
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

A Fuzzy Virtual MachineWorkload Prediction

Method for Cloud Environments

Fahimeh Ramezani

Centre for Artificial Intelligence

School of Software, Faculty of Engineering and IT

University of Technology Sydney

PO Box 123, Broadway, NSW 2007, Australia

Fahimeh.Ramezani@uts.edu.au

Mohsen Naderpour

Centre for Artificial Intelligence

School of Systems, Management and Leadership, Faculty

of Engineering and IT, University of Technology Sydney

PO Box 123, Broadway, NSW 2007, Australia

 Mohsen.Naderpour@uts.edu.au

Abstract—Due to the dynamic nature of cloud environments,

the workload of virtual machines (VMs) fluctuates leading to

imbalanced loads and utilization of virtual and physical cloud

resources. It is, therefore, essential that cloud providers accurately

forecast VM performance and resource utilization so they can

appropriately manage their assets to deliver better quality cloud

services on demand. Current workload and resource prediction

methods forecast the workload or CPU utilization pattern of the

given web-based applications based on their historical data. This

gives cloud providers an indication of the required number of

resources (VMs or CPUs) for these applications to optimize

resource allocation for software as a service (SaaS) or platform as

a service (PaaS), reducing their service costs. However, historical

data cannot be used as the only data source for VM workload

predictions as it may not be available in every situation. Nor can

historical data provide information about sudden and unexpected

peaks in user demand. To solve these issues, we have developed a

fuzzy workload prediction method that monitors both historical

and current VM CPU utilization and workload to predict VMs

that are likely to be performing poorly. This model can also

predict the utilization of physical machine (PM) resources for

virtual resource discovery.

Keywords—Cloud Computing; Virtual Machine; Fuzzy Systems.

I. INTRODUCTION

Cloud computing delivers scalable on-demand services over
the Internet, including SaaS, PaaS, and infrastructure as a service
(IaaS). A cloud provides these services through virtualized
resources that are overlaid on physical resources, called
virtualized cloud resources. Typically, a virtualized cloud
resource is a set of specification and configuration files, called a
VM [1, 2]. SaaS and PaaS providers are charged by IaaS
providers on an hourly basis. They, therefore, need to determine
the optimal number of VMs required in each IaaS cluster to
provide their services, given a predicted workload, and
guarantee service level agreement constraints at the same time.
IaaS providers also need an estimation of the required capacity
of VMs in their cloud clusters for optimal on-demand resource
provisioning [3].

Nagothu et al. [4] proposed a method for load prediction by
separating it into linear and non-linear algorithms. They
believed that a linear prediction algorithm could either involve
1-Dim observation sequences or d-Dim observation space
signals [5]. They also proposed an alternative method for load

prediction that makes use of Burg’s algorithm [6]. Saripalli et
al. [4] demonstrated the use of load prediction algorithms for
cloud platforms using a two-step approach, i.e., load trend
tracking followed by load prediction. Their approach uses cubic
spline interpolation and a hotspot detection algorithm for sudden
spikes. Meng et al. [7] proposed an approach called joint-VM
provisioning, which estimates the aggregate size of multiplexed
VMs, then resource allocation (CPU and memory) is considered
for a determined set of compatible VMs instead of allocating
resources to an individual VM. This helps scaling for high-
utilization VMs by using the spare resources of a co-located
low-use VM. They also developed a workload prediction model
to estimate the capacity required for a determined set of VMs by
decoupling the VM workload into regular and irregular
fluctuating components. The regular workload refers to
deterministic patterns, such as trends, cycles, and seasonality.
The irregular fluctuating workload is the residue after the regular
workload has been removed. To forecast the regular workload,
they simply assume that the regular patterns will be preserved in
the future, i.e., that a steadily increasing trend will continue to
increase at the same rate and that daily seasonality will continue
to hold. To forecast an irregular workload, they performed a time
series forecasting technique based on historic workload patterns.
Yang et al. [8] developed a pattern fusion model for predicting
multi-step-ahead CPU loads by categorizing historical CPU
load-time series patterns into two sets: patterns that rarely occur
and have the lowest possibility of occurrence, and patterns with
almost similar trends that have the highest degree of likely
occurrence. Islam et al. [9] proposed a prediction-based resource
measurement method that predicts the CPU utilization pattern
for a given application by applying two learning algorithms: an
error correction neural network [10] and linear regression [11].
In addition, they used sliding windows [12] and cross-validation
[13, 14] techniques in the training and prediction stages.
Ardagna et al. [3] also developed a prediction-based resource
measurement approach by applying an exponential smoothing
prediction method. They believe this method is appropriate for
predicting run-time and non-stationary behavior. They also
performed dynamic load redirection [15, 16] periodically to
predict short-term changes in the number of workload arrivals.

