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ABSTRACT Recent innovation in microelectrical–mechanical systems (MEMSs) and plasmonics-based
technologies has opened up perspectives for label-free sensing of biological and chemical analytes.
Label-free sensingwould enable increased sensitivity andminiaturization capabilities for biosensing devices.
Silicon carbide is a semiconductor material that happens to possess ideal properties for augmenting both the
MEMS/nanoelectromechanical systems and the plasmonics routes. It has remarkable chemical and biological
inertness resulting in a high degree of biocompatibility, as well as pronounced mechanical resilience.
In addition, it is an efficient (low loss) plasmonic metamaterial. Its cubic polytype can be grown on silicon
wafers, allowing easy micromachining into building blocks for sensing devices, scalable to large volume
production. Finally, silicon carbide is an ideal starting material for a controlled, wafer-scale growth of
graphene, offering an additional wealth of excellent properties for nanosensing. The combination of all of
these capabilities makes silicon carbide an outstanding material platform for the realization of label-free,
analyte-specific, and highly sensitive biochemical molecule detection systems. These technologies will open
exciting horizons in terms of high throughput, efficient drug screening, and early pathogen detection.

INDEX TERMS Silicon carbide, biosensing, label-free detection, graphene, micro-electro-mechanical
systems, cantilevers, biocompatibility.

I. INTRODUCTION
The development of label free, highly sensitive and molecule
specific analyte detection technologies is of high relevance
for a number of applications in the bio-medical area, includ-
ing medical diagnostics and drug screening. Therefore, the
availability of a robust, bio-compatible functional material
which can be structured into a miniaturized sensing device
is highly desirable. Such a system would enable highly
efficient, high throughput chemical analysis and potentially
minimally invasive endoscopic sensing. Silicon carbide is
a wide band-gap semiconductor [1]–[3], with demonstrated
bio- and hemo- compatibility [4]–[8]. Also, similar to silicon,
the silicon carbide surface can be functionalized to capture or
bind with specific reagents, and its use has been demonstrated
in neural probes, enabling among others applications such as
brain-machine interfaces [9]. Moreover, silicon carbide is a
suitable template for the direct growth of epitaxial graphene,

likely also a bio-compatiblematerial which can bring exciting
additional functionalities and capabilities to the silicon car-
bide system, such as low-loss plasmonic technologies [10].

This paper will first present a review of the status
and recent progress in the area of label free detec-
tion technologies. We will focus on optical (plasmonics)
and microelectrical-mechanical (MEMS) based sensing, as
potentially the most accurate and molecule-specific sens-
ing technologies, indicating advantages and limitations.
A general introduction on silicon carbide will follow, focus-
ing on how this wide band-gap semiconductor, as well as its
combination with graphene, can further this field and open
exciting horizons for bio-medical applications.

II. LABEL FREE DETECTION
Current established DNA [11], protein [12], [13],
glycan [14], [15] and lectin [16], [17] arrays allow for
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high-throughput multiplexing with reduced sample volume.
However, without appropriate quantitative controls and com-
plex algorithms [18], results remain qualitative due to the
requirement for fluorescent, photochemical or radioisotope
tagging [19]. These labels and their appropriate laser scanners
are commercially available, however, background interfer-
ence due to the label itself and the need for adequate signal
controls are serious limitations to this technology. Labelling
probe molecules for large-scale studies is tedious, expensive
and limited by various factors. For instance size and position
of the label can induce conformational strains and steric
hindrance, affecting the probes ability to interact with target
structures [20]. These factors become exacerbated when
probe molecules (metabolites, oligonucleotides, peptides and
small organic molecules) are smaller than the label being
used. Non-specific binding to the array platform will also
contribute to the intrinsic fluorescence being measured and
can give rise to false positives. Finally the extent of fluores-
cent labelling also needs to be optimized for various probe
molecules to ensure normalisation between results. Using the
established array technology in combination with real time
label free detection systems would enable a paradigm shift
within molecular and structural biology.

Accordingly, advances in label free detection methods are
highly desirable for next generation bio-sensing platforms
due to their potentials for increased sensitivity and direct
measurement [21].

A. PLASMONIC SENSORS
From the discovery of surface plasmons in 1968 [22],
plasmonic materials have emerged offering next generation
label free detection. Plasmonic materials possesses a neg-
ative real and small positive imaginary dielectic constant,
capable of supporting a single guided mode of electromag-
netic field [21], [23]. Here the energy and momentum of a
photon is coupled to a free electron gas in the form of surface
plasmons. The surface plasmon is transversely magnetic;
as such the vector of the magnetic field lies in plane of the
metal-dielectic interface and is perpendicular to the direc-
tion of propagation. This is possibly due to surface plasmon
sensitivity to the refractive index changes around metallic
structures by electromagnetic radiation at a metal-dielectric
interface [23], [24].

Plasmon based resonance sensing can be broadly separated
into two types; the first is propagating surface plasmon
resonances (PSPRs) that rely on evanescent electromag-
netic waves bound by planar metal-dielectric interfaces.
The second type is localized surface plasmon reso-
nances (LSPRs), where electromagnetic waves are confined
on metallic nanostructures [25]. Unlike conventional optical
sensors that rely on labels (fluorophore and chromophore),
surface plasmon resonance can transduce the binding event
due to changes in the local refractive index when the target
analyte binds to the surface.

Since the realization in 1980 that surface plasmon
resonance (SPR) could be an outstanding probe of

surface chemistry [26], this technique has been extensively
used to elucidate binding kinetics, conformational changes
and quantifications of chemicals; small ions and biomolecules
immobilized to the surface [27], [28]. Use of thin metallic
film allows plasmons to propagate hundreds of micrometers
along the metal surface with an associated electric field
that decays exponentially allowing for detection of refractive
index through intensity, wavelength or angle shifts. Enhance-
ments in this field have seen detection below the submicrom-
eter range from improved molecular adsorptions [29]–[31],
enlargement of binding site [32], [33] and introduction of
signal enhancers on the metal surface [34]–[36]. SPR is a
versatile tool as the monitored optical parameter can vary
based on user specification including; measurement of the
wavelength where resonant coupling occurs; the phase of
the light; and the intensity of binding based on measure-
ment of the shift in the angle at which resonant coupling
takes place [37], [38]. Conventional SPR has long been the
technology of choice for label free detection [39], however
it does not match the demands of current microarray tech-
nology; being unable to couple the high throughput platform
with sensitivity [40]. Conventional SPR is also significantly
expensive as multiplexing relies on only a few flow cells
limiting analysis to 50 spots [41]. Alternatively LSPR offers a
cheaper alternative for smaller laboratories due to integration
of lab-on-chip (LOC) technologies [42]. LOC technologies
allow for cheaper purchase of one-time assays capable of
producing vast quantitative bioinformation.

LSPR confines excited electromagnetic waves onto metal-
lic nanostructures and by controlling physicochemical prop-
erties the spectral position and magnitude can be altered.
Optimization of size, shape, composition, interstructural
spacing and local dielectric environment have led to
the advent of gold nanorings [43]–[45], metallic nanois-
lands [46], [47] and nanoholes in thin gold films [31], [48].
Unlike PSPRs, these nanostructures show enhanced sensi-
tivity, as there is less interference from the bulk refractive
index [32], [49], [50]. In addition to the refractive sensi-
tive capability of LSPR, electromagnetic field enhancements
generated around them has been shown to be ideal when
coupled with surfaced enhanced Raman scattering (SERS).
Nanosphere lithography (NSL) used to develop nanoparticle
arrays (most commonly triangular structures) with tuneable
LSPR has been previously developed as a self-assembled
monolayer [34], [36]. Both experimental and theoretical
studies have demonstrated that the sharp tip nanotrian-
gles create an electromagnetic enhancement factor as large
as 108 [37], [38]. Further advances have seen atomic layer
deposition with alumina overlayer to particles fabricated via
nanosphere lithography, resulting in significant increases in
thermal stability [43], [51]. The electromagnetic mechanism
of SERS does not require direct contact of the surface due to
the electric field extending within a few nanometers of the
surface. Enhancement of Raman scattering can be exploited
to measure systems that require surface-immobilized
biological molecules [46], [52] however research is still
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required to enhance the multiplexing capabilities of this
platform.

