotes a group of DBLP dataset
corresponding to Table 3. The left subfigures show the com-
parison on the data log-likelihood. Here, we adjust differ-
ent active topic numbers for the ATM, including K = 100,
K = 200, K = 300, K = 400 and K = 500. From these sub-
figures, the proposed IAT model (The hyper-parameters are
set as following by experiences for the rest of this section:
a0 = 1, b0 = 1, e0 = 1, f0 = 1, c0 = 1 and ca = 1) outper-
forms the ATM on different preset topic numbers. It means

1http://www.datalab.uci.edu/author-topic/NIPs.htm
2http://www.cs.uiuc.edu/ hbdeng/data/kdd2011.htm

that IAT fits the training documents better than the ATM,
and, more importantly, IAT does not depend the domain
knowledge to predefine the active topic number, making the
method widely applicable.

The middle subfigures in Fig. 4 indicate the changing of
active topics during the iteration of the IAT (The number
of active topics is set as the number of training documents
at the initialization step of the model). These curves show
that the number of active topics dramatically drops down
at the burn-in stage of the sampling, and began to stabilize
after about 200 iterations. Since the documents are different
in content but similar in numbers amongst the groups, the
learned topic number is differ slightly amongst each others.
These numbers are: group 1: K = 519; group 2: K = 332;
group 3: K = 493; group 4: K = 465; group 5: K = 504.

In order to show the effectiveness of the proposed model,
we also compare the performances of two models (IAT and
ATM) on the test documents prediction using perplexity in
Eq. (32). Since the training and test documents share some
authors, we can compute the perplexity of the test docu-
ments according to the learned topics and authors’ interests
on them. At each step of iterations, the perplexity of test
documents is computed using the latent variables, {θ}, {ra}
and {rd}, at this iteration. The results are shown in right
subfigures of Fig. 4. In each subfigure, the first bar de-
notes the mean of perplexities of all iterations except the
burn-in stage (1 ∼ 200 iterations) of the proposed model
IAT and the others denote ATM with different (predefined)
topic numbers. The standard deviations are also shown in
the subfigures. The proposed model gets the best perfor-
mance (smallest perplexity). The standard deviation of IAT
is relatively bigger than ATM. The reason is because the
number of active topics will change during the iteration but
it will not change in ATM, so in theory, the random-walk
space of Gibbs sampler of IAT can be larger than that of
ATM. Even with this relatively larger standard deviation,
the mean of perplexity of IAT is smaller than ATM.

For the NIPS dataset, the results are all shown in Fig.
5. Same with the DBLP dataset, the log likelihoods of IAT
and ATM with different predefined active topic numbers are
shown in the left side of the Fig. 5. Unsurprisingly, the sub-
figuers in the middle column show the convergence of IAT
(group 1: 367; group 2: 529; group 3: 354). Specially, we
found that the log-likelihoods of ATM increases when topic
number decreases. Therefore, we have compared with ATM
with only two (the minimum number) topics as shown in
the left subfigures in Fig. 5. It can be seen that the pro-
posed IAT model also gets larger log likelihood and smaller
perpetuity when compared with ATM except the case where
ATM is set to have 10 topics in group 2. Even so, the ATM
in group 2 with 10 topics has almost same performance with
IAT on the Log-likelihood of training documents. Moreover,
we can see that it takes 800 iterations to reach this stability
for the ATM with 10 topics, but IAT only takes less than 50
iterations to reach the same stability.

6. CONCLUSIONS AND FURTHER STUDY
We have developed an infinite author topic model that

can automatically learn completely the latent features of the
author-document-keywords hierarchy, which include hidden
topics, authors’ interests on these topics and the number
of topic from text corpora. The stochastic processes are
adopted instead of the fixed-dimensional probability distri-
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Figure 4: Results from IAT and ATM on five groups of DBLP dataset. Each row denotes a group. In each row, the left
subfigure shows the Log-likelihoods comparison between IAT and ATM with different (predefined) topic numbers: K = 100,
K = 200, K = 300, K = 400, and K = 500; The middle subfigure shows the change of active topic number of IAT during the
iteration of Gibbs sampling; the right subfigure shows the perplexity comparison between IAT and ATMs.
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Figure 5: Results from IAT and ATM on three groups of NIPS dataset. Each row denotes a group. In each row, the left
subfigure shows the Log-likelihoods comparison between IAT and ATM with different (predefined) topic numbers: K = 2,
K = 10, K = 100, K = 200, K = 300, K = 400, and K = 500; The middle subfigure shows the change of active topic number
of IAT during the iteration of Gibbs sampling; the right subfigure shows the perplexity comparison between IAT and ATMs.



butions. The model uses a mixed author gamma process as
the base measure of the document gamma process to cap-
ture the author-document mapping. We have demonstrated
that the designed Gibbs sampling algorithm can be used to
learn such infinite author topic model based on the various
real-world datasets.

Other potential applications of this work include multi-
label learning [25]: The ‘authors’ in the proposed model
can be seen as labels, and the inference of the model can be
seen as the training of the multi-label classifier. The learned
topics can be seen as having infinite features space. This is
our further study.
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