In short, most researchers have applied prediction methods,
such as neural networks, pattern recognition and linear
regression to estimate VM workloads [17]. These methods
predict the future workload of VMs by applying previous

workload patterns in time slot t, determined on the basis of
related historical data [8]. And, most are designed for SaaS and
PaaS resource prediction or VM remapping or in situations
where cloud providers are aware of the types of applications and
software being executed and can trace their behavior. However,
for IaaS (where IaaS is not delivered to PaaS and SaaS
providers), there is no information about upcoming executing
applications on each VM. In these cases, application behavior is
not applicable when estimating VM workloads and CPU usage.
In addition, a VM’s workload is affected by user behavior and
the sudden decisions they make, so fluctuations in the workload
could be independent of previous workloads and CPU load
patterns. In other words, they could change dramatically on the
basis of dynamic, unpredictable, and fluctuating resource user
demand. Fig. 1 shows one example of this. Considering these
facts, we propose a fuzzy workload prediction method that
applies both historical and current VM CPU utilization and
workload to predict probable poorly performing VMs.

Fig. 1. CPU usage trend of a VM in a cloud cluster.

The rest of this paper is organized as follows. Section II
provides a brief description of fuzzy logic and fuzzy logic
systems. Section III presents the fuzzy workload prediction
method. In Section IV, the proposed method is implemented in
a cloud cluster, and Section V presents the conclusion and future
works.

II. FUZZY LOGIC SYSTEMS

Fuzzy logic mathematically emulates human reasoning and
provides an intuitive way of designing function blocks for
intelligent systems. It allows humans to express their knowledge
in the form of related, but imprecise, inputs and outputs as
linguistic variables, which simplifies knowledge acquisition and
representation. The knowledge obtained is easy to understand
and modify. In this regard, a fuzzy logic system (FLS) is
technology that takes expert knowledge about a particular
system into account when designing intelligent systems.
Generally, an FLS, as shown in Fig. 2, includes three parts:
fuzzification, a fuzzy inference engine, and defuzzification. In
the fuzzification process, fuzzy sets are formed for all input
variables. The fuzzy inference engine takes the input variables
into account along with the logic relations between them. Fuzzy
logic operations are used to generate the output. In the

defuzzification process, the output fuzzy set is converted into a
crisp value [18].

Fig. 2. A fuzzy logic system.

III. THE FUZZY WORKLOAD PREDICTION METHOD

Our fuzzy workload prediction (FWP) method not only
applies neural networks (NN) to predict VM CPU usage patterns
using historical data but also applies an FLS to control near
future changes in CPU workload. It operates on every VM in use
to deliver SaaS, PaaS, or IaaS. Based on FWP’s results, the
method is able to determine which VM’s are performing poorly
and, consequently, it can predict PM hotspots. To design the
FWP, we first determined the conditions under which a VM
might become overloaded in the near future. The corresponding
input/output variables for the FWP algorithm are then defined
on the basis of the determined conditions. These conditions and
variables are taken into consideration to develop the FLS rules.

