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1. Introduction

The effects of common shocks, which may be macroeconomic, technological, institutional, political,
environmental, health related, sociological, etc. (e.g., [1]), have been recently investigated by various
authors, including, among others, [1–6]. There are several examples in economics where common
shocks may affect the analysis:

• Accounting for technological and sociological shocks is extremely important when explaining the
healthcare attainments of different countries in terms of, say, their per capita health expenditures
and educational attainments (e.g., [7]).

• Financial and political shocks are likely to be relevant when explaining the differences in individual
countries’ exchange rate ratios (i.e., the ratio between purchasing power parity relative to the U.S.,
say, and the nominal exchange rate relative to the U.S.) in terms of their per capita GDP measured
in purchasing power parity—the Balassa-Samuelson hypothesis (e.g., [8]).

• Finance, political, environmental and industry-specific shocks impact the models of executive
compensation in which the latter is explained by returns on assets, stock returns, the level of
responsibility and gender.

• In the cross-country cross-industry analysis of returns to R & D, both global shocks (e.g., the recent
financial crisis) and local shocks (e.g., spillovers between a limited group of industries or countries)
may be fundamental in explaining output, as well as the explanatory variables (cf. [9]).

Other detailed examples (e.g., consumption model and asset pricing model) are provided in
Appendix A of [10].

These shocks induce cross-sectional dependence in panel data models, which is often modelled
in a parsimonious way through the use of factors. The earlier contributions allow only for factors in
the errors of the model (e.g., [3,4]) for which consistent estimation of the parameters of interest could
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be done by maximum likelihood procedures (e.g., [11]). Coakley, Fuertes and Smith [12] suggest an
estimation procedure based on principal components applied to the residuals. More recently, it has
been noticed by several authors that common shocks would likely affect both the errors and the
regressors, or a combination of the two (see among others [1,5]), and would thus induce endogeneity
requiring more sophisticated estimation procedures. A recent survey can be found in [13].

Andrews [1] has studied the conditions for the consistency of the OLS estimator in a cross-section
regression with common shocks, which are captured by the sigma algebra generated by the factors.
Andrews [1] assumes that the observed variables are independent and identically distributed given
such sigma algebra. He shows that the OLS estimator is consistent if and only if the errors and the
regressors are uncorrelated given the sigma algebra generated by unobserved factors and shows that
the (possibly re-centred) OLS estimator has an asymptotic mixed normal distribution. However, tests
on the coefficients can be constructed using classical distributions under the null if the OLS estimator
is consistent. Andrews [1] also extends his results to the OLS and the fixed effect estimators in panel
data with fixed T.

Recently, Kuersteiner and Prucha [14] have extended the work of Andrews [1] by deriving a stable
central limit theorem for sample moments under weaker assumptions and have established limiting
distributions of GMMand maximum likelihood estimators for general models in which unobservable
factors may induce cross-sectional heterogeneity, but do not affect the regressors. The approach of
Kuersteiner and Prucha is based on a generalization of Corollary 3.1 of [15] on martingale difference
sequences, which allows them to deal with sequentially exogenous regressors. Kao, Trapani and
Urga [16] also employ Corollary 3.1 of [15] to investigate panel data models with factor structures.

Although central limit theorems for martingale difference sequences are very powerful tools
in time series, their application in cross-sections and panel data with a fixed time dimension is not
fully intuitive, and the assumptions employed may be cumbersome. The fundamental reason for
this is that in such models, there is no natural order of the observations, and the assumptions must
be formulated to guarantee the validity of the derived results for all possible permutations of the
sequences of observations.

This paper proposes an alternative approach to that of [1,14] to study estimators of linear panel
data models in which the errors and the regressors are affected by common shocks represented by
common factors. In contrast to the work of [1,14], our work employs a conditional strong law of
large numbers (e.g., [17–20]) and a conditional central limit theorem (e.g., [19–24]) from which stable
convergence follows.

Conditional strong laws of large numbers and conditional central limit theorems are very similar to
their standard counterparts and, therefore, are familiar and intuitive to econometricians. Similarly, the
assumptions on which they are based are simple, and one does not have to worry about establishing the
validity of the results under all possible permutations of the sequences of observations. We will show
in a companion paper that the approach can be used to analyse panel data models with endogeneity
due to both simultaneity and factor structures in the errors and the explanatory variables (e.g., [25]).

