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ABSTRACT 

Anthropogenically mediated climate change is having profound impacts on the distribution, 

abundance and functioning of species worldwide.  Marine macroalgae are important 

foundation species due to their role in facilitating biodiversity through provision of resources 

and moderating stress. Accurate predictions of how macroalgae will respond to global 

warming require a better understanding of factors that lead to the vulnerability of species. 

This thesis aimed to examine the exposure and underlying biological traits that explain the 

sensitivity and resilience to warming in a dominant and endemic intertidal macroalga, 

Hormosira banksii, with the ultimate goal of assessing its vulnerability to changes in climate 

regime.   

 

H. banksii populations inhabiting two spatial scales, regional (central (cooler) and marginal 

(warmer)) and local (between tidal heights) were sampled. At each spatial scale, the 

performance of H. banksii was assessed to determine whether morphology influences function 

(relative water content and photosynthetic efficiency of PSII) in adults while the traits 

(growth and photosynthetic efficiency) of early life history stages (< 5 days old) were 

assessed to determine thermal niche.   Adults in marginal populations had smaller thallus and 

vesicle size, which affected the ability of H. banksii to recover photosynthetically from 

thermal and desiccation stress. Distinct thermal performance curves of growth and 

photosynthetic efficiency of early life history stages revealed the marginal population had 

lower thermal safety margins and lower thermal optima compared to the central population 

that has broader thermal safety margins and higher thermal optima.  The genetic structure was 

characterised among regions, locations and tidal heights to test the hypothesis that genetic 

diversity would decrease towards distribution limits and differ between tidal heights. 

Marginal populations had lower estimates of genetic diversity than central populations, and 
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there was evidence of isolation by distance – i.e., limited gene flow over long distances (~500 

km). Genetic differentiation was not found between tidal heights, suggesting gene flow is not 

restricted by reproductive strategies of H. banksii.  Furthermore, maternal provisioning of 

eggs did not indicate advantages in performance such as faster growth rate of early life stages, 

which would aid in recruitment. Physiological tolerances of adults and embryos, population 

genetic structure, inbreeding and limited gene flow all suggest that the warm marginal 

populations of H. banksii are vulnerable to changes in temperature regime. Local habitat 

effects such as topography and tidal cycles, however, are potentially more important in 

governing the physiology of H. banksii and can buffer the full extent of climate change 

occurring at the regional scale. In view of this, changes in the distribution and abundance of 

some populations of H. banksii with global warming, along with changes in the functioning of 

ecosystems which H. banksii support may be observed in the near future. 
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