However, the currentmetal-based plasmonics sensing tech-
nologies are strongly limited by high resistive losses, which
have restricted the development of these devices. Approaches
to minimize metallic losses through discovery of better plas-
monic materials offer promising alternatives, via doping,
alloying and careful band structure engineering [53], [54].
As such low-loss plasmonic metamaterials have emerged
with longer plasmon lifetimes [55]–[58]. This category of
low–loss materials include silicon carbide and graphene as
both are tunable and have carrier concentrations high enough
to provide a negative real permittivity [55].

B. MEMS CANTILEVER SENSORS
Micro-electro-mechanical systems (MEMS) offer an alterna-
tive approach for quantitative molecular recognition. These
systems rely on silicon and wide-bandgap (WBG) semicon-
ductors that allow for increased stability, biocompatibility
and further miniaturization for resonant nanoelectromechani-
cal systems (NEMS) [59], [60]. The ability to detect multiple
target molecules in small sample volumes has maintained
a significant relevance for research into early detection of
disease, and therefore platforms that satisfy these requisites
are appealing.Microcantilevers arrays have emerged as a very
promising candidate for label free multi-target detection that
is both sensitive and selective in small volumes of sample.
MEMS cantilever sensors are another next generation
platform readily fabricated on silicon wafers [48], [61].
An array can be fabricated through a ‘‘top-down’’ approach
to release spring microbeams. These cantilevers typically
measure approximately 50-200µm long, 10-40µmwide and
0.3-3 µm thick and respond to surface stress variation from
chemical or biological process [50], [62]. Cantilevers can be
designed with very small force constants (0.008 - 30 N/m)
making them extremely sensitive to variations in adsorption
of molecules [63], [64].

Capture of a molecule onto the surface of a cantilever
can be measured thanks to the deflection of the cantilever
from adsorption-induced forces. In a dynamic regime, mass
adsorption on the surface of a microbeam can result in an
observable shift from its natural resonance frequency, as a
mass changewill affect the spring constant of the system [65].
Both adsorption induced cantilever deflections and frequency
shifts can be monitored simultaneously [51]. Initially can-
tilevers were not considered very promising mass sensors
due to non-uniformities in non-specific binding over the
entire length of the cantilever resulting in variations in spring
constant. However, by designing cantilevers with a localized
adsorption area at the terminal end of the cantilever the
contribution of the differential surface stress can be entirely
attributed to mass loading [66]. The resonance frequency can
shift due to changes in mass and spring constant. Surface area
has been shown to increase sensitivity ofmass detection, lead-
ing to nanopatterning and nanofabricated holes for increasing
the total absorbed mass [61]. Despite being well suited for

mass detection in air and vacuum, detection of absorbed
mass under solution is best detected through surface stress
variations; due to poor resolution of cantilever resonance
frequency in liquid environments [62]. In general deflection
of cantilever can be divided into two different modes for
detection; static and dynamic.

1) CANTILEVER DEFLECTION-BASED SENSING
a: STATIC DETECTION
Static mode of deflection is a result of variations in sur-
face stress on the opposing surface of the microcantilever.
Surface stress variations exist as changes in surface energy
density or tension, occurring through molecule adsorption
that decreases surface free energy. By restricting adsorption
to one side of a cantilever, a differential surface stress between
each side of the beam is produced, leading to cantilever
bending. This surface stress can be explained by Stoney’s
formula [67], which shows that the longer the cantilever the
more sensitive it becomes to surface stresses (see figure 1).
The sensitivity also relies on the detection technique. Optical
detection techniques are most commonly used; however they
are limited due to a narrow dynamic range and parasitic
deflection [68]. As such the dynamic mode of detection is
more beneficial being insensitive to the drift of the deflection
signal and increasing reproducibility.

b: DYNAMIC DETECTION
The dynamic mode of detection is directed at the varia-
tion in vibration frequency of the beam due to specific
adsorption [69]. Unlike static measurements of surface stress,
cantilever deflections leads to a ‘‘dynamic’’ action that can
be used to quantitatively detect mass loading. Microcan-
tilever beams freely resonant at their natural frequency due
to thermal excitation. Mass loading leads to a decrease in
vibrational frequency allowing for direct measurement by
plotting the displacement amplitude against frequency [70]
(see figure 1 b). Each resonance mode has its own quality (Q)
factor that indicates the sharpness of a resonant peak [71].
Q factors are liable to damping effects from both liquid
environments and geometry of the cantilever which can lead
to poor frequency resolution [72], [73]. Higher Q factors
allow for lower minimum detectable resonance shifts.

c: READ OUT MECHANISMS
In the last decade many techniques to measure cantilever
resonance or deflection, have been demonstrated includ-
ing; optical beam deflection [63], [74], [75] piezoresis-
tivity [21], [76]–[78]; piezoelectricity [27], [28]; electron
tunneling [79], [80] and capacitance [81]. Optical beam
deflection was the first reported technique to exploit the
mechanics of cantilever deflection by measuring bending
by reflecting a focused beam of light from the tip of the
cantilever into a position-sensitive detector. Optical beam
deflection is a popular method for detection due to its sen-
sitivity to capture cantilever bending in the sub-nanometer
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FIGURE 1. Schematic of the two different cantilever deflection based sensing. (a) Static detection through changes in surface
stress. (b) Dynamic detection through changes resonance frequency.

FIGURE 2. Scanning electron microscopy images of immobilized fungal spores and corresponding
frequency spectra of the cantilevers after spore immobilization and spore growth. (A) Mycelial
fungus Aspergillus niger on Con A coating; mycelia growing from spores after 12 hours (B) A. niger
on IgG coating, active mycelial growth from spores (left image—growth time 4 h, right
image—growth time 9 h). Resonance frequencies: f1—unloaded cantilever, f2 —cantilever with
immobilized spores, f3 —cantilever with growing immobilized spores after exposure. The first
resonance frequency shift 1f1 = f1 − f2 corresponds to fungal spore mass loaded on the cantilever;
second shift 1f2 = f2 − f3 corresponds to A. niger mycelial growth. Reprinted with permission
from [107].

range [82]–[84]. A beam from a solid-state laser diode
is focused onto the apex of the cantilever leading to a
reflection that is captured by a positive sensitive detector

of two closely spaced photodiodes. A differential amplifier
captures this output signal and the measured distance traveled
by the reflected laser beam is calculated proportionally to
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cantilever bending. Unfortunately this method relies on
a complex design system, which can prove expensive to
manufacture.