The approach that we suggest is based on two steps:

1. formulation of the assumptions concerning the unobservable and heterogeneous variables
conditional on the sigma algebra capturing the common shocks;

2. application of conditional strong laws of large numbers and conditional central limit theorems to
establish the limits of the estimator of interest conditional on the common shocks, from which the
unconditional distribution can be obtained.

This approach is used in Section 2 to study the OLS estimator for the slope coefficients in a panel
data model with homogeneous slopes and in Section 3 to investigate a model with heterogeneous
slopes. Section 4 briefly discusses a fixed effects model, and Section 5 concludes. All proofs are in
the Appendix.



Econometrics 2016, 4, 4 3 of 12

2. Homogeneous Slopes

We consider a simple panel data model with cross-sectional dependence and correlation between
the errors and the regressors:

yi
T×1

= τ
T×1

+ Zi
T×k

α0
k×1

+ X i
T×p

β0
p×1

+ ui
T×1

,

ui = FT
T×m

γi
m×1

+ εi
T×1

, (1)

X i = FT Γi
m×p

+ V i
T×p

.

The observed regressors are split into two groups: those that are not affected by common shocks (e.g.,
unit characteristics, such as gender, race, age, etc.), Zi, and those that may be affected by common
shocks, X i. The parameters associated with the regressors, α0 and β0, and the constant vector τ are the
same for i = 1, . . . , N. The common shocks are captured by the matrix of unobserved common factors,
FT , (cf. [1]); γi and Γi are factor loadings; εi is a purely idiosyncratic random vector with zero mean
and arbitrary covariance matrix, which may depend on i; and V i represents the values of the regressors
that would be observed in the absence of common shocks. Factors, factor loadings, εi and V i are not
observed. The factor structure generates cross-sectional heterogeneity in the error term of (1). This also
creates correlation between errors ui and regressors X i. Notice also that the impact of the unobserved
shocks is different for each unit depending on the realizations of the factor loadings Γi and γi.

It may help to think of an example where a model like (1) is applicable. Suppose we are interested
in estimating the healthcare attainments of different countries in terms of, say, their per capita health
expenditures and educational attainments. In this case, yi contains a measure of the educational
attainment of country i over T years; Zi is a vector containing a measure of educational attainments
over the T periods for country i, and Xi is per capita health expenditure over the same period. There is
also a dummy for each time period whose coefficients are in τ. The common shocks are represented by
new procedures, drugs, surgical techniques, etc. The shocks are not observed by the econometrician.
They directly affect the healthcare attainments. However, they also affect health expenditures over
time for the different countries. Therefore, the observed health expenditure also includes the common
shocks.

All variables are defined on a probability space (Ω,A, P). The sigma algebra generated by
the random vector FT is denoted by F . Notice that F is a sub-algebra of A. Notice also that
expectations and probabilities conditional on F are unique up to a.s.equivalence, so that, for example,
two conditional expectations that differ only on sets of probability zero are regarded as equivalent. We
will regard conditioning on F as conditioning on the factors FT . In the rest of the paper, ‖ · ‖ denotes
the Euclidean norm for a vector and the Frobenius norm for a matrix.

We now introduce assumptions on both the observed and the unobserved variables. These
are adapted from [1], but allow for heterogeneity conditional on F . We assume that the matrix of
factors, which we do not observe, is random and finite with probability one. Since we regard the time
dimension as fixed, no other assumptions for the factors are needed. The following assumptions state
that the unobservables are independent sequences of independent random quantities given the factors.

Assumption:
Let δ be a positive constant and ∆ be F -measurable and such that ∆ ≤ ∞ a.s.

C1 {εi, i ≥ 1} is a sequence of conditionally-independent random vectors given F , E[εi|F ] = 0 a.s.
and E[‖εi‖1+δ|F ] < ∆ a.s.

C2 {(Zi, V i), i ≥ 1} is a sequence of conditionally-independent random matrices given F with
E[‖(Zi, V i)‖2+δ|F ] < ∆ a.s.