A. The Poorly Performing VM: Conditions and Variables

Given CPU utilization fluctuates with the potential for very
sudden increases and decreases within a short period of time,
checking CPU usage at regular intervals, as applied in [19], is
not a reliable means of estimating a VM’s upcoming CPU
workload. Therefore, we monitor CPU usage trends and
fluctuations over a small period of time (e.g., every two minutes)
to forecast the VM’s workload level for the next interval. Four
definitions are used to explain a poorly performing VM based
on its CPU workload. Each is detailed below, where ct is the
current time, t is a given period of time (e.g., two minutes), and
time slot 𝑇𝑠 = {𝑐𝑡 − 𝑡, 𝑐𝑡} in seconds:

Definition 1: If 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 is the total amount of CPU utilization

of 𝑉𝑀𝑘, this VM will be overloaded if:

lim
𝑠→𝑐𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠) ≥ 80% , 𝑠 ∈ 𝑇𝑠 (1)

Virtual CPUs determine how many physical cores can be used
by a VM. The number of virtual CPUs, together with the
scheduler credit, determine the total CPU resource allocated to
a VM [20]. Based on this definition, 𝑉𝑀𝑘 has the potential to be
overloaded under the following conditions:

Condition 1.1: The CPUs allocated to 𝑉𝑀𝑘 remain busy
during the last minutes of time slot 𝑇𝑠.

To check this condition, the current value of CPU utilization by

𝑉𝑀𝑘 , i.e., 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡), should be determined.

If 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) ≥ 80% , we calculate the average value of

Crisp input

Fuzzification

Crisp output

Defuzzification

Knowledge base

“IF-THEN” Rules

Inference process

Fuzzy logic operations

Inference Engine

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 in the last part of time slot 𝑇𝑠 (𝑖. 𝑒. 𝑙𝑡). Based on these

assumptions, 𝑉𝑀𝑘 will probably be overloaded if:

 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) ≥ 80% &

Avg
𝑠𝑖 ∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖) ≥ 80%, 𝑙𝑡 ⊂ 𝑇𝑠 (2)

Condition 1.2: The cumulative average of the CPU usage of
𝑉𝑀𝑘 (calculated every 20 seconds) has an increasing trend.

CPU usage usually fluctuates dramatically, and it is difficult to
estimate its overall increasing or decreasing trend. Therefore, the
cumulative average of CPU usage, as presented in [21], is used
to estimate the trend during time slot 𝑇𝑠 as follows:

 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥) = ∑

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖)

𝑥∗20

𝑥∗20
𝑖=1 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)} (3)

where 𝑑𝑖𝑣 is the integer division. The polynomial fitting tool in
MATLAB is then applied to determine the overall trend

of 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥). 𝐶𝐴𝑐𝑝𝑢

𝑘 (𝑥) has an increasing trend if the derivative

of its fitted line (𝑓𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥)) is positive in 𝑇𝑠:

𝑓𝐶𝐴′𝑐𝑝𝑢
𝑘 (𝑥) ≥ 0 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)} (4)

Fuzzy Variable 1: We assume 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) is a variable that is

defined based on 𝑉𝑀𝑘 utilization to control whether or not
Conditions 1.1 and 1.2 are satisfied:

𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) =

{

𝐻 [𝑉𝑀𝑈𝑐𝑝𝑢

𝑘 (𝑐𝑡) ≥ 80%] 𝑎𝑛𝑑

 [𝐴𝑣𝑔
𝑠𝑖 ∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖) ≥ 80%] 𝑎𝑛𝑑

 [𝑓𝐶𝐴′
𝑐𝑝𝑢
𝑘 (𝑥) ≥ 0]

𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

Definition 2: If 𝑉𝑀𝑒𝑡
𝑘 (𝑠) are the number of tasks scheduled for

𝑉𝑀𝑘 , as a time series in time slot Ts, then 𝑉𝑀𝑘 will be

overloaded if the time series 𝑉𝑀𝑒𝑡
𝑘 (𝑠) has an increasing trend.

Condition 2.1: The cumulative average of time series

𝑉𝑀𝑒𝑡
𝑘 (𝑠) – which is the number of tasks executed by the 𝑉𝑀𝑘 at

time slot S – shows that the overall trend of 𝑉𝑀𝑒𝑡
𝑘 (𝑠) has an

increasing trend.