Piezoresistivity is an effect that semiconductors such as
silicon and silicon carbide show as an intrinsic resistance
change sensitively as a function of bending. A piezoresistive
detection approach, measures the resistance of the material,
which varies as a function of applied stress. The length of
a piezoresistive cantilever again dictates resistance with a
range typically between 1-5 k�. Ramussen et al., (2003)
developed multilayer cantilever beams with single crystal
silicon as the active functional element to detect variations
in resistance as a function of deflection. Silicon doping of the
beams was restricted to the neutral axis and the active silicon
sandwiched between an insulating layer of silicon nitride and
silicon dioxide. Cantilevers fabricated to this design with an
insulating layer enable highly sensitive piezoresistive detec-
tion in liquid environments [85]. Increases in sensitivity have
also been achieved by reducing the thickness of a cantilever.
Piezoelectrical detection is possible by coating cantilevers
with piezoelectric materials to generate a measurable charge
in response to cantilever bending [86], [87]. A drawback to
this technique is the extensive fabrication due to encapsula-
tion of the electrically active parts.

Lee et al., (1995) devised a self-excited piezoelectric
cantilever by sandwiching a thin piezoelectric film of zinc
oxide between two aluminum layers. Gravimetric testing
revealed high sensitivity for the detection of chemical vapor
concentration and relative humidity using an acoustic output
transducer [88]. Using millimeter sized cantilever sensors,
Campbell & Mutharasan (2006) demonstrated detection of
Bacillus anthracis spores in liquid medium under both stag-
nant and flow conditions. These cantilevers were very sen-
sitive with detection down to 300 spores/mL, as well as
highly selective for B. anthracis in a mixture with Bacillus
thuringiensis spores at ratios up to 1:500 [86]. Another work
by Hwang et al., (2004) fabricated self-sensing piezoelectric
cantilevers for detection of prostate specific antigen (PSA).
Using a PSA antibody immobilized to a calixcrown self-
assembled monolayer, they were able to show the resonance
frequency shift of the cantilever was proportional PSA con-
centration [68]. This group also employed the same fabri-
cation technique using an immobilized C reactive protein
antibody to detect C-reactive protein [89].

C. BOTTOM-UP CHEMICAL NANOSENSORS
WITH NANOTUBES AND NANOWIRES
Nanotubes and nanowires are one-dimensional nanostruc-
tures that have attracted increased interest as NEMS ele-
ments fabricated using a ‘‘bottom-up’’ approach. These
structures contain excellent intrinsic properties and a low
dimensionality. Wagner & Ellis (1965) first discovered
nanowires (NW) through vapor-liquid-solid (VLS) mecha-
nism by depositing semiconductor atoms under a supersat-
urated liquid catalyst to grow an epitaxial wire [90]. Since
this innovation, the growth of many different NWs using

VLS has been fabricated using various semiconductor atoms
such as; Si, SiC, GaAs, Ge, and GaN [91]–[94]. A study
by Cui Y et al., (2001) developed boron-doped silicon
nanowires (SiNWs) to create a highly sensitive, real-time
electrically based sensor [95]. In 2004 Patolsky et al., using
this same principal was able to show binding of a single virus
particle [96]. The nanowire sensing approach is advantageous
over conventional SPR in terms of sensor packing densities,
demonstrating the ability to incorporate 2400 nanowire sen-
sors onto one array [97]. This allows for reduced sample
volume coupled with a higher sensitivity and high throughput
function. Gamby et al., (2009) fabricated goldNW (170 nm in
diameter) in a polycarbonate microchannel through electro-
crystallization techniques. These NWs demonstrated a mea-
surable increase in Raman cross-section and could serve as
a SERS active dielectric sensor easily integrated into lab-
on-chip systems [52]. Nanowires are also suitable biological
materials as they don’t display acute (100 hr) toxicity towards
cells, in fact, cells are capable of degrading NW into aggre-
gates within days [98].

Carbon nanotubes (CNTs) are hollow variants of solid
NW structures; first discovered by Iijma (1991), CNTs ini-
tially generated interest in the field of nanoelectronics due to
their superconductivity capabilities [99]. Since their advent
nanotubes have undergone extensive theoretical and exper-
imental application to tailor desired growth and electronic
properties [100]–[102]. Similar to MEMS structures nan-
otubes have comparable thermal and electrical conductivity
and can be grown through CVD. CNT electrical properties
can be controlled through chirality and number of carbon lay-
ers [42], [103]. Studies have demonstrated CNTs are useful
label free immune sensors; for instance Okuno et al., (2006)
fabricated a single walled carbon nanotube (SWNTs) array to
detect total PSA using differential pulse voltammetry. These
single walled carbon nanotubes increased electron transfer
improving the limit of detection to 0.25 ng/mL [100]. Silicon
carbide nanotubes (SiCNTs) were first synthesized 10 years
later by Pham-Huu et al., (2001) and often advantageous
over CNTs, particularly with respect to stability at high tem-
perature, ease for sidewall decorations and semiconducting
potentials irrespective of chirality [103]. SiCNTs have been
shown to be exceptional in the detection of harmful gases,
including; CO, NO [104], [105] and HCN [103]. Using SiC
for fabrication of SiCNTs introduces interestingmagnetic and
electrical properties which can be manipulated by varying the
surface decoration with SiH3 and CH3 functionalities [102].

D. BIOLOGICAL APPLICATIONS
Microcantilever LOC platforms capable of detecting antigen-
antibody interaction [50], protein-protein binding [106],
DNA hybridization [64], [74] and DNA-protein interac-
tion [83] have already been fabricated. Microcantilevers offer
a comparable bimolecular detection platform to perform such
multiplexing and label free analysis of these biomolecules
with unparalleled sensitivities. As cantilever bending is sen-
sitive enough to register the free energy change induced
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from binding events; as such immobilization of antibody
molecules, leads to measurable cantilever deflection. For
example ssDNA can be immobilized on the gold side of an
asymmetrically doped cantilever using a thiol linker. This
adsorption of ssDNA results in a surface stress variation
between 30-50 mN/m [64], [74]. This ssDNA can be used as
a probe to detect complementary sequences and would serve
as an adequate platform to detect mutations such as single
nucleotide polymorphisms [83], [107].

Fritz et al., (2000) demonstrated optical beam deflection
technique to detect nucleic acid hybridization on gold-
coated silicon cantilevers. A 5-thio modified synthetic DNA
oligonucleotides with different base sequences were immo-
bilized and later detected in liquid through surface stress
shifts of asymmetrical doping leading to cantilever deflection.
In this same work it was shown that these cantilevers
were able to distinguish between complementary oligonu-
cleotides and a pair with single base mismatch between
the DNA sequences being detected [74]. Advances on this
principle led to the monitoring of restriction and ligation
of cantilever coated with DNA. Stevenson et al., (2002)
functionalized silicon cantilevers coated in gold with
3-aminopropyltriethoxysilane (APTES) to monitor restric-
tion and ligation ofDNA.An oligonucleotidewith theHindIII
restriction site was immobilized to the APTES monolayer,
followed by digestion with HindIII. This scission led to
cantilever negative deflection due to the shortened oligo
with a single stranded sticky end. Subsequent hybridization
with a suitable second oligo in the presence of ligase and
thus extension of immobilized DNA led to a commensurate
cantilever deflection in the opposite (or positive) direction
due to increases in mass loading [107].

Ilic et al., (2000) was the first to report a high sensitivity
detection of Escherichia coli using antibody layer coated
silicon nitride cantilevers. The resonant frequency shifts mea-
sured as a function of mass loading from cell depositions
was correlated with the number of cells bound on the sur-
face [108]. Building on this work, Ilic et al., (2004) were
also the first to demonstrate detection of Baculovirus particles
bound selectively to an AcV1 antibody monolayer immobi-
lized onto cantilevers. These piezoelectric cantilevers allowed
for single virus particle detection by measuring the resonant
frequency shift [109]. Gfeller et al., (2005) realized the can-
tilever biosensing potential for rapid real time detection of
label free E. coli growth by coating cantilevers in nutritive
agarose with bacteria. Resonance frequency shifts due to
increasing mass were matched to the conventional bacteria
growth curves, sensitive enough to observe all characteristic
phases. A high sensitivity of 50 pg/Hz was calculated to be
approximately 100 E. coli cells. These cantilevers were also
shown to augment the ability to rapidly assess antibiotic resis-
tance by either incorporating or omitting antibiotic coating on
the cantilever [110].