C3 {γi, i ≥ 1} is a sequence of conditionally-independent random vectors given F , E[γi|F ] = γ a.s.,
where γ is F -measurable, and E[‖γi‖1+δ|F ] < ∆ a.s.
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C4 {Γi, i ≥ 1} is a sequence of conditionally-independent random matrices given F , E[Γi|F ] = Γ

a.s., where Γ is F -measurable, and E[‖Γi‖2+δ|F ] < ∆ a.s.
C5 {εi, i ≥ 1}, {(Zi, V i), i ≥ 1}, {γi, i ≥ 1} and {Γi, i ≥ 1} are conditionally independent of each

other given F .

C6 E
[

1
N

N
∑

i=1
(Zi − Z̄, V i − V̄)′ (Zi − Z̄, V i − V̄) |F

]
is uniformly positive definite a.s., where

Z̄ = 1
N

N
∑

i=1
Zi and V̄ = 1

N

N
∑

i=1
V i.

Notice that the expectations in the assumptions hold a.s., since they involve conditional
expectations, which are random variables and may fail on sets of probability zero. The random
vectors εi, are assumed to be purely idiosyncratic, and the (Zi, V i) are assumed to form a sequence of
independent random vectors given the factors. Since we interpret V i as a vector of regressors, which
would be observed if the common shocks would not affect the regressors, we assume that these form
an independent sequence of events that are heterogeneous and may be correlated with Zi. Notice that
γ and Γ may be constant or may be functions of the factors.

The factor loadings in both the regressors and the errors are assumed to be independent
conditional on F , but not necessarily identically distributed. We will consider a violation of this
assumption later. Notice that Assumption C5 only requires independence conditional on F , but does
not require the factor loadings in the regressors and errors to be independent unconditionally. Section 7
of [1,19,26] gives a thorough discussion of the relationship between conditional and unconditional
independence.

Andrews [1] considers a similar model for T = 1 in which εi, (Zi, V i), γi, and Γi are conditionally
independent of each other given F . This implies that these random vectors and matrices are
exchangeable. It is easy to see that exchangeable random variables are identically distributed (but not
necessarily independent) unconditionally. On the other hand, Assumption C5 implies that εi, (Zi, V i),
γi, and Γi may be dependent and non-identically distributed unconditionally.

Assumption C6 is needed for the application of the conditional weak law of large numbers.
It ensures that the OLS estimator of the slope parameters has an asymptotic non-singular normal
distribution conditional on the sigma algebra F .

The OLS estimator of the slope parameters is

θ̂ =

(
N

∑
i=1

X ′iX i − X̄ ′X̄
)−1( N

∑
i=1

X ′iyi − X̄ ′ȳ
)

(2)

where θ̂ = (α̂′, β̂
′
)′, X i = (Zi, X i), X̄ = 1

N ∑N
i=1 X i and ȳ = 1

N ∑N
i=1 yi.

Theorem 1. Under Assumptions C1–C6, as N → ∞, θ̂ = (α̂′, β̂
′
)′ is unbiased, and θ̂ → θ0 a.s., where

θ0 = (α0
′, β0

′)′

Theorem 1 shows that, for fixed T, the estimator θ̂ is unbiased and consistent as N tends to infinity.
For the case where the factors affect all of the regressors, unbiasedness is also noticed for the estimator
in (2) by [27], where the factor loadings in the regressors and the errors are assumed to be mutually
independent (which is stronger than Assumption C5).

To obtain the asymptotic distribution of θ̂, we need slightly stronger versions of Assumptions C1
and C3 requiring the existence of higher order moments.
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Assumption:
Let δ be a positive constant and ∆ be F -measurable and such that ∆ ≤ ∞ a.s.

N1 {εi, i ≥ 1} is a sequence of conditionally-independent random vectors given F . E[εi|F ] = 0 a.s.
and E[εiε

′
i|F ] = Σεi a.s. with Σεi being F -measurable uniformly in i. Moreover,

E[‖εi‖2+δ|F ] < ∆ a.s.
N3 {γi, i ≥ 1} is a sequence of conditionally-independent random vectors given F .

E[γi|F ] = γ a.s. and Cov[γi|F ] = Σγi a.s. with Σγi being F -measurable uniformly in i.
Moreover, E[‖γi‖2+δ|F ] < ∆ a.s.

