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Abstract

Multi-label learning, in which each instance can belong to multiple labels
simultaneously, has significantly attracted the attention of researchers as
a result of its wide range of applications, which range from document
classification and automatic image annotation to video annotation.

Many multi-label learning models have been developed to capture label
dependency. Amongst them, the classifier chain (CC) model is one of the
most popular methods due to its simplicity and promising experimental
results. However, CC suffers from three important problems: Does the
label order affect the performance of CC? Is there any globally optimal
classifier chain which can achieve the optimal prediction performance for
CC? If yes, how can the globally optimal classifier chain be found? It
is non-trivial to answer these problems. Another important branch of
methods for capturing label dependency is encoding-decoding paradigm.
Based on structural SVMs, maximum margin output coding (MMOC)
has become one of the most representative encoding-decoding methods
and shown promising results for multi-label classification. Unfortunately,
MMOC suffers from two major limitations: 1) Inconsistent performance:
D. McAllester has already proved that structural SVMs fail to converge
on the optimal decoder even with infinite training data. 2) Prohibitive
computational cost: the training of MMOC involves a complex quadratic
programming (QP) problem over the combinatorial space, and its compu-
tational cost on the data sets with many labels is prohibitive. Therefore, it
is non-trivial to break the bottlenecks of MMOC, and develop efficient and
consistent algorithms for solving multi-label learning tasks. The predic-
tion of most multi-label learning methods either scales linearly with the
number of labels or involves an expensive decoding process, which usually
requires solving a combinatorial optimization. Such approaches become
unacceptable when tackling thousands of labels, and are impractical for
real-world applications, such as document annotation. It is imperative to
design an efficient, yet accurate multi-label learning algorithm with the
minimum number of predictions. This thesis systematically studies how
to efficiently solve aforementioned issues with provable guarantee.
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