Nugaeva et al., (2004) using silicon cantilevers coated
with 30 nm of gold functionalized with concanvalin A,
fibronectin or immunoglobulin G demonstrated spore

immobilization and germination of mycelial fungus
Aspergillus niger (see figure 2). Shifts in resonance fre-
quency could be detected within a few hours as opposed
to several days. Biosensing capabilities of these cantilevers
detected fungi in the range of 103 – 106 CFU/mL, and
thus would be suitable for use in medical and agricultural
diagnostic for both food and water quality monitoring [111].
Savran et al., (2004) immobilized anti-Taq aptamer to
silicon nitride cantilevers to investigate Taq polymerase
binding affinity. Various concentrations of Taq polymerase
(0.3-500 pm) was applied to the cantilevers resulting in poly-
merase aptamer binding and subsequent induce surface stress
and deflection (3-32 nm depending on concentration) [112].
The resulting curve was fit using the least-squares method
to reveal a Kd of ∼15 pM which was comparable to previ-
ous reports performed in solution [113]. Glucose detection
has also been performed with glucose oxidase coated can-
tilevers [114]–[116]. These examples emphasize the high sen-
sitivity and high throughput capabilities of microcantilever
array platforms. The principles of surface plasmon resonance
applied to these microstructures realize the potential of real
time miniaturized multiplexing assays.

III. SILICON CARBIDE
A. BASIC PROPERTIES & POLYTYPES
Moissianite, an extremely rare crystal formation of silicon
carbide (SiC), is typically found inminute quantities in corun-
dum deposits, kimberlitic andmeteorites. SiC is a tetrahedron
of four carbon atoms covalently bound to a centre silicon
atom resulting in a 2-dimensional polymorphism. The high
mechanical and chemical stability of SiC can be attributed
to very short bond lengths, as each carbon is located 3.08 Å
from each other and 1.89 Å from the silicon which leads to
a very high bond strength [49], [117]–[119]. Si and C can
form a bilayer introducing a double layer-stacking variable
that defines over 200 different polytypes of SiC. These poly-
types have been characterized based on the SiC bilayers that
can assume a different hexagonal frame lattice and stacking
sequence (see figure 3). 4H- and 6H- SiC are hexagonal
polytypes based on the 4 and 6 respective bilayers required
for the basic structure; alternatively, 3C-SiC (β-SiC) is an
example of a cubic polymorphic structure comprised of
3 bilayers [120], [121].

SiC is a family of wide band gap (WBG) semiconduc-
tors, where organization of bilayers confers band gap energy
exclusive to each polytype; 2.39 eV for 3C-, 3.265 eV for
4H- and 3.023 eV for 6H-SiC [1], [49]. These different
properties have led to diverse applications across polytypes;
4H-SiC with the highest band gap is suited for power elec-
tronic devices, whilst 6H-SiC, due to a similar lattice con-
stant to that of gallium nitride, is best suited in advance-
ments in LEDs [122] Alternatively, 3C-SiC heteroepitaxially
deposited on silicon wafers has successfully been used in the
generation of MEMS cantilevers [123]; with promising per-
spectives of further downscaling towards NEMS [60], [124].
SiC’s explored bio- and hemo- compatibility make it an
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FIGURE 3. (a) Hexagonal crystallographic notation, which is used for SiC
crystals independent of the actual lattice symmetry. It is based on four
Miller-Bravais indices a1, a2, a3 and c (shown in black) where:
a1 + a2 + a3 = 0. The grey vectors denote the different crystal
orientations. (b) Illustration of the three different positions that the
hexagonal frame of SiC bilayers can assume in the lattice.
(c) ABCABC. . . stacking sequence of cubic 3C-SiC (zinc blende structure).

excellent candidate material for the for advancements in
brain machine interfaces [4], [5]. The authors suggest [125]
as an excellent review on advanced biomedical applications
using SiC.

B. SYNTHESIS OF SiC
Recently, increased attention to SiC as a suitable material in
numerous biomedical applications due to its WBG, chemical
inertness and mechanical strength [126] has been realized
as potential biotransducers in biosensors [4], [87], [125].
The main hexagonal polytypes of SiC can be grown as
single-crystal ingots, fromwhich SiC wafers can be obtained.
Various methods are available to grow homoepitaxial single
crystalline SiC films commonly through chemical vapour
deposition (CVD) [118], [127]–[130] and less commonly
through liquid phase epitaxy (LPE) [131] and molecular
beam epitaxy (MBE) [132]. The 3C-SiC polytype is the
only one that can be grown hetero-epitaxially on silicon.
This is particularly advantageous as fabrication on silicon is
well established and widely available. Growth on silicon can
typically be achieved through three steps: firstly removal
of native oxides present through hydrogen surface etching,
a carbonization step to bond C to the Si dangling bond to
create the first SiC ‘‘buffer’’ layer, and finally using a Si:C
ratio of 0.7 to grow a cubic single-crystal layer on the buffer
layer [118]. Modification to these steps such as the inclusion
of silane between carbonization and growth steps has led to

the production of very high quality films [133]. Advance-
ments in surface preparation have led to the development
in numerous techniques including; oxidation [117], [134];
sublimation etching [120], [135]; photoelectrochemical etch-
ing [136]; chemomechanical polishing [137], [138]; plasma
etching [139] and hydrogen etching [128], [140], [141].

Growth of heteroepitaxial 3C-SiC films on silicon with
high quality is still to-date very challenging because of
the large lattice and thermal mismatch between the films
and the silicon substrate [3]. Poly-SiC on the other hand
has been shown to be more versatile capable of growth on
diverse substrates at lower temperatures (500-1200 ◦C) and
has allowed for the generation of multiple growth protocols.
Production of SiC nanoparticles is again different; an elec-
trochemical method by Wu et al., (2005) involved etching of
polycrystalline 3C-SiC coupled to ultra -sonication to yield
an average particle size of 3.9 nm [142]. Similar electrochem-
ical anodization etching coupled to mechanical grinding of
nanoporous 6H-SiC also yielded 6H-SiC nanocrystals [143].
Lin et al., (2008) used a low temperature, low pressure plasma
reactor to synthesize amorphous SiC; subsequent annealing
of the samples in argon at 800 ◦C yielded β-SiC nanoparticles
(<10 nm) and graphite [144]. The amorphous phase of SiC
allows for adjustable Si and C stoichiometry. Alternatively,
Leconte et al., (2008) used inductively coupled plasma to
control synthesis of β-SiC nanopowders. Here, the SiC sto-
ichiometry was controllable by the process pressure and
the addition of methane to compensate the decarburization
process [145]. Yang et al., (2011) used laser ablation of Si in
ethanol to produce 3C-SiC nanoparticles in a water suspen-
sion [146]. A study by Botsoa et al., (2008) demonstrated the
application of 3C-SiC quantum dots for living cell imaging.
They synthesized 3C-SiC nanoparticles less than 10 nm in
size through electrochemical anodization of polycrystalline
wafers followed by successive grinding and finally centrifu-
gation and were verified to have a non-toxic effect to the
cell [147].

