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Abstract

Multi-label learning, in which each instance can belong to multiple labels

simultaneously, has significantly attracted the attention of researchers as

a result of its wide range of applications, which range from document

classification and automatic image annotation to video annotation.

Many multi-label learning models have been developed to capture label

dependency. Amongst them, the classifier chain (CC) model is one of the

most popular methods due to its simplicity and promising experimental

results. However, CC suffers from three important problems: Does the

label order affect the performance of CC? Is there any globally optimal

classifier chain which can achieve the optimal prediction performance for

CC? If yes, how can the globally optimal classifier chain be found? It

is non-trivial to answer these problems. Another important branch of

methods for capturing label dependency is encoding-decoding paradigm.

Based on structural SVMs, maximum margin output coding (MMOC)

has become one of the most representative encoding-decoding methods

and shown promising results for multi-label classification. Unfortunately,

MMOC suffers from two major limitations: 1) Inconsistent performance:

D. McAllester has already proved that structural SVMs fail to converge

on the optimal decoder even with infinite training data. 2) Prohibitive

computational cost: the training of MMOC involves a complex quadratic

programming (QP) problem over the combinatorial space, and its compu-

tational cost on the data sets with many labels is prohibitive. Therefore, it

is non-trivial to break the bottlenecks of MMOC, and develop efficient and

consistent algorithms for solving multi-label learning tasks. The predic-

tion of most multi-label learning methods either scales linearly with the

number of labels or involves an expensive decoding process, which usually

requires solving a combinatorial optimization. Such approaches become

unacceptable when tackling thousands of labels, and are impractical for

real-world applications, such as document annotation. It is imperative to

design an efficient, yet accurate multi-label learning algorithm with the

minimum number of predictions. This thesis systematically studies how

to efficiently solve aforementioned issues with provable guarantee.
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Chapter 1

Introduction

During the past decade, multi-label classification has become a popular machine

learning paradigm as its modern wide applications, such as protein function clas-

sification, music categorization and semantic scene classification. In this chapter,

we briefly introduce the background of multi-label learning, related advanced topics,

thesis contributions, and finally present the organization of the entire thesis.

1.1 Background
Traditional supervised learning is one of the most important machine learning paradigms,

where each example is represented by a feature vector and associated with a single

label from a set of disjoint labels L (L > 1). If L = 2, the learning problem is called

a binary classification problem. If L > 2, then it is called a multiclass classification

problem.

Because real-world objects may be very complicate and have multiple semantic

meanings simultaneously, there are many learning problems where the above settings

do not fit well. For example, an image as shown in Figure 1.1 may have cloud, tree and

sky tags Boutell et al. [2004]; Huang et al. [2016]; a document can be associated with

a range of topics, such as Sports, Finance and Education Schapire and Singer [2000a];

a gene belongs to the functions of protein synthesis, metabolism and transcription
Barutcuoglu et al. [2006].

To deal with the multiple semantic settings that each instance may involve, one

can assign a set of proper labels, which represents multiple semantic meanings,

to the instances. Then, multi-label learning paradigm Tsoumakas et al. [2009,

2010] emerges based on aforementioned real applications. In contrast to traditional

supervised learning, each instance can belong to a set of labels instead of a single label

simultaneously in multi-label learning. The learning task is to learn a function which

is able to predict the proper label sets for unseen instances.
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Figure 1.1: The illustration of image annotation, where an image may have cloud, tree
and sky tags.

Multi-label learning has been applied many modern wide applications. We show

the following applications.

With the development of considerable videos on the Internet (e.g., Youtube, Flickr

and Facebook) [Liu et al., 2015a,b], efficient and effective indexing and searching

these video corpus becomes more and more important for the research and industry

community. Currently, semantic-level video annotation (i.e., the semantic video

concept detection) has been an important research topic in the multimedia research

community, which aims to tag videos with a set of concepts of interest, including

scenes (e.g., garden, sky, tree), objects (e.g., animals, people, airplane, car), events

(e.g., election, ceremony) and certain named entities (e.g., university, person, home).

Recently, much effort have been made on annotating video concepts in a generic

fashion. For example, Naphade et al. [2006] develop a large scale concept ontology

for generic video annotation and Snoek et al. [2006] build an ontology of 101 concepts

from News video as well. In contrast to the generic video annotation algorithms,

Qi et al. [2008] focus on a multi-label video annotation setting, where a video can

belong to multiple labels at the same time. Qi et al. [2008] attempt to capture the

correlations between different labels to improve the annotation performance on generic

2



Figure 1.2: Some multi-labeled examples from TRECVID data set. T and F represent

the positive and negative labels for corresponding concepts respectively.

video concepts. In many real-world video corpus, the videos are multi-labeled. For

instance, most of the videos in the popular TRECVID data set Snoek et al. [2006]

are annotated by more than one label from a set of 39 different concepts. Figure

1.2 illustrates that the videos belong to multiple labels. For example, a video can

be classified as “outdoor”, “face” and “road” at the same time.

Recently, the development of green computing and energy efficient 5G applications

has become one of the most important topics in communications Wunder et al. [2014].

Under this field, advanced high performance algorithms for mobile applications have

attracted the attention of researchers Han et al. [2015, 2017]. Recommendation

systems are widely used to predict the “rating” or “preference” that a user would give

to an item. A good recommendation system with high performance is able to attract

users to the service for 5G applications. Guo et al. [2016] focus on high performance

multi-label classification methods and their applications for medical recommendations

in the domain of 5G communication.

Implementing the improvement of situational awareness play a vital role for

making decision in urban emergency management. Recently, bystanders and the city

infrastructure provide most information for urban emergency management. However,

there is no standard way of collecting information from bystanders, and the city

infrastructure is built from cost intensive sensors. Both bystanders and the city

infrastructure have their limitations and disadvantages. Therefore,it is imperative

to utilize other information sources for obtaining incident information to improve

situational awareness. With the fast development of social media, microblogs and

twitter have shown as valuable information source during incidents, such as real-time

detection of earthquakes Sakaki et al. [2010], tracking of diseases Signorini et al.

[2011], as well as the detection of fires and floods Vieweg et al. [2010]. These

applications have already demonstrated the value of microblogs and twitter in the

course of crisis mitigation. Schulz et al. [2016] study small-scale incident reporting

3



behavior with microblogs, and employ multi-label classification of tweets to evaluate

the rapid prototyping capabilities and usefulness of the framework.

Effective and consistent segmentation of brain white matter bundles at neonatal

stage plays a vital role in detecting white matter abnormalities and understanding brain

development for the prediction of psychiatric disorders. Because the complexity of

white matter anatomy and the spatial resolution of diffusion-weighted MR imaging,

multiple fiber bundles can pass through one voxel. Ratnarajah and Qiu [2014] aim

to to assign one or multiple anatomical labels of white matter bundles to each voxel

to reflect complex white matter anatomy of the neonatal brain. To achieve this goal,

Ratnarajah and Qiu [2014] explore the supervised multi-label learning algorithm in

Riemannian diffusion tensor spaces, which considers diffusion tensors lying on the

Log-Euclidean Riemannian manifold of symmetric positive definite (SPD) matrices

and their corresponding vector space as feature space. Ratnarajah and Qiu [2014]

demonstrate that they are able to automatically learn the number of white matter

bundles at a location and provide anatomical annotation of the neonatal white matter.

Moreover, Ratnarajah and Qiu [2014] also develop the binary mask for individual

white matter bundles to facilitate tract-based statistical analysis in clinical studies.

Finally, Ratnarajah and Qiu [2014] apply their method to automatically segment 13

white matter bundles of the neonatal brain and examine the segmentation accuracy

against semi-manual labels derived from tractography.

We summarize the applications in Table 1.1.

A comprehensive review of multi-label learning can be found in Zhang and Zhou

[2014] and references therein.

1.2 Advanced Topics
Many multi-label learning models [Chen and Lin, 2012b; Dembczynski et al., 2010;

Gong et al., 2017; Guo and Gu, 2011; Huang and Zhou, 2012; Kang et al., 2006; Liu

and Tsang, 2015a; Read et al., 2009; Zhang and Schneider, 2012] have been developed

to capture label dependency. Amongst them, classifier chain (CC) Read et al. [2009]

and maximum margin output coding (MMOC) Zhang and Schneider [2012] are two

most popular methods due to their simplicity and promising experimental results Read

et al. [2009]; Zhang and Schneider [2012]. Unfortunately, both CC and MMOC suffer

from some major limitations. Moreover, the prediction of aforementioned multi-

label learning methods either scales linearly with the number of labels or involves

an expensive decoding process, which usually requires solving a combinatorial

optimization. Such approaches become unacceptable when tackling thousands of

labels, and are impractical for real-world applications, such as document annotation.

This thesis systematically investigates the following three advanced topics in multi-

label learning:
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Table 1.1: The applications of multi-label learning.

Reference Applications

Boutell et al. [2004] automatic image annotation

Zhang and Zhou [2006] document classification

Barutcuoglu et al. [2006] gene function prediction

Qi et al. [2008] automatic video annotation

Guo et al. [2016] mobile medical recommendations

Bucak et al. [2010] visual object recognition

Schulz et al. [2016] social network analysis

Venkatesan et al. [2016] high-speed streaming data

Shao et al. [2015] quantitative structure-activity relationship models

Ciarelli et al. [2014] web page categorization

Ratnarajah and Qiu [2014] neonatal brains

Wan et al. [2014] protein subcellular localization

He et al. [2012] visual mobile robot navigation

Neagu et al. [2005] visual arts data mining

Grady and Funka-Lea [2004] image segmentation

1.2.1 Underlying Problems Behind CC
CC suffers from three important problems: Does the label order affect the performance

of CC? Apparently yes, because different classifier chains involve different classifiers

trained on different training sets. Thus, to reduce the influence of the label order, Read

et al. [2009] proposed the ensembled classifier chain (ECC) to average the multi-label

predictions of CC over a set of random chain ordering. Since the performance of CC

is sensitive to the choice of label order, there is another important question:Is there any

globally optimal classifier chain which can achieve the optimal prediction performance

for CC? If yes, how can the globally optimal classifier chain be found? It is non-trivial

to answer these problems.

1.2.2 Major Limitations of MMOC
Based on structural SVMs McAllester [2006]; Tsochantaridis et al. [2005], MMOC

has become one of the most representative encoding-decoding methods and shown

promising results for multi-label classification. Unfortunately, MMOC suffers from

two major limitations: 1) Inconsistent performance: McAllester [2006] has already

proved that structural SVMs fail to converge on the optimal decoder even with infinite
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training data. 2) Prohibitive computational cost: the training of MMOC involves a

complex quadratic programming (QP) problem over the combinatorial space, and its

computational cost on the data sets with many labels is prohibitive. Therefore, it is

non-trivial to break the bottlenecks of MMOC, and develop efficient and consistent

algorithms for solving multi-label learning tasks.

1.2.3 Scalability of Prediction
One central challenging issue for practical multi-label learning is the scalability of

prediction. Suppose one needs to predict the presence or absence of q labels form input

instances, simple approaches, like Read et al. [2009]; Tsoumakas et al. [2010], scaling

the number of predictions to be linear with the number of labels, take O(q ×m) time

for the prediction. However, in real-world applications, like image annotation Deng

et al. [2009], m and q can be very large and the cost of those exhaustive approaches

quickly becomes prohibitive. We cannot get the results of these exhaustive approaches

on the large-scale data sets within one week.

1.3 Thesis Contributions
The main contributions of this thesis can be summarized in following three parts.

1.3.1 Underlying Problems Behind CC
Contribution:

• This thesis first generalizes the CC model over a random label order. Then,

we present a theoretical analysis of the generalization error for the proposed

generalized model.

• Based on our results, we propose a dynamic programming based classifier chain

(CC-DP) algorithm to search the globally optimal label order for CC and a

greedy classifier chain (CC-Greedy) algorithm to find a locally optimal CC.

Furthermore, we propose Tree-DP and Tree-Greedy algorithms to further speed

up CC-DP and CC-Greedy, respectively.

Outcome:

• This contribution was published in NIPS-2015 Liu and Tsang [2015b].

• The extension of this work is currently under the review by JMLR.
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1.3.2 Major Limitations of MMOC
Contribution:

• To avoid the inconsistent performance of MMOC, we present a novel large

margin metric learning paradigm for multi-label classification. Our theoretical

analysis shows that our proposed model converges to the optimal solutions, and

also reduces the generalization error for multi-label classification.

• To incorporate the feature and label correlations, we project both the input and

output to the same embedding space, in which the input and output can be

compared. A large margin formulation with k nearest neighbor constraints is

proposed to learn the embedding space. Lastly, we transform the formulation to

metric learning Kulis [2013]; Yang and Jin [2006] problems.

• After transformation, our optimization problem is reduced to a semidefinite

programming problem. To handle many outputs, an accelerated proximal

gradient (APG) method Beck and Teboulle [2009]; Toh and Yun [2009] is

adapted to solve the resultant optimization problem.

• To avoid the expensive decoding step, we select k nearest neighbors from the

training set for each testing instance in the embedding space and make a rapid

prediction based on the labels of those k nearest neighbors.

Outcome:

• This contribution was published in AAAI-2015 Liu and Tsang [2015a].

• The extension of this work is currently under the review by TPAMI.

1.3.3 Scalability of Prediction
Contribution:

• We observe three important phenomena of real-world multi-label data sets.

• To reduce the number of predictions, based on the properties of multi-label data

sets, we employ the coding tree model to deal with both the transformed multi-

class classification task and multi-label classification problems in bottom-up and

top-down manners, respectively.

• We provide a theoretical analysis of the average number of predictions for the

both situations and the testing time complexity analysis.

Outcome:

• This contribution is currently accepted by JMLR-2017 Liu and Tsang [2017].
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Figure 1.3: The organization of this thesis.

1.4 Thesis Outline
This thesis systematically studies the underlying problems behind CC and MMOC and

provides the solutions with provable guarantee. Then, we focus on designing efficient,

yet accurate multi-label learning algorithms with the minimum number of predictions.

This thesis is organized as follows:

Chapter 2 introduces the related work.

Chapter 3 studies the underlying problems behind CC and provides the answers

with provable guarantee.

Chapter 4 addresses the major limitations of MMOC.

Chapter 5 introduces the coding tree framework for multi-label prediction.

Chapter 6 concludes this thesis and also presents the possible future works.

The organization of this thesis is shown in Figure 1.3.

1.5 Publications
1. Weiwei Liu, and Ivor W.Tsang, Sparse Perceptron Decision Tree for Millions

of Dimensions, AAAI Conference on Artificial Intelligence (AAAI), 2016: 1881-

1887.
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2. Weiwei Liu, and Ivor W.Tsang, On the Optimality of Classifier Chain for Multi-

label Classification, Advances in Neural Information Processing Systems (NIPS),
2015: 712-720.

3. Weiwei Liu, and Ivor W.Tsang, Large Margin Metric Learning for Multi-Label

Prediction, AAAI Conference on Artificial Intelligence (AAAI), 2015: 2800-2806.

4. Weiwei Liu, and Ivor W. Tsang, Making Decision Trees Feasible in Ultrahigh

Feature and Label Dimensions, Journal of Machine Learning Research (JMLR),
Accept.

5. Weiwei Liu, Ivor W. Tsang, and Klaus-Robert Müller, An Easy-to-hard Learning

Paradigm for Multiple Classes and Multiple Labels, Journal of Machine Learning
Research (JMLR), under review.
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Chapter 2

Literature Review

In multi-label learning, we shall receive a feature vector xi ∈ R
d and a corresponding

label set Yi, where Yi ⊆ {λ1, λ2, · · · , λq}. For simplicity, yi ∈ {0, 1}q is used to

represent the label set Yi, where yi(j) = 1 if and only if λj ∈ Yi, for any integer

j : 1 ≤ j ≤ q. Given the training data set {xi, yi}ni=1, the goal of multi-label learning

is to learn a multi-label classifier f : Rd → {0, 1}q that accurately predicts the label

vector for any unseen instances. Figure 2.1 shows an example of multi-label samples

with five labels.

Tsoumakas et al. [2010] group existing multi-label classification methods into two

major categories: algorithm adaptation (AA) or problem transformation (PT). This

chapter first introduces a broad branch of methods, which belong to AA and PT

categories. Then, we focus on the review of the advanced topics involved in this thesis.

Figure 2.16 summarizes the categorization of representative AA and PT algorithms

reviewed in this Chapter.

2.1 Problem Transformation
This category of algorithms aim to transform multi-label learning problems into some

other well-established learning settings. Some works, such as Boutell et al. [2004] and

Chen et al. [2007], have transformed a multi-label data set into a single-label data set

with the same set of labels, and then trained a single-label classifier for the transformed

data set. According to Tsoumakas et al. [2010], the copy transformation replaces each

multi-label sample xi,Yi with |Yi| (|Yi| means the cardinality of Yi ) samples : (xi, λj),
if λj ∈ Yi. copy-weight is a variation of copy transformation. It assigns a weight of
1

|Yi| to each of the reduced samples. The select-max transformation chooses one label

from Yi with the most frequency among all samples to replace Yi. The select-min
transformation chooses one label from Yi with the least frequency among all samples

to replace Yi. The select-random transformation randomly chooses one label from Yi
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Figure 2.1: An example of multi-label samples with five labels.

to replace Yi. The ignore transformation simply removes every multi-labelled sample.

Figures 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 demonstrate the various transformations on the

data set of Figure 2.1.

Binary relevance (BR) Tsoumakas et al. [2010] is one of the most popular problem

transformation methods, which learns q binary classifiers independently for each

different label in {λ1, λ2, · · · , λq}. BR transforms the original data set into q data

sets that contain all examples of the original data set. The instances in the j-th data

set are positively labeled if the label set of these instances contain λj and negatively

labeled otherwise.

Given a new testing instance, BR uses q classifiers to predict all the labels. Based

on the data set of Figure 2.1, Figures 2.8, 2.9, 2.10, 2.11 and 2.12 show the five data

sets that are constructed by BR.

Label Powerset (LP) Tsoumakas et al. [2010] is an effective problem transforma-

tion methods, which reduces a multi-label classification problem into a multiclass

prediction problem by treating each distinct label set as one of the classes for a

transformed multi-class learning task. Figure 2.13 shows the transformed data set of

Figure 2.1 using LP.

Given a new testing instance, LP exploits the multiclass classifier to output the most

probable class, which is actually a set of labels. Read [2008] proposes an extended LP

to output a probability distribution over all classes. Based on the data set of Figure 2.1,

Figure 2.14 shows an example of a probability distribution over all classes produced

by LP. We can calculate the sum of the probabilities for each label to obtain a ranking

among the labels.

Based on LP, Read [2008] also proposes the pruned problem transformation (PPT)

method to remove label sets that appear less than a pre-defined threshold and replaces

their information by introducing disjoint subsets of these label sets that do exist more

times than the threshold.

Tsoumakas and Vlahavas [2007a] present the random k-labelsets (RKL) method to
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combine ensemble learning Zhou [2012] with LP for multi-label learning. Random k-

labelsets ensembles a number of LP classifiers, where each LP classifier is trained

using a different small random subset of the set of label, to make the prediction.

Random k-labelsets is able to capture the label correlations.