Theorem 2. Under Assumptions N1, C2, N3 and C4–C6, conditional on F , as N → ∞

√
N(θ̂− θ0)→D B−1(FT)C1/2(FT)N(0, Ip+k),

where θ̂ = (α̂′, β̂
′
)′, θ0 = (α′0, β′0)

′,

B(FT) = lim
N→∞

(
1
N

N

∑
i=1

E[X ′iX i|F ]− E[X̄ ′|F ]E[X̄ |F ]
)

, (3)

C(FT) = lim
N→∞

1
N

N

∑
i=1

E
[
(X i − X̄ )′(Σεi + FTΣγi F

′
T)(X i − X̄ )|F

]
. (4)

Theorem 2 shows that, for fixed T, θ̂ has a normal asymptotic distribution conditional on F .
Since the factors are unobservable, one needs to remove the conditioning on them by averaging them
out. Thus, the unconditional asymptotic distribution of the OLS estimator of the slope parameters is
covariance matrix mixed normal with mixing density given by the density function of the unobserved
factors. Notice also that Theorem 2 implies that

√
N(θ̂− θ0) converges F -stably.

We now briefly deal with the problem of hypothesis testing in this set-up. Even if the relevant
distribution for θ̂ is the unconditional one, which is non-standard, tests of hypotheses can be
constructed as usual. In order to do this, we need to be able to “estimate” B(FT) and C(FT) conditional
on F . From the proof of Theorem 1, we know that

B̂ =
1
N

N

∑
i=1

X ′iX i − X̄ ′X̄ → B(FT) a.s. (5)

For C(FT), we need more restrictive versions of Assumptions C2 and C4 requiring the existence of
higher order moments.

Assumption:
Let δ be a positive constant and ∆ be F -measurable and such that ∆ ≤ ∞ a.s.

CM2 {(Zi, V i), i ≥ 1} is a sequence of conditionally-independent random matrices given F with
E[‖(Zi, V i)‖4+δ|F ] < ∆ a.s.

CM4 {Γi, i ≥ 1} is a sequence of conditionally-independent random matrices given F with
E[Γi|F ] = Γ, E[‖Γi‖4+δ|F ] < ∆ a.s.

Lemma 1. Given Assumption N1, CM2, N3, CM4 and C5–C6, conditional on F , as N → ∞

Ĉ =
1
N

N

∑
i=1

(
X i − X̄

)′ [yi − ȳ−
(
X i − X̄

)
θ̂
] [

yi − ȳ−
(
X i − X̄

)
θ̂
]′ (X i − X̄

)
(6)

→ C(FT), a.s.
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An asymptotic version of the F-test conditional on F for the null hypothesis that H0 : Rθ0 = r
against the alternative hypothesis H1 : Rθ0 6= r can be easily constructed condition on F

N(Rθ̂− r)′(RB̂−1ĈB̂−1R′)−1(Rθ̂− r)→D χ2(q), (7)

where R is a known and fixed q × (p + k) matrix of rank q < (p + k) and r is a known and fixed
q× 1 vector.

We now investigate briefly the effects of dependence between the factor loadings in the regressors
and the errors conditional on F for the OLS estimator.

Assumption:

D5 {εi, i ≥ 1}, {(Zi, V i), i ≥ 1}, and {(γi, Γi), i ≥ 1} are conditionally-independent of each other
given F .

Assumption D5 differs from C5 because it allows the factor loading in the regressors Γi and those
in the errors γi to be correlated conditional on F for each i. This means that the endogeneity induced
by the factor structure persists even conditioning on the factors. Therefore, the OLS estimator of the
slope parameters will be biased, as shown by the following theorem.

Theorem 3. Under Assumptions C1–C4, D5 and C6, conditional on F , as N → ∞

θ̂ = θ0 + B−1(FT)
(
0′, φ(FT)

′)′ a.s.,

where B(FT) is defined in (3) and φ(FT) = limN→∞
1
N ∑N

i=1 E[Γ′iF
′
T FTγi|F ]− Γ′F ′T FTγ.

Notice that by replacing Assumption C5 with Assumption D5, the estimator of θ̂ has an asymptotic
bias conditional on F , which depends in a complicated way on the distribution of the factors and of the
factor loadings. This implies that unconditionally, the estimator of θ0 = (α′0, β′0)

′ has a non-degenerate
non-standard asymptotic distribution. The intuition behind this result is as follows: since the factor
loadings are correlated among themselves, even conditioning on the factors, endogeneity is present
even when we condition on F .