C. IMMOBILIZATION OF BIOMOLECULES
Current molecular recognition systems require the immobi-
lization of biomolecules through covalent attachment [134],
[148], [149] with specific attention to structural order and
composition to maintain biological activity to maintain sen-
sitivity towards chemical stimuli [150], [151]. This happens
through surface functionalization for controlling the surface
chemistry of the substrate itself and is therefore specific to
the selected semiconductor material. For example the surface
functionalization of silicon dioxide (SiO2) has been shown to
be unsuitable in electrolytic solutions [152] as well as confer-
ring high noise levels in field effect transmitters (FETs) [153].
A study by Spetz et al., (2006) exploited the thermal resis-
tance properties of SiC to fabricate FET gas base sensors that
operate at ∼1,000 ◦C [2]. A more recent paper by the same
group built on this principle engineering a multifunctional
sensor device with an integrated transistor and resonator, to
measure NO metabolism in an individual’s breath [154].
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SiC has emerged as a promising biosensing material due
also to the possibility of realizing a thin surface oxide, which
is essential for the surface termination required to immo-
bilize biomolecules. Passivation of the SiC surface can be
realized through high quality monolayers with reactive sites
generated either with a terminal hydrogen (H) or hydrox-
ide (OH) surface [119], [128], [155], [156]. Theoretical stud-
ies by Preuss et al., (2006) compared pyrrole-functionalized
Si- and C-terminated SiC surfaces. They concluded that
adsorption occurred through N-H dissociation and formation
of N-Si bonding on the Si face however this was unsta-
ble on the C face most likely due to negative adsorption
energy [157]. Similar ab inito computational chemical inves-
tigations chemical investigations by Cicero and Catellani
also demonstrated a larger stability on the Si face of the
SiC(001) surface compared to those on Si [158], [159].
A study by Schoell et al., (2008) used self-assembled
monolayers (SAMs) for functionalization of n-type 6H-SiC
to the Si face. Covalent functionalization on patterned
aminopropyldiethoxy-methylsilane (APDEMS) monolayers
was later verified through immobilized fluorescently labelled
proteins [155]. Williams et al., (2012) also immobilized
streptavidin via biotinylation on to APTES functionalized
4H-SiC (0001). To ensure immobilization; X-ray photoelec-
tron spectroscopy (XPS), ellipsometry, contact angle and flu-
orescence microscopy was used to optimize APTES layer on
the SiC surface. Notably, instead of performing a pirhana dip,
hydroxylation occurred through oxygen plasma treatment
with O2:Ar (20:80) to grow a thin oxide layer [148]. Simi-
lar functionalization has been performed on 4H-SiC (0001)
with mercaptopropyltrimethoxy-silane (MPTMS) and veri-
fied using XPS and water contact angle measurements [150].
Electrical contribution from APTES and MPTMS organic
layers on 4H-SiC has been further evaluated and shown to
exhibit a Schottky diode like I-V characteristic [134].

Numerous studies have been performed on the biosens-
ing capabilities of the semi-insulating hexagonal polytypes
(4H- & 6H-SiC) due to their low leakage, transparency and
biochemical inertness [160]; however 3C-SiC has emerged
as the polytype of choice. It is ideal for biomedical MEMs
devices as it is less expensive and less polar when compared
to 4H-, 6H-SiC [125], [161]. 3C-SiC has a well-defined
surface for electron transfer due to a low gradient and in-
plane stress from the closely packed cubic structure [162].
Coupled to highYoung’smodulus, 3C-SiC can be constructed
into wide frequency resonators as cantilevers or bridge struc-
tures as detections methods for mass, gas and biomolecule
identification.

D. SiC FOR BIOSENSING: DESIGN CONSIDERATIONS
Extensive research has shown that SiC is a superior alterna-
tive to Si, due to its demonstrated biocompatibility [2], [4],
[125], [134], [154], [163]. Moreover, as it can be deposited
on silicon wafers, its micromachining into MEMS building
blocks is straightforward. SiC Young’s modulus are notably
high (440 GPa), as well as breakdown field twice as large

as Si (∼2 MVcm−1) [136]; making SiC ideal to augment
and even replace Si. In addition to this due to SiC chemical
inertness [121], it is a suitable material in high tempera-
tures, hostile environments and shows a high resistance to
corrosion in body fluids [119], [128], [135], [155], [156],
[164]–[166]. SiC’s high elastic modulus (424 GPa), high
hardness (5.8 GPa) and low friction coefficient (0.17) make it
ideal as an in vivo biosensor and smart implant [163], [167].
Li et al., (2005) used a nanoscale approach to character-
ize both the mechanical and tribological properties of SiC
for orthopaedic applications [135]. Coupled to the electri-
cal, mechanical and thermal properties of SiC reinforces its
suitability as a biosensing substrate. These qualities alone,
including the aforementioned WBG, increases the sensing
capabilities of SiC as a semiconductor. Of the polytypes,
3C-SiC has demonstrated a major advantage in biosensing
applications due to the reproducibility of quantitative surface
modification and functionalization. This has been realized as
a versatile format for immobilization of biomolecules with
high reproducibility in bioanalytical applications.

Fabrication of silicon based micro- and nano-cantilevers
are most commonly fabricated using a well -established
top down approach comprising of four main techniques;
film deposition; photolithography; etching and doping [167].
An important consideration is the design and shape of the
cantilever sensors, and the way such sensors can be com-
bined into a micro-array. For optical detection schemes
both rectangular and T shaped cantilevers are commonly
employed [168], whilst capacitive detection systems bene-
fit from square pads leading to increased sensitivity [169].
On the other hand piezoresistive cantilevers are designed
U shaped with a partial Wheatstone bridge circuit. A recent
report by Kermany et al., (2014) fabricated microresonators
with mechanical quality factors (Q) over a million using
highly stressed epitaxial SiC on silicon wafers. Such high
Q-factors were achieved using perfect-clamped string struc-
ture using silicon surface micromachining processes [170].
This study also demonstrated the use of two photolithog-
raphy steps and as such two different masks followed by
xenon difluoride dry etching to release the microbeams
(see figure 4). There is extensive debate for the selection
of the best material for fabrication of microcantilever struc-
tures. With increased downscaling trends towards nanostruc-
tures, SiC has been realized as an ideal choice due to its
ratio of Young’s modulus (E) to mass density (ρ) is signifi-
cantly higher than other semiconducting materials (Si, Si3N4,
SiO2, GaAs). Given the ratio

√
(E/ρ) [124], SiC demon-

strates high fundamental resonance frequencies, combined
with small force constants enabling high sensitivity to realize
the potential of NEMS. Additionally SiC’s excellent chem-
ical stability allows for surface treatments to achieve higher
Q factors [170], [171]. This is vital as the NEMS Q factor
is governed by surface defects [124], [172]. As discussed,
3C-SiC is an ideal polytype for fabricating complex
resonators [4], [126], [129], [130], [166], [170], [173].
Yang et al., (2001) fabricated nanometer scale single
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FIGURE 4. Two lithography steps using preferential etching techniques to fabricate perfect clamped epitaxial SiC on Si microstrings. Adapted from [168].

