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Abstract

A main goal of statistics and machine learning is to discover statisti-

cal dependencies between random variables, and these dependencies

will be used to perform predictions on future observations. However,

many scientific investigations involve causal predictions, the aim of

which is to infer how the data generating system should behave un-

der changing conditions, for example, changes induced by external

interventions. To perform causal predictions, we need both statistical

dependencies as well as causal structures to determine the behaviour

of the system. The standard way to identify causal structures is to

use randomized controlled experiments. However, conducting these

experiments is usually expensive or even impossible in many scenar-

ios. As a consequence, inferring cause and effect relationships from

purely observational data, known as causal discovery or causal learn-

ing, has drawn much attention.

Various causal discovery methods have been proposed in the past

decades, including constraint-based methods, structural equation models-

based methods, and time series-based methods. Among these meth-

ods, time series-based methods, e.g., Granger causality, are relatively

well-established as the temporal information excludes the case that

effects happen before causes. Many of the existing time series-based

methods assume that the data are measured at the right frequency;

however, in practice the sampling frequency of the data is often lower

than the true causal frequency. In this thesis, we consider learning

high-resolution causal relationships at the causal frequency from sub-

sampled time series. Existing methods suffer from the identifiability

problems: under the Gaussianity assumption of the data, the solu-

tions are generally not unique. We prove that, however, if the noise



terms are non-Gaussian, the underlying model is identifiable from

subsampled time series under mild conditions. We then propose an

Expectation-Maximization approach and a variational inference ap-

proach to recover causal relations from subsampled data.

More recently, researchers began to touch upon implications of causal

models for machine learning tasks such as semi-supervised learning

and domain adaptation. In this thesis, we develop causally-inspired

learning methods for domain adaptation in both multi-source and

single-source settings. In particular, we use causal models to rep-

resent the relationship between the features and labels, and consider

possible situations where different modules of the causal model change

with the domain. In each situation, we investigate what knowledge is

appropriate to transfer and find the optimal target-domain hypoth-

esis. Furthermore, we propose methods to correct distribution shift

in the general situation where the marginal distribution of features

and conditional distribution of labels given features both change, un-

der the assumption that labels are causes for features. We provide

theoretical analysis and empirical evaluation on both synthetic and

real-world data to show the effectiveness of our methods.
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function of the Gaussian model computed on super-Gaussian data,

(b) negative log-likelihood function of the non-Gaussian model

computed on super-Gaussian data, (c) negative log-likelihood func-

tion of the Gaussian model computed on sub-Gaussian data, (d)

negative log-likelihood function of the non-Gaussian model com-

puted on sub-Gaussian data. . . . . . . . . . . . . . . . . . . . . . 64

xiv



LIST OF FIGURES

5.1 Possible situations of domain adaptation. Ws and Vs are domain-

specific selection variables assumed to be independent, leading to

changing PXY across domains. (a) Covariate shift: PX is changed

by Ws, but PY |X does not change. (b) Ws and Vs change PX and

PY |X , respectively. (c) Target shift: Ws changes PY , with PX|Y
unchanged. (d) Ws and Vs change PY and PX|Y , respectively. In

the first two situations, we consider X as a cause for Y , whilst in

the last two situations, Y is a cause of X. . . . . . . . . . . . . . 70

5.2 Simulated data with three source domains and one target domain

in one replication. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Boxplot of misclassification rate of each method on simulated data

(50 replications). . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 The eigenvalues of Qj (see (5.4)) in two random runs, one for

n = 3, the other for n = 5. In both situations, one can see that

rank(Qj) = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Local quadractic approximation for the penalty term rs given in

(5.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1 (a) Graphical representation of CIC. Here domain denotes the

domain-specific selection variable. Xci denotes the components of

X whose conditional distribution, P (Xci|Y ), is domain-invariant.

We assume that Xci can be recovered from X as T(X). X⊥ de-

notes the remaining components of X; it might be dependent on

Y given the domain, and when estimating Xci, we would like such

dependence to be as weak as possible so that Xci contains as much

information about Y as possible. (b) CTC, where P (Xct|Y ) dif-

fers only in the location and scale across different domains for each

value of Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 Toy data to illustrate the difference between DIP and CIC: (a) The

source domain data; (b) The target domain data. . . . . . . . . . 108

6.3 Performance comparison on simulated data: (a) Classification er-

ror w.r.t. class ratio; (b) Classification error w.r.t. dimension d. . 109

xv



Nomenclature

Abbreviations

EM expectation maximization

DAG directed acyclic graph

AR autoregressive

BN Bayesian network

CBN causal Bayesian network

SEM structural equation model

RCT randomized controlled experiments

PC Peter-Clark

GES greedy equivalence search

DA domain adaptation

SSL semi-supervised learning

MCMC Markov chain Monte Carlo

ICA independent component analysis

LS location-scale

MMD maximum mean discrepancy

IC invariant components

CIC conditional invariant components

CTC conditional transferable components

RKHS reproducing kernel Hilbert space

1



Chapter 1

Introduction

A main goal of statistics and machine learning is to discover statistical dependen-

cies or associations between random variables, and these dependencies shall be

used to perform prediction on future observations. Statistics has a long tradition

in dealing with co-occurring events. For example, in medical statistics, scientists

might want to find abnormal cell morphologies, say from red blood cells, that co-

occurs with a disease. Discovering this dependence can lead to the prediction of

the occurrence of the disease based on a blood test. Built on statistical inference,

machine learning exploits the vast computational power of modern computing

platforms and develops efficient algorithms to solve complex real-world problems.

During the last decade, machine learning has made spectacular progress, ap-

proaching or even surpassing human performance in complex tasks such as visual

recognition [56,142], speech recognition [52], and computer gaming [126].

In many machine learning problems, it is enough to model the dependencies

between random variables in a probability distribution if the underlying data

generating system remains unchanged. For instance, in regression or classifica-

tion problems, the training and test data are usually assumed to be drawn from

the same distribution. However, many studies in the medical, social, and eco-

nomic sciences aim to answer questions involving prediction under interventions

or manipulations outside the data-generating system [100, 131]. For example,

the government may want to know whether the lung cancer rate will decrease if

smoking is banned. Epidemiologists may wonder whether the life expectancy will

change if they advise people to change their diets. This is fundamentally different
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from making predictions from observations, which involves no experimentation,

no interventions on the system.

Unfortunately, the joint distribution alone is not sufficient to tell us about how

the distribution will change under interventions. To predict the consequences of

interventions, we need to understand the underlying mechanisms that generate

the data. Causal relationships among variables provide coarse descriptions of the

mechanisms, at level sufficient to predict the behavior of the system under inter-

ventions [103]. The causal relationships encode directional information between

variables: by intervening on the cause we can control its effect, but not vice versa.

This coincides with common-sense notions of causation, since we often ask causal

questions in order to change some feature of the world. For example, if smoking

indeed causes lung cancer, then a decrease could be expected in the lung cancer

rate if smoking is banned.

The distinction between prediction in stationary and changing environments

implies that the concepts of dependence and causation do not mix. Dependence

describes a symmetric relationship between variables which is observable from a

data sample, while causation encodes asymmetric relationships whose directions

are not directly observable. As implied by the slogan “correlation does not imply

causation”, a dependence between two variables is not sufficient to demonstrate

the presence of a causal relationship between them. According to the common

cause principle pioneered by Hans Reichenbach [112], the dependence between

two variables X and Y can result from three possible causal structures: X causes

Y , Y causes X, or a third variable Z causes both X and Y . For instance, the

observed dependence between smoking and lung cancer might be due to an un-

observed variable (e.g. genetic disposition) that induces both nicotine addiction

and lung cancer. If this is the case, we are not entitled to conclude that banning

smoking will reduce the risk of getting cancer. Thus, it is nontrivial to infer

causal relationships from observed dependencies.

To find causal relationships, the most reliable way is to conduct intervention

experiments. In such experiments, we not only observe data generated by the

“natural” distribution, but also intervene on the system and observe the conse-

quences of the intervention. The main principles for experimental design were

developed in the context of agricultural research [33]. A major obstacle the ex-
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perimentalists must navigate around is to make sure they are only manipulating

the target variable, and not inadvertently manipulating another variable. The

widely used strategy is to randomize over all the other variables but the target

variable. Specifically, in the smoking example, we select half of the participants

at random and force them to smoke, and do not allow the remaining participants

to smoke. By doing so, the distributions of the other variables in the two groups

are the same. After a certain time, we compare the cancer rates in the smoking

and non-smoking groups. If the cancer rate in the smoking group is higher than

that in the non-smoking group, we can possibly assert that smoking has a causal

effect on cancer.

However, conducting randomized controlled experiments are often expensive,

unethical or infeasible in practice. For example, it is unethical to force people to

smoke or quit smoking. In addition, in many domains, say gene analysis, there

are a large number of variables. In this case, conducting experiments on these

variables shall be extremely costly. Therefore, a lot of research focuses on develop-

ing causal discovery methods to learn causal relationships from non-experimental

data [45, 70, 100, 120, 131, 152]. Generally, as discussed above, we cannot sub-

stantiate causal relationships from dependencies alone, even at the population

level. Fortunately, with appropriate assumptions, it is possible to identify causal

relations in some cases. In the past decades, various causal discovery methods

have been proposed, including constraint-based methods [100, 131], score-based

methods [22,68,76], structural equation models-based methods [70,120,152], and

time series-based methods [44, 45]. Constraint-based methods aim to search for

the causal Bayesian network structure by conditional independence tests under

the causal Markov and faithfulness assumptions. Score-based methods aim to

find the causal structure by optimizing a properly defined score function. The

methods based on structural equation models or more general functional causal

models assume a restricted generative model to explain the data-generating pro-

cess. Causal discovery methods based on time series assume that cause happens

before effect, and explore temporal information present in time series data to

infer causal relationships.

More recently, researchers began to realize that machine learning tasks, such

as semi-supervised learning and domain adaptation, can benefit from causal struc-
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tures [71, 117, 154]. This is motivated by an ‘independence’ postulate that the

process PC that generates the cause contains no information about the process

that generates the effect from the cause PE|C . On the contrary, PE and PC|E
may contain information about each other. This postulate was experimentally

validated on semi-supervised learning, showing that the unlabeled data help pre-

diction if we aim to predict the cause from its effect, but not vice versa [117]. Also,

since causal structure characterizes how the data generating system changes, it

facilitates prediction under distribution changes, e.g. transfer learning and do-

main adaptation [117, 154]. This is based on a similar ‘independence’ postulate,

which states that PC and PE|C change independently, while PE and PC|E often

change together. These causally-inspired learning methods have demonstrated

promising results over the methods which ignore causal information.

In this thesis, we will continue to advance the theories and methodologies in

both causal learning and causally-inspired learning. Regarding causal learning,

we consider learning causal relationships from time series, which is relatively well

established as time order excludes the case in which effect happens before cause.

Typical methods, say Granger causality [44], have wide applications such as eco-

nomics, neuroscience, atmospheric science, etc. They usually assume that the

time series are sampled at the correct frequency. In practice, however, the causal

frequency is usually unknown, and the data are obtained at some fixed frequency

such as daily, weekly, and monthly. If the sampling frequency is lower than the

causal frequency, the time series are said to be aggregated [127], and we are inter-

ested in learning the high-resolution causal relationships at the causal frequency

from the low-resolution time series data obtained by subsampling. Traditional

methods aim to recover the high-resolution time series from low-resolution ones,

based on some assumptions such as smoothness. However, we argue that it is

easier to discover the high-resolution causal relations than to recover the high-

resolution time series. Also, these methods have no theoretical results on identi-

fiability, i.e. it is unknown if the learned causal model is unique. We prove that

the underlying causal model is identifiable from subsampled time series under

mild conditions, provided that the noise terms are non-Gaussian. In addition, we

propose to learn the causal model by mixture modeling and estimate the model

parameters by EM and variational inference algorithms.
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For causally-inspired learning, we investigate how causal models facilitate do-

main adaptation in both multi-source and single-source situations. Since the

causal models encode information about how the distribution is going to change

under external manipulations, it would be beneficial for domain adaptation where

the training and test data do not follow the same distribution. In particular,

we use causal models to represent the relationship between the features and la-

bels, and consider possible situations where different modules of the causal model

change with the domain. In each situation, we investigate what knowledge is ap-

propriate to transfer and find the optimal target-domain hypothesis. For example,

we demonstrate that the commonly adopted covariate shift assumption, which as-

sumes that only the marginal distribution of features changes, actually assumes

a causal model in which features are causes of the labels. Furthermore, we focus

on the more general situation where the marginal distribution of features and

conditional distribution of labels given features both change across domains. We

find that if the labels are causes for features, we can possibly correct the shifts

in the joint distribution of features and labels under appropriate assumptions.

Specifically, in the multi-source domain adaptation setting, we propose to recon-

struct the distribution on the target domain by a linear mixture of distributions

on the source domains. In the single source domain setting, we propose to learn

conditional invariant or transferable features and identify how the distribution of

labels change between domains. We provide theoretical analysis and empirical

evaluation on both synthetic and real-world data to show the effectiveness of our

method.
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1.1 Outline

The rest of this thesis is organized in six chapters. The first two chapters provide a

general overview of causal discovery and causally-inspired machine learning. The

following three chapters focus on our contribution to the field by summarizing

our important findings and describing our new methodologies. The final chapter

offers final remarks and suggests future research.

Chapter 2 We review the mathematical models which are widely used in repre-

senting causal relationships. We will illustrate how to predict the consequences of

interventions using these causal models, and demonstrate the difference between

causal and standard statistical inference.

Chapter 3 This chapter gives an overview of the existing observational causal

discovery methods and the recently proposed causally-inspired machine learning

methods. Rather than describing the learning algorithms in detail, we focus on

the general principles and the underlying assumptions.

Chapter 4 We describe a new method to learn causal relations from subsam-

pled low-resolution time series. The identifiability of the proposed method is

proven under the non-Gaussian assumption. This chapter was published in [41].

Chapter 5 We consider the multi-source domain adaptation problem from a

causal perspective. We use causal models to illustrate different kinds of distribu-

tion shifts make clear the underlying assumptions in how distribution changes.

Furthermore, we propose corresponding source domain combination strategies to

correct the shifts. This chapter was published in [151].

Chapter 6 This chapter focuses on extracting invariant or transferable features

which share similar class conditional distributions for single-source domain adap-

tation. Specifically, we consider the situation where labels are causes for features,

and propose computational methods to simultaneously find the invariant features

and adjust the class prior distribution change. This chapter was published in [40].

7



Chapter 7 This chapter concludes this thesis and suggests some further re-

search possibilities.

1.2 Contributions

Our contribution is two fold: first, we proposed a new method to learn causality

from subsampled time series data; second, we investigated how causal models

facilitate domain adaptation and develop causally-inspired methods. The contri-

butions contained in this thesis are summarized as follows:

1. In Chapter 4, it is shown for the first time that the high-resolution causal re-

lationships can be identified from low-resolution time series data obtained

by systematic sampling. Under the assumption that the noises are non-

Gaussian, we can obtain a unique causal model from low-resolution data.

Also, we propose practical computational methods to learn causal relations

from the subsampled time series data. Specifically, assuming the high-

resolution time series follow an auto-regressive (AR) model, we derive the

corresponding model on the subsampled data, and estimate the model pa-

rameters via Expectation-Maximization (EM) and mean field inference.

2. In Chapter 5, we model the causal relations between features and labels,

and discuss possible situations where different modules of the causal model

change with the domain. In each situation, we propose corresponding source

domain combination schemes to construct a new virtual domain whose dis-

tribution approximates that on the target domain. In particular, we pro-

posed an effective method to handle the general situation, which is rarely

explored in the previous methods, i.e. the feature distribution and con-

ditional distribution of labels given features both change. Experiments on

multi-source domain adaptation with both synthetic and real data illustrate

the efficacy of the proposed approach when compared with the state-of-the-

art.

3. In Chapter 6, we propose an approach to learn conditional invariant compo-

nents which have similar class conditional distributions on source and target
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domains. Existing single-source domain adaptation approaches usually as-

sume the covariate shift situation where only the marginal distribution of

features changes, which actually assume a causal model in which features

are causes for labels. Thus, these approaches aim to learn invariant compo-

nents which have similar marginal distribution across domains. However, in

practice, the conditional distribution of labels given features usually change

together with the marginal distribution of features. We point out that a

causal model in which labels are causes for features are more prevalent in

real world classification problems, and that it is possible to correct the shift

in joint distributions of features and labels by learning class conditional

invariant components and identify the changes in class prior distribution.

We propose a practical computational method based on kernel embedding

of distributions and provide theoretical analysis. Experiments on two real-

world datasets demonstrate that our method outperforms existing methods.

9



Chapter 2

Causal Modeling

Solving the causal prediction problems requires a formalism for representing

causal relations. In this chapter, we review the how causal relationships can

be represented by mathematical models, e.g. causal Bayesian Networks (CBNs)

and structural equation models (SEMs). Most causal models use some sort of

directed graph to describe the directional causal connections. For example, both

CBNs and SEMs employ directed acyclic graphs (DAGs) to represent the causal

structures, although extensions to cyclic graphs exist [63, 77]. Equipped with

these causal models, we can possibly identify and estimate the consequences of

interventions from observational data. In this chapter, we will firstly introduce

the necessary graph notations and terminologies to describe the structure of a

DAG. Then we will describe causal Bayesian networks and structural equation

models, which are the two most popular causal models. Finally, we will review

the time series causal models in which the flow of time is exploited for causal

inference.

2.1 Graph Notations

We start with some graph notations and terminologies. A graph G = (V,E)

consists of a set of vertices (or nodes) V = {X1, . . . , Xn} and a set of edges

E ⊆ V2. The vertices in the graph correspond to variables and the edges denote

relationships between variables. We borrow some of the following definitions

10



from [82,100].

1. Each edge in G can be either directed or undirected; and if all the edges

are directed, then G is a directed graph. Usually, an edge only has a single

direction, that is, for all i and j, if (Xi, Xj) ∈ E then (Xj, Xi) �∈ E.

2. In a directed graph, the edge between Xi and Xj is denoted as Xi → Xj in

G if (Xi, Xj) ∈ E or Xi ← Xj if (Xj, Xi) ∈ E.

3. Two variables Xi and Xj are connected by an edge, i.e. (Xi, Xj) ∈ E or

(Xj, Xi) ∈ E, are called adjacent. If all pairs of nodes in G are adjacent,

then G is a fully connected graph. All the nodes that are adjacent to a node

Xi constitute an adjacency set of Xi, denoted as ADG
i ).

4. The skeleton of G is the set of all edges without taking into account of the

direction. For example, the skeleton of the structure Xi → Xj → Xk can

be represented as Xi −Xj −Xk.

5. Xi is called a parent of Xj if (Xi, Xj) ∈ E and a child of Xj if (Xj, Xi) ∈ E.

The set of parents of Xj is denoted PAG
j , the set of its children is denoted

by CHG
j .

6. Three nodes are called a v-structure if one node is a child of the other two

nodes which are not adjacent, for example, (Xi, Xk) ∈ E,(Xj, Xk) ∈ E,

(Xi, Xj) �∈ E, and (Xj, Xi) �∈ E. The structure can be written as Xi →
Xk ← Xj.

7. A path in G is a sequence of vertices Xi,1, . . . , Xi,n, such that (Xi,k, Xi,k+1) ∈
E or (Xi,k+1, Xi,k) ∈ E for all 1 ≤ k ≤ n − 1 and n ≥ 2. If for all k, only

(Xi,k, Xi,k+1) ∈ E holds, then the path is called a directed path. If there

exists a path between two vertices in a graph then the two vertices are said

to be connected ; otherwise they are disconnected.

8. In a directed path Xi,1, . . . , Xi,n, we call Xi,1 an ancestor of Xi,n and Xi,n

a descendant of Xi,1.

9. In a path Xi,1, . . . , Xi,n, if (Xi,k−1, Xi,k) ∈ E and (Xi,k+1, Xi,k) ∈ E, we call

Xik a collider on this path.

11
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Figure 2.1: A directed acyclic graph (DAG).

10. If G is a directed graph, it may include directed cycles (e.g., (Xi, Xj) ∈
E, (Xj, Xk) ∈ E, (Xk, Xi) ∈ E), which contain directed paths from nodes

to themselves. If G does not contain any directed path from Xi to itself for

all i, it is called a directed acyclic graph (DAG).

11. A path between Xi,1 and Xi,n is blocked by a set S \ {Xi,1, Xi,n} if

• Xik ∈ S and

Xi,k−1 → Xi,k → Xi,k+1 or

Xi,k−1 ← Xi,k → Xi,k+1 or

Xi,k−1 ← Xi,k ← Xi,k+1.

• Xi,k−1 → Xi,k ← Xi,k+1 and neither Xi,k nor its descendants are in S.

12. If every path between two subsets of vertices A and B are blocked by a

third subset S, we say that A and B are d-separated by S, i.e. , A |= d B|S.

Fig. 2.1 shows a DAG with 5 nodes and 5 edges. This graph is a DAG because

it contains no directed path which starts from and ends in the same node. The

node X4 has two parents PAG
4 = {X2, X3}. The node X1 has two children

CHG
1 = {X2, X3}. The nodes X2, X3, and X4 form a v-structure, as X2 and

X3 are two parents of X4 and X2 and X3 are not adjacent. X1, X2, X4, X5 is a

directed path from X1 to X5, which is blocked by S = {X2}. X1 is an ancestor of

X5, and X5 is a descendant of X1. X1, X2, X4, X3 is a blocked path from X1 to

12



X3, which is unblocked by S = {X4}. The node sets A = {X2} and B = {X3}
are d-separated by S = {X1}.

2.2 Causal Bayesian Networks

A Bayesian network is a probabilistic graphical model that represents a set of ran-

dom variables and their conditional independencies via a directed acyclic graph

(DAG). The causal interpretation of Bayesian networks, popularized by Pearl et

al. [100] and Spirtes et al. [131], has been well developed in the past decade.

When the directions of directed edges in a DAG represents causal directions, the

DAG is called a causal DAG and the corresponding Bayesian network is called

a causal Bayesian network. Aside from encoding conditional independencies in a

probability distribution, a causal Bayesian network characterizes how the causal

system reacts with respect to interventions.

A Bayesian network is a pair 〈G, P 〉, where G = (V,E) is a DAG over a set of

variables V = {X1, . . . , Xn}, and P is a joint distribution over V such that P sat-

isfies the local Markov condition for G, i.e. that in P each variable is independent

of its non-descendants in G conditioned on its parents in G. The local Markov

condition is equivalent to other two conditions, i.e. global Markov condition and

factorization of P according to G, under mild regularity assumptions [78]. The

global Markov condition states that two subsets A and B are independent condi-

tioned on another set S in probability distribution P whenever A is d-separated

from B by S, i.e.

A |= d B|S ⇒ A |= B|S.

That is, the global Markov condition states that P embodies all the conditional

independences read from the d-separations in G. If the local or global Markov

condition holds, the joint distribution P (V) factorizes according to G if

P (V) = P (X1, . . . , Xn) =
n∏
i=1

P (Xi|PAG
i ).
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Figure 2.2: Two DAGs that are Markov equivalent to the DAG in Fig. 2.1.

For example, in Fig. 2.1, the joint distribution over V can be factorized as

P (V) = P (X1)P (X2|X1)P (X3|X1)P (X4|X2, X3)P (X5|X4).

It should be noted that the same probability distribution P (V) can be Markov

with respect to more than one DAG. That is, different DAGs may entail the same

set of (conditional) independencies. Denote M(G) the set of distributions that

are Markov with respect to G:

M(G) := {P (V) : P (V) is Markov with respect to G}.

Two graphs G1 and G2 are Markov equivalent if M(G1) = M(G2). Markov equiva-

lence can be seen from the graph structure, i.e. G1 and G2 are Markov equivalent

if they have the same skeleton and set of v-structures [143]. Fig. 2.2 shows two

DAGs which are Markov equivalent to the DAG shown in Fig. 2.1. The directed

edges in the DAG of a Bayesian network encodes symmetric probabilistic condi-

tional independence property. For example, X1 → X2 → X3, X1 ← X2 → X3,

and X1 ← X2 ← X3 can be used interchangeably to represent the conditional

independence X1 |= X3|X2 as they are Markov equivalent. The interpretation of

DAGs as carriers of conditional independencies does not necessarily imply cau-

sation. However, it is in the very nature, of a DAG that it contains directed

edges, so that this particular graphical representation embodies an asymmetric

relationship between nodes. The ubiquity of DAGs in statistical and AI applica-

tions stems primarily from their causal interpretation, i.e. the underlying data

generating process [100].
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The use of a DAG to represent causal relations is different to using it to

embody conditional independencies. In a causal DAG, the directed edge Xi →
Xj represents a causal relation “Xi directly causes Xj” or “PAG

j are directed

causes of Xj”. The causal DAG describes how the joint distribution of nodes

reacts to external interventions, say set Xi to a specific value xi and predict the

interventional distribution P (Xj|do(Xi = xi)). The interventional distribution

P (Xj|do(Xi = xi)) is fundamentally different from the conditional distribution

P (Xj|Xi = xi), reflecting the difference between doing and seeing. In the former

case, we actively intervene on the data generating system to fix Xi to the value

xi, and observe how the distribution of Xj becomes. In the latter case, we only

passively observe the data generated by the system and evaluate the distribution

of Xj once we observe that Xi = xi.

To calculate the interventional distributions from the causal DAG, it is es-

sential to relate it to the joint distribution of the nodes by introducing a set of

assumptions. These assumptions are encapsulated in causal Bayesian networks

which is popularized by Pearl [100], Spirtes et al. [131], and many others. The

following definition of a causal Bayesian network describes the necessary assump-

tions to characterize the effects of interventions.

Definition 1. Let G = (V,E) be a DAG over a set of variables V = {X1, . . . , Xn},
and P be a joint distribution over V. The pair 〈G, P 〉 is a causal Bayesian net-

work (G is called a causal DAG or a Pearlian DAG), if the following assumptions

hold.

1. Representational assumptions The exists some DAG G that can rep-

resent the causal structure of a system.

2. Causal Markov condition The d-separations in G are embodied as condi-

tional independences in the distribution P (V). That is, any variable is sta-

tistically independent of its non-effects, conditioned on its directed causes. If

the causal Markov condition is satisfied, the distribution P admits a causal

factorization

P (V) =

n∏
i=1

P (Xi|PAG
i ).
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Figure 2.3: Three DAGs in which P (X2|do(X1 = x1)) = P (X2|X1 = x1). (a)-(c)
shows the original causal graphs, and (d)-(f) shows the corresponding interven-
tional graphs in which X1 is set to a specific value x1. It can be seen that the
interventional graph is identical to the original graph.