3. Heterogeneous Slopes

In this section, we consider a more general case, where the coefficients of Zi and X i are allowed
to be different for each unit. Precisely, the model is

yi
T×1

= τ
T×1

+ Zi
T×k

αi
k×1

+ X i
T×p

βi
p×1

+ ui
T×1

,

ui = FT
T×m

γi
m×1

+ εi
T×1

, (8)

X i = FT Γi
m×p

+ V i
T×p

,

(α′i, β′i) = (α′0, β′0) + (η′1i, η′2i).

where (η′1i, η′2i)’s are random variables. We are interested in inference about the mean of the
unit-specific coefficients (α′i, β′i). These parameters are estimated using the OLS estimator defined
in (8) in the previous sections. Some further assumptions are needed.

Assumptions:
Let δ be a positive constant and ∆ be F -measurable and such that ∆ ≤ ∞ a.s.

H5 {(η′1i, η′2i), i ≥ 1}, {εi, i ≥ 1}, {(Zi, V i), i ≥ 1}, {γi, i ≥ 1} and {Γi, i ≥ 1} are
conditionally-independent of each other given F .
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H7 {(η′1i, η′2i), i ≥ 1} is a sequence of conditionally-independent random matrices given F with
E[(η′1i, η′2i)

′|F ] = 0, E[‖(η′1i, η′2i)‖1+δ|F ] < ∆ a.s.
NH7 {(η′1i, η′2i), i ≥ 1} is a sequence of conditionally-independent random matrices given F with

E[(η′1i, η′2i)
′|F ] = 0, E[(η′1i, η′2i)

′(η′1i, η′2i)|F ] = Ση and E[‖(η′1i, η′2i)‖2+δ|F ] < ∆ a.s.

Assumption H5 extends Assumption C5 by requiring that {(η′1i, η′2i), i ≥ 1} is independent of all
other variables conditional on F .

The next result gives the distributional properties for the OLS estimator for the slope parameters
in (8).

Theorem 4. Let B(FT) and C(FT) be as in (3) and (4). As N → ∞

1. Under Assumptions C1–C4, H5, C6 and H7, θ̂ = (α̂′, β̂
′
)′ is unbiased and consistent.

2. Under Assumptions N1, CM2, N3, CM4, H5, C6 and NH7, conditional on F
√

N(θ̂− θ0)→D B−1(FT) (C(FT) + C∗(FT))
1/2 N(0, Ip+k),

where θ̂ = (α̂′, β̂
′
)′, θ0 = (α′0, β′0)

′, and

C∗(FT) = lim
N→∞

1
N

N

∑
i=1

E
[
(X i − X̄ )′X iΣηX ′i(X i − X̄ )|F

]
.

Theorem 4 shows that for a fixed T, the OLS estimator is unbiased, consistent and asymptotically
normal conditional on the factors. This is different from the conditional asymptotic distribution given
in Theorem 2 because of the presence of the term C∗(FT). Thus, the effect of random coefficients on
the asymptotic properties of the OLS estimator is just an increase in the conditional variance. It also
follows from Theorem 4 that θ̂ converges F -stably to a covariance matrix mixed normal random vector.
Notice that Theorem 4 reduces to Theorems 1 and 2 if (η′1i, η′2i)’s are identically zero.

In order to construct tests on θ0 = (α′0, β′0)
′, we need to find a statistic that converges to

B−1(FT) (C(FT) + C∗(FT)) B−1(FT) conditional on F as N tends to infinity. This is given in the
following lemma.

Lemma 2. Under Assumptions N1, CM2, N3, CM4, H5, C6 and HN7, as N → ∞,

Ĉ →P C(FT) + C∗(FT) a.s.

conditional on F , where Ĉ is given in (6).

Tests of hypotheses can then be constructed as outlined in the previous section.

4. A Fixed Effects Model

We now briefly discuss the fixed effects model

yi
(T×1)

= τ
(T×1)

+ 1T
(T×1)

θi
(1×1)

+ Zi
(T×k)

α0
(k×1)

+ X i
(T×p)

β0
(p×1)

+ui, (9)

where 1T denotes a (T × 1) vector of ones and θi denotes the unit specific fixed effect. Let CT×(T−1) be
a matrix, such that C′1T = 0, C′C = IT−1 and CC′ = M1T , where M1T is the usual projection matrix
in the space orthogonal to 1T . Pre-multiplying (9) by C, we obtain

C′yi = C′τ + C′ (Zi, X i)

(
α0

β0

)
+ C′ui, (10)
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which has the same form as the model described in (1). Notice that the assumptions involving C′ui
and C′ (Zi, X i) follow from sub-additivity of the norm, and the fact that C is a finite matrix of full rank
can be established from the assumptions above.