3C-SiC layers using dry etching to minimize damage caused
by increased surface tension from wet etching. This study
demonstrated that given the same geometry, nanometer-scale
SiC resonators produce frequencies lower than GaAs and Si
resonators [124]. Similarly increasing the residual stress of
epitaxial 3C-SiC films enhances Q factors of SiC microstring
resonators [170] outperforming the state-of-the-art based
Si3N4 [174]. Si3N4 has long been the preferred resonator
material, however, epitaxial 3C-SiC on silicon possesses
additional advantages to this sensing platform. Unlike Si3N4,
SiC is a semiconductor and thus can be doped [175], [176]
and is piezoresistive [177]. Also note that sensors made of
epitaxial 3C-SiC are expected to behave substantially better
than poly-crystalline SiC sensors thanks to the absence of
grain boundaries, and thus higher fracture resistance and
resistance to corrosion. Finally, note that 3C-SiC is also
a convenient alternative to Si3N4, as it can be used as
solid source and template for direct transfer-free growth of
graphene [178]–[180].

However, it is important to point out that at this stage,
although the growth of 3C-SiC on silicon has seen substantial
improvements, the interface of the SiC to the silicon substrate
continues to be a problematic point. Additionally to being
extremely defective because of the large mismatch stresses, it
is also thermally unstable [F.Iacopi, unpublished data], which
may prove an important limitation for some of the MEMS
applications.

IV. GRAPHENE
Graphene is a one atom thick planar sheet of sp2 bonded
carbon atoms packed as a dense honeycomb crystal lattice
with C-C bond length of 0.142 nm [181]. First isolated in
2004, through micromechanical cleavage of graphite [182];
graphene has revolutionized the nanotechnology platform as
a next generation electronic sensing material. Monolayers
and bilayers of graphene are zero-gap semiconductors; with
only one electron charge carrier. With additional layers,
several more charge carriers form, and as such the term
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graphene has been limited to 10 layers before being consid-
ered graphite. Graphene has generated considerable attention
due to its, anomalous quantum Hall effect [183], [184],
absence of localization [185], chemical inertness [186], high
thermal conductivity (5000 Wm−1K−1) [187], high current
density [188], [189], optical transmittance [190], [191], super
hydrophobicity at a nanometer scale [192], high electron
mobility at room temperature (250,000 cm2/Vs) [190], [193]
and extraordinary mechanical properties with Young’s mod-
ulus above 1 TPa [182], [194]. Additionally, reducing
the dimensions of graphene to narrow ribbons the width
of 1-2 nm, a distinct band gap can be attained, producing
semiconductive graphene with unparalleled applications in
transistors for nanoelectronics and high frequency applica-
tions [195], [196]. Graphene has been established as an out-
standing conductor and plasmonic material. These properties
allow for the augmentation of both MEMS and plasmonics
label free methods as well as providing framework for further
downscaling towards nanosensing devices.

A. BIOCOMPATIBILITY OF GRAPHENE
The remarkable properties of graphene have stimulated
increased investigations into its biocompatibility due to
broad prospective applications in biomedical engineering and
biotechnology. Graphene-based materials (GBMs) biocom-
patibility relies on their intrinsic physical-chemical proper-
ties, which alter due to the raw materials and fabrication
methods, used [197], [198]. Liao et al., (2011) attributed
cytotoxicity to the particle size, quality, state, surface charge
and oxygen threshold. It was concluded that GBMs are
capable of inducing superoxide anion-independent oxidative
stress on bacterial cells through oxidation of (γ )-L-glutamyl-
L-cysteinyl-glycine [199]. In a study by Liu et al., (2011)
the toxicity effect of four GBMs (graphite (Gt), graphite
oxide (GtO), graphene oxide (GO) and reduced graphene
oxide (rGO)) was investigated against E. coli. Oxidative
stress signals revealed GO had the highest antibacterial activ-
ities (>rGO>Gt>GtO) [200]. Such investigations have led
to the antimicrobial applications of graphene.

Biofilm formation on conducting materials in the long-
term use of bioimplants and biosensors is a significant
problem [201]. Advancements in antimicrobial graphene
film coating provides a prospective alternative to previously
explored surface coatings such as antibiotics [202] and
cationic peptides [203]. A report by Santos et al., compared
the E. coli growth rates on GO with graphene-poly-N -vinyl
carbazole (PVK) nanocomposites. Results indicate greater
than a 80% microbial inhibition from PVK treatment of GO
due to an increase in solution dispersion and as such increased
interaction with the bacteria [204]. A similar study by
Carpio et al., (2012) using PVK-GO nanocomposites
revealed a strong antimicrobial effect to both gram negative
and positive bacteria. Additional testing against fibroblast
cells (NIH 3T3) revealed a significant neutral toxicity leading
to numerous potential biomedical applications for the preven-
tion of biofilm formation [205].

Other applications using manganese-ferrite (MnFe2O4)
decorated GO nanocomposites have been shown to be ideal
as T2 contrast MRI agents and use in magnetic hyper-
thermia for cancer therapy. Further PEGylation of these
composites demonstrated exceptional biocompatibility [206].
Recent studies by Lee et al., explore graphene-based tissue
engineering approaches using various types of stem cells
to restore damaged or lost tissues. Here, graphene’s aro-
matic scaffold and good biocompatibility provides support
for stem cell growth and differentiation through non-covalent
binding [192], [207].

B. FABRICATION OF GRAPHENE
Several fabrication methods have been developed to pro-
duce graphene in large quantities the most common
including micromechanical exfoliation of highly orientated
pyrolytic graphite (HOPG) [182], CVD [208]–[210], Plasma
enhanced CVD [211], [212] chemical reduction of graphite
oxide (GO) [213], [214], CNTs unzipping [215]–[218] and
epitaxial growth on bulk SiC [178]–[180], [219], [220].
Mechanical exfoliation is simple in principle, relying on sep-
aration of layers of stacked graphene sheets from graphite to
produce individual sheets. Novoselov et al., (2004) subjected
a 1 mm thick HOPG sheet to dry etching in oxygen plasma
to make multiple 5 µm deep plateaus. These were baked
on a photoresist and subsequent peeled using scotch tape
to remove layers from the graphite sheet. The resulting thin
flakeswere released from the photoresist in acetone and trans-
ferred to a Si substrate to yield mono to few-layer graphene
sheets [182]. Though this first fabrication of graphene was
indeed an exciting discovery, it is limited in its control over
the number of layers produced and inability for large-scale
production.

Accordingly, Stankovich et al., (2007) proposed liquid
phase exfoliation of graphite oxide due to its hydropho-
bicity for the large-scale production of graphene. This was
achieved through exfoliation of GO nanosheets by ultrason-
ication in aqueous suspension and the subsequent reduction
of these film in hydrazine hydrate at 100 ◦C for 24 hr [213].
However, Raman spectroscopic studies indicated that the
invasive chemical treatment generated structural defects that
disrupted the electronic structure of graphene [221]. It was
later shown through XPS studies that even after chemical
reduction or thermal annealing (up to 1000 ◦C), it is essen-
tially impossible to regenerate the graphene structures [222].