Ranking by pairwise comparison (RPC) Hüllermeier et al. [2008] reduces the

multi-label data set into
q(q−1)

2
binary label data sets, where each binary data set

contains the samples that belong to at least one of the two corresponding labels, but not

both. Then, RPC trains a binary classifier for each reduced data set. For the testing,

RPC makes use of all the classifiers for the prediction of a new testing instance, and

then obtains a ranking for each label by voting. Motivated by RPC, Loza Mencı́a and

Fürnkranz [2008a] develop a multi-label pairwise perceptron (MLPP) algorithm to use

perceptrons for the binary classification tasks.

Calibrated label ranking (CLR) Loza Mencı́a and Fürnkranz [2008a] employs the

techniques of pairwise comparison to conduct the ranking between labels, and trans-

form the multi-label learning problems into the label ranking problems. Specifically,

CLR extends RPC by introducing an additional virtual label, which acts as a natural

breaking point of the ranking into relevant and irrelevant sets of labels. Assume that

each instance which belongs to a given label is considered as positive for this label and

negative for the virtual label, while each instance which does not belong to a given

label is considered negative for this label and positive for the virtual label. Then, CLR

learns binary models to classify the virtual label and each of the other labels.

Zhang and Zhou [2007a] hypothesize that if the inherent ambiguity can be

explicitly expressed in the input space appropriately, the problem of multi-label

learning can be solved more effectively. Then, this work proposes a novel multi-

label learning approach, INSDIF, to verify this hypothesis. INSDIF aims to perform

instance differentiation that transforms an example into a bag of instances each of

which reflects the example’s relationship with one of the possible classes. Specifically,

INSDIF builds a prototype vector for each label, by averaging all instances of the

training set that belong to this label. After that, every instance is transformed to a

bag of q instances, each of which equal to the difference between the initial instance

and one of the prototype vectors. In this way, INSDIF directly addresses the inherent

ambiguity of each example in the input space. Furthermore, a two level classification

strategy is used to learn from the transformed data set.

Classifier chain is one of the most important PT methods, which will be introduced

in Chapter 2.3.

2.2 Algorithm Adaptation
ML-kNN Zhang and Zhou [2007b] is one of the most popular AA methods. The

main idea of ML-kNN is to adapt k nearest neighbor techniques to deal with multi-
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label learning problems, where maximum a posteriori (MAP) rule is utilized to make

prediction by reasoning with the Euclidean distance between the k nearest neighbors

and the testing instance, and the labeling information embodied in the neighbors.

The C4.5 algorithm is also adapted in Clare and King [2001] for dealing with multi-

label learning problems. In specific, Clare and King [2001] calculate the modified

entropy and assign multiple labels in the leave node of the tree.

Based on AdaBoost, Schapire and Singer [2000b] present AdaBoost.MH and

AdaBoost.MR for multi-label classification. AdaBoost.MH aims to minimize Hamming

loss, while AdaBoost.MR is designed to find a hypothesis which places the correct

labels at the top of the ranking.

Motivated by the production of multi-label models that can be easily explained and

understood by humans, Comité et al. [2003] combine AdaBoost.MH and propose an

algorithm for producing alternating decision trees (ADT) for multi-label classification.

Based on independent word-based representation, known as Bag-of-Words (BOW)

representation Dumais et al. [1998], Ueda and Saito [2002] propose two types of

probabilistic generative models for multi-label learning, called parametric mixture

models (PMM1, PMM2), where PMM2 is a more flexible version of PMM1. PMMs

assume that multi-labeled text has a mixture of characteristic words appearing in

single-labeled text that belong to each category of the multi-categories. Based on this

assumption, Ueda and Saito [2002] develop generative models with a good feature:

the objective function of PMM1 is convex. Moreover, they also present efficient

learning and prediction algorithms for PMMs. Streich and Buhmann [2008] present

a deconvolution approach to estimate the individual contribution of each label to a

given item.

Ghamrawi and McCallum [2005] explore multi-label conditional random field

(CRF) classification models that directly parameterize label co-occurrences in multi-

label classification. In specific, collective multi-label classifier (CML) aims to

capture co-occurrence patterns among labels, while collective multi-label with features

classifier (CMLF) learns parameters for feature-label-label triples-capturing the impact

that an individual feature has on the co-occurrence probability of a pair of labels.

Zhang and Zhou [2006] propose the first neural network algorithm, named back-

propagation for multi-label learning (BP-MLL), for multi-label learning. Derived from

the popular back-propagation algorithm Rumelhart et al. [1986], BP-MLL introduces

a novel error function to capture the characteristics of multi-label learning, that is, the

labels belonging to an instance should be ranked higher than those not belonging to

that instance.

Rank-SVM Elisseeff and Weston [2001] adapt the maximum margin strategy to

deal with multi-label data, where a set of linear classifiers are optimized to minimize

the empirical ranking loss and enabled to handle nonlinear cases with kernel tricks

Liu et al. [2015c]. Rank-SVM is also able to provide a way of controlling the time

complexity while having a small empirical error.
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Figure 2.2: The illustration of copy transformation.

Maximum margin output coding is one of the most important AA methods, which

will be introduced in Chapter 2.4.

2.3 Classifier Chain
To capture label dependency, various approaches attempt to exploit the different

orders (first-order, second-order and high-order) of label correlations Zhang and Zhang

[2010]. For example, Kang et al. [2006] explicitly exploit high-order correlation

between labels, but this involves an optimization problem with an exponential number

of constraints. All these methods assume that the correlations are shared by all

instances, thus Huang and Zhou [2012] try to exploit label correlations in the data

locally and measure the similarity between instances in the label space rather than in

the feature space. However, the label space is usually sparse when there are many

labels, making it impossible to obtain accurate similarity between instances through

the measurement in the label space.

Some other works also try to provide a probabilistic interpretation for label

correlations. For example, Guo and Gu Guo and Gu [2011] model the label correlations

14



Figure 2.3: The illustration of copy-weight transformation.

using a conditional dependency network; PCC Dembczynski et al. [2010] exploits a

high-order Markov Chain model to capture the correlations between the labels and

provide an accurate probabilistic interpretation of classifier chain (CC). Other works

Huang and Zhou [2012]; Kang et al. [2006]; Read et al. [2009] focus on modeling the

label correlations in a deterministic way, and CC is one of the most popular methods

among them.

Similar to BR, the CC model Read et al. [2009] trains q binary classifiers hj
(j ∈ {1, · · · , q}). Classifiers are linked along a chain where each classifier hj
deals with the binary classification problem for label λj . The augmented vector

{xt, yt(1), · · · , yt(j)}nt=1 is used as the input for training classifier hj+1. Given a new

testing instance x, classifier h1 in the chain is responsible for predicting the value of

y(1) using input x. Then, h2 predicts the value of y(2) taking x plus the predicted value

of y(1) as an input. Following in this way, hj+1 predicts y(j + 1) using the predicted

value of y(1), · · · , y(j) as additional input information. CC passes label information

between classifiers, allowing CC to exploit the label dependence and thus overcome

the label independence problem of BR. Essentially, it builds a deterministic high-order

Markov Chain model to capture the label correlations.
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Figure 2.4: The illustration of select-max transformation.

Figure 2.5: The illustration of select-min transformation.

Different classifier chains involve different classifiers learned on different training

sets and thus the order of the chain itself clearly affects the prediction performance.

To solve the issue of selecting a chain order for CC, Read et al. [2009] proposed the

extension of CC, called ensembled classifier chain (ECC), to average the multi-label

predictions of CC over a set of random chain ordering. ECC first randomly reorders

the labels {λ1, λ2, · · · , λq} many times. Then, CC is applied to the reordered labels for

each time and the performance of CC is averaged over those times to obtain the final

prediction performance.

However, CC suffers from three important problems: Does the label order affect the

performance of CC? Apparently yes, because ECC is proposed to reduce the influence

of the label order. Is there any globally optimal classifier chain which can achieve the

optimal prediction performance for CC? If yes, how can the globally optimal classifier

chain be found? This thesis will answer these problems.
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Figure 2.6: The illustration of select-random transformation.

Figure 2.7: The illustration of ignore transformation.

2.4 Maximum Margin Output Coding
From the PT perspective, Hsu et al. [2009] use random transformation to project

the original label space into a low dimensional label space. A regression model

is trained on each transformed label. The compressed sensing technique is used

to recover multi-labels from the regression output. To capture label dependency,

canonical correlation analysis (CCA)and maximum margin output coding (MMOC)

are respectively proposed by Zhang and Schneider [2011] and Zhang and Schneider

[2012] to encode the label vectors. PLST Tai and Lin [2012] uses PCA to project

the output to a lower dimension and applies the linear projection in the decoding

procedure; its performance is inferior to CCA and MMOC in our experiments.

The work that is most relevant to this thesis is MMOC, which studies output coding

for multi-label prediction and focuses on the following two important problems:

• Discriminative: The coding technique needs to be discriminative: encodings

for different outputs should be significantly different from each other, such that

the codeword for the correct output will not be confused with incorrect ones.

This principle corresponds to the concept of code distance in coding theory and

is related to good error-correcting capabilities Cover and Thomas [2006].

• Predictable: In output coding, codewords need to be predicted from the input

other than through a channel, and it is critical that codewords are easy to predict.

From the channel coding perspective, having predictable codewords corresponds
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Figure 2.8: The first data set produced by the BR method.

Figure 2.9: The second data set produced by the BR method.

to reducing the channel error. In multi-label classification, finding predictable

codewords provides an opportunity to exploit the dependency structure in the

label space.

Based on structural SVMs McAllester [2006]; Tsochantaridis et al. [2005], Zhang

and Schneider [2012] propose a maximum margin output coding method to make

output codes that are both discriminative and predictable for multi-label classification.

Specifically, MMOC embeds both the output and input in the same space by ensuring

that the distance between the embedded input and the correct embedded output is less

than the distance between the embedded input and any other embedded output with a

large margin. This principle is naturally captured by maximizing the margin between

the prediction distance to correct and incorrect encodings. Extensive empirical results

demonstrate the superiority of MMOC.

Though MMOC has shown improved prediction performance, the training process

involves an exponential number of constraints w.r.t. the number of labels, which

is impractical for real-world applications, such as image annotation. MMOC is
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Figure 2.10: The third data set produced by the BR method.

Figure 2.11: The fourth data set produced by the BR method.

proposed based on structural SVMs McAllester [2006]; Tsochantaridis et al. [2005],

and McAllester [2006] has already proved that structural SVMs fail to converge on the

optimal decoder even with infinite training data. Furthermore, MMOC apply mean-

field approximation Zhang and Schneider [2011] in the decoding step, its prediction

process is still expensive when there are many labels. Thus, it is non-trivial to break

the bottlenecks of MMOC, and develop efficient and consistent algorithms for solving

multi-label learning tasks.

2.5 Prediction Complexity Categories
Much effort has been focussed on prediction tasks, like image prediction Boutell et al.

[2004] and video prediction Song et al. [2005]. Usually, these prediction tasks can be

formulated as a multi-label prediction problem Tsoumakas et al. [2010]. According to

the prediction complexity, we divide those methods into several categories:

The first category includes some popular methods, such as Binary Relevance (BR)
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Figure 2.12: The fifth data set produced by the BR method.

Figure 2.13: The transformed data set using the label powerset method.

Tsoumakas et al. [2010] and Classifier Chain (CC) Read et al. [2009], the number

of predictions scale linearly with the length of label vector. Duan et al. [2015] have

proposed a novel probabilistic cascaded method for mapping label sets in a source

taxonomy to label sets in a target taxonomy. All these methods would make thousands

of predictions when there are thousands of labels, so they cannot handle many labels.

The second category includes the encoding-decoding strategy. For example, Zhang

and Schneider [2011, 2012] first use different projection methods to transform the

original label space into another space, and recover the original multiple labels using

an expensive decoding process, which involves solving a quadratic programming (QP)

problem on a space with a combinatorial nature.

The third category includes Label Powerset (LP) Tsoumakas et al. [2010] and its

variant Tsoumakas and Vlahavas [2007b]. LP reduces a multi-label prediction problem

into a multi-class prediction problem by treating each distinct label set as one of

the classes for a transformed multi-class learning task. One can then train a single

multi-class classifier (Tsoumakas et al. [2010]) or many binary classifiers (e.g. one-
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Figure 2.14: An example of obtaining a ranking among labels using label powerset

method with probability outputs.

vs-all or one-vs-one) for the transformed multi-class prediction problem. The number

of transformed classes is upper bounded by min(m, 2q) where m means the size of

training data set and q means the number of labels. For large values of m and q, it

imposes an extremely high training complexity.

The last category is tree-based algorithms, which have prediction costs that are

logarithmic in the number of labels. The multi-label random forest (MLRF) algorithm

Agrawal et al. [2013] first learns random trees in a feature space to accelerate prediction

efficiency based on a distributed system over 1,000 computer nodes. FastXML Prabhu

and Varma [2014] is the most recently advanced technique. FastXML outperforms

MLRF, but our extensive experiment results verify that it generally underperforms

in terms of multi-label prediction performance. Homer Tsoumakas et al. [2008] is

developed to use a divide-and-conquer-strategy to divide original problem into k sub-

problems. Some literature Madjarov et al. [2012]; Tsoumakas et al. [2008] has shown

Homer achieves superior prediction performance. Unfortunately, we cannot get the

results of Homer on medium-sized data sets within one week in our experiment. Thus,

it is imperative to develop an efficient, yet accurate multi-label prediction algorithm

with the minimum number of predictions. This thesis will employ the techniques from

Huffman coding and Shannon-Fano Coding to address this issue. Next, we review

these coding strategies.

2.5.1 Huffman Coding
Huffman coding [Huffman, 1952] is one of the most widespread bottom-up encoding

algorithm for data compression. Huffman coding uses a specific method for choosing

the representation for each symbol, resulting in a prefix code, that is, the bit string

representing some particular symbol is never a prefix of the bit string representing

any other symbol. Given a set of symbols and their weights (usually proportional to

probabilities), Huffman coding aims to find a set of prefix codewords with minimum
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Figure 2.15: Categorization of representative evaluation metric used in this thesis.

expected codeword length. Based on the frequency of occurrence of each symbol, the

principle of Huffman coding is to use a lower number of bits to encode the symbol that

occurs more frequently. The detailed procedure of Huffman coding can be referred to

Huffman [1952]. This chapter first uses the idea of Huffman coding to deal with the

label powerset prediction problems.

2.5.2 Shannon-Fano Coding
Shannon-Fano coding [Shannon, 1948] is a top-down encoding technique for constructing

a prefix code based on a set of symbols and their weights. Shannon-Fano coding

arranges the symbols in order from biggest weight to smallest weight, and then divides

them into two sets whose total weights are roughly comparable. Then, we encode

symbols in the first set as zero and symbols in the second set as one. As long as any

sets with more than one member remain, the same process is repeated on these sets.

The detailed procedure of Shannon-Fano coding can be referred to Shannon [1948].

Analogous to the Shannon-Fano coding strategy, this chapter first proposes a novel

coding tree algorithm to deal with multi-label prediction problems.

2.6 Evaluation Metric
In traditional supervised learning, the prediction performance of the learning models

is usually evaluated by conventional metrics such as error rate, F-measure and area
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under the ROC curve (AUC). Because each instance can belong to multiple labels

simultaneously, the performance evaluation in multi-label learning settings is much

more complicated than traditional supervised learning. Therefore, a number of

evaluation metrics are developed for multi-label learning. These evaluation metrics

can be generally categorized into two groups: example-based metrics Ghamrawi and

McCallum [2005]; Schapire and Singer [2000a] and label-based metrics Tsoumakas

and Vlahavas [2007a].

In this thesis, we consider the following evaluation measurements Mao et al.

[2013]; Zhang and Zhou [2014] to measure the prediction performance of all methods

fairly:

• Hamming Loss: computes the average zero-one score for all the labels and

instances.

• Example-F1: computes the F-1 score for all the labels of each testing sample

and then takes the average of the F-1 score.

• Macro-F1: calculates the F-1 score for each label and then takes the average of

the F-1 score.

• Micro-F1: computes true positives, true negatives, false positives and false

negatives over all labels, and then calculates an overall F-1 score.

The smaller the value of Hamming Loss, the better the performance, while the larger

the value of the other three measurements, the better the performance. Figure 2.15

summarize the categorization of representative evaluation metric used in this thesis.
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Figure 2.16: Categorization of representative algorithm adaptation and problem

transformation algorithms reviewed in this Chapter.
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Chapter 3

On the Optimality of Classifier Chain
for Multi-label Classification

3.1 Motivations
One popular strategy for multi-label classification is to reduce the original problem

into many binary classification problems. Many works have followed this strategy.

For example, binary relevance (BR) Tsoumakas et al. [2010] is a simple approach

for multi-label learning which independently trains a binary classifier for each label.

Recently, Dembczynski et al. [2010] have shown that methods of multi-label learning

which explicitly capture label dependency will usually achieve better prediction

performance. Therefore, modeling the label dependency is one of the major challenges

in multi-label classification problems. Many multi-label learning models Dembczynski

et al. [2010]; Guo and Gu [2011]; Huang and Zhou [2012]; Kang et al. [2006]; Liu and

Tsang [2015a]; Read et al. [2009]; Tan et al. [2015]; Zhang and Schneider [2012]

have been developed to capture label dependency. Amongst them, the classifier chain
(CC) model is one of the most popular methods due to its simplicity and promising

experimental results Read et al. [2009].

CC works as follows: One classifier is trained for each label. For the (i + 1)th
label, each instance is augmented with the 1st, 2nd, · · · , ith label as the input to train

the (i + 1)th classifier. Given a new instance to be classified, CC firstly predicts the

value of the first label, then takes this instance together with the predicted value as the

input to predict the value of the next label. CC proceeds in this way until the last label is

predicted. However, here is the question: Does the label order affect the performance
of CC? Apparently yes, because different classifier chains involve different classifiers

trained on different training sets. Thus, to reduce the influence of the label order, Read

et al. [2009] proposed the ensembled classifier chain (ECC) to average the multi-label

predictions of CC over a set of random chain ordering. Since the performance of CC is
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sensitive to the choice of label order, there is another important question: Is there any
globally optimal classifier chain which can achieve the optimal prediction performance
for CC? If yes, how can the globally optimal classifier chain be found?

To answer the last two questions, we first generalize the CC model over a random

label order. We then present a theoretical analysis of the generalization error for

the proposed generalized model. Our results show that the upper bound of the

generalization error depends on the sum of reciprocal of square of the margin over

the labels. Thus, we can answer the second question: the globally optimal CC exists

only when the minimization of the upper bound is achieved over this CC. To find the

globally optimal CC, we can search over q! different label orders1, where q denotes

the number of labels, which is computationally infeasible for a large q. In this chapter,

we propose the dynamic programming based classifier chain (CC-DP) algorithm to

simplify the search algorithm, which requires O(q3nd) time complexity. To speed up

the training process, a greedy classifier chain (CC-Greedy) algorithm is proposed to

find a locally optimal CC, where the time complexity of the CC-Greedy algorithm is

O(q2nd). Furthermore, we propose Tree-DP and Tree-Greedy algorithms to further

speed up CC-DP and CC-Greedy, respectively, which scale linearly with q. The main

contributions of this work are:

1. We generalize the classifier chain model over a random label order.

2. A theoretical analysis of the generalization error is provided for the generalized

model. Our results show that the upper bound of the generalization error is

dependent on the sum of the reciprocal of square of margin over the labels.

3. Based on our results, the CC-DP algorithm is proposed to find the globally

optimal classifier chain which will achieve the globally optimal prediction

performance for CC. We propose a CC-Greedy algorithm to speed up the

training process by finding a local optimal classifier chain. Furthermore, we

propose Tree-DP and Tree-Greedy algorithms to further speed up CC-DP and

CC-Greedy, respectively, which scale linearly with q.