The results of the previous sections, including those on heterogeneous slopes, can be applied to
this case with obvious changes of notation. Thus,

• The fixed effect estimator is consistent if the factor loadings γi and Γi are independent. In this case,
once standardised, the fixed effect estimator is asymptotically normal given F , and thus, it has an
asymptotic covariance matrix mixed normal distribution. In this case, standard t- and F-tests on
the slope coefficients have standard asymptotic distributions under the null hypothesis.

• If the factor loadings in the error and the regressors are not independent, then the fixed effect
estimator has a non-degenerated asymptotic distribution.

5. Conclusions

This paper has considered a panel data model with both homogeneous and heterogeneous slopes,
with multi-factor error structures in the errors and the regressors. The method employed has relied
on an approach based on a conditional strong law of large numbers and a conditional central limit
theorem, which are similar to the results with which econometricians are familiar.

The model assumptions have been formulated conditional on the sigma algebra generated by the
factors, and it has been shown that the OLS estimator of the slope parameters is consistent in both
the homogeneous and heterogeneous case if the factor loadings in the regressors and the errors are
independent conditional on the factors. It this case, the OLS estimator has an asymptotic mixed normal
distribution, but t- and F-tests have standard distributions under the null hypothesis. The fixed effects
model was also discussed.
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Appendix: Proofs

Theorem A1 (conditional Markov strong law of large numbers): Let {zi : i ≥ 1} be a sequence of F -independent random

variables with conditional means E [zi|F ] for i = 1, 2, . . . If for some scalar 0 < δ ≤ 1,
∞
∑

i=1

1
i1+δ E

[
|zi − E [zi|F ]|1+δ |F

]
<

∞ a.s., then conditional on F , 1
n

n
∑

i=1
(zi − E [zi|F ])→ 0 a.s.

Theorem A2 (conditional Liapounov central limit theorem): Let {zi : 1 ≤ i ≤ n} be a sequence of F -independent
random variables with conditional means E [zi|F ], conditional variances σ2

i = E
[
(zi − E [zi|F ])2 |F

]
and

E
[
|zi|2+δ |F

]
< ∆ a.s. for i = 1, 2, . . . and ∆ arbitrary F -measurable, where ∆ < ∞ a.s. and δ > 0.

If there is η, which is F -measurable and such that σ̄2
n = 1

n

n
∑

i=1
σ2

i > η > 0 a.s., then conditional on F ,

1
σ̄n
√

n ∑n
i=1 (zi − E [zi|F ])→D N(0, 1) a.s. Moreover, 1

σ̄n
√

n ∑n
i=1 (zi − E [zi|F ])→D N(0, 1) (F -stably).

The detailed proofs of Theorems A1 and A2 are provided in [25].

Proof of Theorem 1:
From the definition of the OLS estimator and (1), write

θ̂ = θ0 +

(
N

∑
i=1

X ′iX i − X̄ ′X̄
)−1( N

∑
i=1

X ′iεi − X̄ ′ ε̄
)

(11)

By Assumptions C1–C5, conditional on F , unbiasedness is straightforward. Thus, the details are omitted.
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We then show that conditional on F , X̄ − E[X̄ |F ]→ 0 a.s. Since X i = (Zi, X i), write

X̄ − E[X̄ |F ] = (Z̄− E[Z̄|F ], V̄ − E[V̄ |F ] + FT(Γ̄− Γ)) ,

where Z̄ = 1
N ∑N

i=1 Zi, V̄ = 1
N ∑N

i=1 V i and Γ̄ = 1
N ∑N

i=1 Γi.
Assumption C2 implies that the components of X i = (Zi, X i) form sequences of independent random

variables with finite means and satisfy the conditions for Theorem A1; thus, Z̄ − E[Z̄|F ] → 0 a.s. and
V̄ − E[V̄ |F ] → 0 a.s. conditional on F . Similarly, we can conclude that Γ̄ − Γ → 0 a.s. conditional on F .
Thus, conditional on F , X̄ − E[X̄ |F ]→ 0 a.s.