3. Modularity/Invariance For any variable Xi ∈ V, the causal process

producing its value from its parents, defined by conditional distribution

P (Xi|PAG
i ), is unaltered no matter which variables in the system (other

than Xi itself) are intervened on. Based on the modularity assumption,

the interventional distribution P (V|{do(Xk = xk)}k∈K), which results from

interventions on a subset of variables indexed by K ⊆ {1, . . . , n}, can be

obtained by the truncated factorization

P (V|{do(Xk = xk)}k∈K) =
∏
k �∈K

P (Xk|PAG
k)

∏
k∈K

δXk,xk .

Causal Bayesian networks enable us to estimate the interventional distribu-

tion of a system when subjected to different interventions from observational

distributions. Thus, knowing the causal structure avoids the need of interven-

ing on a system, which is often expensive or impractical. If the causal DAG

G in a Bayesian network is the true causal DAG of the probability distribution

P (X), then we may expect that the interventional distribution obtained by the

truncated factorization coincides with the true interventional distribution. For
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example, if we intervene on the causal model shown in Fig. 2.1 by setting X2 to

x2, the interventional distribution can be written as

P (V|do(X2 = x2)) = P (X1)δX2,x2P (X3|X1)P (X4|X2 = x2, X3)P (X5|X4).

By using the causal Bayesian network, the difference between the interven-

tional distribution P (Xj|do(Xi = xi)) (doing) and the conditional distribution

P (Xj|Xi = xi) (seeing) can be mathematically formalized. Specifically, the inter-

ventional distribution P (V|do(Xi = xi)) can be calculated using the truncated

factorization rule, and P (Xj|do(Xi = xi)) can be obtained by marginalizing the

interventional distribution P (V|do(Xi = xi)).

Fig. 2.3 illustrates three causal graphs where the corresponding conditional

distribution P (X2|X1 = x1) and interventional distribution P (X2|do(X1 = x1))

are identical. The interventional graphs after the intervention do(X1 = x1) are

also shown with the original graphs. It can be seen that in these graphs, the

interventional graph is identical to the original graph because X1 is not an effect

of any other variable in the graph. For example, the interventional distribution

of the graph shown in subfigure (c) can be calculated as

P (X2|do(X1 = x1))

=
∑
X3

δX1,x1P (X3|X1 = x1)P (X2|X1 = x1, X3)

=
∑
X3

P (X3|X1 = x1)P (X2|X1 = x1, X3)

= P (X2|X1 = x1).

Fig. 2.4 shows three causal graphs where P (X2|X1 = x1) �= P (X2|do(X1 = x1)).

It can be seen that the causal graph changes after intervention, as X1 is an effect

of X2 or X3 and intervention removes the edges from the causes of X1 to X1. For
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Figure 2.4: Three DAGs in which P (X2|do(X1 = x1)) �= P (X2|X1 = x1). (a)-(c)
shows the original causal graphs, and (d)-(f) shows the corresponding interven-
tional graphs. It can be seen that the interventional graph and the original graph
are different.

example, the interventional distribution of the graph shown in subfigure (c)

P (X2|do(X1 = x1))

=
∑
X3

δX1,x1P (X3)P (X2|X1 = x1, X3)

=
∑
X3

P (X3)P (X2|X1 = x1, X3)

�=
∑
X3

P (X3|X1 = x1)P (X2|X1 = x1, X3)

= P (X2|X1 = x1).

2.3 Structural Equation Models

Another popular way to model the causal relationships is to use structural equa-

tion models (SEMs), which originates from genetics [146] and econometrics [51],

and is treated in detail by Pearl [100]. In SEMs, causal relationships are described
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by deterministic functional equations, each of which explains one variable in the

causal system in terms of its direct causes. Probabilities are introduced through

the unobserved random variables which are often assumed to be independent

from each other. The structural equation models are also called functional causal

models (FCMs).

In its general form, a SEM is a tuple 〈S, P 〉 which consists of a set of equations

S = (S1, . . . , Sn):

Si : Xi ← fi(PAi, Ui), i = 1, . . . , n, (2.1)

and a probability distribution P over U = (U1, . . . , Un). PAi denotes the direct

causes of Xi, and Ui represents disturbances or errors due to unobserved factors.

Uis are required to be jointly independent, thus the joint distribution of Uis is a

product distribution, i.e. P (U) = P (U1, . . . , Un) =
∏n

k=1 P (Uk).

The symbol “←” is used instead of “=” in order to convey the asymmetric

relation between causes and effects. For example, Xi ← Xj+10 can be interpreted

as “Xi is generated by taking Xj and adding 10”. This generating process can

not be inverted to “Xj is generated by taking Xi and subtracting 10”, though it

is correct according to algebraic rules.

The structure of the SEM 2.1 can be visualized through a causal graph G by

drawing an arrow from each direct cause of a variable Xi in PAi to the variable

Xi. For simplicity, the causal system is usually assumed to have no feedback, and

thus the causal graph is called a causal DAG. In fact, we can construct a causal

Bayesian network from a SEM by firstly construct the DAG and then construct

the probability distribution P (X) = P (X1, . . . , Xn) by propogating the distribu-

tion of error variables P (U) through the set of equations. Different structural

equation models can map to the same causal Bayesian network, which means that

SEMs contain strictly more information than causal Bayesian networks.

The causal assumptions in a causal Bayesian network can also be enforced in

a SEM. If the noise variables Uis are assumed to be independent, the structural

equation model will imply that the distribution P (X) = P (X1, . . . , Xn) generated

by the SEM is Markov with respect to the causal DAG G ( [100], theorem 1.4.1).

Furthermore, the equations in a SEM is considered to be “autonomous” relative
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to the dynamics of the changes, meaning that external interventions changing

one equation do not imply changes to the others. This corresponds to the “mod-

ularity” assumption in causal Bayesian networks.

As an example, we present the structural equation model which has the causal

DAG as illustrated in Fig. 2.1:

X1 ← f1(U1),

X2 ← f2(X1, U2),

X3 ← f3(X1, U3),

X4 ← f4(X2, X3, U4),

X5 ← f5(X4, U5). (2.2)

If we intervene on the variable X2 by setting it to x2, then the second and the

fourth equations in the SEM change to

X2 ← x2,

X4 ← f4(x2, X3, U4). (2.3)

2.4 Time Series Models

Causal Bayesian networks and structural equation models often assume that the

data points generated by a system has no temporal structures. However, real-

world systems are often dynamic in nature, see Fig. 2.5 , two time series in

which X1 at time t can influence X1 and X2 at time t + 1. If we have access to

time series data which properly describes the underlying dynamic process, we can

build causal models relying on the fact that an effect cannot precede its cause in

time.

A multi-variate time series can be modeled by a dynamic Bayesian network

〈G, P 〉 [25,93] which generalizes Bayesian networks to relate variables to each other

over adjacent time steps. The distribution P is defined over all the variables in a

time series at all time steps. For example, Fig. 2.5 shows the DAG representing

the statistical relations between a bivariate time series Xa,t, t ∈ Z, a = 1, 2. The
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Figure 2.5: A directed acyclic graph (DAG) for time series modeling.

DAG encodes conditional independencies such as

X1,t+1 |= X1,t−1|X1,t, X2,t+1 |= X2,t−1|X2,t, X1,t |= X2,t−1|X1,t−1.

If we restrict the functional relations between variables to be linear, Fig. 2.5

represents the structure of a linear vector autoregressive (VAR) process

Xt = AXt−1 + εt, (2.4)

where A is a matrix containing the temporal relations, and εt represents tempo-

rally and contemporaneously independent noise processes.

The dynamic modeling of time series encodes mere “correlations”. The most

popularly used concept of causality in time series analysis is Granger causality

which exploits the natural time ordering to achieve a causal ordering of the vari-

ables [44]. More precisely, one time series X1 is said to be Granger causal for

another X2, if the prediction of X2 based on its own past values and the past

values of X1 is better than prediction of X2 only based on its past values. For

example, in a VAR process whose structure is shown in Fig. 2.5, X1 is a Granger

cause for X2 as X2,t �⊥⊥ X1,1:t−1|X2,1:t−1 which means that the past values of X1

affects the present value of X2 even if the past values of X2 are known. It should

be noted that Granger causality is not the “true” causality defined in terms in-

terventions. It is temporal correlations which are interpreted as causality under

some prior knowledge, and it can often goes wrong if there is confounders or

the data is not sampled appropriately. Nevertheless, the structural modeling of

time series, i.e., the dynamic Bayesian network can be extended to incorporate

causality by introducing do-calculus [12].
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Chapter 3

Causal and Causally-inspired

Learning

In the previous chapter, we have reviewed the causal models which typically de-

scribe the causal structures using causal DAGs. If we have access to the true

casual DAG and the joint distribution of variables (or observational data), we

can infer the potential outcome of interventions by using truncated factorizations.

Pearl’s do-calculus [102] provides a systematic way to transform the interventional

distribution into an expression of standard statistical distributions. However, the

true DAG is, at least usually, not obvious from superficial and perceptual cues.

Although randomized controlled trials (RCTs) are the gold standard to inden-

tify the causal structures, they are often expensive, unethical, or impossible to

perform. As a consequence, learning causal structures from observational data,

known as the task of causal learning or causal discovery, has drawn much atten-

tion in several fileds including computer science, statistics, philosophy, economics,

and neuroscience. In recent years, it has been shown that causal knowledge can

help prediction in machine learning tasks, giving rise to a number of causally-

inspired learning approaches, such as causal domain adaptation [154]. In this

chapter, we will give a brief review of the existing causal learning and causally-

inspired learning approaches.
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3.1 Causal Learning

In this section, we will review four categories of causal learning methods, including

constraint-based methods, score-based methods, SEM-based methods, and time

series-based methods.

3.1.1 Constraint-based Approach

Using causal Bayesian networks to model causal structures, the constraint-based

approach uses conditional independence tests to narrow down the candidate

graphs that may have produced the data under the causal Markov and faithful-

ness assumptions. In chapter 2, we have reviewed the causal Markov assumption

which bridges the DAG G and the probability distribution P in a causal Bayesian

network. Causal Markov assumption indicates that two subsets of variables A

and B are independent given another set S whenever A is d-separated from B

by S. However, the causal Markov assumption does not entail that A and B are

dependent conditioned on S if A is d-connected (not d-separated) from B con-

ditioned on S. Thus, while the causal Markov assumption allows inferences that

causal connections exist (i.e. A �⊥⊥ B|S ⇒ A �⊥⊥d B|S), it does not support infer-
ences that some causal connections do not exist (i.e. A |= B|S ⇒ A |= d B|S).
Causal faithfulness assumption is necessary for a large number constraint-based

causal learning algorithms.

Causal Faithfulness Assumption: For a causal DAG G over a causally

sufficient (i.e. there are no unobserved confounders) set of variables V and a

probability distribution P (V) generated by the causal structure represented by

G, if G entails that A �⊥⊥d B|S, then A �⊥⊥ B|S.
The causal faithfulness assumption states that there are no independencies

between variables that are not entailed by the causal Markov assumption. The

causal faithfulness assumption allows inferences of non-existence of causal con-

nections, i.e. A |= B|S ⇒ A |= d B|S. If causal Markov and faithfulness assump-

tions both hold, we have the equivalence between d-separation and conditional

independence, i.e. A |= B|S ⇔ A |= d B|S.
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3.1.1.1 The SGS and PC algorithm

The Spirtes-Glymour-Scheines (SGS) algorithm [130] is an example of early constrai-

nt-based method which outputs a Markov equivalent class of DAGs. The DAGs in

a Markov equivalent class can be represented by a pattern [143] which is a graph

consists of directed and undirected edges. The undirected edges represent the

edges whose direction can not be determined by conditional independence. The

SGS algorithm assume causal Markov, faithfulness, and sufficiency conditions.

In the SGS algorithm, two phases are usually carried out to search for the

causal structures. In the first phase, called adjacency phase, SGS finds the skele-

ton of a causal DAG. For doing this, the algorithm starts with a complete undi-

rected graph H over the variables V. The for each pair of variables Xi and

Xj in V, SGS searches for a subset Sij ⊆ V \ {Xi, Xj} such that Xi and Xj

are independent conditional on Sij. If such a set is found, SGS removes edges

between Xi and Xj in H. In the worst case, this phase requires a number of

conditional independence tests that increases exponentially with the number of

vertices. Thus, the SGS algorithm rapidly becomes computationally infeasible

as the number of vertices increases. Also, conditional independence tests with

high-dimensional conditioning set and limited data suffer from high estimation

errors. Given these problems, the SGS algorithm evolved into the PC algorithm,

which arranges the conditional independence tests in increasing size of adjacency

sets of Xi and Xj [134]. The details of the adjacency phase of the PC algorithm

are illustrated in Algorithm 1.

In the second phase, named orientation phase, the edges are oriented to pro-

duce a Markov equivalent class of DAGs. LetH ′ be the undirected graph resulting

from the first phase. For each skeleton of the form Xi −Xk −Xj (an unshielded

triplet), if there exist no subset S ⊆ Xk∪V\{Xi, Xj} such that Xi |= Xj|S, then
SGS orient the triplet as an unshielded collider Xi → Xk ← Xj. Otherwise, the

unshielded triplet is marked as a noncollider (i.e. not Xi → Xk ← Xj), whose

direction is left undetermined. The PC algorithm simplifies this procedure by

examining whether Xk is in the separation set Sij. The triplet is a collider if

and only if the set Sij does not contain Xk. The remaining undirected edges are

oriented according to orientation rules which avoid forming new collider struc-
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Algorithm 1: Adjacency Phase of PC Algorithm

Input: i.i.d. data, significance level for statistical tests
Output: A pattern
Construct a fully connected undirected graph H. Let Uij represent the set
of vertices in H that lie on the undirected paths between two nodes Xi

and Xj excluding themselves. Let ADi,j represent the set of nodes that
are adjacent to Xi and Xj excluding themselves, i.e. ADH

ij = ADH
i ∪

ADH
j \{Xi, Xj}.

n := 0
repeat

For each pair of adjacent variables Xi and Xj in H, if ADH
ij ∩Uij has

cardinality greater than or equal to n and Xi and Xj are independent
conditional on any subsets of ADH

ij ∩Uij of cardinality n, remove the
edge Xi −Xj from H and record all the sets that render Xi and Xj

independent in the set Sij.
n := n+ 1

until for each pair of adjacent vertices Xi, Xj, ADH
ij ∩Uij is of cardinality

less than n;

tures and cycles. The following orientation rules are repeated until none of them

applies: 1) If Xi → Xk−Xj, the triplet is oriented as Xi → Xk → Xj in order to

avoid new colliders. 2) If Xi → Xk → Xj and Xi −Xj, then Xi −Xj is oriented

as Xi → Xj to avoid cycles. 3) If Xi → Xk ← Xj, another triplet X
′
i −X ′

k −X ′
j

is marked as a noncollider, and Xk −X ′
k, then Xk −X ′

k is oriented as Xk → X ′
k.

The third rule was not proposed in the original SGS or PC algorithm, but was

added in [89].

If the true causal DAG is shown in Fig. 2.1, and the causal assumptions are

fulfilled, SGS or PC would output a pattern, shown in Fig. 3.1, representing the

Markov equivalent class of DAGs shown in Fig. 2.1 and Fig. 2.2. The direction of

the triplet X2−X1−X3 is not identifiable from observational data by conditional

independence tests.

The PC algorithm has been widely used in analysis of high-dimensional data [85,

136] because it is computationally efficient for sparse graphs with thousands of

variables. Open-source software is available, for example in TETRAD IV [131]

and the R-package pcalg [75]. In both SGS and PC, conditional independence
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Figure 3.1: A pattern returned by the SGS or PC algorithm.

test is a hard problem, because the variables may have nonlinear relations with

non-Gaussian noises. [153] proposed a kernel-based conditional independence test

approach and obtained promising results on causal discovery.

Both SGS and PC assume causal sufficiency and thus cannot deal with hidden

confounders. To target this problem, Spirtes et al. proposed the Fast Causal

Inference (FCI) method which firstly employs the adjacency search of the PC

algorithm and then performs additional conditional independence tests due to the

latent variables [132] . Zhang et al. combined the FCI algorithm with additional

orientation rules and proposed a method which is sound and complete in the large-

sample limit when confounders or selection bias may be present [150]. Another

drawback of the PC algorithm is that it gives little indication of which parts of

the network are stable and which are not on finite data. Thus, a single erroneous

independence test result may be propagated through the network and results in

multiple incorrect orientations [133]. To improve the robustness of PC, Ramsey

et al. proposed a Conservative PC (CPC) approach involving explicit validation

of certain orientation rules [110].

3.1.2 Score-based Approach

In contrast to constraint-based approaches, score-based methods aim to find the

causal structure by optimizing a properly defined score function. Assume that the

data generating process is represented by a Bayesian network 〈G, θ〉, where θ is

the parametric representation of the distribution over vertices in G, the Bayesian

score-based methods evaluate the score of each candidate by using the posterior
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distribution P (G|X), where X is a N × n matrix of which the i-th row is a n-

dimensional data example xi = (xi,1, . . . , xi,n). The posterior can be calculated

using Bayes formula:

P (G|X) =
P (X|G)P (G)

P (X)
, where (3.1)

P (X) =
∑
G

P (X|G)P (G), (3.2)

P (G) is a prior distribution of the graph structure G, P (X|G) is marginal likelihood

of the data, i.e. the probability that the data is generated from a distribution

associated with G. In order to calculate the marginal likelihood, we take the

Bayesian approach by considering the parameters θ as random variables and

integrate over θ:

P (X|G) =
∫
P (X, θ|G)dθ

=

∫
P (X|G, θ)P (θ|G)dθ, (3.3)

where P (X|G, θ) is the likelihood of the data given the graph G and distribution

parameters θ, P (θ|G) is the prior distribution of θ given the graph structure.

Since the data is i.i.d., and the joint distribution of all the variables factorizes

according to G, then we have that

P (X|θ,G) =
N∏
i=1

P (xi|G, θ)

=
N∏
i=1

n∏
j=1

P (xi,j|PAG
j , θj), (3.4)

where the parameter θ is divided into n groups θ1, . . . , θn, each of which defines

the probability distribution P (Xj|PAG
j ). To simplify the calculation of Eq. 3.3,

different parameter groups are assumed to be independent given the graph struc-

ture, which is called parameter independence by Heckerman et al. in [57]. Param-

eter independence is consistent with the modularity assumption in the definition

of causal Bayesian networks. With the parameter independence assumption, the
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prior P (θ|G) factorizes as

P (θ|G) =
n∏
j=1

P (θj|PAG
j ). (3.5)

By using Eq. 3.3, Eq. 3.4, and Eq. 3.5, the marginal likelihood P (X|G) can be

calculated as

P (X|G) =
∫ N∏

i=1

n∏
j=1

P (xi,j|PAG
j , θj)P (θj|PAG

j )dθ1 . . . dθn

=
n∏
j=1

∫ N∏
i=1

P (xi,j|PAG
j , θj)P (θj|PAG

j )dθj. (3.6)

It can be seen that the marginal data likelihood can be factorized into sub-terms

which only depend on the local structure for each variable Xj. After obtaining

the marginal likelihood, the posterior distribution P (G|X) can be calculated by

using Eq. 3.1. The optimal graph structure can be found by using by MAP

(Maximum a Posteriori), i.e.

GMAP = argmax
G

P (G|X)

= argmax
G

P (X|G)P (G). (3.7)

Unfortunately, the number of DAGs grows super-exponentially with the num-

ber of variables. Finding the best network structure is a combinatorial search

problem which is known to be NP-hard when the data may be drawn from an

arbitrary distribution [21]. The core difficulty of the learning problem arises

from the fact that a valid graph has to be acyclic, which is a global constraint.

Due to the complexity, early research in this area mainly focused on develop-

ing approximation algorithms such as greedy hill climbing approaches [14, 34].

However, these methods fail to guarantee the optimality of the found solutions.

In recent years, several exact learning algorithms have been proposed based on

dynamic programming [76, 99], integer linear programming [24, 58, 68], branch

and bound [28], and shortest-path [148]. These exact methods are guaranteed to
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find the optimal solutions at the termination of the search. Since these methods

output an arbitrary DAG in the Markov equivalence class, the learned directed

edges do not necessarily carry causal information. A post-processing step is often

required to remove the undetermined edge directions.

There exist a few methods which directly search over the Markov equiva-

lence class of network structures and output a pattern. A prominent example is

the Greedy Equivalence Search (GES) algorithm [22] which adopts a two phase

greedy search procedure. In the first phase, GES starts with an equivalence class

corresponding to no dependencies, and greedily adds a single edge to each DAG

in the current equivalence class. Once the first phase stops at a local maximum,

a second greedy phase is applied by deleting an edge from each DAG in the cur-

rent equivalence class. Under the causal Markov and faithfulness assumptions,

GES can output the pattern representing the Markov equivalence class of the

underlying causal DAG in the infinite sample limit. The GES has been extended

in various ways, such as escaping local optima on finite data [94], learning from

both observational and interventional data [55], and dealing with a large number

of variables [109].

The score-based methods have also been extended to deal with unobserved

variables in the DAG. The likelihood would require marginalizing over the latent

variables, which is difficult as the true DAG is also unknown. One solution

to this problem is to use the structural EM approach [34] that maximizes the

objective function by sequentially alternating between the DAG structure G, the

parameters θ, and the missing values for latent variables. Alternatively, one may

consider G as a mixed graph containing both observed and unobserved variables.

For instance, Silva and Ghahramani [125] gave a Bayesian approach based on

sampling and variational approximations under some parametric restrictions of

the mixed graph (linear Gaussian and Probit).

3.1.3 SEM-based Approach

The constraint-based methods and Bayesian score-based methods are only able

to output the Markov equivalence class, meaning that the underlying causal DAG

cannot be uniquely determined. Recently, a number of fully-identifiable causal
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learning methods based on structural equation models have been developed [60,

120, 152]. These methods can uniquely estimate the underlying causal structure

from observational data by placing restrictions on the SEMs. These methods

are mainly concerned with learning the causal direction between two continuous

variables. A SEM represents the effect Y as a function of the direct causes X

and some noise:

X ← fX(UX , θX),

Y ← fY (X,UY , θY ), (3.8)

where θX and θY are introduced to represent the parameters involved in fX and

fY , respectively. The noise or error term UY is independent from the cause

X since UY is independent of UX . If there is no noise in the function fY , i.e.

UY = 0, the SEM reduces to the deterministic case. The crucial problem in SEM-

based methods is to find appropriate constraints such that some independence

properties, for example, the independence between the noise UY and the cause X

holds only for the true causal direction. That is, there does not exist a model

Y ← gY (UY , θY ),

X ← gX(Y, UX , θX), (3.9)

in which UX is independent from Y . Successful examples of such constraints

include the linear additive noise model [120, 121], the nonlinear additive noise

model [60], and the post-nonlinear (PNL) model [152]. In the deterministic case,

i.e. UY = 0, the independence properties between distribution of the cause P (X)

and the mechanism fY were exploited to identify causal directions. A typical

example of deterministic causal inference is the information geometry causal in-

ference (IGCI) method [26].
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Figure 3.2: Illustration of the identifiability conditions for the LiNGAM model.
The two rows show the estimated linear function and noises in the causal and
anti-causal directions when X and UY follow Gaussian distribution and uniform
distribution, respectively. (a1) & (a2) show the scatter plot of X and Y and
the estimated function in the causal direction X → Y . (b1) & (b2) show the
corresponding scatter plot of X and estimated residuals UY . (c1) & (c2) show
the scatter plot of Y and X and the estimated function from Y to X. (d1) &
(d2) show the corresponding plot of Y and residuals UX . It can be seen that,
when both X and UY are Gaussian, the residual by regression from Y to X is
independent from Y . However, when both X and UY are uniformly distributed,
the residual by regression from Y to X is dependent on Y .

31



3.1.3.1 Linear, Non-Gaussian, Acyclic Model (LiNGAM)

The LiNGAM model in the two-variable case can be written as

X ← UX ,

Y ← bXX + UY , (3.10)

where UY |= X and at most one of X and UY follows Gaussian distribution. To

illustrate why the model is identifiable in the non-Gaussian case, we first give

a simple example in which the data are generated from Eq. 3.10 with bX = 1,

and X,UY being Gaussian or uniformly distributed. In each case, we fit a linear

model in Eq. 3.10 from X to Y and show the data, estimated linear function and

residuals in Fig. 3.2. We also fit a model

Y ← UY ,

X ← bY Y + UX , (3.11)

in the reverse direction to the data from Y to X, and examine whether UX |= Y .

It can be seen that, when both X and UY are Gaussian, the residual by regression

from Y to X is independent from Y . Thus, both the model 3.10 in the causal

direction and the model 3.11 in the reverse direction hold for the data. Thus, the

causal direction cannot be identified if both X and UY are Gaussian. However,

when both X and UY are uniformly distributed, the residual by regression from

Y to X is dependent on Y . This indicates that we can only fit a linear structural

equation model in the causal direction, giving rise to the causal asymmetry be-

tween X and Y . According to the independent component analysis (ICA) theory,

the causal direction is identifiable if at most one of X and UY is Gaussian.

3.1.3.2 Nonlinear Additive Noise Model

In reality, the causal relationship are more or less nonlinear, thus the LiNGAM

model may underfit the data and produce unreliable results. Hoyer et al. [60]

proposed the nonlinear additive noise model by considering nonlinear structural
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equation models

X ← UX ,

Y ← fY (X) + UY . (3.12)

Hoyer et al. show that the set of all P (X) for which the backward model admits

the same form is contained in a 3-dimensional affine space. Given the prior that

the space of all possible P (X) is infinite dimensional, the causal direction can be

identified in the general case. It has been shown that if fY is linear, the causal

direction is not identifiable if the noise UY have Gaussian distribution. However,

if fY is nonlinear, the causal direction can in fact be identified. Thus, it might be

easier to identify the causal direction if the underlying function fY is nonlinear

in some cases.

3.1.3.3 Post-Nonlinear Causal Model (PNL)

The PNL causal model [152] takes into account of the possible sensor or mea-

surement distortion in the observed variables by assuming the following SEM:

X ← UX ,

Y ← fY 2(fY 1(X) + UY ), (3.13)

where fY 2 is the distortion function which is assumed to invertible. The identifi-

ability condition for PNL were established by filtering out the conditions where

the causal model holds in both causal and backward directions. It turns out that

there are only five specific situations where the causal direction is not identifiable

when the involved functions are assumed to be smooth [152].