The cumulative average of 𝑉𝑀𝑒𝑡
𝑘 (𝑠) is calculated every 20

seconds as follows:

𝐶𝐴𝑒𝑡
𝑘 (𝑥) = ∑

𝑉𝑀𝑒𝑡
𝑘 (𝑠𝑖)

𝑥∗20

𝑥∗20
𝑖=1 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)} (6)

where 𝑑𝑖𝑣 is the integer division. 𝐶𝐴𝑒𝑡
𝑘 (𝑥) has an increasing

trend if its polynomial fitted line has a positive derivative in 𝑇𝑠
, i.e.,

𝑓𝐶𝐴′𝑒𝑡
𝑘 (𝑥) ≥ 0 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)} (7)

Fig. 3. Estimating CPU utilization trend in time slot Ts [21].

Fuzzy Variable 2: Variable 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) is defined based on

Condition 2.1 to show whether or not the status of 𝑉𝑀𝑒𝑡
𝑘 (𝑠) will

lead to 𝑉𝑀𝑘 being overloaded:

𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) = {

𝐻 𝑓𝐶𝐴′
𝑒𝑡
𝑘 (𝑥) ≥ 0

𝐿 Otherwise
 (8)

Definition 3: Rao [20] proposed a metric called the productivity
index (PI) to measure system processing capability. He defined
PI as

𝑃𝐼𝑘 (𝑠) =
𝐶𝑊𝑘(𝑠)

𝐶𝐶𝑘 (𝑠)
, 𝑠 ⊂ 𝑇𝑠 (9)

where 𝐶𝑊𝑘(𝑠𝑖) is the number of completed tasks and 𝐶𝐶𝑘(𝑠) is
the amount of resources consumed (CPU utilization) during the
time slot Ts by 𝑉𝑀𝑘 . According to Rao’s definition [20],
𝑉𝑀𝑘 will become overloaded if PI begins to drop, although Rao
believes that for online identification, a single PI metric is not
enough to identify the system state because any change in PI
could be due to either system capacity or changes in the input
load. Condition 3.1 is suggested to determine the PI trend and

0

20

40

60

80

100

0 10 20 30 40

time (seconds)

CPU Utilization

0
5

10
15
20
25
30
35
40
45
50

10 20 30 40 50 60 70

time (seconds)

Cumulative Average CPU Utilization

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80

time (seconds)

Fitted line: f(x) = 0.7*x+32

monitor a VM’s workload during Ts with a constant amount of
resources.

Condition 3.1: The time series 𝑃𝐼𝑘(𝑠) has a decreasing trend.

Fuzzy Variable 3: Variable 𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠) is defined to indicate the

increasing or decreasing trend of 𝑃𝐼𝑘(𝑠) during Ts as follows:

𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠) = { 𝐻 𝑓𝑃𝐼′

𝑘(𝑠) ≤ 0, 𝑠 ∈ 𝑇𝑠
𝐿 Otherwise

 (10)

where 𝑓𝑃𝐼𝑘(𝑠) is the polynomial fitted line of 𝑃𝐼𝑘(𝑠).

Definition 4: The workload status of 𝑉𝑀𝑘 is estimated based
on the CPU usage prediction results of a designed NN.

In this approach, a three-layer NN is designed and then trained,
based on historical data about the CPU usage of 𝑉𝑀𝑘, to predict
its CPU usage pattern. It has an input layer with three

neurons 𝐼 = {𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 , 𝑉𝑀𝑚𝑘 , 𝑉𝑀𝑐𝑘}, and a hidden layer with

two hidden neurons 𝐻 = {ℎ1, ℎ2} inbetween. The output layer

of the NN (𝑂 = 𝑁𝑁𝑅
𝑘(𝑇𝑠)) has one neuron that represents its

prediction results for the upcoming CPU usage by 𝑉𝑀𝑘 . The
activation functions that are applied in the designed NN are
sigmoidal in the hidden layer and linear in the output.

Condition 4.1: The prediction result of the designed NN
indicates that 𝑉𝑀𝑘 will be overloaded.