We now focus on 1
N ∑N

i=1 X
′
iX i. Each term in the sum is a (p + k)× (p + k) matrix. Therefore, let ζ1 and ζ2

be arbitrary (p + k)× 1 vectors. Then, 1
N ∑N

i=1 ζ′1X ′iX iζ2 is a sum of independent random variables satisfying the
following inequality a.s.:

E
[∣∣ζ′1X ′iX iζ2

∣∣1+δ |F
]
≤ ‖ζ1‖

1+δ ‖ζ2‖
1+δ E

[
‖X i‖2+2δ |F

]
≤ ‖ζ1‖

1+δ ‖ζ2‖
1+δ E

[
(‖(Zi, V i)‖+ ‖FT‖ ‖Γi‖)2+2δ |F

]
≤ 21+δ ‖ζ1‖

1+δ ‖ζ2‖
1+δ

(
E
[
‖(Zi, V i)‖2+2δ |F

]
+ ‖FT‖2+2δ E

[
‖Γi‖2+2δ |F

])
,

where the last terms is uniformly bounded a.s. because of Assumptions C2 and C4. Thus, conditional on F ,
1
N ∑N

i=1 X
′
iX i− 1

N ∑N
i=1 E[X ′iX i|F ]→ 0 a.s. Further, notice that by Assumption C6, E

[
1
N ∑N

i=1 X
′
iX i − X̄ ′X̄ |F

]
,

is a.s. positive definite uniformly.
Similar to the above, we can show 1

N ∑N
i=1 X

′
iεi − X̄ ′ ε̄→ 0 a.s. Thus, the result is proven.

Proof of Theorem 2:
To prove conditional normality, we write

√
N
(
θ̂− θ0

)
=

(
1
N

N

∑
i=1

X ′iX i − X̄ ′X̄
)−1(

1√
N

N

∑
i=1

X ′iεi −
√

NX̄ ′ ε̄
)

. (12)

We know already that conditional on F

1
N

N

∑
i=1

X ′iX i − X̄ ′X̄ − E

[
1
N

N

∑
i=1

X ′iX i − X̄ ′X̄
∣∣∣F]→ 0 a.s.

We now focus on 1√
N ∑N

i=1 X
′
i (εi − ε̄) and write

1√
N

N

∑
i=1

X ′iεi −
√

NX̄ ′ ε̄ =
1√
N

N

∑
i=1

(
X i − E

[
X̄ |F

])′
(εi − FTγ)

+
(
X̄ − E

[
X̄ |F

])′√N (ε̄− FTγ) .

We will now show that the last term can be neglected. In fact, we already know that X̄ − E [X |F ]→ 0 a.s. Thus,
we need to prove that conditional on F

√
N

(
1
N

N

∑
i=1

Σε i + FT

(
1
N

N

∑
i=1

Σγi

)
F ′T

)−1/2

(ε̄− FTγ)→D N (0, IT) . (13)

Let κi = εi − FTγ and notice that they form a sequence of independent random variables conditional on F . We
can now use the Cramer–Wold device to find the distribution of 1√

N ∑N
i=1 κi. Let ζ be an arbitrary T × 1 vector

and focus on 1√
N ∑N

i=1 ζ′κi. We will now verify the conditions for the validity of Theorem A2. Firstly, note that

E
[
ζ′κi|F

]
= 0 and E

[(
ζ′κi

)2 |F
]
= ζ′

(
Σε i + FTΣγi F

′
T
)

ζ.
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Notice also that

E
[∣∣ζ′κi

∣∣2+δ |F
]
≤ ‖ζ‖2+δ E

[
(‖εi‖+ ‖FT (γi − γ)‖)2+δ |F

]
≤ ‖ζ‖2+δ

2 21+δ
(

E
[
‖εi‖2+δ |F

]
+ ‖FT‖2+δ

2 E
[
‖γi − γ‖2+δ

2 |F
])

.

Based on the above, (13) has been proven. Thus,(
X̄ − E

[
X̄ |F

])′√N (ε̄− FTγ) a.s.

Similar to the proof of (13), we can show that:

1√
N

N

∑
i=1

(
X i − E

[
X̄ |F

])′
(εi − FTγ)→D B−1(FT)C1/2(FT)N(0, Ip+k).

Thus, Theorem 2 is proven.