4. Extensive experiments on a number of real-world multi-label data sets from

various domains demonstrate that our proposed CC-DP algorithm outperforms

BR, CC and ECC, and the CC-Greedy algorithm achieves comparable prediction

performance with CC-DP.

1! represents the factorial notation.
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3.2 Proposed Model and Generalization Error Anal-
ysis

3.2.1 Generalized Classifier Chain
Assume xt ∈ R

d is a real vector representing an input or instance (feature) for t ∈
{1, · · · , n}. n denotes the number of training samples. Yt ⊆ {λ1, λ2, · · · , λq} is the

corresponding output (label). yt ∈ {0, 1}q is used to represent the label set Yt, where

yt(j) = 1 if and only if λj ∈ Yt.

We generalize the CC model over a random label order, called generalized
classifier chain (GCC) model. Assume the labels {λ1, λ2, · · · , λq} are randomly

reordered as {ζ1, ζ2, · · · , ζq}, where ζj = λk means label λk moves to position j from

k. In the GCC model, classifiers are also linked along a chain where each classifier hj
deals with the binary classification problem for label ζj (λk). GCC follows the same

training and testing procedures as CC, while the only difference is the label order. In

the GCC model, for input xt, yt(j) = 1 if and only if ζj ∈ Yt.

3.2.2 Generalization Error Analysis
In this section, we analyze the generalization error bound of the multi-label classifi-

cation problem using GCC based on the techniques developed for the generalization

performance of classifiers with a large margin Shawe-Taylor et al. [1998] and

perceptron decision tree Bennett et al. [2000].

Let X represent the input space. Both s and s̄ are m samples drawn independently

according to an unknown distribution D. We denote logarithms to base 2 by log. If

S is a set, |S| denotes its cardinality. ‖ · ‖ means the l2 norm. We train a support

vector machine(SVM) for each label ζj . Let {xt}nt=1 as the feature and {yt(ζj)}nt=1 as

the label, the output parameter of SVM is defined as [wj, bj] = SVM({xt, yt(ζ1), · · · ,
yt(ζj−1)}nt=1, {yt(ζj)}nt=1). The margin for label ζj is defined as:

γj =
1

||wj||2 (3.1)

We begin with the definition of the fat shattering dimension.

Definition 1 (Kearns and Schapire [1990]). Let H be a set of real valued functions. We
say that a set of points P is γ-shattered by H relative to r = (rp)p∈P if there are real
numbers rp indexed by p ∈ P such that for all binary vectors b indexed by P , there is
a function fb ∈ H satisfying

fb(p) =

{
≥ rp + γ if bp = 1

≤ rp − γ otherwise
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The fat shattering dimension fat(γ) of the set H is a function from the positive real
numbers to the integers which maps a value γ to the size of the largest γ-shattered set,
if this is finite, or infinity otherwise.

Assume H is the real valued function class and h ∈ H. l(y, h(x)) denotes the loss

function. The expected error of h is defined as erD[h] = E(x,y)∼D[l(y, h(x))], where

(x, y) drawn from the unknown distribution D. Here we select 0-1 loss function. So,

erD[h] = P(x,y)∼D(h(x) �= y). ers[h] is defined as ers[h] =
1
n

n∑
t=1

[yt �= h(xt)].1

Suppose N(ε,H, s) is the ε-covering number of H with respect to the l∞ pseudo-

metric measuring the maximum discrepancy on the sample s. The notion of the

covering number can be referred to Appendix A.1. We introduce the following general

corollary regarding the bound of the covering number:

Corollary 1 (Shawe-Taylor et al. [1998]). Let H be a class of functions X → [a, b]
and D a distribution over X . Choose 0 < ε < 1 and let d = fat(ε/4) ≤ em. Then

E(N(ε,H, s)) ≤ 2
(4m(b− a)2

ε2

)d log(2em(b−a)/(dε))
(3.2)

where the expectation E is over samples s ∈ Xm drawn according to Dm.

We study the generalization error bound of the specified GCC with the specified

number of labels and margins. Let G be the set of classifiers of GCC, G =
{h1, h2, · · · , hq}. ers[G] denotes the fraction of the number of errors that GCC makes

on s. Define x̂ ∈ X×{0, 1}, ĥj(x̂) = hj(x)(1−y(j))−hj(x)y(j). If an instance x ∈ X
is correctly classified by hj , then ĥj(x̂) < 0. Moreover, we introduce the following

proposition:

Proposition 1. If an instance x ∈ X is misclassified by a GCC model, then ∃hj ∈
G, ĥj(x̂) ≥ 0.

Lemma 1. Given a specified GCC model with q labels and with margins γ1, γ2, · · · , γq
for each label satisfying ki = fat(γi/8), where fat is continuous from the right.
If GCC has correctly classified m multi-labeled examples s generated independently
according to the unknown (but fixed) distribution D and s̄ is a set of another m
multi-labeled examples, then we can bound the following probability to be less than
δ: P 2m{ss̄ : ∃ a GCC model, it correctly classifies s, fraction of s̄ misclassified
> ε(m, q, δ)} < δ, where ε(m, q, δ) = 1

m
(Q log(32m) + log 2q

δ
) and Q =∑q

i=1 ki log(
8em
ki

).

1The expression [yt �= h(xt)] evaluates to 1 if yt �= h(xt) is true and to 0 otherwise.
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Proof. (of Lemma 1). Suppose G is a GCC model with q labels and with margins

γ1, γ2, · · · , γq, the probability event in Lemma 1 can be described as

A = {ss̄ : ∃G, ki = fat(γi/8), ers[G] = 0, ers̄[G] > ε}.

Let ŝ and ˆ̄s denote two different set of m examples, which are drawn i.i.d. from the

distribution D × {0, 1}. Applying the definition of x̂, ĥ and Proposition 1, the event

can also be written as A = {ŝˆ̄s : ∃G, γ̂i = γi/2, ki = fat(γ̂i/4), ers[G] = 0, ri =
maxtĥi(x̂t), 2γ̂

i = −ri, |{ŷ ∈ ˆ̄s : ∃hi ∈ G, ĥi(ŷ) ≥ 2γ̂i + ri}| > mε}. Here,

−maxtĥi(x̂t) means the minimal value of |hi(x)| which represents the margin for label

ζi, so 2γ̂i = −ri. Let γki = min{γ′ : fat(γ′/4) ≤ ki}, so γki ≤ γ̂i, we define the

following function:

π(ĥ) =

⎧⎪⎨
⎪⎩
0 if ĥ ≥ 0

−2γki if ĥ ≤ −2γki
ĥ otherwise

so π(ĥ) ∈ [−2γki , 0]. Let π(Ĝ) = {π(ĥ) : h ∈ G}.

Let Bki
ŝ̄̂s represent the minimal γki-cover set of π(Ĝ) in the pseudo-metric dŝ̄̂s. We

have that for any hi ∈ G, there exists f̃ ∈ Bki
ŝ̄̂s , |π(ĥi(ẑ)) − π(f̃(ẑ))| < γki , for

all ẑ ∈ ŝˆ̄s. For all x̂ ∈ ŝ, by the definition of ri, ĥi(x̂) ≤ ri = −2γ̂i, and γki ≤ γ̂i,

ĥi(x̂) ≤ −2γki , π(ĥi(x̂)) = −2γki , so π(f̃(x̂)) < −2γki+γki = −γki . However, there

are at leastmε points ŷ ∈ ˆ̄s such that ĥi(ŷ) ≥ 0, so π(f̃(ŷ)) > −γki > maxtπ(f̃(x̂t)).
Since π only reduces separation between output values, we conclude that the inequality

f̃(ŷ) > maxtf̃(x̂t) holds. Moreover, the mε points in ˆ̄s with the largest f̃ values must

remain for the inequality to hold. By the permutation argument, at most 2−mε of the

sequences obtained by swapping corresponding points satisfy the conditions for fixed

f̃ .

As for any hi ∈ G, there exists f̃ ∈ Bki
ŝ̄̂s , so there are |Bki

ŝ̄̂s | possibilities of f̃ that

satisfy the inequality for ki. Note that |Bki
ŝ̄̂s | is a positive integer which is usually bigger

than 1 and by the union bound, we get the following inequality:

P (A) ≤ (E(|Bk1
ŝ̄̂s |) + · · ·+ E(|Bkq

ŝ̄̂s |))2−mε ≤ (E(|Bk1
ŝ̄̂s |)× · · · × E(|Bkq

ŝ̄̂s |))2−mε

Since every set of points γ-shattered by π(Ĝ) can be γ-shattered by Ĝ, so fatπ(Ĝ)(γ) ≤
fatĜ(γ), where Ĝ = {ĥ : h ∈ G}. Hence, by Corollary 1 (setting [a, b] to [−2γki , 0],
ε to γki and m to 2m),

E(|Bki
ŝ̄̂s |) = E(N(γki , π(Ĝ), ŝˆ̄s)) ≤ 2(32m)d log(

8em
d

)
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where d = fatπ(Ĝ)(γki/4) ≤ fatĜ(γki/4) ≤ ki. Thus E(|Bki
ŝ̄̂s |) ≤ 2(32m)

ki log(
8em
ki

)
,

and we obtain

P (A) ≤ (E(|Bk1
ŝ̄̂s |)× · · · × E(|Bkq

ŝ̄̂s |))2−mε ≤
q∏

i=1

2(32m)
ki log(

8em
ki

)
= 2q(32m)Q

where Q =
∑q

i=1 ki log(
8em
ki

). And so (E(|Bk1
ŝ̄̂s |)× · · · ×E(|Bkq

ŝ̄̂s |))2−mε < δ provided

ε(m, q, δ) ≥ 1

m

(
Q log(32m) + log

2q

δ

)
as required.

Lemma 1 applies to a particular GCC model with a specified number of labels

and a specified margin for each label. In practice, we will observe the margins after

running the GCC model. Thus, we must bound the probabilities uniformly over all

of the possible margins that can arise to obtain a practical bound. The generalization

error bound of the multi-label classification problem using GCC is shown as follows:

Theorem 1. Suppose a random m multi-labeled sample can be correctly classified
using a GCC model, and suppose this GCC model contains q classifiers with margins
γ1, γ2, · · · , γq for each label. Then we can bound the generalization error with
probability greater than 1− δ to be less than

130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2

and R is the radius of a ball containing the support of the
distribution.

Before proving Theorem 1, we state one key Symmetrization lemma and Theorem

2.

Lemma 2 (Symmetrization). Let H be the real valued function class. s and s̄ are
m samples both drawn independently according to the unknown distribution D. If
mε2 ≥ 2, then

Ps(sup
h∈H

|erD[h]− ers[h]| ≥ ε) ≤ 2Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ε/2) (3.3)

The proof details of this lemma can be found in Appendix A.2.

Theorem 2 (Bartlett and Shawe-Taylor [1998]). Let H be restricted to points in a ball
of M dimensions of radius R about the origin, then

fatH(γ) ≤ min
{R2

γ2
,M + 1

}
(3.4)
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Proof. (of Theorem 1). We must bound the probabilities over different margins. We

first use Lemma 2 to bound the probability of error in terms of the probability of the

discrepancy between the performance on two halves of a double sample. Then we

combine this result with Lemma 1. We must consider all possible patterns of ki’s for

label ζi. The largest value of ki is m. Thus, for fixed q, we can bound the number of

possibilities by mq. Hence, there are mq of applications of Lemma 1.

Let ci = {γ1, γ2, · · · , γq} denote the i-th combination of margins varied in

{1, · · · ,m}q. G denotes a set of GCC models. The generalization error of G can

be represented as erD[G] and ers[G] is 0, where G ∈ G. The uniform convergence

bound of the generalization error is

Ps(sup
G∈G

|erD[G]− ers[G]| ≥ ε)

Applying Lemma 2,

Ps(sup
G∈G

|erD[G]−ers[G]| ≥ ε) ≤ 2Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ε/2)

Let Jci = {ss̄ : ∃ a GCC model G with q labels and with margins ci : ki =
fat(γi/8), ers[G] = 0, ers̄[G] ≥ ε/2}. Clearly,

Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ε/2) ≤ Pmq
( mq⋃

i=1

Jci

)

As ki still satisfies ki = fat(γi/8), Lemma 1 can still be applied to each case of

Pmq
(Jci). Let δk = δ/mq. Applying Lemma 1 (replacing δ by δk/2), we get:

Pmq

(Jci) < δk/2

where ε(m, k, δk/2) ≥ 2/m(Q log(32m) + log 2×2q

δk
) and Q =

∑q
i=1 ki log(

4em
ki

). By

the union bound, it suffices to show that Pmq
(
⋃mq

i=1 Jci) ≤
∑mq

i=1 P
mq

(Jci) < δk/2 ×
mq = δ/2. Applying Lemma 2,

Ps(sup
G∈G

|erD[G]− ers[G]| ≥ ε) ≤ 2Ps̄s(sup
G∈G

|ers̄[G]− ers[G]| ≥ ε/2)

≤ 2Pmq
( mq⋃

i=1

Jci

)
< δ

Thus, Ps(supG∈G |erD[G] − ers[G]| ≤ ε) ≥ 1 − δ. Let R be the radius of a

ball containing the support of the distribution. Applying Theorem 2, we get ki =
fat(γi/8) ≤ 65R2/(γi)2. Note that we have replaced the constant 82 = 64 by 65 in
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order to ensure the continuity from the right required for the application of Lemma 1.

We have upperbounded log(8em/ki) by log(8em). Thus,

erD[G] ≤ 2/m
(
Q log(32m) + log

2(2m)q

δ

)
≤ 130R2

m

(
Q′ log(8em) log(32m) + log

2(2m)q

δ

)
where Q′ =

∑q
i=1

1
(γi)2

.

Given the training data size and the number of labels, Theorem 1 reveals one

important factor in reducing the generalization error bound for the GCC model: the

minimization of the sum of reciprocal of square of the margin over the labels. Thus,

we obtain the following Corollary:

Corollary 2 (Globally Optimal Classifier Chain). Suppose a random m multi-labeled
sample with q labels can be correctly classified using a GCC model, this GCC model
is the globally optimal classifier chain if and only if the minimization of Q′ in Theorem
1 is achieved over this classifier chain.

Remark. By exploiting the relationship between labels, our proposed GCC model

is able to achieve lower generalization error bound.

Given the number of labels q, there are q! different label orders. It is very expensive

to find the globally optimal CC, which can minimize Q′, by searching over all of the

label orders. Next, we discuss two simple algorithms.

3.3 Optimal Classifier Chain Algorithm
In this section, we propose two simple algorithms for finding the optimal CC based on

our result in Section 3.2. To clearly state the algorithms, we redefine the margins with

label order information. Given label set M = {λ1, λ2, · · · , λq}, suppose a GCC model

contains q classifiers. Let oi(1 ≤ oi ≤ q) denote the order of λi in the GCC model, γoii
represents the margin for label λi, with previous oi − 1 labels as the augmented input.

If oi = 1, then γ1i represents the margin for label λi, without augmented input. Then

Q′ is redefined as Q′ =
∑q

i=1
1

(γ
oi
i )2

.

3.3.1 Dynamic Programming Algorithm
To simplify the search algorithm mentioned before, we propose the CC-DP algorithm

to find the globally optimal CC. Note thatQ′ =
∑q

i=1
1

(γ
oi
i )2

= 1
(γ

oq
q )2

+ · · ·+[
1

(γ
ok+1
k+1 )2

+∑k
j=1

1

(γ
oj
j )2

]
, we explore the idea of DP to iteratively optimize Q′ over a subset of M
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with the length of 1, 2, · · · , q. Finally, we can obtain the optimal Q′ over M. Assume

i ∈ {1, · · · , q}. Let V (i, η) be the optimal Q′ over a subset of M with the length of

η(1 ≤ η ≤ q), where the label order is ending by label λi. Suppose Mη
i represent the

corresponding label set for V (i, η). When η = q, V (i, q) be the optimal Q′ over M,

where the label order is ending by label λi. The DP equation is written as:

V (i, η + 1) = min
j �=i,λi �∈Mη

j

{
1

(γη+1
i )2

+ V (j, η)

}
(3.5)

where γη+1
i is the margin for label λi, with Mη

j as the augmented input. The initial

condition of DP is: V (i, 1) = 1
(γ1

i )
2 and M1

i = {λi}. Then, the optimal Q′ over M

can be obtained by solving mini∈{1,··· ,q} V (i, q). Assume the training of linear SVM

takes O(nd). The CC-DP algorithm is shown as the following bottom-up procedure:

from the bottom, we first compute V (i, 1) = 1
(γ1

i )
2 , which takes O(nd). Then we

compute V (i, 2) = minj �=i,λi �∈M1
j
{ 1
(γ2

i )
2 +V (j, 1)}, which requires at most O(qnd), and

set M2
i =M1

j ∪ {λi}. Similarly, it takes at most O(q2nd) time complexity to calculate

V (i, q). Last, we iteratively solve this DP Equation, and use mini∈{1,··· ,q} V (i, q) to get

the optimal solution, which requires at most O(q3nd) time complexity.

Theorem 3 (Correctness of CC-DP). Q′ can be minimized by CC-DP, which means
this Algorithm can find the globally optimal CC.

The proof can be referred to in Appendix A.3.

3.3.2 Greedy Algorithm
We propose a CC-Greedy algorithm to find a locally optimal CC to speed up the CC-DP

algorithm. To save time, we construct only one classifier chain with the locally optimal

label order. Based on the training instances, we select the label from {λ1, λ2, · · · , λq}
as the first label, if the maximum margin can be achieved over this label, without

augmented input. The first label is denoted by ζ1. Then we select the label from

the remainder as the second label, if the maximum margin can be achieved over this

label with ζ1 as the augmented input. We continue in this way until the last label is

selected. Finally, this algorithm will converge to the locally optimal CC. We present

the details of the CC-Greedy algorithm in Appendix A.4, where the time complexity

of this algorithm is O(q2nd).

3.3.3 Tree-Based Algorithm
For multi-label problem, CC-DP and CC-Greedy are very time-consuming for the data

sets with many labels. We propose Tree-DP and Tree-Greedy algorithms to further
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speed up CC-DP and CC-Greedy, respectively, which scale linearly with q. We create

a tree recursively in a top-down manner.

Assume that {xt, yt}nt=1 is the input data for the root node. Suppose that the

label set {λ1, λ2, · · · , λq} in the root node is randomly split into two subsets with

about the same size for left and right child nodes: leftset = {λ1, · · · , λq/2} and

rightset = {λq/2+1, · · · , λq}. A training example can be considered annotated with

leftset and rightset if it is annotated with at least one of the labels in leftset and

rightset, respectively. In this way, leftset and rightset can be seen as two labels.

Then, in the root node, we train the CC with leftset and rightset as two labels using

CC-DP or CC-Greedy. After that, left and right child nodes only keep the examples

that are annotated with leftset and rightset, respectively. This approach recurses into

each child node that contains more than a single label.

Starting from the root node, we use the trained CC classifier on this node for

prediction and we follow the recursive process. Finally, this process may lead to the

prediction of some labels with corresponding to some leaves. We provide the following

corollary pertaining to the Tree-DP.

Corollary 3. After building a tree using the Tree-DP algorithm, we can find the
globally optimal CC in each decision node of the tree.

Proof. Given the structure of the tree, according to Theorem 3, we can find the globally

optimal label order in each decision node using CC-DP algorithm.