To realize the promise for mass scale production of
graphene, CVD approaches on metal surfaces provided
a novel synthesis route for mono or few-layer graphene
films. Somani et al., (2006) first reported a thermal CVD
(700-850 ◦C) technique to synthesize graphene from cam-
phor on Ni foils. After cooling to ambient temperature
yielded planar few layer graphene, high resolution trans-
mission electron microscopy identified multiple folds and
estimated to consist of 35 layers of graphene [210]. Whilst
this method provides high quality graphene layers with-
out complicated mechanical or chemical treatments, it still
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FIGURE 5. Gold (Au) – Nanoparticles (NP) in situ grown on bulk GO sheets to form GO/Au-NPs. Subsequent functionalization with
hexafluoroisopropanol generates HFIP-functionalized GO/Au-NPs hybrid nanostructure suspensions that can be deposited onto pre-prepared
cantilevers using a micromanipulator. Adapted from [229].

requires purification processes to eliminate the catalyst arti-
facts and transfer of graphene to another substrate. More
recently, methods of transferring graphene using a micro-
manipulator and scanning electron microscope allow gen-
eration of GO nanoparticles that can be functionalized and
used as biosensors. Xu et al., (2013) demonstrated detection
of trinitrotoluene (TNT) in 20 ppt using resonant micro-
cantilever sensors functionalized with GO/Au nanoparticles
(NP). The Au-NP serve as nanopillars to space GO sheets
allowing molecules to access the nanopores. Hexafluoroiso-
propanol (HFIP) functionalized GO/Au-NPs hybrid mate-
rial can be added to water to form a crude suspension,
which can be loaded onto pre-prepared microcantilevers
using a micromanipulator [229] (see figure 5). However,
transfer of graphene material requires precise manual han-
dling techniques through the use of the micromanipula-
tor and visualization with scanning electron microscopy
(SEM) equipment, which can be expensive for smaller
laboratories. Additionally, this method is effort- intensive,

requiring serial functionalization of thousands of single
cantilevers.

As stated graphene has a zero band gap and thus relies
on introducing an energy band gap to be suitable for appli-
cations in semiconductors. This can be realized through
either controlled oxidation of a few layers of graphene or
fabrication of graphene nano ribbons (GNR). GNRs possess
band gaps suitable for room temperature transistor operations
with high carrier mobility due to narrow widths (<10 nm)
and atomically smooth edges [217], [223], [224]. GNRs can
be easily produced through e-beam lithography but this
approach is limited by poor scale resolution (width of 20 nm)
and large edge roughness [218], [225]–[227]. Accordingly,
Jiao et al., (2009) devised a novel approach through con-
trolled unzipping of CNTs by argon plasma etching. This
technique recognizes that CNTs are essentially GNRs rolled
up into seamless tubes and therefore graphene growth can be
controlled through the growth of CNTs. Multiwalled carbon
nanotubes (MWCNTs) were embedded onto a poly (methyl
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methacrylate) (PMMA) layer on a Si substrate. This PMMA
etch mask was purpose designed to leave a narrow strip
of MWCNT sidewall exposed to facilitate faster etching.
Subsequent argon plasma treatment lead to unzipped CNTs
and smooth edged GNRs with uniform width of 10-20 nm
corresponding to half the circumference of the starting
MWCNT [217]. Various new unzipping technique have
emerged facilitating large scale production GNRs with con-
trolled structure; however, it is important to note that these
materials have inferior electronic characteristics when com-
pared to wide peeled sheets of graphene [181], [228].

These fabrication methods to synthesize monolayer
graphene and harness the extraordinary physical, optical,
electronic and mechanical properties in actual micro- and
nano-devices unfortunately still presents obstacles in the
replication of well-defined structures when using trans-
ferred graphene [230], [231]. Precisely defined positions and
dimensions is a requirement for the integration of graphene in
MEMS and NEMS. Many methods reviewed require manip-
ulation of exfoliated or grown graphene flakes and therefore
are not considered suitable for augmenting such nanostruc-
tures. Encouragingly, a promising synthesis of homogenous,
wafer size graphene for such technologies has been demon-
strated by thermal decomposition of SiC [232]–[234].

C. GRAPHENE FROM SILICON CARBIDE
Interestingly, silicon carbide is a suitable template as well as
solid-source for the direct (transfer –free) growth of graphene
on semiconductor wafers. As such, silicon carbide bulk sub-
strates are an ideal platform for the synthesis of graphene
for micro and nanodevices. Investigation into graphitization
by annealing of SiC surfaces in ultrahigh vacuum began
in 1975 [235]. Unfortunately the process was limited in
scale and very expensive. More recently graphene coated
structures from epitaxial SiC films on Si has been real-
ized as promising templates to augment MEMS and NEMS
applications. SiC is advantageous due to already established
photolithography and etching patterning [178], coupled to
solid carbon source processes for graphene growth [233],
[236]–[238]. The use of established self-aligned approaches
facilitates exacting dimensions within the nanometer range
for well-defined graphitized structures. Rollings et al., (2006)
reported successful growth of single crystalline mono to few
layer graphene films from thermal decomposition (1200 ◦C)
of the (0001) Si face of the 6H-SiC wafer [236]. Growth
of epitaxial graphene by in vacuo silicon sublimation from
the (0001) and (000-1) faces of 4H- and 6H-SiC has also
been shown [228]. Various reports have characterized similar
graphene growth on SiC through high temperature anneal-
ing in vacuum methods [239]–[241], however this has been
recently shown to yield graphene layers with small grains
(30–200 nm) [242], [243].

To address this, a report by Emtsev et al., (2009) introduced
a different approach of ex situ graphitization of (0001) Si
face of 6H SiC in an argon atmosphere of 1 bar. Raman
spectroscopy and Hall measurements of these large-size

monolayer graphene films demonstrated improved quality of
film with high electronic motilities (µ = 2,000 cm 2 V−1 s−1

at T = 27 K) [242]. Nickel-mediated catalytic graphitization
at the SiC surface to obtain graphene has emerged as a pos-
sible route. The catalytic action of Ni is vital as it reacts with
SiC at comparably low temperature forming NiSi4 to mediate
the release of carbon required for the synthesis of graphene
[178], [234], [244], [245]. Juang et al., (2009) demonstrated
low temperature (750 ◦C) synthesis of graphene on thin Ni
films coated SiC substrates [237].

1) GRAPHITIZATION OF 3C-SiC
Graphitization of 3C-SiC on silicon is clearly a long sought-
after goal, although it has historically been much more chal-
lenging. This is due to the lesser quality of the hetero-epitaxial
SiC films on silicon, and the limitation of the graphene
growth temperature to well below 1400 ◦C to remain within
safe limits from the melting temperature of the silicon
substrate. A suitable surface considered is 3C-SiC (111) as
its top four layers are identical to those of 6H-SiC (0001),
nevertheless challenges still arise from the high defects
density of the hetero-epitaxial films due to the considerable
lattice and thermal mismatch of Si and 3C- SiC [171], [246].
Many studies have demonstrated ultrathin graphene
(monolayer, bilayer or multilayer) sheets from graphitiza-
tion of 3C-SiC epilayers [247], [248] without needing to
transfer the material to another insulating substrate before
integration into MEMS and NEMS devices [249]. Finally
graphitization of 3C-SiC (111) maintains a similar crystal-
lographic structure that naturally accommodates the six-fold
symmetry [250].

Investigations into reconstructions that lead to graphene
growth have identified differences for the Si-terminated and
C-terminated faces of SiC. On Si-terminated face scanning
tunneling microscopy (STM) imagery has revealed a ‘‘zeroth
layer graphene’’ as a (6

√
3× 6

√
3)R30◦ reconstructed inter-

face layer that serves as a precursor stage of graphitiza-
tion [251]. As such monolayer graphene is the first layer
growing on top of this buffer layer, due to desorption of Si
atoms [179], [252], [253] (see figure 6). Epitaxial graphene
annealed at temperatures larger than 900 - 1200 ◦C under Si
flux induce gradual development of (3×3), (6×6), (

√
3×
√
3)

R30◦ and finally the reconstructed interface (6
√
3 × 6

√
3)

R30◦ layer. A count of carbon atoms demonstrates that three
SiC bilayers provide the carbon source for one graphene
layer. Therefore it has been assumed that reformation of
(6
√
3 × 6

√
3)R30◦ reconstructed interface is required for

each new graphene layer [254]. In this model the previous
(6
√
3 × 6

√
3) R30◦ interface is released from its covalent

bonding forming the next graphene layer. This interface
ensures the same 30◦ rotation for all graphene layers grown
on the SiC substrate.