Fuzzy Variable 4: Variable 𝑁𝑁𝑅
𝑘(𝑇𝑠) is defined to show the

NN prediction results as:

𝑁𝑁𝑅
𝑘 (𝑇𝑠) = {

𝑂 𝑉𝑀𝑘is overloaded
 𝑈 𝑉𝑀𝑘is under − loaded

 (11)

However, none of these conditions by themselves indicate risk
unless they happen when some of other conditions are also
satisfied. Therefore, a combination of the fuzzy variables 1-4 are
applied by FLS as inputs to estimate the value of the output
variable, which is defined as follows:

Output Fuzzy Variable: The variable 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘 is defined to

show the predicted 𝑉𝑀𝑘workload situation by FLS as:

𝑉𝑀𝑙𝑜𝑎𝑑
𝑘 (𝑇𝑠) = {

𝑂 𝑉𝑀𝑘 is likely to be overloaded
𝑁 Neutral condition
𝑈 𝑉𝑀𝑘is likely to be under − loaded

 (12)

In some situations, the FLS answer is neutral and does not
suggest an obvious result. In such cases, the workload situation
of 𝑉𝑀𝑘 will be forecast in the next prediction round. The
defined variables are summarized in Table I, and the
membership functions of these fuzzy variables are illustrated in
Fig. 4.

TABLE I. THE FWP VARIABLES

Symbol Definition

CWk (Ts) The amount of work completed during the time slot Ts by VMk

CCk (Ts) The amount of resource (CPU) consumed during the time slot

Ts by VMk

VMk
load VMk workload situation

VMk
Ucpu The amount of CPU utilization by VMk

VMk
m The amount of available memory of VMk

VMk
c The number of CPUs allocated to VMk

CAk
cpu (x) The cumulative average of time series VMk

Ucpu (si)

fCA’ kcpu(x) The derivative of the fitted line to CAk
cpu (x)

VMk
et (si) The number of executing tasks in the VMk at time si

CAk
et (x) The cumulative average of time series VMk

et (si)
fCA’ ket (x) The derivative of the polynomial fitted line to CAk

et (x)

VMk
RisEt (Ts) Shows VMk’s workload has had an increasing or decreasing

trend during Ts

VMk
Huti (Ts) Shows CPU utilization of VMk has had an increasing or

decreasing trend during Ts

PIk
 (s) The PI for VMk during Ts

PIk
Dec (Ts) Shows PIk (s) has had an increasing or decreasing trend during

Ts

NNk
R (Ts) The neural network forecasting results for CPU usage by VMk

during Ts

Fig. 4. The Membership Function of Input and Output Variables.

B. Poorly Performing VMs: Rules

The FLS rules were determined based on expert knowledge
and the aforementioned conditions. Variables related to

c. The membership function of 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘 (𝑇𝑠)

Under-loaded
Overloaded

1

1 0

𝜇𝑁𝑁𝑅𝑘(𝑥)

0.3 0.7

a. The membership function of 𝑁𝑁𝑅
𝑘(𝑇𝑠)

𝜇𝑉𝑀𝑙𝑜𝑎𝑑𝑘 (𝑥)

1 0.75

Under-loaded
1

Overloaded

0

Neutral

0.25 0.5

Low High

1

1 0

𝜇𝐹(𝑥)

0.3 0.7

b. The membership function of 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠), 𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠), and 𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠)

monitoring VM CPU usage and workload changes are used to
predict which VM is likely to highly utilize its allocated
resources and become overloaded. Forty-eight (16*3) rules can
be extrapolated from the different combinations of four input

variables (𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠), 𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠), 𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠)

and 𝑁𝑁𝑅
𝑘(𝑇𝑠)) and the output variable 𝑉𝑀𝑙𝑜𝑎𝑑

𝑘 (𝑇𝑠) . In this
paper, we can control the system using eleven rules, as
summarized in Table II.

TABLE II. FLS RULES

Based on

historical

data

Based on actual data in the past

specified minutes

VM

workload

situation D1 D2 D3

𝑁𝑁𝑅
𝑘(𝑇𝑠) 𝑉𝑀𝐻𝑢𝑡𝑖

𝑘 (𝑇𝑠) 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘

O and H and H and H then Overloaded

O and H and L and H then Overloaded

O and H and H and L then Overloaded

O and L and H and H then Overloaded

U and H and H and H then Overloaded

U and H and H and L then Overloaded

U and L and H and L then Neutral

U and H and L and L then Neutral

U and L and L and H then Under-loaded

O and L and L and L then Under-loaded

U and L and L and L then Under-loaded

C. The FWP Algorithm

The FWP algorithm responsible for predicting VMs with
over- and under-utilization based on their CPU usage and
workload status is summarized as follows. This algorithm plays
a key role in cloud resource management and determines the
origin and destination VMs for the extra workload in a cloud
cluster.