Lemma A1 Suppose that θ̂− θ0 → 0 a.s. Given Assumptions N1, CM2, N3, CM4 and C5, the following results hold
conditional on F as N → ∞:

1. 1
N ∑N

i=1
(
X i − X̄

)′
(εi − ε̄) (εi − ε̄)′

(
X i − X̄

)
→ C (FT) a.s.

2. 1
N ∑N

i=1
(
X i − X̄

)′
(εi − ε̄)

(
θ̂− θ0

)′ (X i − X̄
)′ (X i − X̄

)
→ 0 a.s.

3. 1
N ∑N

i=1
(
X i − X̄

)′ (X i − X̄
) (

θ̂− θ0
) (

θ̂− θ0
)′ (X i − X̄

)′ (X i − X̄
)
→ 0 a.s.

If also Assumption H5 and HN7 hold, then

1. 1
N ∑N

i=1
(
X i − X̄

)′ (X i − X̄
) (

θ̂− θ0
)

η′iX
′
i
(
X i − X̄

)
→ 0 a.s.

2. 1
N ∑N

i=1
(
X i − X̄

)′
(εi − ε̄) η′iX

′
i
(
X i − X̄

)
→ 0 a.s.

3. 1
N ∑N

i=1
(
X i − X̄

)′ (X i − X̄
)

ηiη
′
i
(
X i − X̄

)′ (X i − X̄
)
→ C∗ (FT) a.s.

Proof of Lemma A1:
The proofs are similar to those given for Theorem 1, thus omitted.

Proof of Lemma 1.
Write

Ĉ =
1
N

N

∑
i=1

(
X i − X̄

)′ (
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

)) (
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

))′ (X i − X̄
)

.

Then, the proof follows from Results 1–3 of Lemma A1.

Proof of Theorem 3:
Write

θ̂ = θ0 +

(
1
N

N

∑
i=1

X ′iX i − X̄ ′X̄
)−1

1
N

N

∑
i=1

X ′i (FTγi − FTγ + εi − ε̄) .

Under Assumption D5, the factor loadings are not independent. This affects only the term

1
N

N

∑
i=1

X ′i FTγi =
1
N

N

∑
i=1

(
Z′i
V ′i

)
FTγi +

(
0
1
N ∑N

i=1 Γ′i F
′
T FTγi

)
.

Let ζ be an arbitrary (p + k)× 1 vector, and consider 1
N ∑N

i=1 ζ′
(

Z′i
V ′i

)
FTγi. Then,

E

[
ζ′
(

Z′i
V ′i

)
FTγi|F

]
= ζ′E

[(
Z′i
V ′i

)
|F
]

FTγ
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and

E

(ζ′
(

Z′i
V ′i

)
FTγi

)1+δ

|F

 ≤ ‖ζ‖1+δ E
[
‖(Zi, V i)‖1+δ |F

]
· E
[
‖FTγi‖

1+δ |F
]

,

which is uniformly bounded by Assumptions C2 and C3. Thus, we can conclude that

1
N

N

∑
i=1

(
Z′i
V ′i

)
FTγi −

(
E [Z̄|F ]′ FTγ

E [V̄ |F ]′ FTγ

)
→ 0 a.s.

conditional on F . Similarly, it is easy to show that conditional on F

1
N

N

∑
i=1

Γ′i F
′
T FTγi −

1
N

N

∑
i=1

E
[
Γ′i F
′
T FTγi|F

]
→ 0 a.s.

Thus, conditional on F , θ̂→ θ0 + B−1 (FT)

(
0
φ (FT)

)
a.s.

Proof of Theorem 4:
The proof is the same as those given for Theorems 1 and 2, and it is omitted.

Proof of Lemma 2:
Write

Ĉ =
1
N

N

∑
i=1

(
X i − X̄

)′ (
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

)) (
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

))′ (X i − X̄
)

+
1
N

N

∑
i=1

(
X i − X̄

)′ (
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

))
η′i
(
X i − X̄

)′ (X i − X̄
)

+
1
N

N

∑
i=1

(
X i − X̄

)′ (X i − X̄
)

ηi
(
εi − ε̄ +

(
X i − X̄

) (
θ̂− θ0

))′ (X i − X̄
)

+
1
N

N

∑
i=1

(
X i − X̄

)′ (X i − X̄
)

ηiη
′
i
(
X i − X̄

)′ (X i − X̄
)

The first line is proven in Lemma 1. The other lines follow from Lemma A1.
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