3.1.3.4 Information Geometric Causal Inference (IGCI)

LiNGAM, ANM, and PNL all relie on the independence between the noise variable

and the cause. Therefore, they are not applicable to the deterministic case where
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UY = 0:

X ← UX ,

Y ← fY (X), (3.14)

where fY is a monotonic and invertible function. IGCI assumes that the dis-

tribution of the cause P (X) is “independent” of the mechanism fY that maps

the cause to its effect Y [26]. The “independence” between P (X) and fY means

that the distribution of the cause does not carry information about the slope of

the mechanism function. In the reverse direction, the distribution of the effect

variable P (Y ) carries information about the inverse function gX = f−1
Y : regions

of large derivative of gX correlate with regions of large density in P (Y ). This

kind of independence is phrased in terms information geometry, giving rise to a

measure which is smaller than zero in the causal direction.

3.1.4 Time Series-based Approach

Granger Causality [44] is one of the earliest methods developed to quantify the

causal effect from time series observations. A time seriesXi is said to not Granger-

cause Xj if removing Xi from the the information available as of time t−1 in the

entire universe does not affect the prediction of Xj,t. Granger causality is usually

tested in the context of linear vector autoregressive models. Considering a VAR

of order p:

Xt =

p∑
τ=1

AτXt−τ + εt, (3.15)

where Aτ , τ = 1, . . . , p are the matrices containing temporal relations at different

time lags, εt is the independent noise process. In order to check whether Xi G-

causesXj, one first fits a full model using all the variables and then fits a restricted

model by excluding Xi, i.e. Aij,τ = 0. F-tests are performed to test whether Aij,τ

is significantly different from zero (null hypothesis is Aij,τ = 0), based on the test

statistic which measures the error reduction by using the full model instead of the

restricted model. If the error reduction is insignificant, then the null hypothesis
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Figure 3.3: Time series with hidden confounders.

is not rejected, meaning that Xi does not G-cause Xj.

The original formulation of Granger causality can only give information about

linear features of signals. To detect nonlinear causal relations, transfer entropy

[59, 119] was developed to measure the amount of directed transfer between two

random processes. Transfer entropy from a process Xi to another process Xj is

the amount of uncertainty reduced in Xj,t by knowing the past values of Xi given

past values of Xj:

TXi→Xj
= H(Xj,t|Xj,1:t−1)−H(Xj,t|Xj,1:t−1, Xi,1:t−1), (3.16)

where H(·) denote the Shannon entropy. Transfer entropy is the conditional

mutual information between Xj,t and Xi,1:t conditional on Xj,1:t−1, measuring the

mutual dependence of Xj,t and Xi,1:t−1 conditional on Xj,1:t−1. Transfer entropy

reduces to Granger causality for VAR models with Gaussian noises [4].

Although Granger causality has been widely used [4, 114], the criticism of

Granger causality has most been centered around the philosophical debate on

the relationship between Granger causality and true causality. Many researchers

(e.g. [100]) have argued that causal order defines time order, while the reverse

is not always true. For example, there may exist unobserved confounders that

would lead to spurious causal effects, see Fig. 3.3 for an example. Performing

Granger causality test on the two time series X1 and X3 will give rise to a wrong

causal relationship X1 → X3. The statistical dependence between X1 and X3 is

due to the hidden confounder X2 which causally influence both X1 and X3. To

cancel the spurious effects of confounders, different patterns of spurious causality

were analyzed in linear VAR models [61]. Recently, Geiger et al. [37] showed that

the causal relation is identifiable if the hidden confounders are non-Gaussian.
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3.2 Causally-inspired Learning

In this section, we will review causally-inspired approaches for semi-supervised

learning (SSL) and domain adaptation (DA). The causally-inspired approaches

are mainly motivated by an ‘independence’ postulate that the process PC that

generates the cause contains no information about the process PE|C that gen-

erates the effect from the cause . On the contrary, PE and PC|E may contain

information about each other. This assumption has been successfully utilized in

causal discovery from observational data in the two variable case [20,26, 155].

3.2.1 Causally-inspired Semi-supervised Learning

Semi-supervised learning is a half way between supervised and unsupervised

learning. In the semi-supervised setting, we are given a set of labeled train-

ing data DL = {(xl1, yl1), . . . , (xlm, ylm)} ⊆ X × Y and a set of unlabeled data

DU = {xum+1, . . . , x
u
n} ⊆ X, where X and Y denote the domains of predictors X

and target Y , respectively. The task is to estimate a function f using both labeled

data DL and unlabeled data DU . Predicting Y from X amounts to estimating

the conditional distribution PY |X from DL, while the unlabeled data DU only

enables us to obtain a more accurate estimation of the marginal distribution PX .

Thus, the essential problem of semi-supervised learning is to understand why a

more accurate estimation of PX would help better estimate PY |X .

The known assumptions for SSL, such as the cluster assumption and low

density separation assumption [18], can indeed be viewed as linking the properties

of PY |X to properties of PX . The cluster assumption states that points lie in a

cluster implied by PX tend to have the same label Y , that is, the function f

encoded in PY |X is smooth within a cluster of PX . The low density separation

assumption stipulates that the decision boundary of a classifier often lie in the

region where PX is small, which implies that PX is usually very small at a point

where PY |X = 0.5 in binary classification. Schölkopf et al. [117] pointed out that

SSL cannot work if prediction is performed in the causal direction, that is, when

X is the cause and Y is the effect, because PX contains no information about

PY |X . However, SSL may work in the anticausal direction, i.e. X is the effect and

Y is the cause, because certain properties of PX imply properties of PY |X . From
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this point of view, the cluster assumption and low density separation assumption

can be considered as certain relations between PE and PC|E. This postulation is

verified empirically on several datasets where the causal direction is known from

background knowledge.

Janzing and Schölkopf [71] recently provided a mathematical understanding of

why the causal direction affects the performance of SSL. They assumed that the

data are generated by the deterministic model X = g(Y ), where g is an unknown

bijective strictly monotonically increasing map. That is to say, the target Y is

the cause, and the predictor X is the effect. The independence of g and pY is

reflected in the independence between the slopes of g and PY . Considering g
′ and

PY as functions of a random variable Y , the covariance between g′ and PY with

respect to Y with a uniform distribution on [0, 1]:

Cov(g′, pY ) =
∫ 1

0

g′(y)p(y)dy −
∫ 1

0

log g′(y)dy. (3.17)

Since Y is the cause for X, g and PY are assumed to be independent from each

other, i.e. Cov(g′, pY ) = 0. It can be proven that the slope of f and PX , i.e.

Cov(f ′, pX) > 0 in the anti-causal direction, where f = g−1 is the map from X to

Y which we want to learn from data. It was shown in [71] that PX helps estimation

of the slope of f and thus improves the proposed semi-supervised interpolation

method. In contrast, PY does not help obtain a more accurate estimation of g in

the causal direction, which verifies the assumption that semi-supervised learning

only works in the anti-causal direction.

3.2.2 Causally-inspired Domain Adaptation

In supervised learning, we are given a set of labeled training dataDtr = {(xtr1 , ytr1 ),
. . . , (xtrm, y

tr
m)} ⊆ X × Y, where X and Y denote the domains of predictors X

and target Y , respectively. We aim to estimate from Dtr a function f which is

expected to generalize well on the test set Dte = {(xte1 , yte1 ), . . . (xtem, ytem)} ⊆ X×Y.

Standard machine learning algorithms usually assume i.i.d. data. However, the

training data and test data often have different distributions, i.e. P tr
XY �= P te

XY

due to selection bias or changes in the underlying data generating mechanism.
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This problem is known as domain adaptation in machine learning.

If the data distribution changes arbitrary across domains, a function f learned

from training data can hardly generalize well on test data. Especially, in the unsu-

pervised domain adaptation setting, we only have access to empirical distribution

P̂XY in the training (source) domain and P̂X in the target (test) domain. Most of

the existing methods assume that P tr
XY and P te

XY only differ in the marginal dis-

tribution of the covariate, i.e. P tr
X �= P te

X while P tr
Y |X = P te

Y |X , which is termed as

covariate shift. Although P tr
Y |X = P te

Y |X , adaptation is still needed when a simple

model is used, because underfit of the conditional model will cause the learned

function to depend on PX . In the covariate shift situation, shift in PX can be

corrected by instance weighting [62] or invariant feature learning [7, 83,96].

Recently, some researchers began to understand domain adaptation from a

causal perspective [117,154]. For instance, it is shown that covariate shift actually

assumes a causal model X → Y , which implies the independence between PX and

PY |X . That is, if PX changes across domains, we have no reason to believe that

PY |X also changes. However, the changes in PX may cause changes in both PY

and PX|Y , which is reasonable according to the assumption that PE and PC|E
often depend on each other. In the causal model X → Y , it is also possible that

PX and PY |X change independently across domains. In this situation we have no

knowledge on how PY |X changes because we have no access to values of Y on the

target domain. Moreover, we are unable to obtain information about how PY |X
changes from the changes in PX , because they contain no information about each

other.

Fortunately, as pointed in [154], we can possibly correct the changes in both

PX and PY |X if the causal direction is Y → X. In a causal model Y → X, PY and

PX|Y are independent from each other, while PX and PY |X contain information

about each other. For example, if PY changes while PX|Y remains the same, which

is termed as target shift [154], PX and PY |X tend to change dependently because

the changes in PX and PY |X are both due to the changes in PY . In this case, we

can correct the shift in PY by correcting the shift in PX , which actually corrects

the shift in PXY (including PY |X). For example, an instance reweigthing method

proposed in [154] minimizes the distance between P te
X and

∫
P tr
Y β(y)P

tr
X|ydy based

on kernel mean embedding of distributions. The estimated weight β(y) can be
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used to resample the training data to generate a new dataset which have similar

distribution to the test data. In the more general case where PY and PX|Y change

independently, which causes PX and PY |X to change dependently. The changes in

PY and PX|Y can be corrected by matching the marginal distributions of X under

certain assumptions, e.g. the elements in the set {PX|Y=ci}Ci=1 change indepen-

dently. The distribution can be corrected by matching P te
X and

∫
P tr
Y β(y)P

tr
X′|ydy,

where X ′ is obtained by a location-scale transformation of X [154].
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Chapter 4

Discovering Temporal Causal

Relations from Subsampled Data

Granger causal analysis with the vector auto-regressive model has been an impor-

tant tool for causal analysis for time series in various fields, including neuroscience

and economics, and recently it has been extended to include instantaneous effects

between the time series to explain the contemporaneous dependence in the resid-

uals. In this paper, we assume that the time series at the true causal frequency

follow the vector autoregressive model. We show that when the data resolution

becomes lower due to subsampling, neither the original Granger causal analysis

nor the extended one is able to discover the underlying causal relations. We then

aim to answer the following question: can we estimate the temporal causal rela-

tions at the right causal frequency from the subsampled data? Traditionally this

suffers from the identifiability problems: under the Gaussianity assumption of

the data, the solutions are generally not unique. We prove that, however, if the

noise terms are non-Gaussian, the underlying model for the high-frequency data

is identifiable from subsampled data under mild conditions. We then propose an

Expectation-Maximization (EM) approach and a variational inference approach

to recover temporal causal relations from such subsampled data. Experimental

results on both simulated and real data are reported to illustrate the performance

of the proposed approaches.

40



4.1 Introduction

Granger causal analysis [45] has been widely used to find the temporal causal

relations from time series. Time series x1 is said to cause times series x2 in the

Granger’s sense, if and only if the past and current values of x1 contain useful

information to predict the future values of x2 that are not contained elsewhere.1

In practice, although its nonlinear or nonparametric extensions exist, Granger

causal analysis usually assumes a linear model, and consequently, the Granger

causal relations can be seen by fitting the vector autoregressive (VAR) regression

model [128]. When using VAR to estimate temporal causal relations, one assumes

that the data are obtained at the right causal frequency, i.e. the VARmodel serves

as an approximator to the true data-generating process. However, in practice the

causal frequency is usually unknown, and the data are available at some fixed

frequency such as daily, weekly, and monthly. As a consequence, the sampling

frequency of the data is usually different from the true causal frequency.

There are two typical aggregation schemes to generate low-resolution or low-

frequency data from high frequency ones. One is by subsampling or systematic

sampling: for every k consecutive observations, one is kept, the rest being skipped.

We call k the subsampling factor. The other is to take the local averages of k

consecutive, non-overlapping observations as the new observations. See [127] for a

survey on aggregation of univariate and multivariate time series models. Subsam-

pling is a common phenomenon in time series, and is our main focus in this paper.

As observations are temporally aggregated, the observed “causal structure” may

be different from the original true one. We are interested in how temporal ag-

gregation changes causal relations in the time series. As claimed in [145], “some

care needs to be taken in causality testing, as causality is defined for the true pro-

cesses and not for the equation on the (temporally) aggregated or sampled data.”

Various contributions have been made on how temporal aggregation changes the

Granger causal relations in the data [15,50,108]; for instance, temporal aggrega-

1In physics, it might be more mathematically tractable to construct theoretical models in
continuous time, and often an exact description requires the use of continuous time. However,
we would like to note that some time series are inherently discrete; an example is the dividend
paid by a company to shareholders in successive years. Furthermore, even for continuous
processes, their causal interactions may take place at discrete points.
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tion could cause spurious instantaneous correlations in the time series. However,

little work has been done to recover the temporal causal relations at the proper

causal frequency from the aggregated (or subsampled) data. In this paper, we

are concerned with whether it is possible to recover the original causal relations

at the causal frequency from the subsampled data, and if it is, how to do so.

Even if the original time series are generated by a VAR, as the time resolution

becomes lower, one can see that the residuals are no longer contemporaneously

independent [144, Chapter 20]. To account for that, in addition to the time

delayed causal relations, it was proposed to incorporate instantaneous effects

between the variables [66]. This extension has received considerable interest in

neuroscience and economics. However, it is not clear how the discovered causal

relations are related to those at the original causal frequency. In particular, as

stated in [43], it was advocated that there is no true instantaneous causality;1

spurious instantaneous causality may be found whenever the interval at which

data are collected is lower than the causal frequency. In this paper, our results

indicate that the instantaneous causal relations estimated by those methods are

usually different from the true ones at the causal frequency.

We aim to recover the linear temporal causal relations from the subsampled

data. We assume that the original time series at the causal frequency are station-

ary. The difficulty comes from the information loss in the missing observations

caused by subsampling. It has been shown in [53, 95] that with only the second-

order information of the low-resolution data, usually the temporal causal relations

are not identifiable. We assume that the error or noise terms are non-Gaussian,

and under some additional mild conditions on the temporal causal relations, we

show that interestingly, they can be uniquely recovered from subsampled data.

To this end, we adopt the mixture of Gaussians for the distributions of the noise

terms, and propose two estimation approaches. One is based on the Expectation-

Maximization (EM) algorithm; however, its computational complexity increases

very rapidly along with the dimension of the time series and the subsampling

factor k. The other resorts to the variational inference framework, making the

estimation procedure computationally efficient.

1Instantaneous causality might happen, say, in quantum physics. Here we focus on temporal
causality.
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There has been plenty of work in economics for temporal disaggregation of

the low-resolution time series, with or without the side information from related

indicators observed at the desired high frequency [54,91,107]. However, temporal

disaggregation does not imply that the temporal causal relations in the high

frequency data can be correctly recovered. The autocovariance structure of the

low-resolution time series usually does not contain enough information to identify

all parameters in the high-frequency model [53,95], and little attention has been

paid to find further conditions to ensure that such parameters are identifiable.

The work by [27] aims to infer the causal structure at the correct causal frequency

directly from the causal structure learned from the subsampled data; they do

not assume any specific form for the causal relations, but on the other hand,

an MCMC search is needed, which involves high computational load, and their

method cannot estimate the causal strength.

Our contribution is two-fold. We theoretically prove that the causal rela-

tions at causal frequency can be identified from subsampled data under the non-

Gaussianity assumption. In addition, we propose two practical methods to re-

cover such causal relations. This paper is organised as follows. In Section 4.2

we review Granger causal analysis with instantaneous effects, which was recently

proposed for finding causal relations in time series when the VAR residuals are

contemporaneously dependent. In Section 4.3 we study the effect of decreasing

the temporal resolution of the time series by subsampling; in particular, it is

found that unfortunately, both the VAR model and Granger causal analysis with

instantaneous effects fail to recover the temporal causal relations underlying the

data at the causal frequency. We then investigate whether it is possible to recover

the original temporal causal relations from subsampled data. Interestingly, under

the non-Gaussianity assumption of the data as well as other mild assumptions,

we prove that the temporal causal relations at the causal frequency can be recov-

ered from subsampled data. Next, in Section 4.4 we propose practical methods,

including the EM algorithm and variational inference procedure, to achieve so.

In Section 4.5 we report experimental results on both simulated data and real

data. Finally, Section 4.6 concludes the paper.
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4.2 Granger Causality and Its Extension with

Instantaneous Effects

For Granger causal analysis in the linear case [45], one fits the following VAR

model [128] on the data:

xt = Axt−1 + et, (4.1)

where xt = (xt,1, ..., xt,n)
ᵀ is the vector of the observed data, et = (et,1, ..., et,n)

ᵀ

is the temporally and contemporaneously independent noise process, and A con-

tains the temporal causal relations. We call A the causal transition matrix.

Now let us assume that xt also contains instantaneous effects. Let B contains

the instantaneous causal relations between xt. Equation (4.1) changes to

xt = Bxt +Axt−1 + et,

⇒(I−B)xt = Axt−1 + et,

⇒ = (I−B)−1Axt−1 + (I−B)−1et. (4.2)

To estimate all involved parameters in Granger causality with instantaneous

effects, [65] proposed two estimation procedures. The two-step method first esti-

mate the errors in the above VAR model and then apply independent component

analysis (ICA) [64] on the estimated errors. The other is based on multichannel

blind deconvolution, which is statistically more efficient.

4.3 Identifiability of the Causal Relations from

Subsampled Data

Suppose the original high-resolution data were generated by (4.1). We consider

low-resolution data generated by subsampling (or systematic sampling) with the

subsampling factor k. Here we are interested in finding the causal transition

matrix A which generated the original data from the subsampled data. Tradi-

tionally, if one uses only the second-order information, this suffers from parameter

identification issues [95], i.e. the same subsampled (low-frequency) model may

disaggregate to several high frequency models, which are observationally equiva-
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lent at the low frequency.

4.3.1 Effect of Subsampling (Systematic Sampling)

Suppose that due to the low resolution of the data, there is an observation every

k time steps. That is, the low-resolution observations X̃ = (x̃1, x̃2, ..., x̃T ) are

(x1,x1+k, ...,x1+(T−1)k); here we have assumed that the first sampled point is x1.

We then have

x̃t+1 = x1+tk = Ax1+tk−1 + e1+tk

= A(Ax1+tk−2 + e1+tk−1) + e1+tk

= ...

= Akx̃t +
k−1∑
l=0

Ale1+tk−l. (4.3)

We denote by �et+1 the noise term, i.e. �et+1 =
∑k−1

l=0 Ale1+tk−l. We call (A, e, k)

the representation of the kth order subsampled time series x̃t.

Equation (4.3) follows the vector autoregression (VAR) model, and then the

following result directly follows.

Theorem 1. If one fits a VAR model on the subsampled data x̃t generated accord-

ing to (4.3), as done by the traditional Granger causal analysis [45], the discovery

temporal causal relations are given by Ak as the sample size T → ∞.

It has been pointed out in [87] that the estimated causal relation is not a time

series property invariant to temporal aggregation.1 Let us give an illustration on

this.

Misleading Granger causal relations in subsampled data: An illustra-

tion Suppose A =

[
0.8 0.5

0 −0.8

]
. Consider the case where k = 2. The corre-

1More precisely, it gives a comprehensive study on the effects of temporal aggregation on
exogeneity, causality, cointegration, unit roots, seasonal unit roots, impulse response functions,
and trend-cycles decompositions; it finds that cointegration and unit roots are invariant to
temporal aggregation, whereas the other properties are not [87].
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sponding VAR model would be

x̃t = A2x̃t−1 + �et =

[
0.64 0

0 0.64

]
x̃t−1 + �et.

That is, the causal influence from xt−1,2 to xt,1 is missing in the corresponding

subsampled data (with k = 2).

Suppose A =

[
0.6 0.6

0.6 −0.6

]
. Then the VAR model on the subsampled data is

x̃t = A2x̃t−1 + �et,

where A2 =

[
0.72 0

0 0.72

]
, �et = e′t + Ae′t−1 =

[
e′t,1
e′t,2

]
+

[
0.6 0.6

0.6 −0.6

]
·
[
e′t−1,1

e′t−1,2

]
,

and e′t−l = e1+(t−1)k−l. Clearly the delayed causal relations between xt,1 and

xt,2 are missing. Furthermore, one can see that Cov(�et,1, �et,2) = 0. If e′it are

Gaussian, �et,1 and �et,2 are independent from each other, and thus there are no

instantaneous causal effects. If they are non-Gaussian, �et is a linear mixture of

four independent components, which are e′t,1, e
′
t,2, e

′
t−1,1, and e

′
t−1,2, and it is not

possible to decompose it into two independent components; that is, the Granger

causal model with instantaneous effects [65] does not hold for the subsampled

data.

It should be noted that the causal structure might not change at a range

of time resolutions. Measuring data at a low temporal resolution will introduce

additional spurious contemporaneous effects, as shown in (4.3). If we do not

believe there is instantaneous causation, it seems that we can just ignore the

possible instantaneous relations caused by subsampling. The temporal causal

structure might still be the same, and we can simply apply existing methods such

as Granger causality on the subsampled data. However, the temporal causal

strength becomes weaker because some of the relations are absorbed into the

instantaneous relations. In this case, estimation is not robust if we have some

small noisy effects from effect to cause. Our aim in this paper is to recover the

causal transition matrix which encodes both causal structure and strength from

the spurious instantaneous relations.
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4.3.2 Identifiability of the Causal Relations at the Causal

Frequency

Suppose the system (4.1) is stable. Then all eigenvalues of A have modulus

smaller than one [84]. As a consequence, the eigenvalues of Ak become smaller

and smaller as k increases, and the estimate of Ak by fitting the VAR model on

X̃ involves large estimation errors on finite samples. Moreover, even if we can

estimate Ak perfectly, given the value of Ak, there are usually a large number of

possible solutions to A [90], which is different from the case where A is a scalar.1

An important issue is the identifiability of A, i.e. whether it is possible to

identify the original temporal causal relations, as implied by A, from the low-

resolution subsampled data x̃t. In other words, suppose x̃t also admits another

representation (A′, e′, k), and we aim to see the relationship betweenA′ andA; in

particular, if we always have A′ = A, then as n→ ∞, the causal relationship at

the correct resolution, A, can be uniquely recovered from the low-resolution data.

In fact, it has been demonstrated in [95] that with only the second-order infor-

mation, usually A is not identifiable. That is, the same low-frequency model may

disaggregate to several high frequency models, which are observationally equiva-

lent at the low frequency (according to the second-order statistics). However, we

shall see when non-Gaussianity of the data is considered, the identifiability of A

is achievable.

Let

L � [I A A2 · · · Ak−1]. (4.4)

The error terms in (4.3) correspond to the following mixing procedure of random

vectors:

�e = Lẽ, where (4.5)

ẽ = (e
(0)
1 , ..., e(0)n , e

(1)
1 , ..., e(1)n , ...e

(k−1)
1 , ..., e(k−1)

n )ᵀ.

1For instance, the 2 × 2 identity matrix

[
1 0
0 1

]
has infinite symmetric rational square

roots given by 1
a

[
b c
c −b

]
, 1

a

[
b −c
−c −b

]
, 1

a

[−b c
c b

]
, and 1

a

[−b −c
−c b

]
, where b is a arbitrary

nonnegative integer and c and a are arbitrary positive integers such that b2 + c2 = a2 [90].
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The components of ẽ are independent, and for each i, e
(l)
i , l = 0, ..., k − 1, have

the same distribution pei .

First, we note that under the condition that pei are non-Gaussian, L can be

estimated up to the permutation and scaling indeterminacies (including the sign

indeterminacy) of the columns, as given in the following lemma.

Proposition 1. Suppose that all pei are non-Gaussian. Given k and X̃ which is

generated according to (4.3), L can be determined up to permutation and scaling

of columns.

Proof. For the proof, let us introduce the following lemma. It was proven in [74,

Theorem 10.3.1].

Lemma 1. Let �e = Jr and �e = Ms be two representations of the n-dimensioal

random vector �e, where J and M are constant matrices of orders n × l and

n×m, respectively, and r = (r1, ..., rl)
ᵀ and s = (s1, ..., sm)

ᵀ are random vectors

with independent components. Then the following assertions hold.

(i) If the ith column of J is not proportional to any column of M, then ri is

Gaussian.

(ii) If the ith column of J is proportional to the jth column of M, then the

logarithms of the characteristic functions of ri and sj differ by a polynomial

in a neighborhood of the origin.

Equation (4.3) is a VAR model, and by making use of the second-order sta-

tistical information (i.e. autocovariances), we can estimate Ak and get rid of the

contribution of the first term in (4.3). Then we focus on the noise part, which

is given in (4.5). Since all pei are non-Gaussian, according to (i) of Lemma 1 or

Theorem 1 in [32], we know that L can be determined up to the permutation and

scaling of columns.

We make the following assumptions on the underlying dynamic process (4.1)

and the distributions pei , and then we have the identifiability result for the causal

transition matrix A.

A1. The system is stable, in that all eigenvalues of A have modulus smaller

than one.
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A2. The distributions pei are different for different i, their characteristic func-

tions are all analytic (or they are all non-vanishing), and none of them has

an exponent factor with a polynomial of degree at least 2.

A2 is a mathematically statement of non-Gaussian distribution because it

requires higher order statistics of the distribution do not go to zeros.The following

identifiability result onA states that in various situations, A for the original high-

resolution data is fully identifiable.

Theorem 2. Suppose all of eit are non-Gaussian, and that the data x̃t are gener-

ated by (4.3) and that it also admits another kth order subsampling representation

(A′, e′, k). Let assumptions A1 and A2 hold. When the number of observed data

points T → ∞, the following statements are true.

(i) A′ can be represented as A′ = AD1, where D1 is a diagonal matrix with

1 or −1 on its diagonal. If we constrain the self influences, represented by

diagonal entries of A and A′, to be positive,1 then A′ = A.

(ii) If each pei is asymmetric, we have A′ = A.

(iii) If A is of full rank, all its diagonal entries are non-zero, and the graph

implied by A is weakly connected,2 then we have that A′ = A for odd k and

that A′ must be A or −A for even k.