FWP Algorithm

Input: All variables in Table I.

[Begin]

1. Monitor cloud blackboard data to calculate the value of

following variables:

 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) and 𝑉𝑀𝑈𝑐𝑝𝑢

𝑘 (𝑠𝑟)

 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥) and 𝑓𝐶𝐴′𝑐𝑝𝑢

𝑘 (𝑥)

 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠)

 𝐶𝐴𝑒𝑡
𝑘 (𝑥) and 𝑓𝐶𝐴′𝑒𝑡

𝑘 (𝑥)
 𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠)
 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) and 𝑓𝑃𝐼′𝑘(𝑠)
2. Calculate NN results about VM workload situations

(𝑁𝑁𝑅
𝑘(𝑇𝑠))

3. Determine the value of 𝑉𝑀𝑙𝑜𝑎𝑑(𝑇𝑠) for each VM based on

FLS rules, then forecast the VMs’ workload.

 [End]

IV. IMPLEMENTATION RESULTS

A. Environment Description

The cloud environment used for implementation comprised:
two data-stores; four PMs; 20 VMs; and 200 independent arrival
computation, memory, and data-intensive tasks. Information
about the VMs and the tasks is summarized in Tables III and IV,
respectively. The PMs were homogenous and each had five
different VMs (see Table V).

TABLE III. PROPERTIES OF VMS

VM

Id

CPU

speed in

GHz

Available

memory in MB

Bandwidth

in Mb/s

Number of

CPUs

1-4 2.6 4096 1024 4

5-8 2.6 4096 1024 2

9-12 1.3 2048 1024 2

13-16 1.3 1024 1024 1

17-20 1.3 512 1024 1

B. Results

The tasks listed in Table IV were randomly allocated to the
VMs, and the FWP algorithm was implemented on every VM to
check its performance every two minutes. According to the FWP
algorithm results, all VMs were under-loaded in the first round.
In the second round (after four minutes), the FWP algorithm
results show that 𝑉𝑀17 , located on 𝑃𝑀1 , would become
overloaded, based on the value of its input variables. These
variables were calculated as follows, where 𝑇𝑠 = (2,4):

𝑉𝑀𝑈𝑐𝑝𝑢
17 (𝑐𝑡) = 85% , 𝑐𝑡 = 4

Avg
𝑠𝑖∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
17 (𝑠𝑖) ≥ 81%, 𝑙𝑡 = (3,4)

𝑓𝐶𝐴′𝑐𝑝𝑢
17 (𝑥) ≥ 0

By applying the values in Eq. (5), the value of 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠)

indicates that 𝑉𝑀17 had a high CPU utilization level. In
addition, 𝑓𝐶𝐴′𝑒𝑡

17(𝑥) ≥ 0 , which means that 𝑉𝑀17 had a rising

workload pattern and the value of 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
17 (𝑇𝑠) was high (see

Equation 8). Furthermore, 𝑃𝐼17(𝑇𝑠) showed a decreasing trend
during Ts, therefore the value of 𝑃𝐼𝐷𝑒𝑐

17 (𝑇𝑠) was also high (see
Equation 10). The designed NN prediction results
(𝑁𝑁𝑅

17(𝑇𝑠)) also suggest that this VM had a high level of CPU
usage during time slot Ts and would become overloaded, thus
exhibiting low performance (see Equation 11).

