
ADDRESSING THE HIDDEN TERMINAL PROBLEM IN MU-MIMO

WLANS WITH RELAXED ZERO-FORCING APPROACH

by

Sanjeeb Shrestha

Dissertation submitted in fulfilment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Communications
University of Technology Sydney,

Australia

3rd of July 2017





Copyright c© 2017 Sanjeeb Shrestha

All Rights Reserved





CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a

degree nor has it been submitted as part of the requirements for a degree to any

other university or institution other than University of Technology Sydney, Aus-

tralia.

I also certify that the thesis is an original piece of research and it has been written

by me.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

Last but not the least, this research is supported by an Australian Government

Research Training Program Scholarship.

. . . . . . . . . . . . . . . . . .

Sanjeeb Shrestha





ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my principal supervisor, Dr

Gengfa Fang, who has constantly encouraged me to strive for excellence and given

me freedom and trust to find my own way in this project.

I am profoundly grateful to my co-supervisor, Professor Xiaojing Huang, for

his remarkable insights and invaluable guidance without which this project would

not have been possible. I would also like to acknowledge my alternate-supervisor

Professor Eryk Dutkiewicz for his guidance and support from time to time. A

special thanks to Dr Keith Imrie for his thorough grammatical editing and help

with my English expression for my papers/thesis. Also, I would like to extend

my warm regards to all my colleagues in the Department for their help and

companionship.

I am sincerely thankful to the Australian Government, for an Australian Post-

graduate Award, to Macquarie University for a generous PGRF award and Intel

top-up scholarship, and University of Technology Sydney for Faculty of Engi-

neering and Information Technology Scholarship, which provided me a conducive

environment for my research and helped me explore new ideas.

Last but not least, I am forever indebted to my parents, my wife Sulochana,

my son Yash and my daughter Yashasvi for their endless love, support and encour-

agement during this time and throughout my life. I cannot thank you enough;

without your presence I would not have travelled so far. I am always extremely

grateful to the Almighty God and His countless blessings.





To my parents, my wife Sulochana, my son Yash, and my daughter Yashasvi





ABSTRACT

An ever-increasing data rate demand, mainly due to the proliferation of numer-

ous smart devices, enterprises’ mission critical networks, and industry automa-

tion, has mounted tremendous pressure on today’s Wireless Local Area Networks

(WLANs). Several avenues such as bandwidth, constellation density, the Mul-

tiple Input Multiple Output (MIMO) technique, etc., have been explored, e.g.,

IEEE802.11n/ac standards, to keep up with the demand. Future WLAN stan-

dard, e.g., IEEE802.11ax, with potential technologies such as uplink Multi-User

(MU)-MIMO, full duplex transmission, etc., is anticipated by 2019.

Having said that, there has been a strong emphasis on solving the technical

issues with WLANs along with the addition of new frontiers in order to cope

with the data rate demanded. One such appending decade-long issue is the

inevitable Hidden Terminal (HT) problem in a distributive, decentralised and

densely deployedWLANs, which fundamentally arises because of the transmission

time overlaps between different transmitters operating at a particular frequency.

The consequence is that it causes collisions of signals, which sharply reduces the

system throughput.

In the context of MU-MIMO based WLANs, several designs for a general net-

work scenario, without the consideration of the HT problem, have been proposed,

bringing efficiency by avoiding the collision of signals. However, a dedicated de-

sign, which could effectively address the HT problem in MU-MIMO WLANs





and also become interoperable (with legacy standards) and feasible with existing

hardware, is lacking to the best of our knowledge.

In this thesis, we propose a solution for the HT problem which has three

fundamental attributes.

First, a) at the Physical (PHY) layer, the Zero-forcing (ZF) transmission

strategy with fairness and throughput aware precoding is proposed, b) a hy-

brid scheduling scheme, combining the packet position-based First In First Out

(FIFO) and channel quality-based scheme, namely the Best of the Two Choices,

is designed, c) at the Medium Access Control (MAC) layer, Degrees-of-Freedom

(DoF) based Transmission Opportunity (TXOP) for Access Points (APs) is de-

veloped which is backed by an extended Point Coordination Function (PCF), d)

an explicit channel acquisition framework is proposed for ZF which has a reduced

signaling time overhead of 98.6740 μs compared to IEEE802.11ac. e) performance

evaluation methodologies are: i) hardware testbed results of the PHY strategy,

which shows a received SNR gain of about 6 dB on average, and about 10 dB in

comparison to the HT scenario, ii) simulation results of the MAC design, which

shows a constant throughput gain of 4 − 5 times w.r.t. the popular Request to

Send/Clear to Send (RTS/CTS) solution.

Second, to address the interoperability issue, we purposefully use the standard

frame format except for some required logical changes. Notably, the transition

mechanism of our design, and for any MAC that uses standard frame formats, is

investigated meticulously. The transition condition, transition steps and transi-

tion frame formats are detailed.

Third, to address a practical constraint of an imperfect Channel State Infor-

mation (CSI) at APs, a) we incorporate the Finite Rate Feedback (FRF) model in

our solution. The effects on system parameters such as quantisation error bounds,





xv

throughput loss w.r.t. perfect CSI, etc., are discussed with closed-form analytical

expressions, b) instead of an ideal ZF technique, a Relaxed ZF (RZF) framework

is considered, in which the interference and power constraints of the optimisation

problem are relaxed to the interference upper bound and to the maximum trans-

mit power respectively. Our results lead to a distributive algorithm for calculating

the optimal ZF precoding vector which suits the distributive, decentralised and

uncoordinated nature of MU-MIMO WLANs.
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