Proof. Let us consider the limit when T → ∞. According to Theorem 1, based

on the second-order statistical information, one can uniquely determine Ak and

A′k, that is,

Ak = A′k. (4.6)

We can then determine the error term �et. Then the corresponding random vector

�e follows both the representation (4.5) and

�e = L′ẽ′, (4.7)

1We note that this is usually the case in neuroscience and economics.
2In an undirected graph, two vertices xi and xj are called connected if it contains a path

from xi to xj . A undirected graph is said to be connected if every pair of vertices in the graph
is connected, and furthermore, a directed graph is called weakly connected if replacing all of its
directed edges with undirected edges produces a connected undirected graph [29].
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where

L′ = [I A′A′2 · · ·Ak−1], (4.8)

and

ẽ′ = (e′(0)1 , ..., e′(0)n , e′(1)1 , ..., e′(1)n , ...e′(k−1)
1 , ..., e′(k−1)

n )ᵀ.

Note that for each i, e′(l)i , l = 0, ..., k − 1 have the same distribution pe′i .

According to Proposition 1, each column of L′ is a scaled version of a column

of L. Denote by Lln+i, l = 0, ..., k−1; i = 1, ..., n, the (ln+ i)th column of L, and

similarly for L′
ln+i. According to the Uniqueness Theorem in [32] (which directly

follows (ii) of Lemma 1), we know that under condition A2, for each i, there

exists one and only one j such that the distribution of e
(l)
i , l = 0, ..., k− 1 (which

have the same distribution), is the same as the distribution of e′(l)j , l = 0, ..., l−1,

up to changes of location and scale. As a consequence, the columns {L′
ln+j | l =

0, ..., k − 1} correspond to {Lln+i | l = 0, ..., k − 1} up to the permutation and

scaling arbitrariness. We now show that L′
ln+j corresponds to Lln+i and that

j = i.

According to assumption A1, all eigenvalues of A have modulus smaller than

one, and hence the eigenvalues of AAᵀ are smaller than 1. Then we know that

for any n-dimensional vector v,

||Av|| ≤ ||A|| · ||v|| =
√

||AAᵀ|| · ||v|| < ||v||.

According to the structure of L, L(l+1)n+i = ALln+i. Considering Lln+i as v in

the above equation, one can see ||L(l+1)n+i|| < ||Lln+i||, and similarly we have

||L′
(l+1)n+j|| < ||L′

ln+j||. Hence, L′
ln+j is proportional to Lln+i; more specifically,

we have L′
ln+j = λliLln+i, where ∀ l, λli have the same absolute value but possibly

different signs. In particular, L′
j = λ0iLi. Bearing in mind that Li and L

′
j must

be columns of I, as implied by the structure of L and L′, we can see that λ0i = 1

and that i = j. Consequently, for l > 0, λli must be 1 or −1. Also considering

the structures of L (4) and L′ (4.8), we see that ∀l > 0, A′l = AlDl, where Dl are

diagonal matrices with 1 or −1 as their diagonal entries. If both A′ and A have

positive diagonal entries, D must be the identity matrix, i.e. A′ = A. Therefore

statement (i) is true.
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We have shown that

L′
ln+i = λliLln+i, (4.9)

where λ0i = 1 and for l > 0, λli are 1 or −1. We are now ready to prove (ii). If

each pei is asymmetric, ei and −ei have different distributions. Consequently, the
representation (4.7) does not hold any more if one changes the signs of a subset

of, but not all, non-zero elements of {L′
ln+j | l = 0, ..., k − 1}. This implies that

for non-zero Lln+i, λli, including λ0i, have the same sign, and they are therefore

1 since λ0i = 1. Setting l = 1 in (4.9) gives A′ = A. That is, (ii) is true.

Let us now show that (iii) holds. If k = 1, this statement trivially holds. Now

consider the case where k > 1. Because of (4.6), we have

Ak−1A = A′k−1
A′. (4.10)

Since A is of full rank, Ak−1 is also invertible. Recall A′l = AlDl. Denote by

dl,i the (i, i)th entry of Dl. Multiplying both sides of the above equation with

A−(k−1) from the left gives A = Dk−1AD1, i.e. ∀ i & j, aij = aijdk−1,id1,j. Thus,

∀ i & j with aij �= 0 we have dk−1,id1,j = 1. Since aii are not zero, we have

dk−1,i = d1,i. Consequently, aij = aijd1,id1,j, and ∀ i & j with aij �= 0, d1,id1,j = 1,

or d1,i = d1,j. Furthermore, since the graph implied by A is weakly connected,

for any two nodes i′ and j′, we know that there is a undirected path connecting

them, such that d1,i′ = d1,j′ . In words, D1 is either I or −I. Finally, if k > 1 is

odd, A′k−1 = (AD1)
k−1 = Ak−1, and then (4.10) implies that A′ = A. (iii) then

holds.

4.3.3 Relation to Granger Causality with Instantaneous

Effects

In general, the estimated error terms in the subsampled times series are not

spatially independent any more. The contemporaneous dependence in the noise

terms inspired the model of Granger causality with instantaneous effects [66,

111]; see (4.2). This model might provide an approximation to the underlying

causal relations; however, in principle it does not hold for the low-resolution data
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obtained by subsampling, as one can see from the following theorem.1

Theorem 3. Suppose the subsampled data x̃t were generated by (4.3) and that

all of eit are non-Gaussian. Further assume that A is not diagonal, such that

there exist causal relations between different time series. As T → ∞, for the

subsampled data x̃t, the model of Granger causality with instantaneous effects,

represented by (4.2), does not hold, in that the error terms estimated with the

VAR model are not linear mixtures of only n independent components.

Proof. Suppose the model of Granger causality with instantaneous effects, (4.2),

holds, the VAR error terms of x̃t can be written as a linear transformation of n

independent variables; denote by W this linear transformation.

On the other hand, the error terms �et admit the representation (4.5). Since A

is not diagonal, L contains at least (n+1) columns none of which is proportional

to each other. Since all of eit are non-Gaussian, Lemma 1 (i) implies that all

columns in L are proportional to some columns in W. This implies that W has

at least (n+1) columns none of which is proportional to each other; however, W

has only n columns, resulting in a contradiction. Therefore the model of Granger

causality with instantaneous effects does not hold.

4.4 Estimating the Temporal Causal Relations

from Subsampled Data

As stated in the previous section, to recover the temporal causal relations from

systematically subsampled data, we have to make use of the non-Gaussianity

of the data. To accomplish our target, we use a Gaussian mixture model to

represent each noise term pei , i.e. pei =
∑m

c=1wi,cN(ei|μi,c, σ2
i,c), where wi,c ≥ 0,∑m

c=1wi,c = 1, and
∑m

c=1wi,cμi,c = 0, i = 1, ..., n. The VAR model on the low

1In this paper we assume causal sufficiency, that is, there is no hidden time series which
causes more than one observed time series. However, we note that in the confounded case, it is
still the case that in principle, the model of Granger causality with instantaneous effects does
not hold.
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resolution data (4.3) can be simplified as

x̃t = Akx̃t−1 + Lẽt, (4.11)

where ẽt = (eᵀ1+(t−1)k, e
ᵀ
1+(t−1)k−1, ..., eᵀ1+(t−1)k−(k−1))

ᵀ. It can be seen that each

component of ẽ can also be represented using a Gaussian mixture model pẽi =∑m
zi=1 w̃i,ziN(ẽi|μ̃i,zi , σ̃2

i,zi
), i = 1, 2, ..., nk. According to the structure of ẽ, some

components of ẽ share the same Gaussian mixture parameters, i.e. w̃j+nl,c = wj,c,

μ̃j+nl,c = μj,c, σ̃j+nl,c = σj,c, j = 1, ..., n, l = 0, ..., k − 1, c = 1, ...,m.

Consequently, we can write down the conditional distribution p(x̃t|x̃t−1) as

p(x̃t|x̃t−1) =
∑
zt

p(zt)

∫
p(ẽt|zt)p(x̃t|ẽt, x̃t−1)dẽt,

where

p(zt) =
nk∏
i=1

p(zt,i) =
nk∏
i=1

w̃i,zt,i ,

p(ẽt|zt) =
nk∏
i=1

p(ẽt,i|zt,i) =
nk∏
i=1

N(ẽt,i|μ̃i,zt,i , σ̃2
i,zt,i

),

and

p(x̃t|ẽt, x̃t−1) = N(x̃t|Akx̃t−1 + Lẽt,Λ).

Here we assume a fixed and small Λ for regularization, because there is no addi-

tional additive noise term in (4.11). The model can be seen as an extension of the

Independent Factor Analysis (IFA) [1] model to incorporate temporal correlations

and enforce additional constraints on the model parameters.

4.4.1 Parameter Estimation via EM algorithm

Given the subsampling factor k, we use the Expectation-Maximization (EM)

algorithm to obtain the maximum likelihood estimation of the model parameters

Θ = (A, wi,c, μi,c, σi,c) . Considering zt and ẽt as latent variables, we maximize

the EM lower bound L(q,Θ) of the data log-likelihood
∑

t ln p(x̃t|x̃t−1,Θ) with

respect to parameters Θ (M step) and find the distribution q(zt, ẽt) over the
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latent variables (E step) alternately until convergence. The lower bound of the

data log-likelihood is

L(q,Θ) =
∑
t

∑
zt

∫
q(zt, ẽt) ln

p(x̃t, ẽt, zt|x̃t−1,Θ)

q(zt, ẽt)
dẽt, (4.12)

In the E step, given the parameters Θ′ from the previous iteration, the

lower bound L(q,Θ′) is maximized with respect to q, resulting in q(zt, ẽt|Θ′) =

p(zt|x̃t, x̃t−1,Θ
′)p(ẽt|zt, x̃t, x̃t−1,Θ

′), which is the posterior distribution of the la-

tent variables.

In the M step, given the posterior distribution q(zt, ẽt|Θ′), the lower bound is

maximised with respect to the parameters Θ. Because the EM lower bound can be

decomposed into several terms which only depend on subsets of the parameters,

the parameters can be updated independently. However, wi,c and μi,c must be up-

dated jointly due to the constraints
∑m

c=1wi,c = 1,
∑m

c=1wi,cμi,c = 0, i = 1, ..., n.

This is a constrained nonlinear programming problem and we solve it by interior

point methods [16]. After updating wi,c and μi,c, we update σi,c which has a

closed form solution. Because the lower bound involves Al, l = 1, ...k, A has

no analytic solutions. Thus we update A via the conjugate gradient descent al-

gorithm. In practice, the convergence of EM algorithm is very slow when the

the noise variance Λ approches zero [105]. We adopt the adaptive overrelaxed

EM [116] algorithm to obtain a faster rate of convergence. The details of the EM

algorithm are described as follows.

E step In the E step, given the parameters Θ′ from the previous M step, the

lower bound is maximized with respect to q(zt, ẽt). The maximum lower bound is

obtained when q(zt, ẽt|Θ′) equals the posterior distribution p(zt|x̃t, x̃t−1,Θ
′)p(ẽt|zt,

x̃t, x̃t−1,Θ
′). The posterior distribution is obtained as

p(zt|x̃t, x̃t−1,Θ
′) =

p(x̃t|x̃t−1, zt)p(zt)∑
z′t
p(x̃t|x̃t−1, z′t)p(z′t)

, (4.13)
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p(ẽt|zt, x̃t, x̃t−1,Θ
′) =N(ẽt|μ̃zt + Σ̃ᵀ

ztL
ᵀ(LΣ̃ztL

ᵀ + Λ)−1

(x̃t −Akx̃t−1 − Lμ̃zt), Σ̃zt − Σ̃ᵀ
zt

Lᵀ(LΣ̃ztL
ᵀ + Λ)−1LΣ̃zt), (4.14)

where μ̃zt = (μ̃1,zt,1 , ..., μ̃nk,zt,nk
)ᵀ and Σ̃zt = diag(σ̃2

1,zt,1
, ..., σ̃2

nk,zt,nk
).

M step In the M step, given the posterior distributions (4.13) (4.14) from E

step, the parameters are updated by maximizing the lower bound with respect

to Θ. The lower bound can be decomposed into four terms which only contains

a subset of the parameters, i.e.

L(q,Θ) = L1(q, w) + L2(q, μ, σ) + L3(q,A) + L4(q). (4.15)
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The four terms are calculated as

L1 =
∑
t

nk∑
i=1

m∑
zt,i=1

p(zt,i|x̃t, x̃t−1,Θ
′) ln p(zt,i)

=
∑
t

nk∑
i=1

p∑
zt,i=1

p(zt,i|x̃t, x̃t−1,Θ
′) ln w̃i,zt,i , (4.16)

L2 =
∑
t

nk∑
i=1

m∑
zt,i=1

∫
p(ẽt,i, zt,i|x̃t, x̃t−1,Θ

′) ln p(ẽt,i|zt,i)dẽt,i

=− 1

2

∑
t

nk∑
i=1

m∑
zt,i=1

∫
p(ẽt,i, zt,i|x̃t, x̃t−1,Θ

′)

(
(ẽi − μ̃i,zt,i)

2

σ̃2
i,zt,i

+ ln 2π + 2 ln σ̃i,zt,i

)
dẽt,i, (4.17)

L3 =
∑
t

∫
p(ẽt|x̃t, x̃t−1,Θ

′) ln p(x̃t|x̃t−1, ẽt)dẽt,

=− 1

2

∑
t

(x̃t −Akx̃t−1)
ᵀΛ−1(x̃t −Akx̃t−1)

− 2(x̃t −Akx̃t−1)
ᵀΛ−1Ã 〈ẽt〉p(ẽt|x̃t,x̃t−1,Θ′))

+ Tr
(
ÃᵀΛ−1Ã 〈ẽtẽᵀt 〉p(ẽt|x̃t,x̃t−1,Θ′)

)
+ ln |Λ|+ n ln 2π, (4.18)

L4 =−
∑
t

∑
zt

∫
p(zt, ẽt|x̃t, x̃t−1,Θ

′) ln p(zt, ẽt|x̃t, x̃t−1,Θ
′)dẽt, (4.19)

where 〈f(e)〉p(e) =
∫
p(e)f(e)de.

Due to the zero mean constraints on the noises, μi,c and wi,c are updated

by maximize L1 + L2 with the constraints
∑m

c=1wi,c = 1,
∑m

c=1wi,cμi,c = 0, i =

1, ..., n. This is a constrained nonlinear programming problem and we solve it

using interior point methods.
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After updating μi,c and wi,c, σ can be updated by maximizing L2, which gives

σ2
i,c =

∑
t

∑k
j=1

〈
e2t,i+n(j−1) − 2μi,cet,i+n(j−1)

〉
q(et,i+n(j−1),zt,i+n(j−1)=c)∑

t

∑k
j=1 q(zt,i+n(j−1) = c)

+ μ2
i,c, (4.20)

Since there is no analytic solution to A, we updateA using conjugate gradient

descent algorithm. The gradient of L3 with respect to A is given by

∂L(A)

∂Aij

= −1

2

∑
t

{
Tr

[
−2(Λ−1(x̃t −Akx̃t−1)x̃

ᵀ
t−1)

ᵀ
k−1∑
r=0

ArJijAk−1−r
]

−2

{
Tr

[
−(Λ−1Ã 〈ẽt〉xᵀ

t )
ᵀ
k−1∑
r=0

ArJijAk−1−r
]

+
k−1∑
l=1

Tr

[
(Λ−1(x̃t −Akx̃t−1)

〈
ẽᵀt,l

〉
)ᵀ

l−1∑
r=0

ArJijAl−1−r
]}

+Tr

(
〈ẽtẽᵀt 〉

∂U

∂Aij

)}
, (4.21)

where U = ÃᵀΛ−1Ã. U is composed of k ∗ k blocks of n ∗ n matrices. Each

sub-matrix is Umn = (Am)ᵀΛ−1An,m = 0, ..., k− 1, n = 0, ..., k− 1. The gradient

of each sub-matrix Umn is

∂(Umn)kl
∂Aij

= Tr

[(
mati′j′

∂((Am)ᵀΛ−1An)kl
∂Am

i
′j′

)ᵀ
∂Am

∂Aij

]

+ Tr

[(
mati′j′

∂((Am)ᵀΛ−1An)kl
∂An

i
′
j
′

)ᵀ
∂An

∂Aij

]

= Tr

[(
mati′j′ (δkj′ (Λ

−1An)i′ l)
)ᵀ m−1∑

r=0

ArJijAm−1−r
]

+ Tr

[(
mati′j′ (δlj′ ((A

m)ᵀΛ−1)ki′ )
)ᵀ n−1∑

r=0

ArJijAn−1−r
]
, (4.22)

where mati′j′f(i
′
, j

′
) is a matrix whose i

′
j
′
-th element is f(i

′
, j

′
).
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4.4.2 Mean Field Approximation

One problem with the EM algorithm is that the number of Gaussian mixture

components will increase exponentially in nk. Thus, in the E step, the posterior

marginals p(ẽt,i, zt,i|x̃t, x̃t−1) would involve mnk sums at each iteration. To make

the algorithm computationally more efficient, we make the mean field assumption

and approximate the true posterior p(zt, ẽt|x̃t, x̃t−1) with the factorized distribu-

tion q(zt, ẽt) = q(zt)q(ẽt). Using the factorized posterior distribution, we can

obtain the posterior of ẽt and zt,i independently. Therefore, the computational

load is linear in nk. The variational EM lower bound is

L =
∑
t

∑
zt

q(zt)

∫
q(ẽt) ln p(x̃t, ẽt, zt|x̃t−1,Θ) dẽt

−
∑
t

∑
zt

q(zt) ln q(zt)−
∑
t

∫
q(ẽt) ln q(ẽt) dẽt. (4.23)

The variational M step is similar to the M step in the original EM algorithm.

In the E step, given Θ′ from the previous M step, q(zt|Θ′) and q(ẽt|Θ′) are updated

alternately by maximizing the lower bound:

q(zt|Θ′) ∝ exp 〈ln p(x̃t, ẽt, zt|x̃t−1,Θ
′)〉q(ẽt|Θ′), (4.24)

q(ẽt|Θ′) ∝ exp 〈ln p(x̃t, ẽt, zt|x̃t−1,Θ
′)〉q(zt|Θ′). (4.25)

In (4.24), the expectation of the log-likelihood with respect to q(ẽt|Θ′) is calcu-

lated as

〈
ln p(x̃t, ẽt, zt|x̃t−1,Θ

′)
〉
q(ẽt|Θ′)

=
nk∑
i=1

ln p(zt,i) +
nk∑
i=1

ln p(Lt,i|zt,i) + const,

where

ln p(Lt,i|zt,i) =−

〈
(ẽt,i − μ̃′

i,zt,i
)2
〉
q(ẽt,i|Θ′)

2σ̃′2
i,zt,i

− ln σ̃′
i,zt,i

.
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Thus, the posterior q(zt|Θ′) can be obtained as

q(zt,i|Θ′) =
p(Lt,i|zt,i)p(zt,i)∑m

z′t,i=1 p(Lt,i|z′t,i)p(z′t,i)
. (4.26)

It can be seen that the computational complexity of the posteriors q(zt,i|Θ′) is

linear in nk. In (4.25), the expectation of the log-likelihood with respect to

q(zt|Θ′) can be written as

〈ln p(x̃t, ẽt, zt|x̃t−1,Θ
′)〉q(zt|Θ′)

= ln p(x̃t|ẽt, x̃t−1,Θ
′)− 1

2

nk∑
i=1

ẽ2t,i

⎛
⎝∑

zt,i

q(zt,i)
1

σ̃′2
i,zt,i

⎞
⎠

+
nk∑
i=1

ẽt,i

⎛
⎝∑

zt,i

q(zt,i)
μ̃′
i,zt,i

σ̃′2
i,zt,i

⎞
⎠+ const, (4.27)

which is in the form of a log-likelihood of joint Gaussian distribution and q(ẽt|Θ′)

thus can be easily obtained from the Gaussian posterior distribution.

4.4.3 Determination of the Subsampling Factor k

One practical issue is that the subsampling factor k is usually unknown. Therefore

we need a principled way to choose the best k for our algorithms. In this paper, we

used cross-validation on the log-likelihood of the models to choose the optimal k;

specifically, we consider the value of k which gives the highest cross-validated log-

likelihood as the optimal one. In our experiments, we used 5-fold cross validation.

4.5 Experimental Results

In this section we present experimental results on both simulated and read data

to show the effectiveness of the proposed method to estimate the temporal causal

relations from subsampled data. The objective function to be maximized by the

proposed estimation methods is not convex. To avoid possible local optima, we

used the transition matrix estimated by fitting VAR on the subsampled data to
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initialize the causal transition matrix A, and use random initializations for the

remaining parameters. With such an initialization scheme, we did not find any

case where the proposed methods converge to unwanted solutions.

4.5.1 Simulated Data

To investigate the effectiveness of the proposed estimation methods, we conducted

a series of simulations. We first generated the data at casual frequency by the

VAR model (4.1) with randomly generated matrix A and independent Gaussian

mixture noises et. The elements in A are uniformly distributed between −0.5 and

0.5. The Gaussian mixture model contains two components for each dimension.

We used both super-Gaussian and sub-Gaussian distributions for the noise terms.

The parameters were wi,1 = 0.8, wi,2 = 0.2, μi,1 = 0, μi,2 = 0, σi,1 = 0.05,

σi,2 = 1 for super-Gaussian noise and wi,1 = 0.5, wi,2 = 0.5, μi,1 = −2, σi,2 = 2,

σi,1 = 0.5, σi,2 = 0.5 for sub-Gaussian noise. Low-resolution observations were

obtained by subsampling the high-resolution data by subsampling factor k. We

tested data with dimension n = 2, subsampling factor k = 2 and 3, and sample

size T = 100 and 300, respectively. We denote the proposed EM algorithm

by Non-Gaussian EM (NG-EM) and the mean-field approximated algorithm by

Non-Gaussian Mean-Field (NG-MF).

To our best knowledge, the problem considered in this paper has not been

well studied, and we have not found any existing method aiming at recovering

the causal transition matrix from subsampled data. We compared our methods to

two classical time series disaggregation methods: the Boot-Feibes-Lisma (BFL)

method [13] and Stram-Wei (SW) method [138]. These two methods try to re-

cover the high resolution data using interpolation-based methods. To show the

advantages of using non-Gaussianity of the data, we also compared our NG-EM

and NG-MF with the method assuming Gaussian noise, denoted as G-EM, ob-

tained by setting the noise distribution in NG-EM to a single Gaussian one. We

repeated the experiments for 20 replications.

Table 4.1 shows the mean square error (MSE) of the estimated parameters

A. One can see that as the sample sizes T increases, our methods obtain better

results. Furthermore, the estimation error increases with the subsampling factor
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k. Compared to other methods, our method achieves the lowest estimation error

in the estimated A. The method assuming Gaussian noise produces higher error

because the solution is not unique and the algorithm may converge to an local

optimal solution which is far away from the true A. BFL and SW do not perform

well because they are based on interpolation and thus lose some high frequency

information. Our methods can also recover the causal-frequency data based on

the estimated noise terms êt. We used the posterior mean of noise terms as the

estimate. Given the estimated noise, we can reconstruct the causal-frequency data

based on the VAR model. Figure 4.1 gives the scatter plot of the estimated causal-

frequency data against the true ones; one can see that NG-EM has a much better

recovery performance than BFL, as indicated by a higher Peak signal-to-noise

ratio (PSNR). Moreover, as noted above, the causal-frequency data recovered by

BFL cannot give a reliable estimation of A.

To further illustrate the limitations of Gaussian noise models, we plot the

contour of the log-likelihood function with respect to the two off-diagonal elements

of Â. Given a pair of off-diagonal elements, we optimized the log-likelihood over

the diagonal elements. The off-diagonal elements were sampled from −0.8 to 0.8

at an interval of 0.01. The true causal matrix A is
[
0.65, −0.16; 0.15, 0.65

]
.

Figure 4.2 shows the negative maximum log-likelihood function of non-Gaussian

and Gaussian models computed from the subsampled data, with both super-

Gaussian and sub-Gaussian noise terms. We used the same noise parameters

as in the first simulation. It can be seen that, in both super-Gaussian (a & b)

and sub-Gaussian case (c & d), the log-likelihood functions of Gaussian models

have multiple solutions with the same likelihood value, while the log-likelihood

functions of non-Gaussian models have only one global solution, which is around

the true values. This is consistent with the theoretical results that the causal

relations might not be uniquely determined using Gaussian noise models.

Finally, to test the effectiveness of the subsampling factor determination

scheme in Section 4.4.3, we applied cross-validation on 50 randomly generated

subsampled time series of length T = 100 and found that this scheme always

produces the correct value of k, no matter k = 2 or 3.
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super-Gaussian noise sub-Gaussian noise
k=2 k=3 k=2 k=3

T=100 T=300 T=100 T=300 T=100 T=300 T=100 T=300
NG-EM 7.27e-4 3.24e-4 1.70e-3 6.57e-4 5.76e-3 2.36e-3 1.31e-2 5.33e-3
NG-MF 5.09e-3 2.62e-3 6.98e-3 5.22e-3 6.72e-3 3.31e-3 1.80e-2 6.17e-3
G-EM 1.33e-2 7.23e-3 1.63e-2 8.66e-3 3.56e-2 7.71e-3 2.64e-2 8.06e-3
BFL 3.89e-1 3.93e-1 4.87e-1 4.82e-1 3.61e-1 3.73e-1 4.80e-1 4.76e-1
SW 8.76e-2 8.51e-2 8.67e-2 8.47e-2 8.81e-2 8.73e-2 9.01e-2 8.57e-2

Table 4.1: Comparison of different methods on simulated super-Gaussian and
sub-Gaussian data using Mean Square Error (MSE) between the true A and the
estimated A. The results are shown for different subsampling factors (k = 2, 3)
and different length of data (T = 100, 300).

4.5.2 Real Data

We conducted experiments on the Temperature Ozone data and the Tempera-

ture in House data [104]. We used the subsampling factor determination scheme

in Section 4.4.3 to determine the optimal value of k as well as whether the fre-

quency of the given data is lower than the causal frequency. For the data whose

resolution is not lower than the “causal” one (which corresponds to the optimal

sampling factor k determined by cross validation), we manually subsampled them

to generate low-resolution data and then repeated the subsampling factor deter-

mination procedure to find the optimal causal frequency and the corresponding

causal relations. Since the BFL and SW methods do not aim to estimate the

causal relations at causal frequency, they are not suitable for comparison.