TABLE IV. PROPERTIES OF TASKS

Task Id
Required

CPUs

CPU

usage in

GHz

Total

memory

usage in MB

Max level of

memory usage in

MB

Computing Intensive Tasks

1-20 1 186.372 2055.06 125.828

21-40 1 21.186 985.616 62.912

41-60 1 67.166 754.924 62.912

61-80 1 8.261 471.848 73.4

81-100 1 21.759 524.26 62.912

101-120 1 2.263 125.82 41.94

Memory Intensive Tasks

121-140 1 41.097 11534.304 943.716

141-160 1 38.367 9940.468 859.832

161-180 1 38.372 1992.268 167.772

Data Intensive Tasks

181-200 1 2.833 377.484 125.828

These results satisfy the first rule of the developed FLS (see

Table II), and therefore suggest 𝑉𝑀17 as the poorly performing
VM (see Equation 12). At the time, 𝑉𝑀17 was executing 𝑡5
while it had 𝑇𝑠𝑒𝑡

17 = {𝑡7, 𝑡21, 𝑡45, 𝑡66, 𝑡181, 𝑡119, 𝑡126,

 𝑡158, 𝑡183, 𝑡198} in its task queue. The FLS also nominated
𝑉𝑀2, 𝑉𝑀3, 𝑉𝑀5, 𝑉𝑀8, 𝑉𝑀9 and 𝑉𝑀15 as VMs that were under-
loaded as illustrated in Table VI.

TABLE V. RESOURCE ALLOCATION IN THE CLUSTER

PM Id VMs

1 𝑉𝑀1 𝑉𝑀5 𝑉𝑀9 𝑉𝑀13 𝑉𝑀17

2 𝑉𝑀2 𝑉𝑀6 𝑉𝑀10 𝑉𝑀14 𝑉𝑀18

3 𝑉𝑀3 𝑉𝑀7 𝑉𝑀11 𝑉𝑀15 𝑉𝑀19

4 𝑉𝑀4 𝑉𝑀8 𝑉𝑀12 𝑉𝑀16 𝑉𝑀20

TABLE VI. THE FWP RESULTS

VM 𝑁𝑁𝑅
𝑘(𝑇𝑠) 𝑉𝑀𝐻𝑢𝑡𝑖

𝑘 (𝑇𝑠) 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘

17 O and H and H and H then Overloaded

2 U and L and L and L then
Under-

loaded

3 U and L and L and L then
Under-

loaded

5 U and L and L and H then
Under-

loaded

8 U and L and L and H then
Under-

loaded

9 O and L and L and L then
Under-

loaded

15 U and L and L and L then
Under-

loaded

V. CONCLUSION AND FUTURE WORKS

Prediction methods, such as neural networks and linear
regression, have been widely applied in previous works to
forecast the resource utilization of VMs in cloud environments
and estimate required resources and size for each VM. However,
these prediction methods rely on related historical data in a time
slot t to predict future resource utilization. Considering the fact
that a VMs’ future workload and resource utilization patterns
could be independent of their previous patterns, the proposed
prediction method in this study not only uses a neural network
to predict resource VMs utilization patterns but also considers
other variables that control VM performance. The method is
based on the resource utilization required to execute the VM’s
allocated workload and applies a neural network along with
defined fuzzy variables in an FLS to control near future changes
in resource utilization for every VM. Through this approach, the
time that a set of VMs are expected to begin performing poorly
can be predicted. This method can also be used for physical and
virtual resource discovery and predicting hot spots in PMs.

A simulated implementation environment was used to assess
various factors in the method, such as the number of tasks
executed by each VM. We intend to implement our method in a
real life environment in future work. In addition, the

performance of the proposed method will be compared with
current technologies.

REFERENCES

[1] Celesti, A., Fazio, M., Villari, M., and Puliafito, A.: ‘Virtual machine

provisioning through satellite communications in federated cloud
environments’, Future Generation Computer Systems, 2012, 28, (1), pp.

85-93.

[2] Buyya, Rajkumar, James Broberg, and Andrzej M. Goscinski, eds. Cloud
computing: Principles and paradigms. Vol. 87. John Wiley & Sons, 2010.

[3] Ardagna, D., Casolari, S., Colajanni, M., and Panicucci, B.: ‘Dual time-

scale distributed capacity allocation and load redirect algorithms for cloud
systems’, Journal of Parallel and Distributed Computing, 2012, 72, (6),

pp. 796-808.
[4] Saripalli, P., Kiran, G., Shankar, R.R., Narware, H., and Bindal, N.: ‘Load

prediction and hot spot detection models for autonomic cloud computing’,

in ‘Load prediction and hot spot detection models for autonomic cloud
computing’ (IEEE, 2011, edn.), pp. 397-402.

