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Abstract

A main goal of statistics and machine learning is to discover statisti-

cal dependencies between random variables, and these dependencies

will be used to perform predictions on future observations. However,

many scientific investigations involve causal predictions, the aim of

which is to infer how the data generating system should behave un-

der changing conditions, for example, changes induced by external

interventions. To perform causal predictions, we need both statistical

dependencies as well as causal structures to determine the behaviour

of the system. The standard way to identify causal structures is to

use randomized controlled experiments. However, conducting these

experiments is usually expensive or even impossible in many scenar-

ios. As a consequence, inferring cause and effect relationships from

purely observational data, known as causal discovery or causal learn-

ing, has drawn much attention.

Various causal discovery methods have been proposed in the past

decades, including constraint-based methods, structural equation models-

based methods, and time series-based methods. Among these meth-

ods, time series-based methods, e.g., Granger causality, are relatively

well-established as the temporal information excludes the case that

effects happen before causes. Many of the existing time series-based

methods assume that the data are measured at the right frequency;

however, in practice the sampling frequency of the data is often lower

than the true causal frequency. In this thesis, we consider learning

high-resolution causal relationships at the causal frequency from sub-

sampled time series. Existing methods suffer from the identifiability

problems: under the Gaussianity assumption of the data, the solu-

tions are generally not unique. We prove that, however, if the noise



terms are non-Gaussian, the underlying model is identifiable from

subsampled time series under mild conditions. We then propose an

Expectation-Maximization approach and a variational inference ap-

proach to recover causal relations from subsampled data.

More recently, researchers began to touch upon implications of causal

models for machine learning tasks such as semi-supervised learning

and domain adaptation. In this thesis, we develop causally-inspired

learning methods for domain adaptation in both multi-source and

single-source settings. In particular, we use causal models to rep-

resent the relationship between the features and labels, and consider

possible situations where different modules of the causal model change

with the domain. In each situation, we investigate what knowledge is

appropriate to transfer and find the optimal target-domain hypoth-

esis. Furthermore, we propose methods to correct distribution shift

in the general situation where the marginal distribution of features

and conditional distribution of labels given features both change, un-

der the assumption that labels are causes for features. We provide

theoretical analysis and empirical evaluation on both synthetic and

real-world data to show the effectiveness of our methods.
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