For each internal node, we only deal with two labels, thus the training time of

Tree-DP and Tree-Greedy only take O(8nd) and O(4nd), respectively. The number of

internal nodes in such a tree is equal to q − 1. In total, Tree-DP and Tree-Greedy take

O(8(q − 1)nd) and O(4(q − 1)nd) training time, respectively. Assume that the testing

instance goes along ι paths in our tree during the testing procedure and the depth of the

tree is log(q). In each decision node, we take O(d) time for testing. Totally, the testing

time for Tree-DP and Tree-Greedy is O(ι log(q)d).

3.4 Complexity Analysis
Assume that the training of linear SVM takes O(nd) time complexity. Following the

running time analysis in Read et al. [2009], assume q < d, CC will takes O(ndq)
time complexity. Let ψ = max{n, d}. Table 3.1 reports the training and testing time

complexity of the methods used in this chapter. From Table 3.1, we can see that our

proposed algorithms are much faster than CCA and MMOC in terms of both training

and testing time complexity, and achieve the same testing time complexity with BR,

CC and ECC. Through the training time for our algorithms is slower than BR, CC and

ECC. Our extensive empirical studies demonstrate that our algorithms achieve superior

performance than those baselines.
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Table 3.1: Time complexity comparisons among CC-Greedy, CC-DP and other

baselines.

Method Training time complexity Testing time complexity

BR,CC,ECC O(ndq) O(dq)
CCA O(ψ3 + n(d2 + q2 + dq)) O(q3)
MMOC O(nq3 + nq2d+ n4) O(q3)
CC-Greedy O(q2nd) O(dq)
CC-DP O(q3nd) O(dq)
Tree-Greedy O(4(q − 1)nd) O(ι log(q)d)
Tree-DP O(8(q − 1)nd) O(ι log(q)d)

3.5 Experiment
In this section, we perform experimental studies on a number of benchmark data

sets from different domains to evaluate the performance of our proposed algorithms

for multi-label classification. All the methods are implemented in Matlab and all

experiments are conducted on a workstation with a 3.2GHZ Intel CPU and 4GB main

memory running 64-bit Windows platform.

3.5.1 Data Sets and Baselines
We conduct experiments on some real-world data sets with various domains from three

websites.123 Following the experimental settings in Dembczynski et al. [2010] and

Zhang and Schneider [2012], we preprocess the eurlex sm and eurlex ed data sets. The

statistics on those data sets are presented in Table 3.2. We compare our algorithms with

some baseline methods: BR, CC, ECC, CCA Zhang and Schneider [2011] and MMOC

Zhang and Schneider [2012]. To perform a fair comparison, we use the same linear

classification/regression package LIBLINEAR Fan et al. [2008] with l2-regularized

square hinge loss (primal) to train the classifiers for all the methods. ECC is averaged

over several CC predictions with random order and the ensemble size in ECC is set

to ten according to Dembczynski et al. [2010]; Read et al. [2009]. In our experiment,

the running time of PCC and EPCC Dembczynski et al. [2010] on most data sets, like

slashdot and yahoo art, takes more than one week. From the results in Dembczynski

et al. [2010], ECC is comparable with EPCC and outperforms PCC, so we do not

1http://mulan.sourceforge.net
2http://meka.sourceforge.net/#datasets
3http://cse.seu.edu.cn/people/zhangml/Resources.htm#data
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Table 3.2: Data sets used in the experiments of Chapter 3.

Data # inst. # attr. # labels Domain

yeast 2,417 103 14 biology

image 2,000 294 5 image

slashdot 3,782 1,079 22 text

enron 1,702 1,001 53 text

LLog 799 1,004 10 linguistics

yahoo art 6,849 23,146 10 art

eurlex sm 10 11,454 5,000 10 text

eurlex ed 10 6,540 5,000 10 text

eurlex sm 19,348 5,000 201 text

eurlex ed 19,348 5,000 3,993 text

Table 3.3: The Example-F1 results of CC-Greedy, CC-DP and other baselines on the

various data sets (mean ± standard deviation). The best results are in bold. Numbers

in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.6076 ± 0.019[6] 0.5850± 0.033[7] 0.6096± 0.018[5] 0.6109 ± 0.024[4] 0.6132 ± 0.021[3] 0.6144± 0.021[1] 0.6135± 0.015[2]
image 0.5247 ± 0.025[7] 0.5991± 0.021[1] 0.5947± 0.015[4] 0.5947 ± 0.009[4] 0.5960 ± 0.012[3] 0.5939± 0.021[6] 0.5976± 0.015[2]
slashdot 0.4898 ± 0.024[6] 0.5246± 0.028[4] 0.5123± 0.027[5] 0.5260 ± 0.021[3] 0.4895 ± 0.022[7] 0.5266± 0.022[2] 0.5268± 0.022[1]
enron 0.4792 ± 0.017[7] 0.4799± 0.011[6] 0.4848± 0.014[4] 0.4812 ± 0.024[5] 0.4940 ± 0.016[1] 0.4894± 0.016[2] 0.4880± 0.015[3]
LLog 0.3138 ± 0.022[6] 0.3219± 0.028[4] 0.3223± 0.030[3] 0.2978 ± 0.026[7] 0.3153 ± 0.026[5] 0.3269± 0.023[2] 0.3298± 0.025[1]
yahoo art 0.4840 ± 0.023[5] 0.5013± 0.022[4] 0.5070± 0.020[3] - - 0.5131± 0.015[2] 0.5135± 0.020[1]
eurlex sm 10 0.8594 ± 0.003[5] 0.8609± 0.004[1] 0.8606± 0.003[3] - - 0.8600± 0.004[4] 0.8609± 0.004[1]
eurlex ed 10 0.7170 ± 0.012[5] 0.7176± 0.012[4] 0.7183± 0.013[2] - - 0.7183± 0.013[2] 0.7190± 0.013[1]

Average Rank 5.88 3.88 3.63 4.60 3.80 2.63 1.50

consider PCC and EPCC here. CCA and MMOC are two state-of-the-art encoding-

decoding Hsu et al. [2009] methods. We cannot get the results of CCA and MMOC on

yahoo art, eurlex sm 10 and eurlex ed 10 data sets in one week.

We consider the Example-F1, Macro-F1 and Micro-F1 to measure the prediction

performance of all methods fairly. We perform 5-fold cross-validation on each data set

and report the mean and standard error of each evaluation measurement.

3.5.2 Prediction Performance
The results of Example-F1, Macro-F1 and Micro-F1 for our method and baseline

approaches in respect of the different data sets are reported in Tables 3.3, 3.4 and

3.5. From these results, we can see that:
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Table 3.4: The Macro-F1 results of CC-Greedy, CC-DP and other baselines on the

various data sets (mean ± standard deviation). The best results are in bold. Numbers

in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.3543 ± 0.014[4] 0.3993± 0.027[1] 0.3763± 0.015[2] 0.3496 ± 0.017[5] 0.3431 ± 0.016[7] 0.3441± 0.016[6] 0.3596± 0.020[3]
image 0.5852 ± 0.012[7] 0.6013± 0.018[1] 0.5988± 0.010[4] 0.6010 ± 0.009[2] 0.5975 ± 0.007[6] 0.5987± 0.019[5] 0.6010± 0.014[2]
slashdot 0.3416 ± 0.014[4] 0.3485± 0.015[2] 0.3331± 0.011[7] 0.3512 ± 0.018[1] 0.3334 ± 0.009[6] 0.3431± 0.010[3] 0.3408± 0.008[5]
enron 0.2089 ± 0.024[2] 0.2066± 0.022[5] 0.2088± 0.022[3] 0.1594 ± 0.027[6] 0.1539 ± 0.017[7] 0.2090± 0.024[1] 0.2082± 0.022[4]
LLog 0.3452 ± 0.030[2] 0.3428± 0.033[4] 0.3425± 0.039[5] 0.3189 ± 0.035[7] 0.3303 ± 0.040[6] 0.3448± 0.032[3] 0.3471± 0.035[1]
yahoo art 0.4836 ± 0.014[4] 0.4816± 0.013[5] 0.4851± 0.015[3] - - 0.4876± 0.012[2] 0.4884± 0.015[1]
eurlex sm 10 0.8546 ± 0.002[5] 0.8558± 0.002[2] 0.8554± 0.002[3] - - 0.8550± 0.002[4] 0.8559± 0.003[1]
eurlex ed 10 0.7201 ± 0.008[5] 0.7202± 0.008[4] 0.7205± 0.009[3] - - 0.7208± 0.009[2] 0.7217± 0.008[1]

Average Rank 4.13 3.00 3.75 4.20 6.40 3.25 2.25

• BR generally underperforms. Our experiment provides empirical evidence that

the label correlations exist in many real word data sets and because BR ignores

the information about the correlations between the labels, BR achieves poor

performance on most data sets.

• CC improves the performance of BR, however, it underperforms ECC. This

result verifies the answer to our first question stated in Section 3.1: the label

order does affect the performance of CC; ECC, which averages over several CC

predictions with random order, improves the performance of CC.

• CC-DP and CC-Greedy outperforms CCA and MMOC. This studies verify that

optimal CC achieve competitive results compared with state-of-the-art encoding-

decoding approaches.

• Our proposed CC-DP and CC-Greedy algorithms are successful on most data

sets. This empirical result also verifies the answers to the last two questions

stated in Section 3.1: the globally optimal CC exists and CC-DP can find the

globally optimal CC which achieves the best prediction performance; the CC-

Greedy algorithm achieves comparable prediction performance with CC-DP,

while it requires lower time complexity than CC-DP. Our extensive empirical

studies show that our algorithms achieve superior performance than those

baselines.

3.5.3 Training Time and Testing Time
Figures 3.1 and 3.2 show the training and testing time of CC-Greedy, CC-DP and

baseline methods on various data sets, respectively. According to these two figures,

we can see that:
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Table 3.5: The Micro-F1 results of CC-Greedy, CC-DP and other baselines on the

various data sets (mean ± standard deviation). The best results are in bold. Numbers

in square brackets indicate the rank.

Data set BR CC ECC CCA MMOC CC-Greedy CC-DP

yeast 0.6320 ± 0.019[4] 0.6185± 0.029[7] 0.6306± 0.017[5] 0.6362 ± 0.025[1] 0.6361 ± 0.021[2] 0.6303± 0.022[6] 0.6328± 0.017[3]
image 0.5840 ± 0.015[7] 0.5994± 0.017[2] 0.5955± 0.012[5] 0.6003 ± 0.010[1] 0.5958± 0.011[4] 0.5946± 0.019[6] 0.5980± 0.013[3]
slashdot 0.5233 ± 0.024[6] 0.5278± 0.027[3] 0.5175± 0.025[7] 0.5844 ± 0.022[1] 0.5720 ± 0.022[2] 0.5266± 0.023[5] 0.5272± 0.023[4]
enron 0.5052 ± 0.013[6] 0.5013± 0.009[7] 0.5056± 0.010[5] 0.5335 ± 0.015[2] 0.5401 ± 0.010[1] 0.5104± 0.013[3] 0.5096± 0.012[4]
LLog 0.3768 ± 0.028[1] 0.3712± 0.030[6] 0.3730± 0.035[5] 0.3623 ± 0.027[7] 0.3760 ± 0.027[3] 0.3744± 0.028[4] 0.3762± 0.029[2]
yahoo art 0.5122 ± 0.017[5] 0.5130± 0.016[4] 0.5156± 0.018[3] - - 0.5184± 0.013[1] 0.5184± 0.017[1]
eurlex sm 10 0.8718 ± 0.001[5] 0.8727± 0.001[2] 0.8725± 0.001[3] - - 0.8722± 0.001[4] 0.8733± 0.002[1]
eurlex ed 10 0.7419 ± 0.009[5] 0.7421± 0.009[4] 0.7424± 0.010[3] - - 0.7425± 0.010[2] 0.7432± 0.010[1]

Average Rank 4.88 4.38 4.50 2.40 2.40 3.88 2.38

• Our proposed algorithms are much faster than CCA and MMOC in terms of both

training and testing time.

• CC-Greedy and CC-DP achieve comparable testing time with BR, CC and ECC.

Through the training time of our algorithms is slower than BR, CC and ECC, our

extensive empirical studies show that our algorithms achieve superior prediction

performance than those baselines.

• CC-Greedy algorithm is much faster than CC-DP in terms of training time,

whereas it achieves comparable prediction performance with CC-DP.

3.5.4 Results of Many Labels
This subsection studies the performance of Tree-Greedy, Tree-DP and other baselines

on eurlex sm and eurlex ed data sets with many labels. We cannot get the results

of CCA and MMOC on eurlex sm and eurlex ed data sets in one week. And we

also cannot get the results of ECC on eurlex ed data set in one week. Prediction

performance of Tree-Greedy, Tree-DP and baselines is reported in Tables 3.6, 3.7

and 3.8. From the results, we can see that: our proposed Tree-Greedy and Tree-DP

algorithms consistently outperform BR, CC and ECC on the data sets with many labels.

Training and testing time of Tree-Greedy, Tree-DP and baselines on eurlex sm and

eurlex ed data sets are shown in Figure 3.3. According to this figure, we can observe

that compared to BR, CC and ECC, our algorithms maintain the testing time over an

acceptable threshold, while we are much faster than baselines in terms of training time.

3.5.5 Comparisons with Deep Learning Methods
ADIOS Cissé et al. [2016] is a state-of-the-art deep learning architecture for solving

multiple class and label tasks. Unlike traditional deep learning methods that use a flat
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Figure 3.1: The training time of CC-DP, CC-Greedy and other baselines on various

data sets. yahoo art, eurlex sm 10 and eurlex ed 10 are abbreviated to ART, SM and

ED, respectively.

Figure 3.2: The testing time of CC-DP, CC-Greedy and other baselines on various data

sets. yahoo art, eurlex sm 10 and eurlex ed 10 are abbreviated to ART, SM and ED,

respectively.
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Table 3.6: The Example-F1 results on eurlex sm and eurlex ed data sets (mean ±
standard deviation). The best results are in bold. Numbers in square brackets indicate

the rank. “-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
eurlex sm 0.6970±0.02[5] 0.7233±0.01[4] 0.7263±0.01[3] 0.7292±0.01[2] 0.7301±0.01[1]

eurlex ed 0.4345±0.03[4] 0.4528±0.02[3] - 0.4550±0.01[2] 0.4563±0.01[1]

Average Rank 4.5 3.5 3 2 1

Table 3.7: The Macro-F1 results on eurlex sm and eurlex ed data sets (mean ±
standard deviation). The best results are in bold. Numbers in square brackets indicate

the rank. “-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
eurlex sm 0.4777±0.02[5] 0.4785±0.02[4] 0.4800±0.02[3] 0.4817±0.01[2] 0.4834±0.01[1]

eurlex ed 0.1660±0.01[4] 0.1812±0.00[3] - 0.1844±0.00[2] 0.1848±0.00[1]

Average Rank 4.5 3.5 3 2 1

output layer, ADIOS aims to capture the complex dependency between labels/classes

to improve deep learning methods. Their approach is to split the label/class set into

two subsets, G1 and G2, such that given G1, the labels/classes in G2 are independent.

Our strategy to leverage label/class dependency is very different from that of ADIOS.

We can extend the classifier chain model for multi-class classification (CCMC) and

find the optimal class ordering, which can be referred to our journal paper “An Easy-

to-hard Learning Paradigm for Multiple Classes and Multiple Labels”. After that, we

use the predictions of classifiers from easier classes to train the classifiers for harder

classes. As such, the assumptions and constraints used in ADOIS are not applicable in

our model.

This subsection conducts the experiments on the ILSVRC2012 data set1. It

contains 1,000 object categories. Due to the limit of computational resources, we

randomly sample 58,700 training instances and 31,300 testing instances from the

ILSVRC2012 data set. We use the source code provided by the authors of ADIOS

with default parameters. According to Cissé et al. [2016], we use one hidden layer

with 1024 rectified linear units (ReLUs) Glorot et al. [2011] between inputs and G1,

and another 512-dimensional ReLUs between the hidden layer before G1 and G2 as

well as direct connections between G1 and G2. We also compare with VGG Simonyan

and Zisserman [2014] and residual nets (ResNet) He et al. [2016]. Both VGG and

ResNet use a flat output layer, in which do not model the dependency between the

classes Cissé et al. [2016], so the rich structure information among classes is missing

1http://www.image-net.org/challenges/LSVRC/2012/
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Table 3.8: The Micro-F1 results on eurlex sm and eurlex ed data sets (mean ± standard

deviation). The best results are in bold. Numbers in square brackets indicate the rank.

“-” denotes the training time is more than one week.

Data set BR CC ECC Tree-Greedy Tree-DP
EURLEX SM 0.7321±0.01[5] 0.7422±0.02[3] 0.7363±0.01[4] 0.7440±0.01[2] 0.7454±0.01[1]

EURLEX ED 0.4200±0.01[4] 0.4477±0.01[3] - 0.4527±0.00[2] 0.4549±0.00[1]

AVERAGE RANK 4.5 3 4 2 1

Figure 3.3: The training and testing time of BR, CC, ECC, Tree-Greedy and Tree-DP

on eurlex sm and eurlex ed data sets.

in VGG and ResNet. We use the source code provided by the respective authors with

default parameters. Following He et al. [2016], we use the 34-layer residual nets due

to the limit of computational resources, and also extract 2048-dimensional features

by the ResNet-34. According to Simonyan and Zisserman [2014], we extract 4096-

dimensional features from the 16-layer of the VGG. Here, ω is set to 10, 30 and 50 for

our method.

The classification results are reported in Table 3.9. From this table, we can observe

that

• ADIOS outperforms VGG and ResNet-34, which verifies ADIOS’s claim:

existing deep learning approaches do not take into account the often unknown

but nevertheless rich relationships between classes, this knowledge about the

rich class structure (and other deep structure in data) is sometime referred to as

dark knowledge (e.g. by Hinton et al. [2015] and Ba and Caruana [2014]).
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Table 3.9: Testing error rate (in %) of VGG, ResNet-34, ADIOS and CCMC-FG on

the ILSVRC2012 data set.

METHOD VGG RESNET-34 ADIOS CCMC-FG+VGG FEATURES CCMC-FG+RESNET FEATURES

TESTING ERROR 23.95 21.51 21.28

23.98 (ω = 10) 21.85 (ω = 10)

22.67 (ω = 30) 20.11 (ω = 30)

20.73 (ω = 50) 19.84 (ω = 50)

• Without the restriction of the assumptions and constraints used in ADOIS, our

method achieves better performance than ADIOS with the increasing value of ω.

• CCMC-FG with ResNet features obtains better performance than CCMC-FG

with VGG features, which demonstrates that our proposed method can be further

improved based on better features.

• Based on the deep learning features, CCMC-FG consistently improves VGG

and ResNet-34 with the increasing value of ω. The results validate our analysis

and the better ordering of classes obtains the better performance. Note that the

above mentioned results were obtained using 58,700 training data points. We

conclude that with limited data, the usage of structure information is helpful.

We conjecture that this advantage may ultimately vanish as more and more data

becomes available for training.

3.6 Summary of This Chapter
To improve the performance of multi-label classification, a plethora of models have

been developed to capture label correlations. Amongst them, classifier chain is one of

the most popular approaches due to its simplicity and good prediction performance.