Temperature Ozone. The Temperature Ozone data is the 50th causal-effect

pair from the website https://webdav.tuebingen.mpg.de/cause-effect/. The

data have records of daily temperature X and ozone density Y . The ground truth

is Y → X. The cross-validated log-likelihood is −89.638,−89.197, and −90.246,

respectively, as k ranges from 1 to 3. Therefore, we consider k = 2 as the

best subsampling factor. The estimated transition matrix A for k = 1, 2, 3 is[
0.7285 0.1769

−0.0378 0.9526

]
,

[
0.8312 0.1370

0.0093 0.9537

]
, and

[
0.8816 0.0989

0.0292 0.9462

]
, respectively. We

can see from the results that the transition matrix A at k = 2 gives the weakest

response from effect X to cause Y , which seems plausible.
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(a) Recovered by NG-EM (b) Recovered by BFL

Figure 4.1: Recovery of the causal-frequency data using the proposed EM method
and the traditional methods: (a) The recovery results of the proposed NG-EM
method (PSNR = 13.4); (b) The recovery results of the BFL method (PSNR =
7.52).

Temperature in House. The Temperature in House dataset contains tem-

perature recorded hourly in six rooms (1 - Shed, 2 - Outside, 3 - Kitchen Boiler,

4 - Living room, 5 - WC, 6 - Bathroom) of a house. We analyzed the causal

relations 2 → 3 and 2 → 4 because they are relatively strong. For 2 → 3, the

cross-validated log-likelihood is 183.596, 184.076, 184.139, 184.168, and 184.183,

respectively, as k ranges from 1 to 5. The estimated transition matrix A is[
0.9476 −0.0024

0.0621 0.9394

]
,

[
0.9735 −0.0011

0.0329 0.9688

]
,

[
0.9823 −0.0007

0.0223 0.9790

]
,

[
0.9867 −0.0005

0.0169 0.9841

]
,

and

[
0.9894 −0.0004

0.0136 0.9873

]
, respectively. It is interesting to note that the cross-

validated likelihood always increases as k varies from 1 (corresponding to a 1-hour

sampling interval) to 5 (12-minute sampling interval) . This indicates that the

causal frequency is very high; in fact, note that 2 and 3 are adjacent, and it seems

reasonable to consider the two processes as continuous ones. If we allow k to go

to infinity, the VAR model provides an approximator to continuous processes.

For 2 → 4, the cross-validated log-likelihood is 273.533, 273.716, 322.347,

370.555, and 370.547, respectively, as k ranges from 1 to 5. The estimated causal
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Figure 4.2: The contour plot of the negative log-likelihood function with repect
to the two off-diagonal elements of Â: (a) negative log-likelihood function of the
Gaussian model computed on super-Gaussian data, (b) negative log-likelihood
function of the non-Gaussian model computed on super-Gaussian data, (c) neg-
ative log-likelihood function of the Gaussian model computed on sub-Gaussian
data, (d) negative log-likelihood function of the non-Gaussian model computed
on sub-Gaussian data.

transition matrix is

[
0.9416 0.0077

0.0638 0.9557

]
,

[
0.9707 0.0037

0.0338 0.9764

]
,

[
0.9804 0.0024

0.0228 0.9842

]
,[

0.9853 0.0018

0.0172 0.9880

]
, and

[
0.9883 0.0014

0.0138 0.9905

]
. Here it seems that k = 4 (correspond-

ing to a 15-minute sampling interval) should be preferred. Note that 2 and 4 are

not adjacent. Causal influences between them take some time; in this case, a VAR
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model with a 15-minute sampling interval might provide a good approximation

to the true processes.

4.6 Conclusion

Sometimes the observed time series were actually obtained by subsampling the

true processes. We have considered the issue of recovering linear temporal causal

relations at the true causal frequency from such time series. We were concerned

with the situation, under certain mild conditions on the structure of the causal

relations where the noise terms in the causal time series are non-Gaussian. We

have shown that in this situation, the causal relations are identifiable. Two prac-

tical methods, one based on the EM algorithm and the other the variational

inference framework, have been proposed to estimate the causal relations from

low-resolution data. The method based on variational inference is computation-

ally more efficient, and is recommended if the data have high dimensions or many

points. As a line of our future research, we are trying to address the theoretical

identifiability when the subsampling factor k is unknown. Also, we are trying to

further improve the computational efficiency of the proposed methods, especially

the one based on variational inference, to solve large-scale problems. Finally, we

are considering subsampled problem for continuous process such a point process.

65



Chapter 5

Multi-source Domain

Adaptation: A Causal View

This section is concerned with the problem of domain adaptation with multi-

ple sources from a causal point of view. In particular, we use causal models to

represent the relationship between the features X and class label Y , and con-

sider possible situations where different modules of the causal model change with

the domain. In each situation, we investigate what knowledge is appropriate

to transfer and find the optimal target-domain hypothesis. This gives an intu-

itive interpretation of the assumptions underlying certain previous methods and

motivates new ones. We finally focus on the case where Y is the cause for X

with changing PY and PX|Y , that is, PY and PX|Y change independently across

domains. Under appropriate assumptions, the availability of multiple source do-

mains allows a natural way to reconstruct the conditional distribution on the

target domain; we propose to model PX|Y (or causal mechanism) on the target

domain as a linear mixture of those on source domains, and estimate all involved

parameters by matching the target-domain feature distribution. Experimental

results on both synthetic and real-world data verify our theoretical results.
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5.1 Introduction

Traditional machine learning relies on the assumption that both training and

test data are from the same distribution. In practice, however, training and

test data are probably sampled under different conditions, thus violating this

assumption, and the problem of domain adaptation arises (for surveys on domain

adaptation, see, e.g., [17, 72, 97]). For instance, a problem that usually plagues

randomized controlled trials (RCTs) with human subjects is that the volunteers

to experimental studies are not representative of the population as a whole. In

this paper, we consider the situation with n source domains on which both the

features X and label Y are given, i.e., we are given (x(i),y(i)) = (x
(i)
k , y

(i)
k )mi

k=1,

where i = 1, ..., n, and mi is the sample size of the ith source domain. Our

goal is to find the classifier for the target domain, on which only the features

xt = (xtk)
m
k=1 are available.

Here we are concerned with a difficult scenario where no labeled point is

available in the target domain. Since PXY changes across domains, we have to

find what knowledge in the source domains should be transferred to the target one.

Previous work in domain adaptation has usually assumed that PX changes but

PY |X remain the same, i.e., the covariate shift situation; see, e.g., [8,62,122,140].

It is also known as sample selection bias [149].

In practice it is very often that both PX and PY |X change simultaneously

across domains. For instance, both of them are likely to change over time and

location for a satellite image classification system. If the data distribution changes

arbitrarily across domains, clearly knowledge from the sources may not help in

predicting Y on the target domain [113]. One has to find what type of information

should be transferred from sources to the target. One possibility is to assume the

change in both PX and PY |X is due to the change in PY , while PX|Y remains the

same, as known as prior probability shift [106,137] or target shift [154]. The latter

further models the change in PX|Y caused by a location-scale (LS) transformation

of the features for each class. The constraint of the LS transformation renders

PX|Y on the target domain, denoted by P t
X|Y , identifiable; however, it might be

too restrictive.

Fortunately, the availability of multiple source domains provides more hints as
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to find P t
X|Y , as well as P

t
Y |X . Several algorithms have been proposed to combine

knowledge from multiple source domains. For instance, [86] proposed to form the

target hypothesis by combining source hypotheses with a distribution weighted

rule. [36], [30], and [19] combine the predictions made by the source hypotheses,

with the weights determined in different ways.

To the best of our knowledge, an intuitive interpretation of the assumptions

underlying those algorithms is missing in the literature. This paper studies the

multi-source domain adaptation problem from a causal point of view where we

consider the underlying data generating process behind the observed domains.

We are particularly interested in what types of information stay the same, what

types of information change, and how they change across domains. This enables

us to construct the optimal hypothesis for the target domain in various situations.

To this end, we use causal models to represent the relationship between X and

Y , because they provide a compact description of the properties of the change in

the data distribution.1 They, for instance, help characterize transportability of

experimental findings [101].

We further focus on a typical domain adaptation scenario where both PY

and PX|Y (or the causal mechanism) change across domains, but their changes

are independent from each other, as implied by the causal model Y → X. This

assumption is related to the modular assumption in causal Bayesian networks and

the autonomous assumption in structural equation models. We assume that the

source domains contains rich information such that for each class, P t
X|Y can be

approximated by a linear mixture of PX|Y on source domains. Together with other

mild conditions on PX|Y , we then show that P t
X|Y , as well as P t

Y , is identifiable

(or can be uniquely recovered). We present a computationally efficient method to

estimate the involved parameters based on kernel mean distribution embedding

[46,129], followed by several approaches to constructing the target classifier using

those parameters. We note that in practice, background causal knowledge is

usually available, helping formulating how to transfer the knowledge from source

domains to the target.

1The causal model also describes how the components of the joint distribution are related
to each other, which, for instance, gives a causal explanation of the behavior of semi-supervised
learning [117].
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5.2 Possible Domain Adaptation Situations and

Their Solutions

Domain adaptation can be considered as a learning problem in nonstationary

environments [139]. It is helpful to find how the data distribution changes, which

provides the clues as to determine the learning machine for the target domain.

Table 5.1: Notation used in this section.

X, Y random variables
X, Y domains

P
(i)
XY distribution in the ith source domain
P t
XY distribution in the target domain

{x(i),y(i)} =

{x(i)k , y(i)k }mi
k=1

sample in the ith source domain

x
(i)
j = {x(i)jk}mij

k=1 X values with Y = cj in the ith source domain

xt = {xtk}mk=1 X values in the target domain
Kt kernel matrix on xt

Kit “cross” kernel matrix between x(i) and xt

ψ(X) feature map of X

We focus on how causality, which provides a compact and intuitive description

about distribution changes, helps us in domain adaptation. Generally speaking, in

the unconfounded case, the process that generates the effect from the cause does

not depend on that generating the cause [100]. We can represent such knowledge

with graphical models, or selection diagrams defined in [101]. In particular, let

us consider four situations which are often the case in practice; see Fig. 5.1. Here

Ws and Vs represent domain-specific selection variables. (Here they are treated

as hidden variables, and in selection diagrams [101] they are graphically depicted

as square nodes.) Below we discuss what knowledge to transfer from source

domains to target, and how to construct the optimal target-domain hypothesis in

each situation. For clarity and simplicity of the presentation, the causal models in

the figure are simplified—we do not consider the existence of possible confounders

underlying X and Y or the relationship between the components of X. We would

like to remark that in many supervised tasks, Y is the cause of X, e.g., in clinic
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diagnosis and handwritten digit recognition problems. The analysis in this section

applies to both classification and regression.

Ws X Y Ws X Y

Vs

(a) (b)

Ws Y X Ws Y X

Vs

(c) (d)

Figure 5.1: Possible situations of domain adaptation. Ws and Vs are domain-
specific selection variables assumed to be independent, leading to changing PXY
across domains. (a) Covariate shift: PX is changed by Ws, but PY |X does not
change. (b) Ws and Vs change PX and PY |X , respectively. (c) Target shift:
Ws changes PY , with PX|Y unchanged. (d) Ws and Vs change PY and PX|Y ,
respectively. In the first two situations, we consider X as a cause for Y , whilst
in the last two situations, Y is a cause of X.

Situation 1 (Fig. 5.1.a): X → Y with changing PX and fixed PY |X (co-

variate shift). Theoretically speaking, in this case PX is irrelevant for mod-

eling PY |X ; however, if one uses a simple model to predict Y , which is usually

the case, under-fit of the conditional model causes the predicted Y to depend on

the input distribution PX ; importance reweighting according to the difference in

PX between the source and target domains is widely used to correct covariate

shift [122,140].

Situation 2 (Fig. 5.1.b): X → Y with changing PY |X (and possibly

changing PX). Below we derive the optimal hypothesis for the target domain.

Let P t∗
Y |X be the underlying optimal posterior of Y on the target domain; see

Table 5.1 for the notation used in this paper. Since Vs is unknown, we can estimate

the optimal hypothesis by minimizing the expected Kullback-Leibler divergence

between P t
XY |Ws,Vs

= P t
X|Ws

P t
Y |X,Vs = P t

XP
t
Y |X,Vs and P t

XP
t∗
Y |X (or maximizing the

expected likelihood), which is given below, and the following position gives the

solution.
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EVsKL(P t
XY |Ws,Vs

∣∣∣∣P t
XP

t∗
Y |X)

= EX,Y,Vs log
(P t

XP
t
Y |X,Vs

P t
XP

t∗
Y |X

)

= EX,Y,Vs log
(P t

Y |X,Vs
P t∗
Y |X

)
. (5.1)

Proposition 2. Minimizing (5.1) w.r.t. a valid conditional distribution P t∗
Y |X has

the solution P t∗
Y |X =

∫
PY |X,VsdPVs = EVs [PY |X,Vs ]

Proof. Minimizing the KL divergence (5.1) w.r.t. P t∗
Y |X , with the Lagrange mul-

tiplier to incorporate the constraint
∫
dP t∗

Y |X = 1, gives the Lagrangian L:

L =

∫ [
PX,Y,Vs log

(P t
Y |X,Vs
P t∗
Y |X

)
dvs + λP t∗

Y |X
]
dxdy − λ.

The Euler-Lagrange equation δL/δP t∗
Y |X = 0 gives

∫
PX,Y,Vsdvs
P t∗
Y |X

+ λ = 0.

That is, P t∗
Y |X = − 1

λ

∫
PX,Y,Vsdvs = − 1

λ
PY,X . Taking the integral on both sides

gives λ = −PX . Consequently

P t∗
Y |X = PY |X =

∫
PY |X,VsdPVs = EVs [PY |X,Vs ].

In practice, the constructed optimal hypothesis would be P̂ t∗
Y |X = 1

n

∑n
i=1 P

(i)
Y |X .

That is, the learned target hypothesis is a convex combination (or more specifi-

cally, the average) of the source hypotheses. In [86] this is known as the convex

combination rule.

Situation 3 (Fig. 5.1.c): Y → X, with changing PY and fixed PX|Y . This

is called prior probability shift [137] or target shift [154]. [106] and [154] studied
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how to estimate the change in PY in this situation, and the latter also applies for

regression problems (i.e., with continuous Y ).

Here we consider multiple source domains. Suppose P t
Y can be represented as

P t
Y =

∑n
i=1 α̃iP

(i)
Y ; we can derive the posterior of Y on the target domain:

P t
Y |X =

PX|Y P t
Y

P t
X

=
PX|Y

∑n
i=1 α̃iP

(i)
Y

P t
X

=

∑n
i=1 α̃iP

(i)
XY∑n

i=1 α̃iP
(i)
X

=
n∑
i=1

α̃iP
(i)
X∑n

q=1 α̃qP
(q)
X

P
(i)
Y |X . (5.2)

The hypothesis for the target domain is then a distribution weighted combination

of the individual hypotheses on source domains. This combination rule has been

discussed in [86], and here we have shown that in Situation 3 it is actually optimal.

[86] also compared this combination rule against the convex combination rule (see

Situation 2), and the former was shown to be superior. This is consistent with

the fact that in most classification problems Y is the cause for X.

Situation 4 (Fig. 5.1.d): Y → X with changing PX|Y (and possibly

changing PY ). In this case we have to make certain assumptions on how PX|Y
changes; fortunately, P t

X might provide additional knowledge to find the optimal

classifier. This case will be further discussed in detail in Sec. 5.3.

Discussion In Situation 3, although PX|Y remains the same, PY |X depends on

PX and changes across domains. In the last two situations we prefer to model

how PY and PX|Y change across domains, since the changes in PX and PY |X are

usually coupled with each other and are more difficult to model. In other words,

the optimal decision boundary not only depends on the values of x, but also on

PX on the target domain. This is a typical property of a causal system: in a

non-stationary environment, the conditional distribution P (effect|cause) only
depends on the values of the cause, but P (cause|effect) depends on both the

72



values of the effect and its distribution.

This interpretation is closely related to the problem of learning marginal pre-

dictors studied in [10], where the authors proposed to include the estimated PX

as additional input of the classification machine. It is expected to help in the

last two situations; however, in practice, the input space of this method might

be very big, causing random errors in the results, especially when the number of

source domains is not large. It would be beneficial if we can find in what form

the conditional distribution P t
Y |X depends on P t

X . On the contrary, in the fist

two situations above, one can see that the change in PX and that in PY |X are

independent, so it is not useful at all to include the estimated PX as input to

predict PY |X .

In the first three situations we can directly find the optimal classifier for the

target domain. Situation 4 is rather general, and can represent many real prob-

lems, in which the causal mechanism from Y to X is changed by some domain-

specific variable. Therefore, below we focus on this situation and propose a

method to handle it under certain assumptions on PX|Y . The basic idea is to

find how PX|Y and PY changes across domains, as implied in the target-domain

unlabeled data and source-domain labeled data.

5.3 Domain Adaptation with Independently Chang-

ing PY and PX|Y

Here we consider Situation 4, where PY and PX|Y both change across domains, as

shown in Fig. 5.1.d. According to the graphical model or the causal explanation

Y → X, we know that PY and PX|Y change independent from each other. In this

section we restrict our attention to classification problems. Generally speaking,

without further conditions on the data generating process, it is not possible to

recover P t
X|Y , the conditional distribution on the target domain.
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5.3.1 The model: Target Conditional as a Linear Mixture

of Source Conditionals

It is possible to solve the problem under rather restrictive assumptions. For

instance, [154] considers domain adaptation with a single source domain, and

assumes that the change in PX|Y follows the location-scale (LS) transformation;

P t
X|Y is then generally identifiable.

Motivation

Compared to a single source domain, multiple source domains contain much richer

information as to how to determine PX|Y on the target domain. One can consider

PX|Y,Vs (see Fig. 5.1.d, which can be considered as the conditional PX|Y in the

domain associated with Vs) as the mechanism to generate features from the class

label given the domain. It can be approximated from the latent variable modeling

perspective. According to Fig. 5.1.d, we know that PX|Y=cj , or computationally

more easily, its kernel embedding [46,129], is actually a function of Vs:

μ[PX|Y=cj ,Vs ] =

∫
ψ(x)PX|Y=cj ,Vsdx = Fj(Vs), (5.3)

where Fj are infinite-dimensional vector functions, which might vary for different

values of j. Here Vs contains domain-specific conditions. For instance, for object

recognition, it may contain the illumination condition, the angle from which the

image was taken, etc.

One can see that the intrinsic dimensionality of {μ[P (i)
X|Y=cj

] | i = 1, ..., n}, is
upper bounded by the intrinsic dimensionality of Vs, denoted by df . They are

equal if Fj is non-degenerate, i.e., if there is no loss of degree of freedom in the

transformation (5.3). We define df as the degree-of-freedom in the conditional

distribution change. Generally speaking, the higher df , the more complex the

change in PX|Y=cj across domains. Since on source domains we only know that

Vs might change across domains but cannot access its values, we cannot directly

find df .

For simplicity, let us assume that Fj in (5.3) can be approximated by a linear
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function,1 i.e., μ[PX|Y=cj ,Vs ] = LFj
Vs, where LFj

has an infinite number of rows

and df columns. That is,

(
μ[P

(1)
X|Y=cj

], · · · , μ[P (n)
X|Y=cj

]
)
= LFj

·
(
V

(1)
s , · · · , V (n)

s

)
.

If we further assume that V t
s can be constructed as a linear mixture of Vs on

source domains (which is usually the case if df is small), then P t
X|Y=cj

is a linear

mixture of PX|Y=cj on source domains. If needed, in such situations we can

directly estimate df from source domains by finding the rank of the estimated

μ[P
(i)
X|Y=cj

], i = 1, ..., n, under the condition that we have enough source domains

which are diverse enough. More specifically, let

−̂→μ j =
(
μ̂[P

(1)
X|Y=cj

], ..., μ̂[P
(n)
X|Y=cj

]
)
=

( 1

m1j

ψ(x
(1)
j )1, ...,

1

mnj

ψ(x
(n)
j )1

)
,

where 1 denotes the vector of all 1’s of an appropriate size; under this condition,

df can be estimated as the maximum of the following quantity for all j:

rank(−̂→μ j) = rank(−̂→μ ᵀ
j
−̂→μ j) = rank(Qj), (5.4)

where the (i, i′)th entry of Qj is 1
mijmi′j

1ᵀK(x
(i)
j ,x

(i′)
j )1. In practice, an appro-

priately chosen threshold is needed to determine the rank, due to the estimation

error in the kernel mean embedding.

Formulation

Motivated by this, we make the following assumption on PX|Y on the target

domain.

A1. For each y, P t
X|Y=y is a mixture of PX|Y=y on the source domains, i.e., there

exist αij, which satisfy the constraint
∑n

i=1 αij = 1 for all j, such that

P new
X|Y=cj

=
n∑
i=1

αijP
(i)
X|Y=cj

(5.5)

1This holds if Fj is essentially linear, or if Vs does not change too much so that one can use
linear approximation for Fj on all observed domains.
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is equal to P t
X|Y=cj

, where cj is the jth possible value of Y .1

Denote by P new
Y a marginal distribution of Y , and use P new

Y (cj) as shorthand for

P new
Y (Y = cj). The corresponding joint distribution is

P new
X,Y=cj

= P new
Y (cj)P

new
X|Y=cj

, (5.6)

and the marginal distribution of X is then

P new
X =

C∑
j=1

P new
Y (cj)

n∑
i=1

αijP
(i)
X|Y=cj

. (5.7)

We aim to match P new
X with P t

X by tuning the parameters αij and P new
Y (cj).

Here we have the constraints P new
Y (cj) ≥ 0, and

∑C
j=1 P

new
Y (cj) = 1. Let βij �

P new
Y (cj)αij, which satisfy the condition

C∑
j=1

n∑
i=1

βij = 1. (5.8)

Once we find the values of βij, we can reconstruct pnewY and αij by

P new
Y (cj) =

n∑
i=1

βij, and αij =
βij

P new
Y (cj)

. (5.9)

The following theorem states that under mild conditions, P t
X|Y can be uniquely

recovered.

Theorem 4. Let Assumption A1 hold. Further make the following assumption:

A2. For any constants dij that satisfy
∑n

i=1 d
2
ij �= 0, it holds that

∑n
i=1 dijP

(i)
X|Y=cj

,

j = 1, ..., C, are always linearly independent, if they are not zero.

1We have two remarks here. First, for the domains with P
(i)
Y (cj) = 0, P

(i)
X|Y=cj

is undefined,

and one can simply set αij = 0. Second, usually the weights αij in a distribution mixture model
are assumed to be nonnegative; however, this is not necessary to guarantee that the constructed
P t
X|Y=cj

is a valid distribution. For flexibility of the mixture model, we allow αij to be negative,

as long as Pnew
X|Y=cj

is a valid distribution, which, under appropriate assumptions, is achieved

by matching Pnew
X with P t

X , as implied by Theorem 4.
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Then if P new
X = P t

X , we have P new
Y = P t

Y and P new
X|Y = P t

X|Y , i.e, P
new
XY is identical

to P t
XY .

Proof. According to Assumption A1, we know that there exist α∗
ij such that

P t
X|Y=cj

=
∑n

i=1 α
∗
ijP

(i)
X|Y=cj

, and consequently,

P t
X =

C∑
j=1

P t
Y (cj)P

t
X|Y=cj

=
C∑
j=1

n∑
i=1

β∗
ijP

(i)
X|Y=cj

,

where β∗
ij � P te

Y (cj)α
∗
ij. On the other hand, according to (5.7), we have

P new
X =

C∑
j=1

n∑
i=1

βijP
(i)
X|Y=cj

.

Combining the above two equations, we see

C∑
j=1

[ n∑
i=1

(β∗
ij − βij)P

(i)
X|Y=cj

]
= 0. (5.10)

If ∀i & j, β∗
ij = βij , the above equation holds; in this situation, clearly α∗

ij = αij

and P t
Y = P new

Y due to (5.9), and clearly Theorem 1 holds.

Otherwise, dij � β∗
ij − βij would satisfy the condition in A2. Taking into

account (5.10) and Assumption A2, one can see that

n∑
i=1

(β∗
ij − βij)P

(i)
X|Y=cj

= 0 (5.11)

for any j. For each j, taking the integral of (5.11) over x gives
∑n

i=1 β
∗
ij =∑n

i=1 βij, i.e., P
t
Y = P new

Y . Furthermore, dividing (5.11) by P t
Y (or equivalently,

P new
Y ), we obtain

∑n
i=1(α

∗
ij − αij)P

(i)
X|Y=cj

= 0, i.e., P t
X|Y = P new

X|Y .

A sufficient condition for Assumption A2 is that P
(i)
X|Y=cj

, i = 1, ..., n, j =
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1, ..., C, are linearly independent. Note that this conditional is much stronger:

Assumption 2 allows P
(i)
X|Y=cj

, i = 1, ..., n, to be linear dependent for the same j.

In fact, here we do not care about the the identifiability of the parameters βij (or

αij and PY ), but the identifiability of P new
X|Y .

5.3.2 Parameter Estimation by Reproducing the Target

Feature Distribution

We can estimate the parameters βij, and hence αij and P
new
Y , by minimizing the

maximum mean discrepancy (MMD; see [46]):

∣∣∣∣∣∣μ[P new
X ]− μ[P t

X ]]
∣∣∣∣∣∣

=
∣∣∣∣∣∣EPnew

X
[ψ(X)]− μ[P t

X ]
∣∣∣∣∣∣

=
∣∣∣∣∣∣ C∑

j=1

P new
Y (cj)

n∑
i=1

αijμ[P
(i)
X|Y=cj

]− μ[P t
X ]

∣∣∣∣∣∣. (5.12)

Let x
(i)
jk , k = 1, ...,mij denote the data points of X in the ith source domain for

which Y = cj, where mij is the total number of points in the ith source domain

for which Y = cj. Similarly, xtk denotes the kth point of X in the target domain.