[5] Nagothu, K.M., Kelley, B., Prevost, J., and Jamshidi, M.: ‘Ultra low

energy cloud computing using adaptive load prediction’, in ‘Ultra low

energy cloud computing using adaptive load prediction’ (IEEE, 2010,

edn.), pp. 1-7.

[6] Nagothu, K., Kelley, B., Prevost, J., and Jamshidi, M.: ‘On prediction to
dynamically assign heterogeneous microprocessors to the minimum joint

power state to achieve ultra low power cloud computing’, in ‘On

prediction to dynamically assign heterogeneous microprocessors to the
minimum joint power state to achieve ultra low power cloud computing’

(IEEE, 2010, edn.), pp. 1269-1273.

[7] Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and Pendarakis,
D.: ‘Efficient resource provisioning in compute clouds via VM

multiplexing’, in ‘Efficient resource provisioning in compute clouds via

VM multiplexing’ (ACM, 2010, edn.), pp. 11-20.
[8] Yang, D., Cao, J., Fu, J., Wang, J., and Guo, J.: ‘A pattern fusion model

for multi-step-ahead CPU load prediction’, Journal of Systems and

Software, 2013, 86, (5), pp. 1257-1266.
[9] Islam, S., Keung, J., Lee, K., and Liu, A.: ‘Empirical prediction models

for adaptive resource provisioning in the cloud’, Future Generation

Computer Systems, 2012, 28, pp. 155–162.
[10] Theodoridis, S., and Koutroumbas, K.: ‘Pattern Recognition’ (Academic

Press, 2008. 2008).

[11] Weisberg, S.: ‘Applied Linear Regression’: ‘Wiley Series in Probability
and Statistics’ (John Wiley & Sons, 2005).

[12] Dietterich, T.: ‘Machine learning for sequential data: A review, in

‘Machine learning for sequential data: A review, in: T. Caelli, A. Amin,
R. Duin, D. de Ridder, M. Kamel (Eds.), Structural, Syntactic, and

Statistical Pattern Recognition’ (Springer, 2002, edn.), pp. 227–246.

[13] Arlot, S., and Celisse, A.: ‘A survey of cross-validation procedures for
model selection’, Statistics Surveys, 2010, 4, pp. 40–79.

[14] Efron, B., and Gong, G.: ‘A leisurely look at the bootstrap, the jackknife,

and crossvalidation’, The American Statistician, 1983, 37, pp. 36–48.
[15] Zhu, X., Young, D., Watson, B.J., Wang, Z., Rolia, J., Singhal, S., Mckee,

B., Hyser, C., Gmach, D., and Gardner, R.: ‘1000 islands: An integrated

approach to resource management for virtualized data centers’, Cluster
Computing, 2009, 12, (1), pp. 45-57.

[16] Ardagna, D., Panicucci, B., Trubian, M., and Li, Z.: ‘Energy-aware

autonomic resource allocation in multitier virtualized environments’,
IEEE Transactions on Services Computing, 2012, 5, (1), pp. 2-19.

[17] Weingärtner, R., Bräscher, G.B., and Westphall, C.B.: ‘Cloud resource

management: A survey on forecasting and profiling models’, Journal of
Network and Computer Applications, 2015, 47, pp. 99-106.

[18] Naderpour, M., Lu, J., and Zhang, G.: ‘An intelligent situation awareness

support system for safety-critical environments’, Decision Support
Systems, 2014, 59, pp. 325-340.

[19] Islam, S., Keung, J., Lee, K., and Liu, A.: ‘Empirical prediction models

for adaptive resource provisioning in the cloud’, Future Generation
Computer Systems, 2012, 28, (1), pp. 155-162.

[20] Rao, J.: ‘Autonomic management of virtualized resources in cloud
computing’, Wayne State University, 2011.

[21] Ramezani, F., Lu, J., Taheri, J., and Zomaya, A.Y.: ‘A Multi-Objective

Load Balancing System for Cloud Environments’, The Computer Journal,
2017, in press.

	Blank Page