Instead of proposing a new learning model, we discuss three important questions in

this work regarding the optimal classifier chain stated in Section 3.1. To answer these

questions, we first propose a generalized CC model. We then provide a theoretical

analysis of the generalization error for the proposed generalized model. Based on

our results, we obtain the answer to the second question: the globally optimal CC

exists only if the minimization of the upper bound is achieved over this CC. It is very

expensive to search over q! different label orders to find the globally optimal CC. Thus,

we propose the CC-DP algorithm to simplify the search algorithm, which requires

O(q3nd) complexity. To speed up the CC-DP algorithm, we propose a CC-Greedy

algorithm to find a locally optimal CC, where the time complexity of the CC-Greedy

algorithm is O(q2nd). Furthermore, we propose Tree-DP and Tree-Greedy algorithms

to further speed up CC-DP and CC-Greedy, respectively, which scale linearly with q.
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Comprehensive experiments on some real-world multi-label data sets from different

domains verify our theoretical studies and the effectiveness of proposed algorithms.
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Chapter 4

Large Margin Metric Learning for
Multi-label Classification

4.1 Motivations
A simple approach to multi-label learning is binary relevance (BR) Tsoumakas et al.

[2010], which trains a binary classifier for each label independently. To deal with

many labels, Hsu et al. [2009] assume that label vectors have a little support. In

other words, each label vector can be projected into a lower dimensional compressed

label space, which can be deemed as encoding. A regression is then learned for each

compressed label. Lastly, the compressed sensing (CS) is used to decode the labels

from the regression outputs of each testing instance.

Many works have recently been developed in this encoding-decoding paradigm.

These works mainly use different projection methods to transform the original label

space into another effective label space as encoding. For example, principal label space

transformation (PLST) Tai and Lin [2012] uses principal component analysis (PCA) to

project the output labels into a lower dimension. Canonical correlation analysis (CCA)

and maximum margin output coding (MMOC) are proposed in Zhang and Schneider

[2011] and Zhang and Schneider [2012] to encode the original label space. Learning

models are then trained in the transformed label space. To accurately recover the labels

from the prediction of the learning models, expensive decoding schemes are usually

required. Due to the combinatorial nature of the label space, exact decoding is usually

intractable. Even when approximate inference Zhang and Schneider [2011] is used,

the decoding step is still very time-consuming when there are many labels.

Comprehensive experiments on large scale image databases show that the k nearest

neighbor (kNN) algorithm achieves superior performance when handling many class

problems Deng et al. [2010]. The performance of kNN depends significantly on the

metric used to compute the distance between different instances. Moreover, Kwok and
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Tsang [2003] and Weinberger and Saul [2009] show that the single-label prediction

performance of kNN can be improved by learning a distance metric to satisfy the

following constraint: Two nearby instances from different classes will be pushed

further apart with a large margin. However, our experiment results show that existing

advanced metric learning techniques, such as the popular DML Weinberger and Saul

[2009], cannot provide an appropriate distance metric for multi-label classification,

because nearby instances may differ by only a few labels or by hundreds in a multi-

label setting. Based on structural SVMs McAllester [2006]; Tsochantaridis et al.

[2005], MMOC Zhang and Schneider [2012] has recently been proposed to learn

the proper metric for multi-label problems. Unfortunately, MMOC suffers from

two major limitations: 1) Inconsistent performance: McAllester [2006] has already

proved that structural SVMs fail to converge on the optimal decoder even with infinite

training data. 2) Prohibitive computational cost: the training of MMOC involves a

complex quadratic programming (QP) problem over the combinatorial space, and its

computational cost on the data sets with many labels is prohibitive. Therefore, it is

non-trivial to break the bottlenecks of MMOC, and develop efficient and consistent

algorithms for solving multi-label learning tasks.

This chapter systematically studies how to efficiently learn an appropriate distance

metric for solving multi-label learning tasks with provable guarantee. To achieve

our goal, we present a novel large margin metric learning paradigm for multi-label

classification to project both the input and output into the same embedding space.

Moreover, we enforce the constraint that, in the embedding space, the distance between

input x(a) and its correct output y(a) should be smaller than the distance between x(a)

and the output y(b) of the nearest neighbors of x(a) with at least a margin measured by

Δ(y(a), y(b)), the difference between y(a) and y(b). Thus, two nearby instances from

different outputs will be pushed further apart by Δ(y(a), y(b)).
The main contributions in this chapter are:

1. To avoid the inconsistent performance of MMOC, we present a novel large

margin metric learning paradigm for multi-label classification. Our theoretical

analysis shows that our proposed model converges to the optimal solutions, and

also reduces the generalization error for multi-label classification.

2. To incorporate the feature and label correlations, we project both the input and

output to the same embedding space, in which the input and output can be

compared. A large margin formulation with k nearest neighbor constraints is

proposed to learn the embedding space. Lastly, we transform the formulation to

metric learning Kulis [2013]; Yang and Jin [2006] for multi-label problems.

3. After transformation, our optimization problem is reduced to a semidefinite

programming problem. To handle many labels, the accelerated proximal
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gradient (APG) method Beck and Teboulle [2009]; Toh and Yun [2009] is

adapted to solve the reduced problem.

4. To avoid the expensive decoding step, we select k nearest neighbors from the

training set for each testing instance in the embedding space and make a rapid

prediction based on the labels of those k nearest neighbors.

5. Experiments on a number of real-world multi-label data sets demonstrate that

our method outperforms state-of-the-art approaches and is more efficient than

methods that are based on the expensive decoding step.

4.2 Large Margin Metric Learning

4.2.1 Preliminaries
Assume x(i) ∈ R

p×1 is a real vector representing an input (instance), y(i) ∈ {0, 1}q×1

is a real vector representing the corresponding output (i ∈ {1 . . . n}). n denotes the

number of training samples. The input matrix is X ∈ R
n×p and the output matrix is

Y ∈ {0, 1}n×q. Nei(i) is the output set of k nearest neighbors of input instance x(i).
For output encoding, V = (v1, v2, ...., vd) ∈ R

q×d (d < q) is the projection matrix that

maps each output vector y(i) (q dimension) to V Ty(i) (d dimension). Let P ∈ R
p×q

also be the projection matrix. For input encoding, each input vector x(i) (p dimension)

is projected to V TP Tx(i) (d dimension). Then x(i) and y(i) can be compared in the

projection space (d dimension).

A simple linear regression model for BR is to learn the matrix P through the

following formulation:

argminP∈Rp×q

1

2
||P TXT − Y T ||2F (4.1)

where || · ||F is the Frobenius norm. However, this does not consider the relationships

between labels. To reduce the noise in the data set, MMOC Zhang and Schneider

[2012] incorporates the feature and label correlations and proposes a maximum margin

output coding formulation Eq. (4.2) to learn the projection matrix.

argminV ∈Rq×d,{ξi≥0}ni=1

1

2
||V ||2F +

C

n

n∑
i=1

ξi

s.t. ||V TP Tx(i) − V Ty(i)||22 +Δ(y(i), y)− ξi

≤ ||V TP Tx(i) − V Ty||22, ∀y ∈ {0, 1}q, ∀i

(4.2)

Eq. (4.2) involves an exponentially large number of constraints. To address the

combinatorial nature of the label space {0, 1}q, Zhang and Schneider [2012] use the
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overgenerating technique Finley and Joachims [2008] with the cutting plane method.

Training involves solving a box-constrained quadratic programming (QP) problem for

each training sample i, which is time-consuming, and testing also involves solving a

QP on {0, 1}q space. Even if approximate inference Zhang and Schneider [2011] is

used to solve this QP problem, it is still computationally expensive.

4.2.2 Proposed Formulation
Inspired by kNN and MMOC, we propose the following large margin metric learning

with k nearest neighbor constraints, or LM-kNN for short, to learn the projection

matrix.

If the encoding scheme works well, the distance between the codeword of x(i)

(V TP Tx(i)) and the codeword of y(i) (V Ty(i)) should tend to 0 and be less than the

distance between the codeword of x(i) and the codeword of any other output (V Ty).

Then, the following large margin formulation is presented to learn projection matrix

V :

argminV ∈Rq×d,{ξi≥0}ni=1

1

2
||V ||2F +

C

n

n∑
i=1

ξ2i

s.t. ||V TP Tx(i) − V Ty(i)||22 +Δ(y(i), y)− ξi

≤ ||V TP Tx(i) − V Ty||22, ∀y ∈ Nei(i), ∀i

(4.3)

where C is a positive constant that controls the trade-off between square-hinge loss

function and regularizer. The constraints in Eq. (4.3) guarantee that the distance

between the codeword of x(i) and the codeword of y(i) is less than the distance

between the codeword of x(i) and the codeword of any other output. To give Eq.

(4.3) more robustness, we add the loss function Δ(y(i), y) as the margin and minus

the slack variable ξi in the left side of the constraints. Given the distance function

||V TP Tx(i) − V Ty(i)||22 as the compatibility function, Eq. (4.3) can be viewed as an

adapted form of structural SVMs Tsochantaridis et al. [2005]. The loss function is

defined as Δ(y(i), y) = ||y(i)−y||1 Zhang and Schneider [2012], where ||·||1 means the

l1 norm. Following Weinberger and Saul [2009], we use Euclidean metric to measure

the distances between instances x(i) and x(j) and then learn a new distance metric,

which improves the performance of kNN.

Define a q × q symmetric positive semidefinite matrix (denoted by S+
q ) Q: Q =

V V T ∈ S+
q and φx(i),y(i) = P Tx(i) − y(i). We can transform Eq. (4.3) to the following
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metric learning Kulis [2013]; Yang and Jin [2006] problem:

argminQ∈S+
q ,{ξi≥0}ni=1

1

2
trace(Q) +

C

n

n∑
i=1

ξ2i

s.t. φT
x(i),y(i)Qφx(i),y(i) +Δ(y(i), y)− ξi

≤ φT
x(i),yQφx(i),y, ∀y ∈ Nei(i), ∀i

(4.4)

4.2.3 Accelerated Proximal Gradient Update
Since our objective of Eq. (4.4) is smooth and the number of constrains is linear

w.r.t n, we can apply the accelerated proximal gradient (APG) method Beck and

Teboulle [2009]; Toh and Yun [2009] to efficiently solve the primal form of Eq.

(4.4) with many labels. Let p(Q) = 1
2
trace(Q) and f(Q) = C

n

∑n
i=1 ξ

2
i where

ξi = max{0,maxy∈Nei(i)(Δ(y(i), y)−(φT
x(i),y

Qφx(i),y−φT
x(i),y(i)

Qφx(i),y(i)))}. We define

F (Q) = f(Q) + p(Q), Q ∈ S+
q (4.5)

The derivative of f is denoted by ∇f . Yuan et al. [2012] show that ∇f is Lipschitz

continuous on Q. For any Z ∈ S+
q , consider the following QP problem of F (Q) at Z:

Aτ (Q,Z) = f(Z)+ < ∇f(Z), Q− Z >

+
τ

2
‖Q− Z‖2F + p(Q)

=
τ

2
‖Q−G‖2F+p(Q)+f(Z)−

1

2τ
‖∇f(Z)‖2F

(4.6)

where τ > 0 is a constant and G = Z − 1
τ
∇f(Z). To minimize Aτ (Q,Z) w.r.t. Q, it

is reduced to solve Eq. (4.7):

argminQ∈S+
q

τ

2
||Q−G||2F + p(Q) (4.7)

To solve Eq. (4.7), we take the derivative of the objective function of Eq. (4.7) w.r.t.

Q: τ(Q − G) + 1
2
I = 0, then Q = G − 1

2τ
I . We take the SVD of G as G = UGUT ,

and Q = UGUT − 1
2τ
UUT , then Q = U(G − 1

2τ
I)UT . We use 0 to replace the

negative entries in G − 1
2τ
I . Lastly, we obtain the symmetric positive semidefinite

matrix solution of Eq. (4.7), denoted by Sτ (G). The detailed APG algorithm is shown

in Algorithm 1:

In Algorithm 1, let Lf be the Lipschitz constant of ∇f and Lf estimated as

Lf = 0.01nC. The optimality condition of Eq. (4.4) is ∇F (Q) = 0. It is usually

time-consuming to achieve this condition. In practice, we meet an ε-accurate solution

instead. The stopping condition of Algorithm 1 is set as:

F (Qκ)− F (Qκ+1)

F (Qκ)
≤ ε (4.8)
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Algorithm 1 Accelerated Proximal Gradient Algorithm for Solving Eq. (4.4)

Input: η ∈ (0, 1) is a constant. Choose Q0 = Q−1 ∈ S+
q . t0 = t−1 = 1 and κ = 0.

Choose the Lipschitz constant Lf and set τ0 = Lf

Output: The optimal solution to Eq. (4.4)

1: Set Zκ = Qκ + tκ−1−1
tκ

(Qκ −Qκ−1)
2: Set τ = ητκ
3: for j = 0, 1, 2, . . . , do
4: Set G = Zκ − 1

τ
∇f(Zκ), compute Sτ (G)

5: if F (Sτ (G)) ≤ Aτ (Sτ (G), Z
κ), then

6: set τκ = τ , stop

7: else
8: τ = 1

η
τ

9: end if
10: end for
11: Set Qκ+1 = Sτ (G)

12: Compute tκ+1 =
1+
√

1+4(tκ)2

2
. Let κ = κ+ 1

13: Quit if stopping condition is achieved. Otherwise, go to step 1

where ε is a small tolerance value. In practice, we set ε = 0.001. Lastly, a sublinear

convergence rate of algorithm 1 is guaranteed in the following theorem.

Theorem 4. Let {Qκ} be the sequences generated by Algorithm 1 and Lf be the
Lipschitz constant of ∇f . Then for any κ ≥ 1, we have

F (Qκ)− F (Q∗) ≤ 2Lf ||Q0 −Q∗||2F
η(κ+ 1)2

(4.9)

where Q∗ = argminQF (Q)

The proof can be adapted from Beck and Teboulle [2009].

4.2.4 Prediction
Traditionally, encoding-decoding methods involve the decoding process which usually

requires solving QP problem on a combinatorial space. It is computationally

expensive. Inspired by metric learning Kulis [2013], we select k nearest neighbors

from the training set for each testing instance in the embedding space, and conduct

prediction based on the codeword distance with a testing instance and the labels

of k nearest neighbors. For a new testing input variable x, we find k instances

{x(1), . . . , x(k)} in the training set which have a smaller codeword distance from x than

other instances. Based on the codeword distance with x and output of {x(1), . . . , x(k)}
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Table 4.1: Time complexity comparisons between LM-kNN and other baselines.
Method Training Time Testing Time

BR O(npq) O(pq)

PLST O(n3 + q2n+ npq) O(q2 + pq)

CCA O(ψ3 + n(p2 + q2 + pq)) O(q3)

MMOC O(nq3 + n4) O(q3)

CPLST O(q3 + nq2 + p3) O(q2 + pq)

kNN - O(pn)

ML-kNN O(n2p+ nq) O(pn+ q)

LM-kNN O(q3 + knpq2) O(qn+ pq)

, we compute the scores for each label for x. Lastly, we make the prediction for multi-

label classification problems based on the scores. The equation of the distance between

the codeword of x and the codeword of x(i) is ||M̂(x)−M̂(x(i))||22. It can be computed

as (P Tx − P Tx(i))TQ(P Tx − P Tx(i)). Thus, the testing time is similar to kNN and

much faster than the encoding-decoding methods. Following the setting in MMOC,

we set 0.5 as the threshold without further optimization.

4.2.5 Complexity Analysis
Training time The formulation of MMOC involves an exponential number of

constraints. The authors therefore use the overgenerating technique with the cutting

plane method. Lastly, training involves solving a box-constrained QP problem for

each training instance and then using CVX1 to solve a semidefinite programming

problem. The time complexity of QP is at least O(q3), and from Pedrycz [2002], the

training time complexity of MMOC is O(nq3 + n4) for each iteration at least. While

the training time of our method (LM-kNN) is dominated by the APG algorithm. To

achieve an ε-solution, the number of iterations needed by APG update is O( 1√
ε
). The

time complexity for each iteration is O(q3 + knpq2).
Testing time We analyze the testing time for each testing instance. Both the

testing time of CCA and MMOC involve solving QP on {0, 1}q space. It is

combinatorial in nature and intractable, thus mean-field approximation is used to

obtain the approximated solution iteratively. The time complexity for each iteration

is O(q2), but it takes many times to converge. The time complexity is O(q3) at least.

The training and testing time complexity for the methods that are used in this chapter

is presented in Table 4.1. Let ψ = max{n, p, q}.

1http://cvxr.com/cvx/
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4.3 Generalization Error Analysis
This section will study the excess risk bounds of LM-kNN for multi-label classifica-

tion.

Suppose our learning model LM-kNN is characterized by a distribution D on the

space of inputs and labels X × {0, 1}q, where X ⊆ R
p. Let a sample (x(j), y(j)) be

drawn from the distribution D, where y(j) ∈ {0, 1}q (j ∈ {1, . . . , n}) are the ground

truth label vectors. Assume n samples D = {(x(1), y(1)), · · · , (x(n), y(n))} are drawn

i.i.d. n times from the distribution D, which is denoted by D ∼ Dn. For two inputs

x(z), x(j) in X, We define d(x(z), x(j)) = ||x(z) − x(j)||2 as the Euclidean metric in

the original input space and dpro(x
(z), x(j)) = ‖V TMTx(z) − V TMTx(j)‖2 as our

learned metric in the embedding input space. Let fD
knni

(x) represent the prediction

of i-th label for input x using our model LM-kNN for multi-label classification

(MLC), which is trained on D. The MLC prediction performance of LM-kNN:

(fD
knn1

(·), · · · , fD
knnq

(·)) : X → {0, 1}q is then measured in terms of its generalization

error, which is its expected loss on a new example (x, y) drawn according to D:

E
( q∑

i=1

�(yi, f
D
knni

(x))
)

(4.10)

where yi means the i-th label and �(yi, f
D
knni

(x)) represents the loss function for the

i-th label. We define the loss function as the following for the analysis.

�(yi, f
D
knni

(x)) = P (yi �= fD
knni

(x)) (4.11)

For i-th label, we define the function as follows:

νij(x) = P (yi = j|x), j ∈ {0, 1}. (4.12)

The Bayes optimal classifier b∗ for i-th label is defined as

b∗i (x) = arg max
j∈{0,1}

νij(x) (4.13)

Before deriving our results, we first present several important definitions and theorems.

Definition 2 (Doubling Dimension, Kontorovich and Weiss [2014]; Krauthgamer and

Lee [2004]). Let (X, d) be a metric space, let λ̄ be the smallest value such that every
ball in X can be covered by λ̄ balls of half the radius. The doubling dimension of X is
defined as : ddim(X) = log2(λ̄).

Theorem 5 (Kontorovich and Weiss [2014]; Krauthgamer and Lee [2004]). Let (X, d)
be a metric space. The diameter of X is defined as diam(X) = sup

x,x′∈X
d(x, x′). The

ε-covering number of X, N(ε,X, d), is bounded by:

N(ε,X, d) ≤
(2diam(X)

ε

)ddim(X)
(4.14)
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We provide the following generalization error bound of LM-1NN for MLC:

Theorem 6. Given a metric space (X, dpro), assume function νi : X → {0, 1} is
Lipschitz with constant L with respect to the sup-norm for each label. Suppose X

has a finite doubling dimension: ddim(X) = D < ∞ and diam(X) = 1. Let D =
{(x(1), y(1)), · · · , (x(n), y(n))} and (x, y) be drawn i.i.d. from the distribution D. Then,
we have

E
( q∑

i=1

P (yi �= fD
1nni

(x))
)

≤
q∑

i=1

2P (b∗i (x) �= yi) +
3qL||M ||F

√
trace(Q)

n1/(D+1)

(4.15)

The proof of this theorem can be found in Appendix A.5.