In practice, we minimize the square of the empirical version of (5.12):

J0 =
∣∣∣∣∣∣ C∑

j=1

P new
Y (cj)

n∑
i=1

αij
mij

mij∑
k=1

ψ(x
(i)
jk )−

1

m

m∑
k=1

ψ(xtk)
∣∣∣∣∣∣2

=
[ C∑
j=1

n∑
i=1

βij
mij

mij∑
k=1

ψᵀ(x
(i)
jk )−

1

m

m∑
k=1

ψᵀ(xtk)
]
·

[ C∑
j=1

n∑
i=1

βij
mij

mij∑
k=1

ψ(x
(i)
jk )

]− 1

m

m∑
k=1

ψ(xtk)
]

=
C∑
j=1

n∑
i=1

C∑
j′=1

n∑
i′=1

βijβi′j′

mijmi′j′

mij∑
k=1

mi′j′∑
k′=1

ψᵀ(x
(i)
jk )ψ(x

(i′)
j′k′)−

2
C∑
j=1

n∑
i=1

βij
mmij

mij∑
k=1

m∑
k′=1

ψᵀ(x
(i)
jk )ψ(x

t
k′) + const
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=
C∑
j=1

n∑
i=1

C∑
j′=1

n∑
i′=1

βijβi′j′

mijmi′j′

mij∑
k=1

mi′j′∑
k′=1

k(x
(i)
jk , x

(i′)
j′k′)−

2
C∑
j=1

n∑
i=1

βij
mmij

mij∑
k=1

m∑
k′=1

k(x
(i)
jk , x

t
k′) + const. (5.13)

Let
�β � (β11, ..., β1C , β21, ..., β2C , ..., βn1, ..., βnC)

ᵀ,

A be a nC × nC matrix with

A(i−1)C+j,(i′−1)C+j′

=
1

mijmi′j′

mij∑
k=1

mi′j′∑
k′=1

k(x
(i)
jk , x

(i′)
j′k′)

=
1

mijmi′j′
1ᵀK(x

(i)
j ,x

(i′)
j′ )1 (5.14)

for i ∈ {1, 2, ..., n}, i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}, and j′ ∈ {1, 2, ..., C}, and b

be a nC-dimensional vector with its entries

b(i−1)C+j

= − 1

mmij

mij∑
k=1

m∑
k′=1

k(x
(i)
jk , x

t
k′)

= − 1

mmij

1ᵀK(x
(i)
j ,x

t
k′) (5.15)

for i ∈ {1, 2, ..., n}, i′ ∈ {1, 2, ..., n}, j ∈ {1, 2, ..., C}. �β can then be estimated by

minimizing J0:

J0 = �βᵀA�β + 2bᵀ�β + const, (5.16)

subject to the constraint (6.6).1 This is a quadratic programming (QP) problem.

After finding the values of �β, we can then construct αij and P
new
Y (cj). For some

practical issues in this optimization procedure, including enforcing the sparsity

1Here we use a hard constraint on βij . Note that in [48, 62], a slightly different constraint
was used for importance weights to correct for covariate shift.
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constraint on αij; see Sec. 5.6.

5.3.3 Construction of the Target Classifier

We then present several natural ways to construct the target-domain classifier or

directly determine the class labels on the target domain.

Importance reweighting on source samples (denoted weigh sample)

The first approach is to train the classifier on the original data points in source

domains with appropriate importance weights. Once we find αij and P new
Y (cj),

we can construct P new
XY , which mimics P t

XY . According to (5.5), since an empirical

estimator of P
(i)
X|Y (x|y = cj) is

P̂
(i)
X|Y (x|y = cj) =

1

mij

mij∑
k=1

δ
(
x− x

(i)
jk

)
,

where δ(·) is the Dirac delta function, an empirical estimator of P new
XY (x, y = cj)

is

P̂ new
XY = P new

Y (cj)
n∑
i=1

αij
mij

mij∑
k=1

δ
(
x− x

(i)
jk

)
.

We aim to find the function f(x) which minimizes the expected loss on the target

domain. Denoted by l(x, y; θ) the loss function, where θ denotes the involved

parameters, the expected loss is

R[P t
XY , θ, l(x, y; θ)] = EP t

XY
[l(x, y; θ)].

Its empirical estimator is

Remp[P̂
new
XY , θ, l(x, y; θ)]

=

∫
P̂ new
XY l(x, y; θ)dxdy

=
C∑
j=1

n∑
i=1

mij∑
k=1

αijP
new
Y (cj)

mij

l(x
(i)
jk , cj; θ).
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We can then train the classifier on all source data points with the reweighting

coefficients
αijP

new
Y (cj)

mij
.

By generative modeling (denoted genar model)

The second approach is purely generative. Let

ηj(x) � P t
Y=cj |X(x) =

P t
Y (cj)P

t
X|Y=cj

P t
X

.

For any value of x, if ηj(x) is known, one can directly find the class label for x by

comparing ηj(x), j = 1, ..., C. We propose a method to estimate ηj(x) without

explicitly estimating those involved distributions. Again, we make use of the

kernel mean embedding of distributions. For details see Sec. 5.7.

Weighted combination of source classifiers (denoted combn classf)

Alternatively, we can combine the individual source classifiers to form the one for

the target domain:

P t
Y |X(y = cj|x) =

P t
Y (cj)P

t
X|Y (x|y = cj)

P t
X

=
P t
Y (cj)

∑n
i=1 αijP

(i)
X|Y (x|y = cj)

P t
X

=
n∑
i=1

γ
(i)
j (x)P

(i)
Y |X(y = cj|x), (5.17)

where

γ
(i)
j (x) � αijP

t
Y (cj)P

(i)
X (x)

P
(i)
Y (cj)P t

X(x)

1.

Note that under Assumption A1, we have
∑n

i=1 γ
(i)
j (x) = 1. The weights γ

(i)
j (x)

can be estimated in a similar way to ηj in the approach by genar model. This

method involves construction of n classifiers and combines them with the weight

γ
(i)
j (x), which depends on all of the test point x, domain i, and class j.

1For better stability in the solution, in practice we set γ
(i)
j (x) to zero for domains with

P t
Y (cj) ≤ 0.02.
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5.3.4 Special case: DistributionWeighted Hypothesis Com-

bination

The distribution weighted hypothesis combination rule [86] is actually a special

case of the proposed combn classf (Sec. 5.3.3) under additional constraints; see

Theorem 5. [86] uses the same coefficient, 1/n, for all sources in the distribution

weighted rule; here we denote this method by simple adapt. We propose to use

kernel mean matching (KMM; see [62]) to estimate α̃i in the distribution weighted

rule (5.2) from data such that
∑

i α̃iP
(i)
X is as close to P t

X as possible, and the

resulting hybrid method is denoted by dstr wgh (H). Moreover, note that in our

dstr wgh (H), the weights can be negative, while in [86] all coefficients have to

be nonnegative.

Theorem 5. Suppose the conditions in Theorem 4 hold. The source hypothesis

combination rule (5.17) reduces to the distribution weighted combination rule in

the form of (5.2) under any of the following conditions:

1. PX|Y does not change across domains, and P t
Y is a linear mixture of PY on

source domains, or

2. PY does not change, and αij in (5.5) are the same for all classes j = 1, ..., C,

or

3. both PX|Y and PY change, but αijP
(i)
Y (cj)/P

t
Y (cj) are the same for all j.

Proof. The theorem is true under Condition 1, which is actually Situation 3 in

Sec. 5.2.

Under Condition 2 or 3, αijP
(i)
Y (cj)/P

t
Y (cj) are the same for all j. Denote

them by α̃i, and accordingly (5.3.3) becomes (5.2).

We would further like to remark that under the condition that the rank of

{P (i)
X | i = 1, ..., n}, is equal to the rank of {P i

X|Y=cj
| i = 1, ..., n, j = 1, ..., C},

the posterior on the target domain, P t
Y |X(y = cj|X) can be written in the form

of γij(x); in this case, each P
(i)
X|Y (x|y = cj) can be represented as a linear mixture

of P
(i)
X , and so does the numerator of P t

Y |X(y = cj|x) = P t
Y (cj)

∑n
i=1 αijP

(i)
X|Y (x|y=cj)

P t
X

,

that is, P t
Y |X(y = cj|x) is of the form of γij(x).
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5.4 Experiments

5.4.1 Simulations

We first test the performance of the multi-source domain adaptation methods

proposed in Sec. 5.3 for binary classification on simulated data. We generated the

data according to Assumption A1 in Sec. 5.3.1: on each domain, we generated

the data points belonging to each class as a mixture of three fixed Gaussians,

which have different means or variances, with random coefficients, and PY was

also randomly chosen on each domain. We used three source domains, and in

each domain the number of points in each class is a random number between 50

and 600. To see how the performance of different methods change along with the

number of source domains, we varied the number of source domains from 3 to 5.

Fig. 5.2 shows the simulated data in one replication.
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Figure 5.2: Simulated data with three source domains and one target domain in
one replication.
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Figure 5.3: Boxplot of misclassification rate of each method on simulated data
(50 replications).

We compare the three classification approaches proposed in Section 3.3 against

a number of alternatives. We include the following representative hypothesis com-

bination methods for comparison: LWE [36], convex hypothesis combination [86],

denoted convex, simple adapt [86], and dstr wgh (H) (Sec. 5.3.4), which adopts

the distribution weighted combination rule (5.2) with the weights α̃i estimated

from data. KMM for correcting covariate shift [62], the pooling SVM (denoted

pool SVM), which merge all source data to train the SVM, domain-invariant com-

ponent analysis (DICA, [92]), and Learning marginal predictors (LMP) proposed

by [10] are also included.

In our methods, we simply set the kernel width to 0.5, and the SVM pa-

rameters were selected by 5-fold cross validation on the parameter grids. Fig. 5.3

gives the boxplot of the misclassification rate of each method over 50 replications.

One can see that the proposed three approaches, weigh sample, genar model,

and combn classf give the best overall performance; among them, combn class

performs best. dstr wgh (H) and simple adapt are closely behind, verifying the

result that distribution weighted rule performs better than the convex combina-

tion of the source hypotheses reported in [86].

Since the data points from each class were drawn from the mixture of three

Gaussians with random coefficients, for each class, df , the degree-of-freedom in

the conditional distribution change, as defined in Section 5.3, is 3. Recall that

it indicates how many non-redundant source domains are needed to reconstruct

P t
X|Y . On the simulated data we found that rank(Qj) = 3. We also varied the

number of source domains from 3 to 5, and not surprisingly, the rank of Qj is

still 3.
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Table 5.2: Comparison of different methods on the sentiment and object recog-
nition data sets.

sentiment →amazon →caltech →dslr →webcam

pool SVM 48.37 (1.55) 51.93 43.49 49.68 56.95

KMM 41.75 (1.03) 49.00 40.37 49.68 53.90

DICA 27.69 (0.71) 51.62 43.40 49.68 55.25

LWE 35.39 (5.62) 54.34 40.37 17.83 37.97

convex 43.95 (1.04) 41.38 40.55 54.14 61.02

simple adapt 44.76 (1.21) 41.07 40.02 54.14 61.69

dstr wgh (H) 43.85 (1.19) 53.50 44.92 57.96 62.37

weigh sample 50.66 (1.36) 52.35 43.49 50.95 60.67

combn classf 51.72 (1.12) 52.14 43.32 62.42 62.66

Fig. 5.4 (left) gives the eigenvalues of Qj (see (5.4)) in one replication for each

class label j; the three eigenvalues are all non-zero, indicating rank(Qj) = 3. We

also varied the number of source domains from 3 to 5, and Fig. 5.4 (right) shows

the eigenvalues of Qj in one replication. Not surprisingly, the rank of Qj is still

3.
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Figure 5.4: The eigenvalues of Qj (see (5.4)) in two random runs, one for n = 3,
the other for n = 5. In both situations, one can see that rank(Qj) = 3.
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5.4.2 Pseudo-real data (Sentiment Analysis) & Real-world

Data (Object Recognition)

The sentiment data [11] consist of review text and labels for four categories of

goods (domains): book, dvd, electronics, and kitchen; each domain contains 2000

data points (or reviews) with four labels (or classes). We repeated the experiments

on this dataset by [86], but with a more general setting. [86] constructed the

target domain as a uniform mixture of data points randomly sampled from the

four domains; the rest of the data were used as source-domain data. In our

experiments, PY is a random number on the target domain, and for each label, the

target-domain data were non-uniformly sampled from the four source domains.

For each rating label, we construct the target domain data as a non-uniform

mixture of data points sampled from the source domain data with the same

label. For each class, we sampled w% (w is a random number between 20 and 50)

of the points from each source domain as the target-domain data. Our sampling

scheme is more general: in our case P t
XY is not necessary a uniform mixture of

P
(i)
XY . We use the the frequency of the unigrams that appear 50 times or more

in every domain as the features (in total there are 308 features). Each method

was repeated 10 times by randomly sampling the data. The mean and standard

deviation of the accuracies on target domains by each method are given in the

upper part of Table 5.2. We report mean accuracies and standard errors on

target domains. For the DICA method, we reduce the feature dimension to 50.

combn classf and weigh sample give the best accuracies.

We also compared our approaches with alternatives on the object recognition

data [49], as done by [39]. We evaluated different methods on four object recogni-

tion datasets (domains): Amazon (images downloaded from Amazon), Webcam

(low-resolution images by a web camera), DSLR (high-resolution images by a

SLR camera), and Caltech-256 [49]. We extracted 10 common categories among

all domains. There are 8 to 151 samples per category per domain, and 2533

images in total. We used three domains as sources and the rest one as the tar-

get. We followed the feature extraction scheme in [39]. We used SVM for all the

domain adaptation methods, and the SVM hyper parameters were selected by

5-fold cross validation on a grid. The results are shown in table 5.2. One can see
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that combn classf gives the best accuracy, closely followed by dstr wgh (H).

Following the feature extraction scheme in [39, 115], we represent each image as

a 800-bin histogram of SURF [5] features trained on a subset of the Amazon

dataset. The histograms are normalized to zero mean and unit standard devia-

tion. We use SVM classifier for all the domain adaptation methods. The results

are shown in table 5.2. For the DICA method, the feature dimension is reduced

to 200.

5.5 Related Work and Discussions

The relationship between the distribution weighted rule [86] and the proposed

class-action approach combn classf, has been discussed above. Moreover, the

local weighting ensemble (LWE) approach [36], domain adaptation machine [30],

and conditional probability based multi-source domain adaptation (CP-MDA)

proposed in [19] are all in the form of combining predictions given by the hy-

potheses constructed on source domains (see (5.17)). However, they rely on

different assumptions to determine the weight. [36] make the “clustering mani-

fold” assumption that PY |X is not expected to change much when PX is high, and

accordingly compute the weight by comparing the similarity graphs of the source

and target data around a particular test point xtk. [30] find the weight by measur-

ing the difference in the marginal distribution PX between the target domain and

the source domains. In [19], the weight is determined based on the smoothness

assumption on the conditional probability distribution of the target-domain data.

In contrast, we made the assumption on PX|Y — the information contained in

the source domains is rich enough, such that for each Y value, PX|Y on the target

domain can be approximated by a linear mixtures of those on source domains.

The two-stage weighted approach [141] for domain adaptation combines the

data from multiple sources based on their marginal distribution (PX) differences

(first stage) as well as conditional distribution (PY |X) differences (second stage),

with the target-domain data. The second stage exploits the smoothness assump-

tion on the conditional distribution of the target-domain data, as in [19]. In this

way, this method considers the difference in both the marginal PX and the con-

ditional PY |X , but we model how PY and PX|Y change, since their changes are
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independent and can be modeled separately, as discussed in Sec. 5.2.

The proposed methods rely on the assumption that for each class, the target-

domain conditional distribution PX|Y can be represented as a mixture of those

on source domains. We remark that for some real problems, certain features

could be highly noisy, and it is worth noting that this assumption might not

hold for some features or components of features; therefore it would be beneficial

to find appropriate feature representations, as in [7]. If we are given enough

source domains and have prior knowledge that the target domain was generated

following the same mechanism as the source domains, it is possible to assess

whether this assumption holds or not, by treating each source domain as a target

one and making use of kernel distribution embeddings. For some real problems,

certain features could be highly noisy, and it is worth noting that this assumption

might not hold for some features or components of features; therefore it would

be beneficial to find appropriate feature representations, as in [7]. In our case, to

facilitate knowledge transfer from source domains to the target, we may find a

feature representation T(X) with a low rank of {P (i)
T(X)|Y=cj

| i = 1, ..., n} for all

j, such that P t
T(X)|Y can be accurately reconstructed as a mixture of PT(X)|Y on

sources; this is a line of future work.

5.6 Practical Issues in Estimating βij in Sec. 5.3.2

We set αij to zero for the domains on which P
(i)
X|Y=cj

≤ 0.02. If the number

of classes or the number of domains is very large, we use the following ways to

improve the stability of the solution.

For classification with many classes In the above framework we estimate

P t
Y from data. When C is large, the solution space of P t

Y is very large, which,

together with the finite sample size effect and perhaps a non-optimal kernel width,

might cause spurious solutions. For reliability in such situations, one propose to

use another linear mixture model to construct P t
Y , i.e., the constructed PY is

P new
Y =

∑n
i=1 θiP

(i)
Y , where

∑n
i=1 θi = 1. In this way we constrain the solution

to the space spanned by {P (i)
Y }ni=1, avoiding those that are not possible for this

particular problem.
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With sparsity constraints In the case with a large number of source domains,

for better stability of the solution, on can incorporate the sparsity constraint on

the the mixture coefficients αij. That is, for each j, we assume that P t
X|Y=cj

is a

linear mixture of P t
X|Y=cj

on a small number of source domains.

The sparsity of αij implies that of βij. More importantly, enforcement of the

sparsity of βij is computationally much easier since J0 is quadratic in βij. How-

ever, note that e have the constraint
∑

i

∑
j βij = 1, the �1 norm penalization

does not achieve sparsity of the estimated βij. As in [9], one can adopt the log-

arithm penalty in stead. Note that with the original logarithm penalty term,

λs
∑

j log(|βij|, the objective function will suffer from a sudden change whenever

a coefficient is set to zero. Therefore, we modify the penalty to λs
∑

j[log(|βij|+
ε)− log ε], where ε is a small positive number (we used 10−3 in our experiments),

such that the penalty term change continuously in βij when βij → 0. The regu-

larization term is then

rs = λs
∑
i

∑
j

[log(|βij|+ ε)− log ε], (5.18)

and the cost function to be minimized is then

Js0 = J0 + rs. (5.19)

Unfortunately, this function is not quadractic in βij any more, and consequently,

unlike (5.16), it cannot be directly solved by QP. However, we can exploit an iter-

ative QP procedure by approximating the penalty term (5.18) with a quadractic

function in each iteration. Suppose the currently estimate of βij is β
old
ij . If it is

very close to zero (say, with an absolute value smaller than 10−3), then set it

the estimate to zero. Otherwise we can approximate the derivative of (5.18) as a

linear function in βij:

drs

dβij
=

drs

d|βij|sgn(βij) ≈
[ drs

d|βij|
∣∣∣
βold
ij

· 1

|βoldij |
]
βij

=
λs

|βoldij |(|βoldij |+ ε)
βij,
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where βoldij �= 0. Correspondingly, the penalty (5.18) is approximated by a

quadratic function:

rs ≈rs(βoldij ) +
1

2

∑
i

∑
j

· drs

d|βij|
∣∣∣
βold
ij

· 1

|βoldij | · (β
2
ji − βoldij

2
)

=rs(βoldij ) +
∑
i

∑
j

λs
2|βoldij |(|βoldij |+ ε)

(β2
ij − βoldij

2
).

See Fig. 5.5 for this approximation. In this way, (5.19) can be minimized by iter-

atively applying QP to minimize the above equation together with J0 under the

constraint (6.6) and using the resulting estimate of βij as β
old
ij , until convergence.

Convergence is guaranteed. In our experiments we use this constraint only when

the number of source domains is larger than five, and λs was simply set to 0.1.

0
0

β
ij

β
ij

old

local quadratic
approximation

rs=log(|β
ij
 + ε|) − log(ε)

Figure 5.5: Local quadractic approximation for the penalty term rs given in
(5.18).
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5.7 Details of genar model in Sec. 5.3.3

The second approach is purely generative. Let ηj(x) � P t
Y=cj |X(x) =

P t
Y (cj)P

t
X|Y =cj

P t
X

.

For any value of x, if ηj(x) is known, one can directly find the class label for x

by comparing ηj(x), j = 1, ..., C. Below we propose a method to estimate ηj(x)

without explicitly estimating those involved distributions. Again, we make use

of the kernel mean embedding of distributions.

Note that P t
X|Y = P new

X|Y , and bear (5.5) in mind. As P t
Y and αij have been

estimated in Sec. 5.3.2, ηj(x) can be estimated by minimizing the MMD:

∣∣∣∣∣∣P t
Y (cj)μ[P

t
X|Y=cj

]− μ[ηj(X)P t
X ]

∣∣∣∣∣∣
=

∣∣∣∣∣∣P t
Y (cj)

n∑
i=1

αijμ[P
(i)
X|Y=cj

]− μ[ηj(X)P t
X ].

∣∣∣∣∣∣
=

∣∣∣∣∣∣P t
Y (cj)

n∑
i=1

αijEP (i)
X|Y =cj

[ψ(X)]− EP t
X
[ηj(X)ψ(X)]

∣∣∣∣∣∣.
Let �ηj � (ηj(x

t
1), ..., ηj(x

t
m))

ᵀ. The square of its empirical version is

Jj =
∣∣∣∣∣∣P t

Y (cj)
n∑
i=1

αij
mij

mij∑
k=1

ψ(x
(i)
jk )−

1

m

m∑
k=1

[ηj(x
t
k)ψ(x

t
k)]

∣∣∣∣∣∣2

=
∣∣∣∣∣∣P t

Y (cj)
n∑
i=1

αij
mij

ψ(x
(i)
j )1− 1

m
ψ(xtk)�ηj

∣∣∣∣∣∣2

=
1

m2
�ηj

ᵀKt�ηj − 2P t
Y (cj)

m

n∑
i=1

αij
mij

1ᵀKit
j �ηj + const,

where 1 denotes the m-dimensional vector of 1’s, Kt is the kernel matrix of xt,

and Kit is the “cross” kernel matrix between x
(i)
j (the points of X in the ith

source domain for which Y = cj) and xt.

We would like ηj(x) to be a smooth function in x, so we incorporate an

additional term measuring the complexity of ηj(x) in the objective function, i.e.,

we minimize Jj + λ||ηj||2H, where λ is a regularization parameter. Representing

�ηj as �ηj = Ktcηj , where cηj is the parameter vector to be estimated, finally we
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estimate cηj , and hence �ηj, by minimizing

J =
C∑
j=1

Jj + λ

C∑
j=1

||ηj||2H

=
1

m2

C∑
j=1

cᵀηjK
t3cηj −

2P t
Y (cj)

m

C∑
j=1

n∑
i=1

αij
mij

1ᵀKit
j K

tcηj

+ λ
C∑
j=1

cᵀηjK
tcηj

=
C∑
j=1

cᵀηj
( 1

m2
Kt3 + λKt

)
cηj

− 2P t
Y (cj)

m

C∑
j=1

n∑
i=1

αij
mij

1ᵀKit
j K

tcηj

s.t . ∀ i & j, ηj(x
t
i) ≥ 0, and

1− ε ≤
∑
j

ηj(x
t
i) ≤ 1 + ε,

where ε is a small positive number as used in [62]. This is a standard QP prob-

lem, and can be efficiently solved by existing packages. In practice, to reduce

the computational load, when m is large than 400, we represent �ηj as a linear

combination of the nonlinear principal components of xt produced by kernel prin-

cipal component analysis [118]; in this way the number of parameters is greatly

reduced.

5.8 Conclusion

We provided a causal view to domain adaptation with multiple source domains

and noted that the background causal knowledge—the data-generating process—

helps greatly in domain adaptation. We considered several simplified causal mod-

els for domain adaptation, and accordingly gave the optimal hypothesis for the

target domain. In particular, we have focused on a multi-source domain adapta-

tion problem in which PY and PX|Y change independently across domains, where

X denotes features and Y the target. The proposed methods consist of two steps.
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One first recovers PX|Y and PY on the test domain, by tuning involved param-

eters to reproduce the corresponding observed feature distribution. The second

step constructs the classifier for the target domain or directly determines the

target-domain class labels; to this end we presented three natural approaches for

target-domain classification, which exploit importance reweighting, use genera-

tive learning, or resort to a weighted combination of source hypotheses. We note

that for some real problems, certain features could be highly noisy, and it is worth

noting that this assumption might not hold for some features or components of

features; therefore it would be beneficial to find appropriate feature representa-

tions, as in [7]. Furthermore, a future line of research is to derive convergence

bounds and learning guarantees for the proposed domain adaptation approaches,

following [23,67].
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Chapter 6

Domain Adaptation with

Conditional Transferable

Components

Domain adaptation arises in supervised learning when the training (source do-

main) and test (target domain) data have different distributions. Let X and Y

denote the features and target, respectively, previous work on domain adaptation

mainly considers the covariate shift situation where the distribution of the fea-

tures P (X) changes across domains while the conditional distribution P (Y |X)

stays the same. To reduce domain discrepancy, recent methods try to find in-

variant components T(X) that have similar P (T(X)) on different domains by ex-

plicitly minimizing a distribution discrepancy measure. However, it is not clear

if P (Y |T(X)) in different domains is also similar when P (Y |X) changes. Fur-

thermore, transferable components do not necessarily have to be invariant. If the

change in some components is identifiable, we can make use of such components

for prediction in the target domain. In this paper, we focus on the case where

P (X|Y ) and P (Y ) both change in a causal system in which Y is the cause for

X. Under appropriate assumptions, we aim to extract conditional transferable

components whose conditional distribution P (T(X)|Y ) is invariant after proper

location-scale (LS) transformations, and identify how P (Y ) changes between do-

mains simultaneously. We provide theoretical analysis and empirical evaluation
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on both synthetic and real-world data to show the effectiveness of our method.

6.1 Introduction

Standard supervised learning relies on the assumption that both training and test

data are drawn from the same distribution. However, this assumption is likely to

be violated in practice if the training and test data are sampled under different

conditions. Considering the problem of object recognition, images in different

datasets are taken with different cameras or in different imaging conditions (e.g.,

pose and illumination). In the indoor WiFi localization problem, signals collected

during different time periods have different distributions, and one may want to

adapt a model trained on the signals received from one time period to the signals

collected during other time periods. Domain adaptation approaches aim to solve

this kind of problems by transferring knowledge between domains [98].

To perform domain adaptation, certain assumptions must be imposed in how

the distribution changes across domains. For instance, many existing domain

adaptation methods consider the covariate shift situation where the distributions

on two domains only differ in the marginal distribution of the features P (X), while

the conditional distribution of the target given the features P (Y |X) does not

change. In this case, one can match the feature distribution P (X) on source and

target domains by importance reweighting methods if the source domain is richer

than the target domain [62,122,140]. The weights are defined as the density ratio

between the source and target domain features and can be efficiently estimated

by various methods such as the kernel mean matching procedure (KMM) [62].

Theoretical analysis of importance reweighting methods for correcting covariate

shift has also been studied in [23,147].