Alternatively, on the C-terminated face the (6
√
3 ×

6
√
3) R30◦ reconstruction is not observed, and the atomic

transformation of graphene not as easily clarified. Studies
by Gupta et al., using XPS, STM and Raman spec-
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FIGURE 6. Cross sectional structural model along the [011] cubic SiC zone axis of (a) monolayer and (b) bilayer epitaxial graphene on 3C- SiC(111).
The graphene is growing on top of the (6

√
3× 6

√
3)R30◦ reconstructed interface layer.

troscopy reveal interesting details on the transformation from
3C SiC (111)/Si (111) to graphene at different temperatures
(1125 to 1375 ◦C). STM imaging revealed continuous hexag-
onal structure mono to few-layer graphene (1 × 1) with
hole-to-hole dimensions of 0.246 nm. Images also demon-
strate transition from 3C SiC (111)/Si (111) to graphene at
1250 ◦C occurred in two subsequent steps: transition from
SiC surface (

√
3 ×
√
3) R30◦ to ( 32 ×

√
3) R30◦ followed

by monolayer graphene. Wrinkled areas were attributed to
defects in the underlying SiC/Si (111) and remain an issue of
lattice mismatch. Raman spectroscopy indicates that G band
shifts towards lower wavelengths, and as such an increase in
graphene layer thickness is a strong function of increases in

annealing temperature [179], [180]. Finally this investigation
noted that 3C-SiC does not depict second order Raman
features between 1450 and 1750 cm−1 as in other polytypes
of SiC [255].

Synthesis of graphene on epitaxial SiC on Si (briefly dis-
cussed earlier) by Cunning et al., (2014) demonstrate uniform
and high- quality graphene synthesis using a Ni-Cu alloy
catalyst. A pre-patterned 3C-SiC layer (250 nm) on a Si (111)
wafer was sputtered with nickel and copper. Subsequent site
selective graphitization at 1000 ◦C through; (a) Kirkendall
diffusion of the nickel and copper; (b) silicide formation to
generate a carbon source for graphitization; (c) removal of
intermixed metal to expose the graphene on the SiC through

FIGURE 7. Wafer-level fabrication of graphitized silicon carbide microbeams on a silicon substrate. The SiC can be patterned to generate
thousands of cantilevers and thus removes the need for manipulation of single flakes. The few-layer graphene is grown selectively on the
SiC structures via site-selected graphitization. Adapted from [176].
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sonication in a Freckle’s etch solution [178] (see figure 7).
This self-aligned nanocoating of few layer graphene onto
suspended SiC microstructures is ideal for replacing current
conducting layer inMEMS, as well as providing alternate sur-
face functionalization routes. This novel synthesis approach
is also advantageous as it can be performed at tempera-
tures compatible with conventional semiconductor process-
ing, allowing complex device integration and generation of
thousands of MEMS/NEMS by pre-patterning of the SiC.
A follow up study by Iacopi et al., (2015) introduced
novel synthesis of high quality and highly uniform few
layer graphene from epitaxial 3C-SiC films on Si (100)
and Si (111) using the described [178] Ni/Cu catalytic
alloy approach. Transmission electron microscopy in this
study [232] yielded <0.9 nm thin bilayer graphene with
high-quality and high adhesion to the substrate [256]. Such
advances open enormous new opportunities for harnessing
the properties of graphene for MEMS and NEMS devices
fabricated at the wafer -level.

D. FUNCTIONALIZATION OF GRAPHENE
Graphene can be prepared readily through chemical, thermal
or photo-chemical reduction of GO, and this is the type of
graphene most heavily investigated so far for functionalisa-
tion. However, subsequent graphene formation can lead to
precipitation of graphite particles and sheet aggregation due
to lack of a stabilizer [257]. As such covalent or non-covalent
surface functionalization is performed before reducing the
graphene sheets [258]. Fortunately this process enables the
immobilization of biomolecules through surface functional-
ization of highly oxygenated GO sheets. Covalent function-
alization of this framework occurs through hybridization of
one or more sp2 carbon atoms into the sp3 configuration
[259] through either nucleophilic substitution [260], [261]
electrophilic addition [262], [263], condensation reactions
[264], [265] or addition reactions [266], [267].

Nucleophilic substitution reactions are commonly employed
for the functionalization of GO as it occurs easily at room
temperature and in an aqueous medium. Organic modifiers
containing the amine functionality can undergo nucleophilic
substitution reactions that target the epoxy groups of GO.
Many aliphatic and aromatic amines, amino acids, amine-
terminated biomolecules and small molecular weight poly-
mers have been successfully prepared on functionalized
graphene [257]. For example, Kuila et al (2010) used dodecyl
amine (DA) and octadecyl amine (ODA) for the surface
treatment of graphene, [268] the results being similar to
those of Bourlinos et al., (2003) who demonstrated that
amine intercalated GO derivatives depend on amine chain
length [261]. Chemical functionalization of graphene sheets
can also be carried out with APTES [260]. Similar APTES
chemistry has previously been described on SiC platforms
and as such could provide a suitable framework to integrate
graphene into MEMS systems. A study by Shan et al., (2009)
generated biocompatible graphene functionalized with poly-
L-lysine (PLL) to immobilize biomolecules. The resulting

biosensor was conjugated to horseradish peroxide (HRP)
to create graphene-PLL/HRP nanocomposites capable of
sensing H2O2 [269]. Graphene functionalization through
condensation reactions has been shown to occur through
loss of entropy. Recent investigations have demonstrated
that condensation occurs with isocyanate, diisocyanate, and
amine compounds through the formation of amides and
carbonate ester linkages. Stankovich et al., (2006) functional-
ized graphene using isocyanate compounds revealed reduced
hydrophilic properties, which through further exfoliation
yielded derivatized, GO nanoplatelets [264]. Diisocyantes
have also been used for graphene functionalization by activat-
ing the carboxyl functionality using thionyl chloride (SOCl2).
This nanoporous material displayed promise as a hydrogen
adsorbent material [270]. Finally, Liu et al., (2008) first
reported GO functionalization using poly(ethylene glycol)
(PEG-NH2) through a carbodiimide catalyzed amide for-
mation. Various insoluble aromatic drug molecules such as
camptothecin analogues and Iressa (Gefitinib) were success-
fully loaded onto nanoscale graphene oxide-PEG via simple
adsorption [265], [271]. Further studies to optimize func-
tionalization of graphene for biomolecule immobilization
highlights a promising pathway for increased sensitivity and
NEMS downscaling.

V. CONCLUSION
Label free, analyte specific, accurate, and highly sensitive
biochemical detection systems will offer superior capabilities
over existing systems in terms of high-throughput, efficient
drug screening and early pathogen detection. Research in
this area, underpinned by novel functional (nano)materials,
is now reaching maturity and offers perspectives of con-
crete advances. Silicon carbide, potentially combined with
transfer –free graphene, is one prominent example of mate-
rial system that could provide enormous advances, either
through plasmonics or micro-electro-mechanical systems.
Additionally, the possibility for scaling down the sizes of such
sensors towards the nanoscale, together with ensuring the
bio- and hemo-compatibility of the materials involved, could
potentially enable minimally invasive endoscopic detection,
with enormous benefits for early detection of life-threatening
diseases such as cancer.
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