Inspired by Theorem 19.5 in Shalev-Shwartz and Ben-David [2014], we derive the

following lemma of LM-kNN for MLC:

Lemma 3. Given metric space (X, dpro), assume function νi : X → {0, 1} is
Lipschitz with constant L with respect to the sup-norm for each label. Suppose X

has a finite doubling dimension: ddim(X) = D < ∞ and diam(X) = 1. Let
D = {(x(1), y(1)), · · · , (x(n), y(n))} and (x, y) be drawn i.i.d. from the distribution
D. Then, we have

E
( q∑

i=1

P (yi �= fD
knni

(x))
)

≤
q∑

i=1

(1 +
√

8/k)P (b∗i (x) �= yi) +
q(6L||M ||F

√
trace(Q) + k)

n1/(D+1)

(4.16)

The proof of this lemma can be found in Appendix A.6. The following corollary

reveals important statistical properties of LM-1NN and LM-kNN for MLC.

Corollary 4. For MLC, as n goes to infinity, the error of LM-1NN and LM-kNN
converges to the sum of twice the Bayes error and 1 +

√
8/k times the Bayes error

over the labels, respectively.

Our results reveal that an important factor in reducing the generalization error

bound for the LM-1NN and LM-kNN is to minimize trace(Q), which is equivalent

to optimizing Problem (4.4). Thus, minimizing the objective of our LM-kNN tightens

the generalization error bound for MLC.
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Table 4.2: Data sets used in the experiments of Chapter 4.
Data Set # Instances # Features # Labels

scene 2,407 294 6

cal500 502 68 174

corel5k 5,000 499 374

delicious 16,105 500 983

EUR-Lex (dc) 19,348 5,000 412

EUR-Lex (ed) 19,348 5,000 3,993

4.4 Experiment
In this section, we evaluate the performance of our proposed Large Margin kNN

(LM-kNN) for multi-label prediction. All the methods compared are implemented

in MatLab. All experiments are conducted on a workstation with a 3.4GHZ Intel CPU

and 32GB main memory running Linux platform.

4.4.1 Experimental Setup
4.4.1.1 Data Sets

We conduct experiments on a variety of real-world data sets from different domains1

(Table 4.2).

• scene Boutell et al. [2004]: Collects images of outdoor scenes.

• cal500 Turnbull et al. [2008]: Contains songs by different artists. Each song is

labeled by 174 tags representing genres, instruments, emotions, and other related

concepts.

• corel5k Duygulu et al. [2002]: Contains images from Stock Photo CDs. In total,

there are 374 labels.

• delicious Tsoumakas et al. [2008]: Contains textual data of web pages along

with 983 tags extracted from the del.icio.us social book marking site.

• Eur-Lex Loza Mencı́a and Fürnkranz [2008b]: Collects documents on European

Union law. There are several EuroVoc descriptors, directory codes and types of

subject matter to describe the labels. Here, we use two of them which have more

labels.

1http://mulan.sourceforge.net
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4.4.1.2 Baseline Methods

We compare our LM-kNN with several state-of-the-art multi-label prediction methods:

• BR Tsoumakas et al. [2010].

• PLST Tai and Lin [2012]: Uses principal component analysis (PCA) for

encoding, and rounding for decoding.

• CPLST Chen and Lin [2012a]: Conditional principal label space transformation

(CPLST) is proposed to learn the embedding space, which considers both the

label and the feature parts.

• CCA Zhang and Schneider [2011]: Uses canonical correlation analysis to encode

the label vectors, and mean-field approximation is applied in the decoding step.

• MMOC Zhang and Schneider [2012]: Adapts a maximum margin criterion to

learn output coding for multi-labels. Its decoding scheme is the same as CCA.

• kNN: We adapt the k nearest neighbor (kNN) algorithm to solve multi-label

classification problems. Euclidean metric is used to measure the distances

between instances.

• ML-kNN Zhang and Zhou [2007b]: Based on kNN, the maximum posteriori

principle is used by this method to determine the labels of the testing instance.

For BR, we use linear classification/regression package LIBLINEAR Fan et al. [2008]

with L2-regularized logistic regression (primal) to train the classifier. As with the

experimental settings in Zhang and Schneider [2012], the number of output projections

d is set to the number of original labels q (d = q) for PLST, CCA, MMOC and CPLST

and the decoding parameter is set as λ = 1 for CCA and MMOC. In our experiment,

we find that the performance of kNN or ML-kNN have no significant difference on

most data sets with varying k. Following the setting in Zhang and Zhou [2007b], we

set k = 10 for kNN, ML-kNN and our method. η = 0.4 is set for the APG algorithm

and C = 10 is set for MMOC and our method. We set the stopping condition threshold

as ε = 0.01 for EUR-Lex (ed) data set. Besides PLST Tai and Lin [2012], CCA Zhang

and Schneider [2011] and MMOC Zhang and Schneider [2012] have also been shown

to outperform the original compressed-sensing-based method Hsu et al. [2009], thus

we make no comparison with Hsu et al. [2009] in this chapter.

To fairly measure the performance of our method and the baseline methods, we

consider Hamming Loss, Micro-F1 and Example-F1 as the evaluation measurements.

We perform 10-fold cross-validation on each data set and report the mean and standard

error of each evaluation measurement.
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Table 4.3: The Hamming Loss results of LM-kNN and other baselines on the various

data sets (mean ± standard deviation). The best results are in bold.
Data Set BR PLST CCA MMOC CPLST kNN ML-kNN LM-kNN

scene 0.1109 ± 0.01 0.1113 ± 0.01 0.0942 ± 0.01 0.0936 ± 0.01 0.1114 ± 0.01 0.0902 ± 0.01 0.0951 ± 0.01 0.0917 ± 0.01

cal500 0.1557 ± 0.01 0.1471 ± 0.00 0.1680 ± 0.01 - 0.1433 ± 0.01 0.1453 ± 0.00 0.1495 ± 0.01 0.1423 ± 0.00

corel5k 0.0200 ± 0.01 0.0097 ± 0.00 - - 0.0094 ± 0.00 0.0095 ± 0.00 0.0094 ± 0.00 0.0086 ± 0.00

delicious 0.0194 ± 0.00 0.0194 ± 0.00 - - 0.0190 ± 0.00 0.0197 ± 0.00 0.0198 ± 0.00 0.0183 ± 0.00

EUR-Lex (dc) 0.0097 ± 0.00 0.0070 ± 0.00 - - 0.0053 ± 0.00 0.0047 ± 0.00 0.0049 ± 0.00 0.0015 ± 0.00

EUR-Lex (ed) 0.0034 ± 0.00 0.0029 ± 0.00 - - 0.0028 ± 0.00 0.0023 ± 0.00 0.0024 ± 0.00 0.0011 ± 0.00

Table 4.4: The Micro-F1 results of LM-kNN and other baselines on the various data

sets (mean ± standard deviation). The best results are in bold.
Data Set BR PLST CCA MMOC CPLST kNN ML-kNN LM-kNN

scene 0.6911 ± 0.03 0.5924 ± 0.03 0.7281 ± 0.03 0.7297 ± 0.03 0.6347 ± 0.02 0.7221 ± 0.02 0.7387 ± 0.03 0.7300 ± 0.03

cal500 0.3448 ± 0.02 0.3032 ± 0.01 0.3533 ± 0.02 - 0.3536 ± 0.02 0.3593 ± 0.01 0.3184 ± 0.02 0.3549 ± 0.02

corel5k 0.0956 ± 0.03 0.0801 ± 0.01 - - 0.1022 ± 0.01 0.1006 ± 0.01 0.0278 ± 0.01 0.1834 ± 0.02

delicious 0.2447 ± 0.01 0.1423 ± 0.01 - - 0.1826 ± 0.00 0.2338 ± 0.01 0.1738 ± 0.01 0.3046 ± 0.01

EUR-Lex (dc) 0.7211 ± 0.02 0.2304 ± 0.03 - - 0.3504 ± 0.03 0.6988 ± 0.01 0.6705 ± 0.01 0.7388 ± 0.01

EUR-Lex (ed) 0.4566 ± 0.01 0.1059 ± 0.01 - - 0.1840 ± 0.01 0.4664 ± 0.01 0.3864 ± 0.01 0.4706 ± 0.02

4.4.2 Prediction Performance
Tables 4.3, 4.4 and 4.5 list the three measurement results for our method and baseline

approaches in respect of the different data sets. Recall that CCA and MMOC are

very computationally expensive, especially for solving the QP problem on {0, 1}q
space which is combinatorial in nature and intractable during the decoding step, so

they cannot be run on most of the larger data sets. In our experiment, the decoding

procedure on corel5k data set already takes more than two days for CCA. Because

MMOC has to solve a box-constrained QP for each training sample and use CVX to

tackle optimization problems during the training step, it runs out of memory even for

the cal500 data set with 68 features and 174 labels. From the results, we can see that:

• CCA or MMOC’s performance is comparable to the best results on scene and

cal500. This means that CCA and MMOC are most successful in small data sets

with few labels, but cannot deal with larger data sets with many labels.

• In our experiment, PLST generally underperforms. Thus, PLST with simple

linear projection in encoding and decoding procedure is not effective.

• CPLST outperforms PLST, which is consistent with the empirical results in Chen

and Lin [2012a].

Table 4.5: The Example-F1 results of LM-kNN and other baselines on the various

data sets (mean ± standard deviation). The best results are in bold.
Data Set BR PLST CCA MMOC CPLST kNN ML-kNN LM-kNN

scene 0.6169 ± 0.03 0.4588 ± 0.04 0.7320 ± 0.03 0.7025 ± 0.03 0.5390 ± 0.03 0.6815 ± 0.02 0.6874 ± 0.03 0.7101 ± 0.03

cal500 0.3446 ± 0.02 0.3062 ± 0.01 0.3516 ± 0.02 - 0.3513 ± 0.02 0.3561 ± 0.01 0.3216 ± 0.02 0.3517 ± 0.02

corel5k 0.0781 ± 0.02 0.0587 ± 0.01 - - 0.0757 ± 0.01 0.0773 ± 0.01 0.0178 ± 0.01 0.1517 ± 0.01

delicious 0.2093 ± 0.01 0.1131 ± 0.00 - - 0.1530 ± 0.00 0.2094 ± 0.01 0.1518 ± 0.00 0.2665 ± 0.00

EUR-Lex (dc) 0.7133 ± 0.01 0.1530 ± 0.02 - - 0.4461 ± 0.01 0.6569 ± 0.01 0.6038 ± 0.01 0.7230 ± 0.01

EUR-Lex (ed) 0.4313 ± 0.02 0.0725 ± 0.01 - - 0.2429 ± 0.00 0.4207 ± 0.01 0.3385 ± 0.00 0.4630 ± 0.00
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Table 4.6: Comparison between DML and LM-kNN in terms of Micro-F1 and

Example-F1 (mean ± standard deviation). The best results are in bold.

Data Set
Micro-F1 Example-F1

DML LM-kNN DML LM-kNN

scene 0.3349 ± 0.01 0.7300 ± 0.03 0.3325 ± 0.02 0.7101 ± 0.03

corel5k 0.0188 ± 0.02 0.1834 ± 0.02 0.0171 ± 0.03 0.1517 ± 0.01

Figure 4.1: The training time of LM-kNN and other baseline methods on all data sets.

• BR is inferior to kNN and LM-kNN on most data sets, such as scene, cal500

and corel5k. BR does not consider the distributions and relationships between

labels, so it usually achieves much lower accuracy on many data sets.

• LM-kNN outperforms MMOC and other baselines on most data sets in terms of

Hamming Loss, which corroborates our theoretical results. Tables 4.4 and 4.5

show that LM-kNN also achieves superior performance in terms of both Micro-

F1 and Example-F1 measurements. These results demonstrate that LM-kNN is

the most successful method in terms of different measurements.

4.4.3 Comparison with DML
This section compares the performance of our method and DML Weinberger and

Saul [2009] on scene and corel5k data sets. The results are shown in Table 4.6.

From the results, we can see that DML generally underperforms on multi-label

problems, whereas our method provides an appropriate distance metric for multi-label

classification.
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Figure 4.2: The testing time of LM-kNN and other baseline methods on all data sets.

4.4.4 Training Time and Testing Time
In this section, we compare the time performance of the various methods used in the

experiment. Figures 4.1 and 4.2 report the once training and testing times of 10-fold

cross-validation for our method and baseline approaches in terms of different data sets

respectively. The results illustrate that PLST is fast in terms of training and testing

time, which is consistent with the empirical results in Tai and Lin [2012], however, it

is not effective in general. BR is fast in terms of testing time, however, it has slow

training time and underperforms on the much larger data sets EUR-Lex (dc) and EUR-

Lex (ed). Our method LM-kNN is almost 10 times faster than CCA and MMOC in

terms of both the training and testing times even on smaller data sets, and is comparable

to kNN and ML-kNN in terms of testing time.

4.5 Summary of This Chapter
To achieve the better performance than BR, based on structural SVMs, Zhang and

Schneider [2012] proposed MMOC to incorporate the feature or label correlations.

However, MMOC suffers from two major limitations: 1) Inconsistent performance:

McAllester [2006] has already proved that structural SVMs fail to converge on the

optimal decoder even with infinite training data. 2) Prohibitive computational cost:

the training of MMOC involves a complex quadratic programming (QP) problem

over the combinatorial space. Even if the overgenerating technique with the cutting

plane method is used to solve this problem, it is still computationally very expensive.

Therefore, it is non-trivial to break the bottlenecks of MMOC, and develop efficient
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and consistent algorithms for solving multi-label learning tasks. Inspired by kNN

and MMOC, we propose the large margin formulation with k nearest neighbors

constraints to solve the projection matrix which reduces the number of constraints from

O(n2q) to O(nk) and is more robust than kNN. Our problem is then transformed to a

metric learning problem. To handle large scale applications, the accelerated proximal

gradient (APG) method is adapted to solve the reduced semidefinite programming

problem. Lastly, instead of performing expensive combinatorial optimization or

approximate inference for the decoding procedure, we simply adopt the kNN strategy,

which selects k nearest neighbors from the training set for each testing instance

in the projection space and makes rapid prediction based on the labels of those k
nearest neighbors. Furthermore, we provide the generalization error analysis for our

proposed method. Our theoretical analysis shows that our proposed model converges

to the optimal solutions, and also reduces the generalization error for multi-label

classification. Overall, extensive experiments on a number of real-world multi-label

data sets demonstrate that our method outperforms state-of-the-art approaches for

accuracy. For scalability, our method is almost 10 times faster than CCA and MMOC

in terms of both the training and testing times, and is comparable to kNN and ML-kNN

in terms of testing time.
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Chapter 5

Fast Prediction via Multi-Label
Coding Tree

5.1 Motivations
One central challenging issue for practical multi-label learning is the scalability of

prediction. Suppose one needs to predict the presence or absence of q labels for m
input instances, simple approaches, like Read et al. [2009]; Tsoumakas et al. [2010],

scaling the number of annotations to be linear with the number of labels, take O(q×m)
time for prediction. However, in real-world applications, like image prediction Deng

et al. [2009], m and q can be very large and the cost of those exhaustive approaches

quickly becomes prohibitive. We cannot get the results of these exhaustive approaches

on the large-scale data sets within one week.

Recently, many works [Agrawal et al., 2013; Liu and Tsang, 2016; Prabhu and

Varma, 2014; Tsoumakas et al., 2008] have put more effort on exploring tree-based

algorithms to minimize the number of predictions for multi-label predictions with

many labels. Among them, FastXML Prabhu and Varma [2014] is the most recently

advanced technique, which has shown state-of-the-art rapid predictions. However, our

extensive empirical study verifies that FastXML generally underperforms in terms

of multi-label prediction performance. Moreover, some literature Madjarov et al.

[2012]; Tsoumakas et al. [2008] has shown Homer Tsoumakas et al. [2008] achieves

superior prediction performance. Unfortunately, we cannot get the results of Homer on

medium-sized data sets within one week in our experiment. The question is: can we

design some efficient, yet accurate multi-label prediction algorithms with the minimum

number of predictions? This is the problem we address herein.

To answer this question, we first show three important phenomena of real-world

multi-label learning data sets with many labels from various application domains1. We

1http://mulan.sourceforge.net
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Figure 5.1: Top: Frequency of each label on the delicious and Eur-Lex(ed) data sets.

middle: Frequency of each label powerset on the delicious and Eur-Lex(ed) data sets.

bottom: Frequency of samples with the specific number of labels on the delicious and

Eur-Lex(ed) data sets.
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use delicious and Eur-Lex(ed) data sets as examples. The details of those data sets are

shown in Table 4.2. The labels of instances usually follow the distribution of Power

Law Barabási et al. [2000], as shown at the top of Figure 5.1, where many labels have

very low label frequency. The bottom of Figure 5.1 shows the sparsity of labels in each

instance, which means that the average number of labels in the data set is small. The

middle of Figure 5.1 shows that very few label powersets have high frequency. Note

that similar observations can also be found in image prediction tasks Mao et al. [2013].

In real-world problems, although the number of labels would be very large, the

first observation indicates that only a few labels appear very frequently; many others

are rare. Based on this property, we design a tree-based strategy to reduce the overall

predictions as follows. Frequent labels should be predicted first in the decision tree,

so there will be fewer predictions involved to predict the frequent labels; and more

predictions for rare labels. To achieve this, we develop a multi-label coding tree based

strategy, which is analogous to the Shannon-Fano coding Shannon [1948] strategy, to

deal with multi-label prediction problems. Moreover, the second observation shows

that each instance typically has few labels, which enables our tree model to stop

earlier. Thus, fewer predictions will be made along shorter paths in our tree model

for most testing instances. The idea of Huffman coding be easily used to deal with the

transformed multi-class prediction task based on the property of the last observation.

Therefore, our proposed coding tree framework reduces the number of predictions

significantly.

Our main contributions are as follows:

1. We observe three important phenomena of real-world multi-label learning data

sets.

2. To reduce the number of predictions, based on the properties of multi-label

learning data sets, we employ the coding tree based strategy to deal with both

the transformed multi-class prediction task and multi-label prediction problems

in bottom-up and top-down manners, respectively.

3. We provide a theoretical analysis of the average number of predictions for the

proposed methods.

4. Experiments on a number of real-world multi-label learning data sets demon-

strate that our methods yield significantly fewer numbers of predictions than

state-of-the-art approaches and achieve comparable prediction performance with

the best one.
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5.2 Coding Tree Framework
In this section, we will present the details of our proposed coding tree based algorithms

for multi-label prediction problem and the transformed multi-class (label powerset)

prediction tasks. Assume xi ∈ R
d is a real vector representing an input or instance

(feature), Yi ⊆ {1, 2, · · · , q} is the corresponding output (label), where q is the number

of labels (i ∈ {1 . . .m}). m denotes the number of training samples. yi ∈ {0, 1}q is

used to represent the label set Yi, where yi(j) = 1 if and only if j ∈ Yi.

5.2.1 Label Powerset Prediction
Our goal is to minimize the number of classifiers for binary decisions to enable rapid

label powerset prediction for a number of testing instances. Recall that, to minimize the

expected codeword length of information, Huffman coding uses shorter codewords to

encode more frequent symbols and longer codewords to encode less frequent symbols.