In addition to instance reweighting methods, several state-of-the-art approaches

try to reduce the domain shift by finding invariant representations or components

across domains [7, 83, 96]. These invariant components (IC)-type approaches as-

sume that there exist a transformation T such that P S(T(X)) ≈ P T(T(X)), where

P S denotes the source domain distribution and P T denotes the target domain

distribution. To obtain the shared representation, some methods firstly create

intermediate representations by projecting the original feature to a series of sub-
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spaces and then concatenate them [39,42]. Other methods learn a low dimensional

projection by explicitly minimizing the discrepancy between the distributions of

projected features on source and target domains [3,80,81,92,96,123,124]. Because

there are no labels in the target domain in the unsupervised domain adaptation

scenario, T can not be learned by minimizing the distance between P S(Y |T(X))

and P T(Y |T(X)). Therefore, these methods simply assume that the transfor-

mation T learned by matching the distribution of transformed features satisfies

P S(Y |T(X)) ≈ P T(Y |T(X)). However, it is not clear why and when this assump-

tion holds in practice, i.e., under what conditions would P S(T(X)) ≈ P T(T(X))

imply P S(Y |T(X)) ≈ P T(Y |T(X))? Moreover, the components that are trans-

ferable between domains are not necessarily invariant. If the changes in some

components are identifiable from the empirical joint distribution on the source

domain and the empirical marginal distribution of the features on the target

domain, we can make use of these components for domain adaptation.

In fact, to successfully transfer knowledge between domains, one need to cap-

ture the underlying causal mechanism, or the data generating process. In particu-

lar, for domain adaptation, one would be interested in what types of information

are invariant, what types of information change, and how they change across

domains. To this end, some recent work address the domain adaptation prob-

lem using causal models to characterize how the distribution changes between

domains [73,88,117,154]. Let C and E denote the cause and effect, respectively,

P (C) characterizes the process which generates the cause and P (E|C) describes
the mechanism transforming cause C to effect E. An important feature of a

causal system C → E is that the mechanism P (E|C) is independent of the cause
generating process P (C) [69, 117]. For example, in a causal system X → Y ,

if P (Y |X) changes across domains, one can hardly correct P (Y |X) unless it is

changed by specific transformations like randomly flipping labels [79], because

P (X) contains no information about P (Y |X).

In this paper, we aim to find conditional invariant or transferable components

in the generalized target shift (GeTarS) [154] scenario where the causal direction

is Y → X. In this scenario, P (Y ) and P (X|Y ) change independently to each

other, whereas P (X) and P (Y |X) usually change dependently; thus it is possible

to correct P (Y |X) from labeled source domain data and unlabeled target domain
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Table 6.1: Notation used in this paper.

random variable X Y
domain X Y

observation x y
RKHS F G

feature map ψ(x) φ(y)
kernel k(x, x′) l(y, y′)
kernel matrix on source domain K L
source domain data matrix xS yS

target domain data matrix xT yT

source domain feature matrix ψ(xS) φ(yS)
target domain feature matrix ψ(xT) φ(yT)

data. The GeTarS method [154] assumes that all the features can be transferred

to the target domain by location-scale (LS) transformation. However, many of

the features can be highly noisy or cannot be well matched after LS transforma-

tion, which makes GeTarS restrictive in practice. In this paper, under appropriate

assumptions, we aim to find the components whose conditional distribution is in-

variant across domains, i.e., P S(T(X)|Y ) ≈ P T(T(X)|Y ), and estimate the target

domain label distribution P T(Y ) from the labeled source domain and unlabeled

target domain. In this way, we can correct the shift in P (Y |X) by using the con-

ditional invariant components and reweighting the source domain data. Similarly,

we are able to find the transferable components whose conditional distribution

is invariant after proper LS transformations. In addition, we provide theoretical

analysis of our method, making clear the assumptions under which the proposed

method as well as the previous IC-type methods can work. Finally, we present a

computationally efficient method to estimate the involved parameters based on

kernel mean embedding of distributions [47,129].

6.2 Conditional Transferable Components

We define conditional invariant components (CIC) Xci as those components satis-

fying the condition that P (Xci|Y ) stays invariant across different domains. Since

the location-scale (LS) transformation often occurs in the conditional distribu-
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tion of the features given the label, we also present the conditional transferable

components (CTC) method, where for each Y value, the conditional distribution

of the extracted conditional transferable components Xct given Y , P (Xct|Y ), dif-

fers only in the location and scale across all domains. Figure 6.1 gives a simple

illustration of the CIC and CTC.

6.2.1 Conditional Invariant Components

domain

Y

X⊥
Xci

X

domain

Y

X⊥
Xct

X

LS

(a) (b)

Figure 6.1: (a) Graphical representation of CIC. Here domain denotes the domain-
specific selection variable. Xci denotes the components of X whose conditional
distribution, P (Xci|Y ), is domain-invariant. We assume that Xci can be recov-
ered from X as T(X). X⊥ denotes the remaining components of X; it might be
dependent on Y given the domain, and when estimating Xci, we would like such
dependence to be as weak as possible so that Xci contains as much information
about Y as possible. (b) CTC, where P (Xct|Y ) differs only in the location and
scale across different domains for each value of Y .

We first assume that there exist d-dimensional conditional invariant compo-

nents that can be represented as a linear transformation of the D-dimensional

raw features, that is,

Xci = W ᵀX, (6.1)

where W ∈ R
D×d and X ∈ R

D. To guarantee that there is no redundant in-

formation across dimensions of Xci and avoid trivial solutions, we constrain the
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columns of W to be orthonormal:

W ᵀW = Id. (6.2)

If we have two domains on which both X and Y are known, we can directly

enforce the condition

P T(Xci|Y ) = P S(Xci|Y ). (6.3)

However, in unsupervised domain adaptation, we do not have access to the Y

values on the target domain, and thus can not match the conditional distributions

directly. Only the empirical marginal distribution of X is available on the test

domain.

We will show that under mild conditions, matching the conditional distribu-

tions, (6.3), can be achieved by matching the marginal distribution

P T(Xci) =

∫
P T(Xci|y)P T(y)dy,

with the constructed marginal of X corresponding to P S(Xci|Y ) and P new(Y ):

P new(Xci) =

∫
P S(Xci|y)P new(y)dy. (6.4)

Definition 2. A transformation T(X) is called trivial if P
(
T(X)|Y = vc

)
,

c = 1, ..., C, are linearly dependent.

With a trivial transformation, the transformed components, T(X), lose some

power for predicting the target Y . For instance, consider a classification problem

with only two classes. With a trivial transformation, P
(
T(X)|Y = vc

)
, c =

1, 2, are the same, and as a consequence, T(X) is not useful for classification.

Note that any transformations would be trivial if P (X|Y = vc
)
, c = 1, ..., C,

are themselves linear dependent. Instead, we aim to find the distribution P new
Y

and Xci simultaneously by enforcing that P new(Xci), as constructed in (6.4), is

identical to P S(Xci).

Fortunately, according to Theorem 6, under mild conditions, if P new(Xci) is
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identical to P T(Xci), i.e.,

P new(Xci) = P T(Xci), (6.5)

the conditional invariance property of Xci, i.e., condition (6.3), holds; moreover,

the Y distribution on the target domain can also be recovered.

Theorem 6. Assume that the linear transformation W is non-trivial. Further

assume

ACIC: The elements in the set

{
κc1P

S(W ᵀX|Y = vc) + κc2P
T(W ᵀX|Y = vc) ; c = 1, ..., C

}
are linearly independent ∀ κc1, κc2 (κ2c1 + κ2c2 �= 0), if they are not zero.

If Eq. 6.5 holds, we have P S(Xci|Y ) = P T(Xci|Y ) and pnew(Y ) = pT(Y ), i.e., Xci

are conditional invariant components from the source to the target domain.

A complete proof of Theorem 6 can be found in Section 6.6.1. ACIC is

enforced to ensure that the changes in the weighted conditional distributions

P (Xci|Y = vc)P (Y = vc), c = 1, ..., C are linearly independent, which is nec-

essary for correcting joint distributions by matching marginal distributions of

features. Theorem 6 assumes that the distributions on different domains can be

perfectly matched. However, it is difficult to find such ideal invariant compo-

nents in practice. In Section 6.3, we will show that the distance between the joint

distributions across domains can be bounded by the distance between marginal

distributions of features across domains under appropriate assumptions.

Now we aim to find a convenient method to enforce the condition (6.5). As-

sume that P new(Y ) is absolutely continuous w.r.t. P S(Y ). We can represent

P new(Y = y) as

P new(y) = β(y)P S(y),

where β(y) is a density ratio, satisfying β(y) ≥ 0 and
∫
β(y)P S(y)dy = 1, since

both P new(Y ) and P S(Y ) are valid distribution density or mass functions. Let
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βi � β(ySi ), and β = [β1, .., βnS ]ᵀ ∈ R
nS

; they satisfy the constraint

βi ≥ 0, and
nS∑
i=1

βi = nS. (6.6)

A method to achieve (6.5) is to minimize the squared maximum mean discrepancy

(MMD):

∣∣∣∣μPnew(Xci)[ψ(X
ci)]− μPT(Xci)[ψ(X

ci)]
∣∣∣∣2
F

(6.7)

=
∣∣∣∣EXci∼Pnew(Xci)[ψ(X

ci)]− EXci∼PT(Xci)[ψ(X
ci)]

∣∣∣∣2
F
.

One way to enforce this condition is to exploit the embedding of the conditional

distribution P S(Xci|Y ) as the bridge to connect the two involved quantities, as

in [154]. However, we will show it is possible to develop a simpler procedure1.

Because of (6.4), we have

EXci∼Pnew(Xci)[ψ(X
ci)]

=

∫
ψ(xci)P new(xci)dxci

=

∫
ψ(xci)P S(xci|y)P S(y)β(y)dydxci

=

∫
ψ(xci)β(y)P S(y, xci)dydxci

= E(Y,Xci)∼PS(Y,Xci)[β(Y )ψ(Xci)]. (6.8)

As a consequence, (6.7) reduces to

J ci =
∣∣∣∣E(Y,X)∼pS(Y,X)[β(Y )ψ(W ᵀX)]− EX∼pT(X)[ψ(W

ᵀX)]
∣∣∣∣2

F
.

1Alternatively, one may make use of the kernel mean embedding of conditional distributions
in the derivation, as in the algorithm for correcting target shift [154], but it will be more complex.
Likewise, by making use of (6.8), the objective function used there can be simplified: in their
equation (5), the matrix Ω can be dropped.
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In practice, we minimize its empirical version

Ĵ ci =
∣∣∣∣∣∣ 1
nS
ψ
(
W ᵀxS

)
β − 1

nT
ψ(W ᵀxT)1

∣∣∣∣∣∣2
F

=
( 1

nS
ψ
(
W ᵀxS

)
β − 1

nT
ψ(W ᵀxT)1

)ᵀ·
( 1

nS
ψ
(
W ᵀxS

)
β − 1

nT
ψ(W ᵀxT)1

)
(6.9)

=
1

nS2
βᵀKS

Wβ − 2

nSnT
1ᵀKT,S

W β +
1

nT2
1ᵀKT

W1

where β � β(yS), 1 is the nT × 1 vector of ones, KT
W and KS

W denote the kernel

matrix on W ᵀxT and W ᵀxS, respectively, and KT,S
W the cross kernel matrix be-

tween W ᵀxT and W ᵀxS. Note that the kernel has to be characteristic; otherwise

there are always trivial solutions. In this paper, we adopt the Gaussian kernel

function, which has been shown to be characteristic [135].

6.2.2 Location-scale Conditional Transferable Components

In practice, one may not find sufficient conditional invariant components which

also have high discriminative power. To discover more useful conditional transfer-

able components, we assume here that there exist transferable components that

can be approximated by a location-scale transformation across domains. More

formally, we assume that there exist W , a(Y ) = [a1(Y ), ..., ad(Y )]ᵀ and b(Y ) =

[b1(Y ), ..., bd(Y )]ᵀ, such that the conditional distribution of Xct � a(Y )◦(W ᵀX)+

b(Y ) given Y on the source domain, i.e. P S(Xct|Y ), is close to P T(Xci|Y ). The

transformed training data matrix xct ∈ R
d×nS

can be written in matrix form:

xct = A ◦ (
W ᵀxS

)
+B, (6.10)

where ◦ denotes the Hadamard product, the i-th columns of A ∈ R
d×nS

and

B ∈ R
d×nS

are a(yi) and b(yi), respectively. Using (6.10), we can generalize J ci

to

J ct =
∣∣∣∣E(Y,Xct)∼pS(Y,Xct)[β(Y )ψ(Xct)]− EX∼pT(X)[ψ(W

ᵀX)]
∣∣∣∣2

F
,
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and its empirical version Ĵ ci to

Ĵ ct =
∣∣∣∣∣∣ 1
nS
ψ
(
xct

)
β − 1

nT
ψ(W ᵀxT)1

∣∣∣∣∣∣2
F

=
1

nS2
βᵀK̃Sβ − 2

nSnT
1ᵀK̃T,Sβ +

1

nT2
1ᵀKT

W1 (6.11)

where K̃S denote the kernel matrix on xct and K̃T,S the cross kernel matrix be-

tween W ᵀxT and xct. The identifiability of A and B can be easily obtained by

combing the results of Theorem 6 in this paper and Theorem 2 in [154]. In prac-

tice, we expect the changes in the conditional distribution P S(Xct|Y ) to be as

small as possible. Thus we add a regularization term on A and B, i.e.,

Jreg =
λS
nS

||A− 1d×nS||2F +
λL
nS

||B||2F , (6.12)

where 1d×nS is the d× nS matrix of ones.

6.2.3 Target Information Preservation

At the same time, because the components Xct will be used to predict Y , we

would like Xct to preserve the information about Y . The information in the given

feature X about the Y is completely preserved in the components Xct if and only

if Y ⊥⊥ X |Xct. We adopt the kernel dimensionality reduction framework [35] to

achieve so. It has been shown that Y ⊥⊥ X |Xct ⇐⇒ ΣY Y |Xct −ΣY Y |X = 0, where

ΣY Y |X is the conditional covariance operator on G.

Consequently, to minimize the conditional dependence between Y andX given

Xct, one can minimize the determinant of trace of ΣY Y |Xct . Here we use a slightly

simpler estimator for its trace. According to its definition [2], ΣY Y |Xct = ΣY Y −
ΣY,XctΣ−1

Xct,XctΣXct,Y , where Σ·· is the covariance or cross-covariance operator.

We can use 1
nSφ(y

S)φᵀ(yS), 1
nSφ(y

S)ψᵀ(xct), and 1
nSψ(x

ct)ψᵀ(xct) as the es-

timators of ΣY Y , ΣY,Xct , and ΣXct,Xct , respectively, on the source-domain data.
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Consequently, on such data we have the estimator

Tr[Σ̂Y Y |Xct ]

= Tr[Σ̂Y Y ]− Tr[Σ̂Y,XctΣ̂−1
Xct,XctΣ̂Xct,Y ]

=
1

nS
Tr[φ(yS)φᵀ(yS)]− 1

nS
Tr[φ(yS)ψᵀ(xct)·(

ψ(xct)ψᵀ(xct) + nSεI
)−1 · ψ(xct)φᵀ(yS)]

=
1

nS
Tr[L]− 1

nS
Tr[LK̃S(K̃S + nSεI)−1]

=
1

nS
Tr[L(I − K̃S(K̃S + nSεI)−1)]

= εTr[L(K̃S + nSεI)−1], (6.13)

where ε is a regularization parameter to prevent ill conditions on the matrix

inverse and is set to 0.01 in our experiments.

6.2.4 Reparameterization

By combining Ĵ ct, Jreg, and Tr[Σ̂Y Y |Xct ], we aim to estimate the parameters β,

W , A, and B by minimizing

Ĵ ctcon = Ĵ ct + λTr[Σ̂Y Y |Xct ] + Jreg (6.14)

under constraints (6.2) and (6.6). However, we cannot directly minimize (6.14)

with respect to β, A, and B because β, a, and b are functions of y. Thus, we

reparametrize β, A, and B with new parameters. In this paper, we focus on the

case where Y is discrete. Let C be the cardinality of Y and denote by v1, ..., vC its

possible values. Let nc denotes number of examples with Y = vc, we can define

a matrix Rdis ∈ R
nS×C where Rdis

ic is nS

nc
if yi = vc and is zero everywhere else.

β can then be reparameterized as β = Rdisα, where the α ∈ R
C×1 is the new

parameter, providing a compact representation for β. Similarly, A and b can

be reparameterized as (RdisG)ᵀ and (RdisH)ᵀ, where G ∈ R
C×d and H ∈ R

C×d

are the effective parameters. The constraint on β, (6.6), is equivalent to the
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corresponding constraint on α:

[Rdisα]i ≥ 0, and 1ᵀα = 1. (6.15)

6.2.5 Optimization

We estimate the parameters α, W , G, and H by minimizing Ĵ ctcon under con-

straints (6.2) and (6.15). We iteratively alternate between minimizing α, W ,

and [G, H]. For the CIC method, we only optimize W and α by fixing G and

H. For α, we use quadratic programming (QP) to minimize Ĵ ctcon w.r.t. α under

constraint (6.15). When minimizing Ĵctcon w.r.t. W , one should guarantee that

W is on the Grassmann manifold, as implied by constraint (6.2). Therefore, we

find W by the conjugate gradient algorithm on the Grassmann manifold , which

is an efficient approach by exploiting the geometric properties of orthogonality

and rotation invariance [31]. [G, H] can be found by standard conjugate gradient

optimization procedure. The derivation of the required derivatives is given in the

Section S5 of the Supplementary Materials.

6.3 Theoretical Analysis

We theoretically analyze our CIC method by developing a bound relating source

and target domain expected errors. The analysis of the CTC method can be per-

formed in a similar way. Current analysis methods on domain adaptation [6, 7]

decompose the joint distribution P (X, Y ) to P (X)P (Y |X) and measure their

distance between domains separately. Therefore, many existing methods explic-

itly minimizes the discrepancy between source and target domains by learning

invariant components Xci = W ᵀX with similar marginal distributions pS(Xci) ≈
pT(Xci). However, it is not sure whether the distance between P S(Y |Xci) and

P T(Y |Xci) is also small.

We will show that, in the Y → X situation, the distance between the joint

distributions across domains can be bounded by the distance between marginal

distributions of features across domains , if the assumptions in Theorem 6 holds.

Different from previous works, we decompose the joint distribution in the causal
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direction, i.e., P (Xci, Y ) = P (Xci|Y )P (Y ). Following [6,7], we only consider the

binary classification problem with 1− 0 loss for convenience.

Before stating the main theorems, we first introduce the following Lemma. It

is similar to Theorem 1 in [6], but we directly measure the distance between joint

distributions on different domains instead of separately measuring the distance

between P S(X) and P T(X) and the distance between P S(Y |X) and P T(Y |X).

Lemma 2. For a hypothesis h ∈ H, let εnew(h) and εT(h) be the expected error

w.r.t. 1-0 loss on the constructed new domain and target domain respectively.

We have

εT(h) ≤ εnew(h) + d1(p
new(Xci, Y ), pT(Xci, Y )), (6.16)

where d1(p
new(Xci, Y ), pT(Xci, Y )) is the L1 or variation divergence defined in [6].

The proof of Lemma 2 is given in Section 6.6.2.

Because d1 is difficult to calculate in practice, we measure distribution dis-

crepancy between the joint distribution on the new domain and the target domain

by squared MMD distance, i.e.,

dk(p
new(Xci, Y ), pT(Xci, Y ))

=
∣∣∣∣E(Xci,Y )∼Pnew(Xci,Y )[ψ(X

ci)⊗ φ(Y )]

− E(Xci,Y )∼PT(Xci,Y )[ψ(X
ci)⊗ φ(Y )]

∣∣∣∣2
F⊗G

, (6.17)

where ⊗ denotes the tensor product.

The following theorem states that the distance between the source and target

domain joint distribution can be bounded by the distance between the source and

target domain marginal distribution of Xci under certain assumptions.

Theorem 7. Let Δc denote

Δc =P
new(Y = c)μpS(Xci|Y=c)[ψ(X

ci)]

− P T(Y = c)μpT(Xci|Y=c)[ψ(X
ci)], c = 0, 1,

and θ denote the angle between Δ0 and Δ1. If W is non-trivial and ACIC
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holds, i.e., 0 < θ < π,

dk(p
new(Xci, Y ), pT(Xci, Y )) ≤ J ci10<θ≤π/2 +

2J ci

sin2 θ
1π/2<θ<π,

where 1{·} denotes the indicator function.

The proof of Theorem 7 can be found in Section 6.6.3.

Remark Suppose we have found the ideal β such that P new(Y ) = P T(Y ),

then Δ1 and Δ0 represent the changes in conditional distribution P (Xci|Y = 1)

and P (Xci|Y = 0), respectively. If one can find perfectly invariant components,

i.e., Jci = 0, which implies Δ1 + Δ0 = 0. If ACIC is violated, that is Δ1 and

Δ0 can be linearly dependent if they are not zeros, then one cannot expect that

the conditional distribution P (Xci|Y ) is invariant, i.e., Δ1 = 0 and Δ0 = 0. In

this case, the conditional distributions P (Xci|Y = 1) and P (Xci|Y = 0) change

dependently to make the marginal distribution P (Xci) invariant across domains.

This usually happens in theX → Y situation, while rarely happens in the Y → X

situation. If ACIC is violated, it can be seen from Theorem 7 that dk cannot be

bounded by J ci when θ = π. Interestingly, when the changes in P (Xci|Y = 1)

and P (Xci|Y = 0) do not cancel each other, i.e., 0 < θ ≤ π/2, dk can be tightly

bounded by J ci which can be estimated from labeled data in the source domain

and unlabeled data in the target domain.

In practice, we optimize Ĵ ci w.r.t. W and α under constraints (6.15) and

(6.2). Let αn and Wn be the learned parameter according to Ĵ ci. Since the

objective function is non-convex w.r.t. W , we cannot expect Wn to converge to

the optimal one. However, the optimality of the parameter α can be obtained. We

will provide an upper bound for the following defect J ci(αn,Wn)− J ci(α∗,Wn),

where α∗ denotes the optimal one.

Theorem 8. Assume the RKHS employed are bounded such that
∣∣∣∣ψ(x)∣∣∣∣

2
≤ ∧2
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Figure 6.2: Toy data to illustrate the difference between DIP and CIC: (a) The
source domain data; (b) The target domain data.

for all x ∈ X. For any δ > 0, with probability at least 1− δ, we have

Jci(αn,Wn)− J ci(α∗,Wn) ≤ 8 ∧2
2

⎛
⎝2

√√√√ C∑
c=1

1

nc
+

1

nT

+8

√
1

2
log

2

δ
( max
c∈{1,...,C}

1

nc
+

1

nT
)

) 1
2

.

The proof of Theorem 8 can be found in Section 6.6.4.

6.4 Relation to IC-type Methods

If P (Y ) stays the same across domains, the CIC method reduces to one of the

IC-type methods: domain invariant projection (DIP) [3]. However, their motiva-

tions are quite different. IC-type methods, which were proposed for correction of

covariate shift, aim to find components Xci whose distribution P (Xci) is invariant

across domains. Since P (Y |X) stays the same in the covariate shift, p(Y |Xci)

also stays the same. However, if P (Y |X) changes, it is not sure whether P (Y |Xci)

could stay the same.

We find that IC-type methods can actually be considered as a way to achieve

our CIC method under target shift, given that the distribution P (Y ) remains the
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Figure 6.3: Performance comparison on simulated data: (a) Classification error
w.r.t. class ratio; (b) Classification error w.r.t. dimension d.

same across domains. According to Theorem 6, if P S(Y ) = P new(Y ), we have

P S(Xci, Y ) = P T(Xci, Y ) and thus P S(Y |Xci) = P T(Y |Xci). In other words,

under assumption ACIC, if P (Y ) stays the same across domains, P S(Xci) =

P T(Xci) leads to P S(Y |Xci) = P T(Y |Xci).

If P (Y ) changes, CIC and DIP usually lead to different results. Suppose there

exist some components of X, Xci, whose conditional distribution given Y stay the

same across domains. In general, when P (Y ) changes across domains, it is very

unlikely for Xci to have domain-invariant distributions. As illustrated in Figure

6.2, the conditional distributions P (X1|Y = 1), P (X1|Y = 2) , and P (X2|Y = 2)

do not change across domains, while the conditional distribution P (X2|Y = 1)

is changed by shifting its mean from 3 to 4. The class prior P (Y = 1) on the

source and target domain is 0.5 and 0.8, respectively. Thus X1 is a conditional

invariant component while X2 is not. We evaluate the squared MMD between

the marginal distribution of these two components. DIP gives the results of

MMD2
X1

= 7.72e−2 and MMD2
X2

= 2.38e−2 and CIC gives MMD2
X1

= 2.25e−4

and MMD2
X2

= 6.44e−2. That is to say, DIP wrongly considers X2 as conditional

invariant component, while CIC considers X1 as conditional invariant component

correctly.
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6.5 Experiments

In this section we present experimental results on both simulated and real data

to show the effectiveness of the proposed CIC and CTC method. We select the

hyperparameters of our methods as follows. For Gaussian kernel used in MMD, we

set the standard deviation parameter σ to the median distance between all source

examples. The regularization parameters of the LS transformation are set to λS =

0.001 and λL = 0.0001. We choose different parameters for location and scale

transformations because we find that the conditional distributions usually have

larger location changes. The regularization parameter for the target information

preserving (TIP) term is set to λ = 0.001, resulting in two regularized methods:

CIC-TIP and CTC-TIP. We use β-weighted support vector machine (SVM) and

weighted kernel ridge regression (KRR) for classification and regression problems,

respectively. For details, please refer to [154]. We use linear kernel for simulation

data and Gaussian kernel for real data.

6.5.1 Simulations

We generate binary classification training and test data from a 10-dimensional

mixture of Gaussians:

x ∼
2∑
i=1

πiN(θi,Σi), θij ∼ U(−0.25, 0.25)

Σi ∼ 0.01 ∗W(2× ID, 7), (6.18)

where U(a, b) and W(Σ, df) represent the uniform distribution and Wishart dis-

tribution, respectively. The cluster indices are used as the ground truth class

labels. We apply two types of transformations to the test data to make the test

and training data have different distributions. Firstly, we randomly apply LS

transformation on 5 randomly selected features for each class. In addition, we

apply affine transformation on another 2 randomly chosen features. The remain-

ing 3 features are left unchanged to ensure that the IC-type methods will not fail

on the transformed data.

We compare our methods against domain invariant projection (DIP) [3], which
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is equivalent to our CIC method when P (Y ) does not change. We also include

the GeTarS method [154] which assumes that all the features are transferable

by LS-transformation. The regularization parameter C of SVM are selected by

5-fold cross validation on a grid. We repeat the experiments for 20 times and

report the average classification error.