The idea of Huffman coding can be easily adapted to deal with the label powerset

prediction problems.

Given a random m multi-labeled training sample, we first transform multi-label

prediction to multi-class prediction by treating each unique set of labels as one of

the classes for transformed multi-class learning task and record the frequency of each

transformed class. Let n be the number of transformed classes. A Huffman coding tree

is built based on the n classes and their corresponding frequencies. Leaf nodes of this

Huffman coding tree are the set of transformed classes, denoted by S = {s1, · · · , sn},

and the corresponding frequencies are represented by P = {p(s1), · · · , p(sn)}.

Tsi(i = 1, · · · , n) denotes the training instances associated with each transformed

class. If S is a set, |S| denotes its cardinality. We build a Huffman coding tree dealing

with the label powerset case in a bottom-up manner. The details of the algorithm are

presented in Algorithm 2.

More frequent classes are close to the root and less frequent classes are close to

the leaf node layer. Thus, the prediction for most testing instances only require a few

binary decisions along some shorter paths in our algorithm.

We use a simple example to demonstrate our Huffman coding tree. Assume one

needs to predict the presence or absence of four labels (a, b, c, e) for 8 input instances.

Suppose (1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1) and (0, 0, 1, 0) appear 3, 1, 3 and 1 times,

respectively. Following Algorithm 2, we build the tree structure as shown in Figure 5.2.

5.2.2 Multi-label Prediction
For multi-label prediction problems, the hypothesis space is exponential and we can

not observe some combinations of labels in the training data. Thus Huffman coding

can not be used to tackle the multi-label prediction problem. To reduce the number of
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Figure 5.2: Schematic illustration of HCT.

Algorithm 2 Huffman Coding Tree (HCT) for Label Powerset Prediction

Input: Given n transformed classes S, corresponding frequencies P , and Tsi(i =
1, · · · , n).

Output: A hierarchical tree for multi-label prediction

1: Initialize a priority queue Q = ∅ with the ascending order of the frequency

2: Create a leaf node for each transformed class si and insert it to Q
3: while |Q| > 1 do
4: remove the two nodes si and sj of the lowest frequency from Q
5: create a new internal node sk with si and sj as children and its frequency equals

to the sum of the two nodes’ frequency

6: set the instance Tsi as positive sample and Tsj as negative sample, then train a

classifier for the node sk
7: insert the new node sk to Q
8: end while
9: The remaining node is the root node and the tree is complete

predictions, we develop a tree-based strategy, which is analogous to the Shannon-Fano

coding strategy. We first train an accurate node classifier to predict the frequent label

that have more examples. Then, we can leverage the predictions of such classifier to

divide the remaining labels into two sets whose cardinality are roughly comparable. As

long as any sets with more than one member remain, the same process is repeated on

those sets. Our algorithm makes predictions for the ordered labels which accord to the

arrangement with the label frequency ranging from high to low. The second property

shows that each instance has very few labels, based on our algorithm, so only a few

predictions will be made for most testing instances. We start with some definitions

associated with the specific nodes in a tree.

Let g represent the node in a tree, assume the label set associated with the node
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g is Gg = {1, 2, · · · , q}, given a set of training instances Tg = {xi}mi=1 and the

corresponding labels Lg = {yi}mi=1.

Definition 3. ( Zero Label Set) refers to the situation where all the training instances
at the node g do not belong to this label set. It defined as: Zerog = {j| where all the
training instances at the node g do not belong to label j }.

Definition 4. ( One Label Set) refers to the situation where all the training instances
at the node g belong to this label set. It defined as: Oneg = {j| where all the training
instances at the node g belong to label j }.

To accelerate the learning process, those zero and one label sets will be thrown

away. Thus we define the working label set for node g: Wg = Gg − Zerog − Oneg.

Now, we introduce the learning process for the tree in three cases.

1. Root node: Assume g is the root node. We select label lg ∈ Wg with the

highest frequency among Wg and train a classifier for lg. g’s left and right child

are denoted as g1 and g0, respectively. The training instances of node g will

be partitioned into left child g1 if the values of label lg of those instances is

1, otherwise the instances will be partitioned into right child g0. The label set

associated with node g1 and g0 will be reduced as Wg\lg. The training instance

sets for g1 and g0 are denoted by Tg1 and Tg0 .

2. Internal node: The training procedure for internal (child) nodes are the same

with that for the root node but uses a subset of training instances. The training

instances are split recursively into two smaller subsets until our algorithm moves

down to the leaf nodes.

3. Leaf node: If the working set of the node is empty, then it is a leaf node and

stop training for the leaf nodes.

We use the same example, which is aforementioned in Section 5.2.1, to illustrate our

Shannon-Fano coding tree. Following Algorithm 3, we train a classifier for label a in

the root node. For internal nodes, we train the classifier for label b and e in the left and

right child nodes of the root, respectively. The working set in leaf nodes is empty, so

we do not train any classifiers for the leaf nodes.

We predict the multi-label output for a new testing instance from the root to leaves

and assign the labels of the leaf node to this testing instance. The schematic illustration

of our tree is shown in Figure 5.3 and the details of algorithm is presented as follows:
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Figure 5.3: Schematic illustration of SFCT.

Algorithm 3 Shannon-Fano Coding Tree (SFCT) for Multi-label Prediction

Input: Given node g and its corresponding Gg, Tg and Lg.

Output: A hierarchical tree for multi-label prediction

1: Compute Zerog, Oneg and Wg

2: while Wg �= ∅ do
3: select label lg ∈ Wg with the highest frequency

4: train a classifier for lg
5: set the label set of left and right child as Wg\lg
6: split the training instances of node g into left child g1 if the values of label lg of

those instances are 1 and call Algorithm 3 with input (Wg\lg, Tg1)

7: split the rest of training instances of node g into right child g0 and call Algorithm

3 with input (Wg\lg, Tg0)

8: end while
9: The tree is complete

5.3 Theoretical Analysis

5.3.1 Analysis on Number of Predictions
As the prediction efficiency critically depends on the number of prediction times, in

this section, we study the average number of predictions for the both cases. We denote

logarithms to base 2 by log.

We first introduce the noiseless coding theorem in Roman [1992]. Let C =
{c1, · · · , cn} be the symbol set of size n. p(ci) is the probability that symbol ci occurs.

After encoding of symbols in C, l(ci) denotes the length of code ci and the average

codeword length is defined as AveLen(c1, · · · , cn) =
∑n

i=1 p(ci)l(ci). The entropy of

{p(c1), · · · , p(cn)} is defined as H(p(c1), · · · , p(cn)) =
∑n

i=1 p(ci) log(1/p(ci)) (we

denote logarithms to base 2 by log). We get the following noiseless coding theorem:

Theorem 7. ( The Noiseless Coding Theorem) For any probability distribution
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{p(c1), · · · , p(cn)}, we have

H(p(c1), · · · , p(cn)) ≤ AveLen(c1, · · · , cn)
< H(p(c1), · · · , p(cn)) + 1

Label powerset prediction: We define H(Plp) =
∑n

i=1 p(si) log(1/p(si)). l(si)
denotes the number of predictions for class si and the average number of predictions

is defined as mean(S) =
∑n

i=1 p(si)l(si). Following Theorem 7, we obtain the bound

of the average number of predictions for the label powerset prediction problem using

Algorithm 2.

Theorem 8. Assume we transform a random m multi-labeled sample to a multi-class
sample which has n classes. Then, a hierarchical tree T is built based on Algorithm 2.
We obtain the bound of the average number of predictions for the transformed multi-
class prediction problem using T :

H(Plp) ≤ mean(S) < H(Plp) + 1

Multi-label prediction: Assume there are n leaf nodes in a hierarchical tree which

is built according to Algorithm 3. Those leaf nodes denoted by S ′ = {s′1, · · · , s′n}.

Assume the frequency p′i of each unique label set can be associated with leaf

node s′i. We define H(Pl) =
∑n

i=1 p(s
′
i) log(1/p(s

′
i)). Similar to label powerset

prediction problem, we use mean(S ′) to represent the average number of predictions

of Algorithm 3. We obtain the bound of mean(S ′) for the label case.

Theorem 9. Given a random m multi-labeled sample which has n unique label set. A
hierarchical tree T is built based on Algorithm 3. We obtain the bound of the average
number of predictions for multi-label prediction problem using T :

H(Pl) ≤ mean(S′) < H(Pl) + 1

Proof. Assume there are m multi-labeled samples which have n unique label set. We

build a hierarchical tree based on m sample according to Algorithm 3. Each node is

associated with one label, so the labels associated with nodes in each path of the tree

are one of the unique label set, so there are n number of paths and leaf nodes. The

frequency of each unique label set can be associated with each leaf node. After this

transformation, we apply Theorem 8 to obtain the above bounds.

Therefore, in the label powerset and multi-label prediction algorithms, we can

expect that the number of predictions for each instance are around H(Plp) and H(Pl),
which are much fewer than min(m, 2q) and q, respectively.
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Table 5.1: Testing time complexity comparisons among HCT, SFCT and other

baselines. Υ,Ψ, ι,D : # clusters, the average # instances in each cluster, # learners

and the dimension of the embedding space used in SLEEC.

Method Worst Testing Time Average Testing Time

BR O(dq) O(dq)
LP O(dψ) -

Homer - O(d logk(q))
FastXML - O(Td log(q))
SLEEC - O(DΥι+DΨι+ dD)

HCT O(d log(ψ)) O(dH(Plp))
SFCT O(dq) O(dH(Pl))

5.3.2 Testing Time Complexity Analysis
Algorithm 3 and Algorithm 2 are denoted as SFCT and HCT, respectively. We

provide the testing time complexity analysis for each testing instance. The number

of predictions for BR are equal to the number of labels. Each time Homer divides the

problem into k sub-problems. Following Tsoumakas et al. [2008], it takes O(d logk(q))
on testing time. According to Prabhu and Varma [2014], the average cost of prediction

for FastXML is O(Td log(q)), where T is the number of trees in the FastXML

ensemble. In the worst case, LP requires min(m, 2q) times of predictions respectively.

The number of predictions for HCT and SFCT are log(min(m, 2q)) and q, respectively.

As shown in our theoretical analysis, on average, the number of predictions can be

further reduced to H(Plp) and H(Pl). The testing time complexity for the methods

that are used in this chapter is presented in Table 5.1, where ψ = min(m, 2q).

5.4 Experiment
In this section, we evaluate the performance of our proposed algorithms for multi-label

prediction. All experiments are conducted on a workstation with a 3.2GHZ Intel CPU

and 4GB main memory running 64-bit Windows.

5.4.1 Data Sets and Baselines
We conduct experiments on a variety of real-world data sets from website1. The details

of data sets are shown in Table 5.2.

We compare our algorithms with several state-of-the-art multi-label annotation

methods:

1http://mulan.sourceforge.net
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Table 5.2: Data sets used in the experiments of Chapter 5.

Data Set # Instances # Features # Labels

mediamill 43,907 120 101

cal500 502 68 174

corel5k 5,000 499 374

Eur-Lex (dc) 19,348 5,000 412

Eur-Lex (ed) 19,348 5,000 3,993

• Flat methods: BR Tsoumakas et al. [2010] and LP Tsoumakas et al. [2010]. BR

trains a classifier for each label independently. LP trains a single multi-class

classifier for the transformed multi-class prediction problem.

• Tree-based methods: Homer Tsoumakas et al. [2008] and FastXML Prabhu

and Varma [2014]. Homer uses divide-and-conquer-strategy to divide original

problem into k sub-muilti-label prediction problems. FastXML learns a hier-

archy over the feature space by directly optimizing a ranking loss function.

• Embedding-based method: Sparse local embedding for extreme classification

(SLEEC) [Bhatia et al., 2015] is a state-of-the-art encoding-decoding method.

The codes are provided by the respective authors. According to Tsoumakas et al.

[2008], k is chosen in a range of {2, 3, · · · , 8} using cross validation for Homer.

Following Prabhu and Varma [2014], T is fixed to 50 for FastXML. We use the linear

classification/regression package LIBLINEAR Fan et al. [2008] with l2-regularized

square hinge loss (primal) to train the classifier for both BR and LP. We use the default

parameter in LIBLINEAR. According to the original setting in [Bhatia et al., 2015],

the number of learners as 15 and the dimension of the embedding space as 50.

To measure the prediction performance of our methods and baseline methods fairly,

we consider the standard Example-F1 evaluation measurement Du et al. [2017], which

computes the F1 score for all the labels of each testing sample and takes the average

over those samples. We perform 10-fold cross-validations on each data set and report

the mean and standard error of the Example-F1 measure.

5.4.2 Prediction Performance
This subsection studies the prediction performance of various methods on mediamill,

cal500, corel5k, Eur-Lex (dc) and Eur-Lex (ed) data sets. In our experiment, we

cannot get the results of LP and Homer on Eur-Lex (ed) data set within one week.

The Example-F1 results of various methods on all data sets are listed in Table 5.3.

From this table, we observe that:
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Table 5.3: The Example-F1 Results of HCT, SFCT and other baselines on the various

data sets (mean ± standard deviation). The best results are in bold. Numbers in square

brackets indicate the rank. ”-” indicates that we can not get the results within one week.

Data Set BR LP Homer FastXML SLEEC HCT SFCT

mediamill 0.414±0.00[3] 0.394±0.01[7] 0.411±0.00[4] 0.408±0.00[6] 0.411±0.00[4] 0.422±0.01[2] 0.462±0.00[1]
cal500 0.317±0.02[5] 0.345±0.02[2] 0.321±0.01[4] 0.259±0.01[7] 0.310±0.03[6] 0.324±0.02[3] 0.362±0.01[1]
corel5k 0.100±0.02[5] 0.138±0.01[2] 0.113±0.01[4] 0.056±0.01[7] 0.084±0.01[6] 0.123±0.01[3] 0.141±0.01[1]
EUR-Lex(dc) 0.713±0.01[4] 0.659±0.01[5] 0.625±0.01[6] 0.516±0.01[7] 0.716±0.01[2] 0.715±0.01[3] 0.727±0.01[1]
EUR-Lex(ed) 0.268±0.01[4] - - 0.254±0.01[5] 0.281±0.01[2] 0.274±0.01[3] 0.341±0.01[1]

Ave. Rank 4.2 4.0 4.5 6.4 4.0 2.8 1.0

Figure 5.4: Testing time of HCT, SFCT and other baseline methods on all data sets

(EUR-Lex is abbreviated to EUR).

• Tree-based methods, such as FastXML, generally underperforms on all data sets.

• SLEEC, which is one of the most advanced embedding method, generally

underperforms on small data sets, while it obtains competitive results on

medium-sized data sets, such as Eur-Lex (dc) and Eur-Lex (ed).

• HCT and SFCT are two most successful methods, which significantly outper-

form tree-based algorithms, such as Homer and FastXML.

5.4.3 Testing Time
Figure 5.4 shows the testing time of various methods spent on all testing instances per

data set. From Figure 5.4, we observe that:

• SLEEC is slower than other baselines on all data sets.
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• Tree-based method, such as FastXML, is faster than BR, LP and SLEEC on

medium-sized data sets.

• HCT and SFCT are faster than other baselines on all data sets. For example,

HCT obtains around sixty times speedup over BR and LP, and about ten times

speedup over FastXML on medium-sized data sets, such as Eur-Lex (dc). The

results verify our testing time complexity analysis.

5.5 Summary of This Chapter
Given the fact that the computational complexity issue prevents many multi-label

prediction algorithms from being practical, some tree-based algorithms, like Homer

and FastXML, are proposed to minimize the number of predictions. However, they

are neither accurate nor efficient enough. To address this issue, we observe three

important phenomena of real-world multi-label prediction sets: labels follow the

distribution of the Power Law; few labels typically exist for each instance; and very

few label powersets have high frequency. Motivated by these three observations, we

design Algorithm 2 and 3 to deal with label powerset and multi-label predictions

using the bottom-up and top-down manners, respectively. Our theoretical analysis

and extensive experiments verify that our algorithms can predict as well as possible

without performing unnecessary predictions.
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Chapter 6

Conclusion and Future Work

In this chapter, we first conclude the entire thesis, and then elaborate the possible trends

for future research.

6.1 Conclusion
During the past decade, multi-label learning has become a popular machine learning

paradigm and significantly attracted the attention of researchers as a result of its

wide range of applications, such as automatic image annotation Boutell et al. [2004],

document classification Zhang and Zhou [2006], gene function prediction Barutcuoglu

et al. [2006], automatic video annotation Qi et al. [2008] and mobile medical

recommendations Guo et al. [2016]. State-of-the-art studies have shown that methods

of multi-label learning which explicitly capture label dependency will usually achieve

better prediction performance, and modeling the label dependency is one of the major

challenges in multi-label learning tasks.

Due to its simplicity and promising experimental results, the CC model is one of

the most popular methods for capturing label dependency. However, CC suffers from

three important problems:

1. Does the label order affect the performance of CC?

2. Is there any globally optimal classifier chain which can achieve the optimal

prediction performance for CC?

3. If yes, how can the globally optimal classifier chain be found?

To answer the above questions, Chapter 3 first generalizes the CC model over a

random label order. We then present a theoretical analysis of the generalization

error for the proposed generalized model. Our results show that the upper bound of
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the generalization error depends on the sum of reciprocal of square of the margin

over the labels. Thus, we can answer the second question: the globally optimal

CC exists only when the minimization of the upper bound is achieved over this

CC. To find the globally optimal CC, we can search over q! different label orders,

which is computationally infeasible for a large q. This thesis first proposes the

dynamic programming based classifier chain (CC-DP) algorithm to simplify the search

algorithm, which requires O(q3nd) time complexity. To speed up the training process,

a greedy classifier chain (CC-Greedy) algorithm is proposed to find a locally optimal

CC, where the time complexity of the CC-Greedy algorithm is O(q2nd). Furthermore,

we propose Tree-DP and Tree-Greedy algorithms to further speed up CC-DP and CC-

Greedy, respectively, which scale linearly with q. Comprehensive experiments verify

our theoretical studies and the effectiveness of proposed algorithms.

Another important branch of methods for capturing label dependency is encoding-

decoding paradigm. Based on structural SVMs, MMOC has become one of the most

representative encoding-decoding methods and shown promising results for multi-

label classification. Unfortunately, MMOC suffers from two major limitations:

1. Inconsistent performance: McAllester [2006] has already proved that structural

SVMs fail to converge on the optimal decoder even with infinite training data.

2. Prohibitive computational cost: the training of MMOC involves a complex

quadratic programming (QP) problem over the combinatorial space, and its

computational cost on the data sets with many labels is prohibitive.

To avoid the inconsistent performance of MMOC, Chapter 4 presents a novel large

margin metric learning paradigm for multi-label classification. Our theoretical analysis

shows that our proposed model converges to the optimal solutions, and also reduces

the generalization error for multi-label classification. To overcome the prohibitive

computational cost, we first project both the input and output to the same embedding

space, in which the input and output can be compared. A large margin formulation

with k nearest neighbor constraints is proposed to learn the embedding space. After

transforming our optimization problem to a semidefinite programming problem,

accelerated proximal gradient (APG) method is adapted to solve the reduced problem.

To avoid the expensive decoding step, we select k nearest neighbors from the training

set for each testing instance in the embedding space and make a rapid prediction based

on the labels of those k nearest neighbors. Extensive experiments on a number of real-

world multi-label data sets corroborate our theoretical results, and demonstrate that

our method outperforms state-of-the-art approaches for accuracy. For scalability, our

method is almost 10 times faster than CCA and MMOC in terms of both the training

and testing times, and is comparable to kNN and ML-kNN in terms of testing time.

The prediction of most multi-label learning methods either scales linearly with the

number of labels or involves an expensive decoding process, which usually requires
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solving a combinatorial optimization. Such approaches become unacceptable when

tackling thousands of labels, and are impractical for real-world applications, such as

document annotation. It is imperative to design an efficient, yet accurate multi-label

learning algorithm with the minimum number of predictions. To solve this problem,

Chapter 5 first observes three important phenomena of real-world data sets from a

variety of application domains: many labels have very low label frequency; each

instance has few labels; and very few label powersets have high frequency. To reduce

the number of predictions, based on the properties of multi-label learning data sets,

we build a coding tree framework to deal with multi-label classification problems and

the transformed multi-class classification task in top-down and bottom-up approaches,

respectively.

Our goal is to minimize the number of classifiers for binary decisions to enable

rapid label powerset prediction for a number of testing instances. Recall that, to

minimize the expected codeword length of information, Huffman coding uses shorter

codewords to encode more frequent symbols and longer codewords to encode less

frequent symbols. Therefore, the idea of Huffman coding can be easily adapted to deal

with the label powerset prediction problems. For multi-label prediction problems, the

hypothesis space is exponential and we can not observe some combinations of labels

in the training data. Thus Huffman coding can not be used to tackle the multi-label

prediction problem. To reduce the number of predictions, we develop a tree-based

strategy, which is analogous to the Shannon-Fano coding strategy. We first train an

accurate node classifier to predict the frequent label that have more examples. Then,

we can leverage the predictions of such classifier to divide the remaining labels into

two sets whose cardinality are roughly comparable. As long as any sets with more

than one member remain, the same process is repeated on those sets. Our algorithm

makes predictions for the ordered labels which accord to the arrangement with the

label frequency ranging from high to low. The second property shows that each

instance has very few labels, based on our algorithm, so only a few predictions will

be made for most testing instances. Lastly, comprehensive experiments verify that our

methods achieve comparable or better performance without performing unnecessary

predictions.

We summarize our conclusions in Figure 6.1.

6.2 Future Work
Although the methods and algorithms proposed in this thesis have achieved encour-

aging results to some extent, some issues still remain open and should be further

investigated:

• An Easy-to-hard Learning Paradigm. Curriculum learning [Bengio et al.,
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Figure 6.1: The conclusions of this thesis.

2009] can be seen as a sequence of training criteria. Each training criterion

in the sequence is associated with a different set of weights on the training

examples, or more generally, on a reweighting of the training distribution.

Initially, the weights favor easier examples that can be learned most easily. The

next training criterion involves a slight change in the weighting of examples

that increases the probability of sampling slightly more difficult examples.

Overall, curriculum learning aims to find easier examples. However, up to now,

curriculum learning has not defined what easy examples meant, or equivalently,

how to sort examples into a sequence that illustrates the simpler concepts first.

Inspired by curriculum learning, based on our theoretical analysis of CC, we are

able to propose an easy-to-hard learning paradigm for multiclass and multi-label

classification to automatically identify easy and hard classes or labels and then

utilize the predictions from simpler classes or labels to help solve harder classes

or labels. Multi-task learning [Pan et al., 2017; Zhou et al., 2012] involves
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multiple tasks with different sets of instances. So multi-task learning is different

from multiclass and multi-label classification. In the future, we will exploit the

proposed easy-to-hard learning paradigm for multi-tasks learning problems.

• Metric Learning for Multi-output Tasks. Multi-output learning Álvarez

et al. [2012]; Xioufis et al. [2012] aims to predict multiple outputs for an

input, where the output values are characterized by diverse data types, such as

binary, nominal, ordinal and real-valued variables. This occurs in a number

of applications. For example, in document classification Schapire and Singer

[2000a], the output for a document may cover a range of topics, such as News,

Finance and Sport. The input space is usually composed of variables related

to physical properties for computer emulation Fricker et al. [2011], such as

Tail tip mass or Wing tip mass, while the corresponding output consists of

pairs of masses and stiffness for several structural modes of vibration for an

aircraft model. In sensor network analysis Osborne et al. [2008], sensors,

which are located close to one another to achieve similar readings, are used

to output different environmental variables such as rain or shine, temperature,

wind speed, tide height, and so on. It is necessary to consider the trends and

correlations observed in previous data to predict the multiple outputs of a sensor

that is temporarily unavailable and the future value of multiple environmental

parameters. In concept-based information retrieval Egozi et al. [2011], given a

user query (e.g., Steve Jobs, containing a set of concepts such as STEVE JOBS,

MACINTOSH, HISTORY OF APPLE INC.), the system outputs a ranked list of

documents ordered by their relevance to the query, and each retrieved document

is expected to contain a set of semantic concepts that are most similar to the

concepts in the user query. Such applications therefore intrinsically deal with

multiple outputs and can be solved by multi-output learning methods Xioufis

et al. [2012]; Zhang and Schneider [2011, 2012]. In the future, we will exploit

the proposed large margin metric learning paradigm for multi-output tasks with

nominal and ordinal values.

• Coding Tree. Huffman coding [Huffman, 1952] is one of the most widespread

bottom-up encoding algorithm for data compression. Huffman coding uses a

specific method for choosing the representation for each symbol, resulting in a

prefix code, that is, the bit string representing some particular symbol is never a

prefix of the bit string representing any other symbol. Given a set of symbols and

their weights (usually proportional to probabilities), Huffman coding aims to find

a set of prefix codewords with minimum expected codeword length. Based on

the frequency of occurrence of each symbol, the principle of Huffman coding is

to use a lower number of bits to encode the symbol that occurs more frequently.

Shannon-Fano coding [Shannon, 1948] is a top-down encoding technique for
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constructing a prefix code based on a set of symbols and their weights. Shannon-

Fano coding arranges the symbols in order from biggest weight to smallest

weight, and then divides them into two sets whose total weights are roughly

comparable. Then, we encode symbols in the first set as zero and symbols in the

second set as one. As long as any sets with more than one member remain, the

same process is repeated on these sets. To the best of our knowledge, we are the

first to use Huffman coding and Shannon-Fano coding in multi-label domain. In

the future, we will explore other advanced coding techniques and theories for

multi-label learning.

• Random Projections. Embedding approaches have become one of the most

pervasive techniques for multi-label classification. However, the training process

of embedding methods usually involves a complex quadratic or semidefinite

programming problem, or the model may even involve an NP-hard problem.

Thus, such methods will not be the first choice for a number of practical

applications. To avoid complex training process, in the future, we will explore

some advanced random projection methods with provable guarantee for multi-

label learning.

• Cross-View Learning. Encoding-decoding methods have shown promising

performance in multi-label prediction, as they are able to discover the depen-

dency of labels. However, most of them ignore the correlations between the

input and output, such that their learned embeddings are not well aligned, which

leads to degradation in prediction performance. In the future, we will explore the

modelling of multi-label learning, from the perspective of cross-view learning

[Wu et al., 2014], that explores the correlations between the input and output.

Specifically, we will learn the semantic common subspace and the view-specific

mappings within one framework. The semantic similarity structure among the

embeddings is further preserved, ensuring that close embeddings share similar

labels. Furthermore, we will try advanced learning-based hashing technique

[Shen et al., 2017] to generate compact binary representations to improve the

prediction efficiency.

76



Appendix A

Appendix

A.1 Covering Numbers

Definition 5 (Covering Numbers, Shawe-Taylor et al. [1998]). Let (X, d) be a metric

space, A be a subset of X and ε > 0. A set B ⊆ X is an ε-cover for A, if for

every a ∈ A, there exists b ∈ B such that d(a, b) < ε. The ε-covering number of

A, N(ε, A, d), is the minimal cardinality of an ε-cover for A (if there is no such finite

cover then it is defined as ∞).

In Chapter 3, suppose N(ε,H, s) be the ε-covering number of H with respect to the

l∞ pseudo-metric measuring the maximum discrepancy on the sample s, that is, with

respect to the distance d(f, g) = max1≤t≤m |f(xt)− g(xt)|, for f, g ∈ H.
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A.2 Proof of Lemma 2

Proof. For each s, let h̄s be a function for which |erD[h̄s] − ers[h̄s]| ≥ ε if such a

function exists, and any fixed function in H otherwise. Then

Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ε/2)

≥Ps̄s(|ers̄[h̄s]− ers[h̄s]| ≥ ε/2)

≥Ps̄s({|erD[h̄s]− ers[h̄s]| ≥ ε}
⋂

{|ers̄[h̄s]− erD[h̄s]| ≤ ε/2})

=Es[[(|erD[h̄s]− ers[h̄s]| ≥ ε)]Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2)]

(A.1)

Now the conditional probability inside can be bounded using Chebyshev’s inequality:

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2) ≥ 1− Vars̄[ers̄[h̄s]]

ε2/4
(A.2)

Since s̄ ∼ Dm and ers̄[h̄s] is 1/m times a Binomial random variable with parameters

(m, erD[h̄s]), we have Vars̄[ers̄[h̄s]] =
erD[h̄s](1−erD[h̄s])

m
≤ 1

4m
. This gives

Ps̄(|ers̄[h̄s]− erD[h̄s]| ≤ ε/2) ≥ 1− 1

mε2
≥ 1

2
(A.3)

whenever mε2 ≥ 2. Thus we get

Ps̄s(sup
h∈H

|ers̄[h]− ers[h]| ≥ ε/2) ≥1

2
Ps(|erD[h̄s]− ers[h̄s]| ≥ ε)

=
1

2
Ps(sup

h∈H
|erD[h]− ers[h]| ≥ ε)

(A.4)

where the last step of Eq. (A.4) is by definition of h̄s.
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A.3 Proof of Theorem 3

Proof. We proof the theorem using the mathematical induction. For i ∈ {1, · · · , q},

Case 1: V (i, 1) = 1
(γ1

i )
2 , where γ1i is the margin for label λi, without augmented

input and M1
i = {λi}.

Case 2: V (i, 2) = minj �=i,λi �∈M1
j
{( 1

(γ2
i )

2 +V (j, 1)}, where γ2i is the margin for label

λi, with M1
j as the augmented input. As in case 1, we already calculated V (i, 1), so

we can easily find the solution of V (i, 2). Assume V (j, 1) is the optimal value for

computing V (i, 2), then we can get M2
i =M1

j ∪ {λi}.

Case 3: Assume V (i, k − 1), k ≤ q is the optimal Q′ over a subset of M with

the length of k − 1, where the label order is ending by label λi and Mk−1
i denote the

corresponding label set for V (i, k − 1).

Case 4: V (i, k) = minj �=i,λi �∈Mk−1
j

{ 1
(γk

i )
2 +V (j, k−1)}, where γki is the margin for

label λi, with Mk−1
j as the augmented input. Based on the assumption in case 3, we

can obtain V (i, k), i ∈ {1, · · · , q}. Thus, we can find the optimal Q′ over M by using

CC-DP algorithm.

A.4 CC-Greedy algorithm
To speed up the CC-DP algorithm, we propose a CC-Greedy algorithm to find a locally

optimal CC.

Based on the training instances, we select the label from {λ1, λ2, · · · , λq} as the

first label, the maximum margin can be achieved over this label, without augmented

input. The first label is denoted by ζ1. Then, we select the label from the remainder

as the second label, if the maximum margin can be achieved over this label with ζ1 as

the augmented input. We continue in this way until the last label is selected. Finally,

this algorithm will converge to the locally optimal CC, which requires at most O(q2nd)
time complexity. This section presents the details of CC-Greedy algorithm:
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Algorithm 4 Greedy algorithm for locally optimal CC (CC-Greedy)

Input: training data {xt, yt}nt=1 with size n and label set {λ1, λ2, · · · , λq}.

Set M = {λ1, λ2, · · · , λq}.

for λj ∈ M do
Calculate [wj, b] = SVM({xt}nt=1, {yt(λj)}nt=1).
Calculate γ1j .

end for
Calculate ν = argλj∈M min 1

(γ1
j )

2 .

Set M = M− {λν}
Set C[1] = λν .

for s = 2 to q do
for λk ∈ M do

Calculate [wk, b] = SVM({xt, yt(C[1]), · · · , yt(C[s− 1])}nt=1, {yt(λk)}nt=1).
Calculate γsk.

end for
Calculate ν = argλk∈M min 1

(γs
k)

2 .

Set M = M− {λν}.

Set C[s] = λν .

end for
Output this locally optimal CC.
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A.5 Proof of Theorem 6

Proof.

ED∼Dn,(x,y)∼D

( q∑
i=1

P (yi �= fD
1nni

(x))
)

=

q∑
i=1

ED∼Dn,(x,y)∼D

(
P (yi �= fD

1nni
(x))

) (A.5)

Now, we focus on P (yi �= fD
1nni

(x)) for the i-th label. Given x, x′ ∈ X, due to νi(·) is

Lipschitz with constant L with respect to the sup-norm, we have ||νi(x)− νi(x′)||∞ =

sup
j∈{0,1}

|νij(x)− νij(x
′)| ≤ Ldpro(x, x

′) and

P (yi �= y′i|x, x′)

= P (yi = 1|x)P (y′i = 0|x′) + P (yi = 0|x)P (y′i = 1|x′)

=
∑

j∈{0,1}
νij(x)(1− νij(x

′))

≤
∑

j∈{0,1}
νij(x)(1− νij(x) + Ldpro(x, x

′))

=
∑

j∈{0,1}
νij(x)(1− νij(x)) + Ldpro(x, x

′) (A.6)

As dpro(x, x
′) = ||V TMTx−V TMTx′||2 ≤ ||M ||F ||V ||F ||x−x′||2 ≤ ||M ||F

√
trace(Q)d(x, x′),

we get

P (yi �= y′i|x, x′)

≤
∑

j∈{0,1}
νij(x)(1− νij(x)) + L||M ||F

√
trace(Q)d(x, x′)

(A.7)

Assume (x′, y′) is the nearest neighbor of (x, y) inD: (x′, y′) = argmin(x(i),y(i))∈D dpro(x, x
(i)).
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Then, we have ED∼Dn,(x,y)∼D

(
P (yi �= fD

1nni
(x))

)
= ED∼Dn,(x,y)∼D

(
P (yi �= y′i)

)
.

Following Eq.(A.6), we get:

ED∼Dn,(x,y)∼D

(
P (yi �= fD

1nni
(x))

)
≤ ED∼Dn,(x,y)∼D

( ∑
j∈{0,1}

νij(x)(1− νij(x))
)

+ L||M ||F
√
trace(Q)ED∼Dn,(x,y)∼D

(
d(x, x′)

)
(A.8)

Assume the solution of argmaxj∈{0,1} νij(x) is 1. The first term of right side of

Eq.(A.8) does not depend on D. Thus

ED∼Dn,(x,y)∼D

( ∑
j∈{0,1}

νij(x)(1− νij(x))
)

= E(x,y)∼D

(
νi1(x)(1− νi1(x)) + νi0(x)(1− νi0(x))

)
≤ E(x,y)∼D(1− νi1(x)) + E(x,y)∼D(ν

i
0(x))

= 2E(x,y)∼D(1− νi1(x)) = 2P (b∗i (x) �= yi)

(A.9)

Then, we start to bound the second term of right side of Eq.(A.8). Let {C1, · · · , CN}
be an ε-cover of X of cardinality N = N(ε,X, d). Given a sampling D, for x ∈ Ci

such that D ∩ Ci �= ∅, we have d(x, x′) ≤ ε. While for x ∈ Ci such that D ∩ Ci = ∅,

we have d(x, x′) ≤ diam(X) = 1. The expression [D ∩ Ci �= ∅] evaluates to 1 if
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D ∩ Ci �= ∅ is true and to 0 otherwise. Thus, we have

ED∼Dn,(x,y)∼D

(
d(x, x′)

)

≤ ED∼Dn

( N∑
j=1

P (Cj)(ε[D ∩ Cj �= ∅] + [D ∩ Cj = ∅])
)

≤
N∑
j=1

P (Cj)
(
εED∼Dn([D ∩ Cj �= ∅]) + ED∼Dn([D ∩ Cj = ∅])

)
(A.10)

Since P (Cj)ED∼Dn([D ∩ Cj = ∅]) = P (Cj)(1 − P (Ci))
n ≤ 1/en, where e is the

exponent constant. This result, Eq.(A.10) and Theorem 5 in Chapter 4 imply that

ED∼Dn,(x,y)∼D

(
d(x, x′)

)
≤

(
ε+

N

en

)
≤

(
ε+

1

en
(
2

ε
)D
) (A.11)

By setting ε = 2n− 1
D+1 , we get

ED∼Dn,(x,y)∼D

(
d(x, x′)

)
≤ 3

n1/(D+1)
(A.12)

Eq.(A.5), Eq.(A.8), Eq.(A.9) and Eq.(A.12) imply the result.

A.6 Proof of Lemma 3

Proof. We adapt the proof for Theorem 19.5 in Shalev-Shwartz and Ben-David [2014].

We first focus on ED∼Dn,(x,y)∼D

(
P (yi �= fD

knni
(x))

)
for the i-th label. For each

x ∈ X and training set D = {(x(1), y(1)), · · · , (x(n), y(n))}, let π1(x), · · · , πn(x) be a

reordering of {1, · · · , n)} according to their distance to x, dpro. That is, for all j < m,

dpro(x, xπj(x)) ≤ dpro(x, xπj+1(x)). Let {C1, · · · , CN} be an ε-cover of X of cardinality
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N = N(ε,X, d). Eq.(19.3) in Shalev-Shwartz and Ben-David [2014] implies that

ED∼Dn,(x,y)∼D

(
P (yi �= fD

knni
(x))

)
≤ ED∼Dn

( ∑
j:|Cj∩D|<k

P (Cj)
)

+max
z
PD∼Dn,(x,y)∼D

(
yi �= fD

knni
(x)|

∀z ∈ [k], dpro(x, xπz(x)) ≤ ||M ||F
√
trace(Q)ε

)
(A.13)

Following the proof of Theorem 19.5 in Shalev-Shwartz and Ben-David [2014], the

first term of right side of Eq.(A.13) is bounded by 2Nk
en

. The second term of right side

of Eq.(A.13) is bounded by (1 +
√

8/k)P (b∗i (x) �= yi) + 3L||M ||F
√
trace(Q)ε. By

setting ε = 2n− 1
D+1 and combining Theorem 5 in Chapter 4, we get

ED∼Dn,(x,y)∼D

(
P (yi �= fD

knni
(x))

)
≤ (1 +

√
8/k)P (b∗i (x) �= yi) +

6L||M ||F
√
trace(Q) + k

n1/(D+1)

(A.14)

Applying Eq.(A.14) for each label and take the sum to derive the result.
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Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-

valued functions: A review. Foundation and Trends in Machine Learning, 4(3):

195–266, 2012. 75

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, pages

2654–2662, 2014. 41

A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi. Power-law distribution of the

world wide web. Science, 287(54561):2115, 2000. 61

Peter L. Bartlett and John Shawe-Taylor. Generalization performance of support vector

machines and other pattern classifiers. In Advances in Kernel Methods - Support
Vector Learning, pages 43–54. MIT Press, 1998. 30

Zafer Barutcuoglu, Robert E. Schapire, and Olga G. Troyanskaya. Hierarchical multi-

label prediction of gene function. Bioinformatics, 22(7):830–836, 2006. 1, 5, 71

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009. 7, 46, 48,

49
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