Firstly, we test the methods’ sensitiveness to changes in class prior probability

P (Y ). we set the source class prior P S(Y = 1) to 0.5 and the number of compo-

nents d to 5. The target domain class prior pT(Y = 1) varies from 0.1 to 0.9 and

the corresponding class ratio β1 = pT(Y = 1)/P S(Y = 1) is 0.2, 0.4, ..., 1.8. We

compare CIC and DIP which all aim at finding invariant components. Figure 6.3

(a) gives the classification error as β1 ranges from 0.2 to 1.8. We can see that

the performance of DIP decreases as β1 gets far away from 1, while CIC performs

well with all the β1 values. We can also see that DIP outperforms CIC when

P (Y ) changes slightly, which is reasonable because CIC introduces random error

in the estimation of β.

Secondly, we evaluate the effectiveness of discovering transferable compo-

nents with LS transformation. We set the prior distribution on both domains

to P S(Y = 1) = pT(y = 1) = 0.5 and demonstrate how the performances vary

with the dimensionality d of the learned components. Figure 6.3 (b) shows the

classification error of each method as d ranges from 1 to 9. We can see that CTC

outperforms DIP when d > 4, indicating that CTC successfully matches the fea-

tures transformed by LS transformation for domain transfer. GeTarS does not

perform well because LS transformation fails to match the two affine-transformed

features.

6.5.2 Object Recognition

We also compare our approaches with alternatives on the Office-Caltech dataset

introduced in [39]. The Office-Caltech dataset was constructed by extracting the

10 categories common to the Office dataset [115] and the Caltech256 [49] dataset.

We have four domains in total: Amazon (images downloaded from Amazon),

Webcam (low-resolution images by a web camera), DSLR (high-resolution images

by a SLR camera), and Caltech-256. We use the bag of visual words features
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Table 6.2: Comparison of different methods on the Office+Caltech256 dataset.
A-Amazon, C-Caltech10, W-Webcam, D-DSLR.

SVM GFK TCA LM GeTarS DIP DIP-CC CTC CTC-TIP

A→C 41.7 42.2 35.0 45.5 44.9 47.4 47.2 48.6 48.8
A→D 41.4 42.7 36.3 47.1 45.9 50.3 49.0 52.9 52.2
A→W 34.2 40.7 27.8 46.1 39.7 47.5 47.8 49.8 49.1

C→A 51.8 44.5 41.4 56.7 56.9 55.7 58.7 58.1 57.9
C→D 54.1 43.3 45.2 57.3 49.0 60.5 61.2 59.2 58.5
C→W 46.8 44.7 32.5 49.5 46.4 58.3 58.0 58.6 57.8

W→A 31.1 31.8 24.2 40.2 38.4 42.6 40.9 43.2 43.1
W→C 31.5 30.8 22.5 35.4 34.3 34.2 37.2 38.3 38.8
W→D 70.7 75.6 80.2 75.2 86.0 88.5 91.7 94.3 93.6

Table 6.3: Comparison of different methods on the WiFi dataset.

KRR TCA SuK DIP DIP-CC GeTarS CTC CTC-TIP

t1 → t2 80.84± 1.14 86.85± 1.1 90.36± 1.22 87.98± 2.33 91.30± 3.24 86.76± 1.91 89.36± 1.78 89.22± 1.66
t1 → t3 76.44± 2.66 80.48± 2.73 94.97± 1.29 84.20± 4.29 84.32± 4.57 90.62± 2.25 94.80± 0.87 92.60± 4.50
t2 → t3 67.12± 1.28 72.02± 1.32 85.83± 1.31 80.58± 2.10 81.22± 4.31 82.68± 3.71 87.92± 1.87 89.52± 1.14

hallway1 60.02± 2.60 65.93± 0.86 76.36± 2.44 77.48± 2.68 76.24± 5.14 84.38± 1.98 86.98± 2.02 86.78± 2.31
hallway2 49.38± 2.30 62.44± 1.25 64.69± 0.77 78.54± 1.66 77.8± 2.70 77.38± 2.09 87.74± 1.89 87.94± 2.07
hallway3 48.42± 1.32 59.18± 0.56 65.73± 1.57 75.10± 3.39 73.40± 4.06 80.64± 1.76 82.02± 2.34 81.72± 2.25

provided by [38] for our evaluation.

In our experiments, we use the evaluation protocol in [38]. We compare

CTC and CTC-TIP with several state-of-the-art methods: geodesic flow ker-

nel (GFK) [39], transfer component analysis (TCA) [96], landmark selection

(LM) [38], DIP and its cluster regularized version DIP-CC, and GeTarS. The

dimensionality of the of the projection matrix W is determined by the subspace

disagreement measure introduced in [39]. We set the Gaussian kernel width pa-

rameter σ to the median distance between all source examples. The regularization

parameter C of SVM are selected by 5-fold cross validation on a grid. The classi-

fication accuracy is given in Table 6.2. It can be seen that our methods generally

work better than DIP and other competitors, which verifies that our methods

successfully find the conditional transferable components. Note that the class

ratio changes slightly across domains, the main improvement on this dataset and

the following WiFi dataset is attributed to the location-scale transform.
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6.5.3 Cross-domain Indoor WiFi Localization

We finally perform evaluations on the cross-domain indoor WiFi location dataset

provided in [156]. The WiFi data were collected from the hallway area of an

academic building. The hallway area was discretized into a space of 119 grids at

which the strength of WiFi signals received from D access points were collected.

The task is to predict the location of the device from the D-dimensional WiFi

signals, which is usually considered as a regression problem. In our CTC method,

we consider Y as a discrete variable when matching the distributions. The train-

ing and test data often have different distributions because they are collected at

different time periods by different devices.

We compare CTC and CTC-TIP with KMM, surrogate kernels (SuK) [156],

TCA, DIP and DIP-CC, and GeTarS. Following the evaluation method in [156],

we randomly choose 60% of the examples from the training and test domains and

report the average performance of 10 repetitions. The reported accuracy is the

percentage of examples on which the predicted location is within 3 meters from

the true location. The hyperparamters, including Gaussian kernel width, KRR

regularization parameter, and the dimension of W , are tuned on a very small

subset of the test domain.

Transfer Across Time Periods In this task, the WiFi data were collected

in three different time periods t1, t2, and t3 in the same hallway. We evaluate

the methods on three domain adaptation tasks, i.e., t1 → t2, t1 → t3, and

t2 → t3. The results are given in the upper part of Table 6.3. We can see

that our methods outperform the IC-type methods like TCA and DIP. Also,

our methods are comparable to SuK which is a state-of-the-art method on this

dataset.

Transfer Across Devices The signals from different devices may vary from

each other due to different signal sensing capabilities. To transfer between differ-

ent devices, the WiFi data were collected from two different devices at 3 straight-

line hallways, resulting in three tasks, i.e., hallway1, hallway2, hallway3. The

lower part of Table 6.3 gives the experimental results. Our methods significantly

outperform the competitors, indicating that CTC is very suitable for transferring

between devices.
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6.6 Proofs

6.6.1 Proof of Theorem 6

Proof. Combine (6.4) and (6.5), we have

C∑
c=1

pT(Y = vc)p
T(Xci|Y = vc) =

C∑
c=1

pnew(Y = vc)p
S(Xci|Y = vc). (6.19)

If the transformation W is non-trivial, there do not exist non-zero γ1, ..., γC and

ν1, ..., νC such that
∑C

c=1 γcp
T(Xci|Y = vc) = 0 and

∑C
c=1 νcp

S(Xci|Y = vc) = 0.

Therefore, we can transform (6.19) to

C∑
c=1

P T(Y = vc)P
T(Xci|Y = vc)− P new(Y = vc)p

S(Xci|Y = vc) = 0. (6.20)

According to ACIC in Theorem 6, we have ∀c,

P T(Y = vc)P
T(Xci|Y = vc)− P new(Y = vc)P

S(Xci|Y = vc) = 0. (6.21)

Taking the integral of (6.21) leads to P new(Y = vc) = P T(Y = vc), which further

implies that P S(Xci|Y = vc) = P T(Xci|Y = vc).

6.6.2 Proof of Lemma 2

Proof.

εT(h) =εT(h) + εnew(h)− εnew(h)

≤εnew(h) +
∣∣εT(h)− εnew(h)

∣∣
≤εnew(h) +

∫ ∣∣P new(Xci, Y )− P T(Xci, Y )
∣∣∣∣L(Y, h(Xci))

∣∣dXcidY

≤εnew(h) + d1(p
new(Xci, Y ), pT(Xci, Y )). (6.22)
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6.6.3 Proof of Theorem 7

Proof. In the binary classification problem, because Y ∈ {0, 1} is a discrete vari-

able, we use the Kronecker delta kernel for Y. Then (6.17) becomes

dk(p
new(Xci, Y ), pT(Xci, Y ))

=
1∑
c=0

∣∣∣∣P new(Y = c)μpS(Xci|Y=c)[ψ(X
ci)]

− P T(Y = c)μpT(Xci|Y=c)[ψ(X
ci)]

∣∣∣∣2
F

=
∣∣∣∣Δ1

∣∣∣∣2
F
+

∣∣∣∣Δ0

∣∣∣∣2
F

=
∣∣∣∣Δ1 +Δ0

∣∣∣∣2
F
− 2Δᵀ

1Δ0

=
∣∣∣∣ 1∑

c=0

P new(Y = c)μpS(Xci|Y=c)[ψ(X
ci)]

−
1∑
c=0

P T(Y = c)μpT(Xci|Y=c)[ψ(X
ci)]

∣∣∣∣2
F
− 2Δᵀ

1Δ0

=
∣∣∣∣μpnew(Xci)[ψ(X

ci)]− μpT(Xci)[ψ(X
ci)]

∣∣∣∣2
F
− 2Δᵀ

1Δ0

= J ci − 2Δᵀ
1Δ0. (6.23)

Clearly, when 0 < θ ≤ π/2, we have Δᵀ
1Δ0 ≥ 0. Therefore,

dk(p
new(Xci, Y ), pT(Xci, Y )) ≤ J ci. (6.24)

When π/2 < θ ≤ π, we express Jci as

J ci =
∣∣∣∣Δ1 +Δ0

∣∣∣∣2
F

=
∣∣∣∣Δ1

∣∣∣∣2
F
+

∣∣∣∣Δ0

∣∣∣∣2
F
+ 2

∣∣∣∣Δ1

∣∣∣∣
F

∣∣∣∣Δ0

∣∣∣∣
F
cos θ

=(
∣∣∣∣Δ1

∣∣∣∣
F
+

∣∣∣∣Δ0

∣∣∣∣
F
cos θ)2 +

∣∣∣∣Δ0

∣∣∣∣2
F
sin2 θ (6.25)

=(
∣∣∣∣Δ0

∣∣∣∣
F
+

∣∣∣∣Δ1

∣∣∣∣
F
cos θ)2 +

∣∣∣∣Δ1

∣∣∣∣2
F
sin2 θ. (6.26)

According to (6.25) and (6.26), we have

∣∣∣∣Δ0

∣∣∣∣2
F
sin2 θ ≤ J ci and

∣∣∣∣Δ1

∣∣∣∣2
F
sin2 θ ≤ J ci.
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Thus

dk(p
new(Xci, Y ), pT(Xci, Y )) =

∣∣∣∣Δ1

∣∣∣∣2
F
+

∣∣∣∣Δ0

∣∣∣∣2
F
≤ 2

J ci

sin2θ
. (6.27)

Combining (6.24) and (6.27), we can obtain the results in Theorem 7.

6.6.4 Proof of Theorem 8

Proof. We have

Ĵci(βββ,W ) =
∣∣∣∣ 1
nS
ψ
(
W ᵀxS

)
βββ − 1

nT
ψ(W ᵀxT)1

∣∣∣∣2
F

=
∣∣∣∣ 1
nS
ψ
(
W ᵀxS

)
Rdisααα− 1

nT
ψ(W ᵀxT)1

∣∣∣∣2
F

=
∣∣∣∣[ 1
n1

n1∑
i=1

ψ(W ᵀxS1i), . . . ,
1

nC

nC∑
i=1

ψ(W ᵀxSCi)]ααα− 1

nT
ψ(W ᵀxT)1

∣∣∣∣2
F

= Ĵ ci(ααα,W ), (6.28)

where xSci, c ∈ {1, . . . , C} denotes the i-th observation of the c-th class in the

source domain.

Define Δ = {ααα|ααα ≥ 0,
∑C

c=1αααc = 1}. We have

J ci(αααn,Wn)− J ci(ααα∗,Wn)

= J ci(αααn,Wn)− Ĵ ci(αααn,Wn) + Ĵ ci(αααn,Wn)

−Ĵ ci(ααα∗,Wn) + Ĵ ci(ααα∗,Wn)− J ci(ααα∗,Wn)

Since αααn is the empirical minimizer and thus Ĵ ci(αααn,Wn) ≤ Ĵ ci(ααα∗,Wn)

≤ J ci(αααn,Wn)− Ĵ ci(αααn,Wn) + Ĵ ci(ααα∗,Wn)− J ci(ααα∗,Wn)

≤ 2 sup
ααα∈Δ

|J ci(ααα,Wn)− Ĵ ci(ααα,Wn)|. (6.29)

Before upper bounding the above defect on the right hand side, we enable

some properties of the kernel. Assume that there exists a ψmax such that for any

x ∈ X, it holds that −ψmax ≤ ψ(x) ≤ ψmax and that
∣∣∣∣ψmax

∣∣∣∣
2
≤ ∧2. Since ααα ≥ 0
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and
∣∣∣∣ααα∣∣∣∣

1
= 1, for any xS, it also holds that

[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα ≤ ψmax.

Now, we have the following Lipschitz property of J ci:

|J ci(ααα,Wn)− Ĵ ci(ααα,Wn)|

≤ |max
xS

[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα

+max
xS

1

nT
ψ(W ᵀ

nx
T)1|ᵀ|E(Y,X)∼pS [β(Y )ψ(W ᵀ

nX)]− EX∼pT [ψ(W
ᵀ
nX)]

−[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα +

1

nT
ψ(W ᵀ

nx
T)1|

≤ 2|ψmax|ᵀ|E(Y,X)∼pS [β(Y )ψ(W ᵀ
nX)]− EX∼pT [ψ(W

ᵀ
nX)]

−[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα +

1

nT
ψ(W ᵀ

nx
T)1|. (6.30)

Then, combining (6.29) and (6.30), we have

J ci(αααn,Wn)− J ci(ααα∗,Wn)

≤ 2 sup
ααα∈Δ

|J ci(ααα,Wn)− Ĵ ci(ααα,Wn)|
≤ 4 sup

ααα∈Δ
|ψmax|ᵀ|E(Y,X)∼pS [β(Y )ψ(W ᵀ

nX)]− EX∼pT [ψ(W
ᵀ
nX)]

−[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα +

1

nT
ψ(W ᵀ

nx
T)1|.(6.31)

Now, we are going to upper bound the defect:

fψ(X,xS,xT)

� E(Y,X)∼pS [βββ(Y )ψ(W ᵀ
nX)]− EX∼pT [ψ(W

ᵀ
nX)]

−[
1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα +

1

nT
ψ(W ᵀ

nx
T)1. (6.32)

We employ the McDiarmid’s inequality to upper bound the �2-norm of the defect.
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Theorem 9 (McDiarmid’s inequality). Let X = (X1, . . . , Xn) be an independent

and identically distributed sample and X i a new sample with the i-th example in

X being replaced by an independent example X ′
i. If there exists c1, . . . , cn > 0

such that f : Xn → R satisfies the following conditions:

|f(X)− f(X i)| ≤ ci, ∀i ∈ {1, . . . , n}. (6.33)

Then for any X ∈ Xn and ε > 0, the following inequalities hold:

Pr{|Ef(X)− f(X)| ≥ ε} ≤ 2 exp

( −2ε2∑n
i=1 c

2
i

)
. (6.34)

We now check that f(X,xS,xT) =
∣∣∣∣fψ(X,xS,xT)

∣∣∣∣2 satisfies the bounded

difference property. Let xS
ci denote the i-th observation belonging to the c-th

class. We have

|f(X,xS
i ,x

T)− f(X,xS,xT)|
= |(fψ(X,xS

i ,x
T) + fψ(X,xS,xT))T (fψ(X,xS

i ,x
T)− fψ(X,xS,xT))|

≤ 4|ψmax|ᵀ|fψ(X,xS
i ,x

T)− fψ(X,xS,xT)|
= 4|ψmax|ᵀ|αααc

nc
(ψ(W ᵀ

nx
S
ci)− ψ(W ᵀ

nx
′S
ci))|

≤ 8αααc
nc

|ψmax|ᵀ|ψmax| ≤ 8 ∧2
2 αααc
nc

. (6.35)

Similarly, it holds that

|f(X,xS,xT
i )− f(X,xS,xT)| ≤ 8∧2

2

nT
. (6.36)

Employing McDiarmid’s inequality, we have that

Pr{|f(X,xS,xT)− ExS,xTf(X,xS,xT)| ≥ ε}

≤ 2 exp

(
−2ε2

64 ∧4
2 (

∑C
c=1

ααα2
c

nc
+ 1

nT )

)
. (6.37)

Combining (6.31) and (6.37), we have that for any δ > 0, with probability at
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least 1− δ,

J ci(αααn,Wn)− J ci(ααα∗,Wn)

≤ 2 sup
ααα∈Δ

|J ci(ααα,Wn)− Ĵ ci(ααα,Wn)|

≤ 4 sup
ααα∈Δ

|ψmax|ᵀ|fψ(X,xS,xT)|
Using Cauchy-Schwarz inequality

≤ 4 sup
ααα∈Δ

∣∣∣∣ψmax

∣∣∣∣∣∣∣∣fψ(X,xS,xT)
∣∣∣∣

≤ 4 ∧2

⎛
⎝ExS,xT sup

ααα∈Δ
f(X,xS,xT) + ∧2

2

√√√√32 log
2

δ
(
C∑
c=1

ααα2
c

nc
+

1

nT
)

⎞
⎠

1
2

≤ 4 ∧2

(
ExS,xT sup

ααα∈Δ
f(X,xS,xT) + 32 ∧2

2

√
1

2
log

2

δ
( max
c∈{1,...,C}

1

nc
+

1

nT
)

) 1
2

.

Now we are going to upper bound the term ExS,xT supααα∈Δ f(X,x
S,xT). Let

gn(x
S,xT) � [

1

n1

n1∑
i=1

ψ(W ᵀ
nx

S
1i), . . . ,

1

nC

nC∑
i=1

ψ(W ᵀ
nx

S
Ci)]ααα− 1

nT
ψ(W ᵀ

nx
T)1 (6.38)

and

g(X) � E(Y,X)∼pS [βββ(Y )ψ(W ᵀ
nX)]− EX∼pT [ψ(W

ᵀ
nX)]. (6.39)

We have that

ExS,xT sup
ααα∈Δ

∣∣∣∣fψ(X,xS,xT)
∣∣∣∣2

= ExS,xT sup
ααα∈Δ

∣∣∣∣g(X)− gn(x
S,xT)

∣∣∣∣2
= ExS,xT sup

ααα∈Δ

∣∣∣∣Ex′S,x′Tgn(x
′S,x′T)− gn(x

S,xT)
∣∣∣∣2

≤ ExS,xT ,x′S,x′T sup
ααα∈Δ

∣∣∣∣gn(x′S,x′T)− gn(x
S,xT)

∣∣∣∣2. (6.40)

where x′S,x′T are ghost samples which are i.i.d. with xS,xT, respectively.

Since xj,x′j, j = S,T are i.i.d. samples,
∑nc

i=1 ψ(W
ᵀ
nx

j
ci) − ψ(W ᵀ

nx
′j
ci) has a
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symmetric property, which means it has an even density function. Thus,

nc∑
i=1

ψ(W ᵀ
nx

j
ci)− ψ(W ᵀ

nx
′j
ci) and

nc∑
i=1

σci(ψ(W
ᵀ
nx

j
ci)− ψ(W ᵀ

nx
′j
ci))

has the same distribution, where σci are independent variables uniformly dis-

tributed from {−1, 1}. Then, we have

ExS,xT ,x′S,x′T sup
ααα∈Δ

∣∣∣∣gn(x′S,x′T)− gn(x
S,xT)

∣∣∣∣2
= ExS,xT ,x′S,x′T ,σσσ sup

ααα∈Δ

∣∣∣∣gn(x′S,x′T,σσσ)− gn(x
S,xT,σσσ)

∣∣∣∣2, (6.41)

where

gn(x
S,xT,σσσ)

� [
1

n1

nc∑
i=1

σ1i(ψ(W
ᵀ
nx

S
ci) . . .

1

nC

nC∑
i=1

σCi(ψ(W
ᵀ
nx

S
Ci)]ααα− 1

nT

nT∑
i=1

σTiψ(W
ᵀ
nx

T
i ).

According to Talagrand contraction Lemma, we have

ExS,xT ,x′S,x′T ,σσσ sup
ααα∈Δ

∣∣∣∣gn(x′S,x′T,σσσ)− gn(x
S,xT,σσσ)

∣∣∣∣2
≤ 2ExS,xT ,x′S,x′T ,σσσ sup

ααα∈Δ
|ψmax|ᵀ|gn(x′S,x′T,σσσ)− gn(x

S,xT,σσσ)|

≤ 4ExS,xT ,x′S,x′T ,σσσ sup
ααα∈Δ
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ααα∈Δ

|ψmax|ᵀ〈
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ᵀ
〉
.

Let

vvv � [
1

n1

nc∑
i=1

σ1i(ψ(W
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S
ci), . . . ,

1

nC
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i=1

σCi(ψ(W
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Ci),

1
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i )]

ᵀ.
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Since
∣∣∣∣[αααᵀ,−1]ᵀ

∣∣∣∣
2
≤ 2, using Cauchy-Schwarz inequality again, we have

ExS,xT ,x′S,x′T ,σσσ sup
ααα∈Δ

∣∣∣∣gn(x′S,x′T,σσσ)− gn(x
S,xT,σσσ)

∣∣∣∣2
≤ 4ExS,xT ,x′S,x′T ,σσσ sup

ααα∈Δ
|ψmax|ᵀ 〈[αααᵀ,−1]ᵀ, vvv〉

≤ 8ExS,xT ,x′S,x′T ,σσσ|ψmax|ᵀ
√
vvvᵀvvv
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Eσσσvvvᵀvvv
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≤ 8 ∧2
2

√√√√ C∑
c=1

1
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. (6.42)

At the end, combining (6.38), (6.40) and (6.42), with probability at least 1−δ,
we have

J ci(αααn,Wn)− J ci(ααα∗,Wn)

≤ 4 ∧2

(
ExS,xT sup

ααα∈Δ
f(X,xS,xT) + 32 ∧2

√
1

2
log

2

δ
( max
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) 1
2
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⎠
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.
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6.7 Conclusion

We have considered domain adaptation by learning conditional transferable com-

ponents in the situation where the distribution of the covariate and the conditional

distribution of the target given the covariate change across domains. We have

shown that, if target causes the covariate, under appropriate assumptions, we are

able to find conditional transferable components whose conditional distribution

given the target is invariant after proper location-scale transformations, and esti-

mate the target distribution of the target domain. Also, we discussed the relation

of our method to the IC-type methods, pointing out that those methods can be

considered as a way to achieve our method when the distribution of the target

does not change. Finally, we provided theoretical analysis and empirical evalua-

tions to show the effectiveness of our method. In the future, we will consider how

to perform domain adaptation when the labels are noisy.
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Chapter 7

Conclusions

In this thesis, we studied the problem of learning causal relations from subsampled

time series data and the problem of solving domain adaptation problems from a

causal perspective.

First, we carefully revisited existing causal models, including causal Bayesian

networks, structural equation models, and time series models. We also reviewed

existing causal learning methods that learn causal models from empirical data

and discuss their advantages and limitations.

Second, we studied the problem of learning causal relations from time series

data when the sampling frequency is lower than the causal frequency. In this

case, the undersampling of the real process will lead to spurious instantaneous

effects, which cannot be explained by the existing time series causal models with

an instantaneous term. We found that it is possible to identify the true causal

structure from subsampled data, if the underlying causal relation is linear and

the noise process is non-Gaussian. We then proposed a latent variable model-

ing method to discover the causal relation by an EM procedure. We provided

both theoretical and empirical analysis to show the effectiveness of the proposed

method.

Third, we investigated how to perform multi-source domain adaptation in

different distribution-changing situations from a causal perspective. We first an-

alyzed how to optimally combine multiple source domains in the causal and anti-

causal direction. Then, we proposed a practical method in the situation where the

label Y is a cause for the feature X. In this situation, the marginal distribution
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PY and the conditional distribution PX|Y change independently, causing changes

in the marginal distribution PX . We utilized kernel mean embedding methods

to compare distributions and correct the shift in PY and PX|Y by estimating the

weights that combine multiple source domains.

Finally, we proposed a practical single domain adaptation algorithm in the

situation where Y is a cause for the feature X. We demonstrate how to learn

invariant components X ′ = T(X) that have the property that the joint distribu-

tion PX′,Y is invariant in the source and target domains. It is shown that if the

distribution PY does not change, traditional methods which extract components

enjoying invariance of PX′ , can actually give rise to invariance of PX′,Y in certain

conditions. We figured out such conditions and provided theoretical analysis of

the distribution correction performance. Empirical results on both synthetic and

real data also show that the proposed method can reduce the change in joint

distribution PX′,Y .

This thesis suggests two possible extensions. First, in causal learning from

subsampled time series, it is still unknown whether the causal relation is identifi-

able if the underlying causal relation is nonlinear. Recent advances in nonlinear

functional models may shed light on this problem. Second, in the single domain

adaption problem, we should pay more attention to the importance of match-

ing conditional distributions and exploit more prior knowledge from the data to

constraint the invariant feature learning procedure.
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A. Schwaighofer, , and N. Lawrence, Eds. Cambridge, MA: MIT Press,

2008, pp. 131–160. 79

[49] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category

dataset,” California Institute of Technology, Tech. Rep. 7694, 2007.

[Online]. Available: http://authors.library.caltech.edu/7694 86, 111

[50] R. Gulasekaran, T. Abeysinghe, R. Gulasekaran, T. Abeysinghe, and C. T.

Abeysinghe, “The distortionary effects of temporal aggregation on granger

causality,” Tech. Rep., 2002. 41

[51] T. Haavelmo, “The statistical implications of a system of simultaneous

equations,” Econometrica, Journal of the Econometric Society, pp. 1–12,

1943. 18

[52] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,

R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech:

Scaling up end-to-end speech recognition,” arXiv preprint arXiv:1412.5567,

2014. 2

[53] A. C. Harvey, Forecasting, Structural Time Series Models and the Kalman

Filter. Cambridge University Press, 1989. 42, 43

[54] A. C. Harvey and C. H. Chung, “Estimating the underlying change in

unemployment in the uk,” Journal of the Royal Statistics Society, Series

A, vol. 163, pp. 303–309, 2000. 43
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