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Abstract—Due to the dynamic nature of cloud environments, 

the workload of virtual machines (VMs) fluctuates leading to 

imbalanced loads and utilization of virtual and physical cloud 

resources. It is, therefore, essential that cloud providers accurately 

forecast VM performance and resource utilization so they can 

appropriately manage their assets to deliver better quality cloud 

services on demand. Current workload and resource prediction 

methods forecast the workload or CPU utilization pattern of the 

given web-based applications based on their historical data. This 

gives cloud providers an indication of the required number of 

resources (VMs or CPUs) for these applications to optimize 

resource allocation for software as a service (SaaS) or platform as 

a service (PaaS), reducing their service costs. However, historical 

data cannot be used as the only data source for VM workload 

predictions as it may not be available in every situation. Nor can 

historical data provide information about sudden and unexpected 

peaks in user demand. To solve these issues, we have developed a 

fuzzy workload prediction method that monitors both historical 

and current VM CPU utilization and workload to predict VMs 

that are likely to be performing poorly. This model can also 

predict the utilization of physical machine (PM) resources for 

virtual resource discovery. 

Keywords—Cloud Computing; Virtual Machine; Fuzzy Systems. 

I. INTRODUCTION 

Cloud computing delivers scalable on-demand services over 
the Internet, including SaaS, PaaS, and infrastructure as a service 
(IaaS). A cloud provides these services through virtualized 
resources that are overlaid on physical resources, called 
virtualized cloud resources. Typically, a virtualized cloud 
resource is a set of specification and configuration files, called a 
VM [1, 2]. SaaS and PaaS providers are charged by IaaS 
providers on an hourly basis. They, therefore, need to determine 
the optimal number of VMs required in each IaaS cluster to 
provide their services, given a predicted workload, and 
guarantee service level agreement constraints at the same time. 
IaaS providers also need an estimation of the required capacity 
of VMs in their cloud clusters for optimal on-demand resource 
provisioning [3]. 

Nagothu et al. [4] proposed a method for load prediction by 
separating it into linear and non-linear algorithms. They 
believed that a linear prediction algorithm could either involve 
1-Dim observation sequences or d-Dim observation space 
signals [5]. They also proposed an alternative method for load 

prediction that makes use of Burg’s algorithm [6]. Saripalli  et 
al. [4] demonstrated the use of load prediction algorithms for 
cloud platforms using a two-step approach, i.e., load trend 
tracking followed by load prediction. Their approach uses cubic 
spline interpolation and a hotspot detection algorithm for sudden 
spikes. Meng et al. [7] proposed an approach called joint-VM 
provisioning, which estimates the aggregate size of multiplexed 
VMs, then resource allocation (CPU and memory) is considered 
for a determined set of compatible VMs instead of allocating 
resources to an individual VM. This helps scaling for high-
utilization VMs by using the spare resources of a co-located 
low-use VM. They also developed a workload prediction model 
to estimate the capacity required for a determined set of VMs by 
decoupling the VM workload into regular and irregular 
fluctuating components. The regular workload refers to 
deterministic patterns, such as trends, cycles, and seasonality. 
The irregular fluctuating workload is the residue after the regular 
workload has been removed. To forecast the regular workload, 
they simply assume that the regular patterns will be preserved in 
the future, i.e., that a steadily increasing trend will continue to 
increase at the same rate and that daily seasonality will continue 
to hold. To forecast an irregular workload, they performed a time 
series forecasting technique based on historic workload patterns. 
Yang et al. [8] developed a pattern fusion model for predicting 
multi-step-ahead CPU loads by categorizing historical CPU 
load-time series patterns into two sets: patterns that rarely occur 
and have the lowest possibility of occurrence, and patterns with 
almost similar trends that have the highest degree of likely 
occurrence. Islam et al. [9] proposed a prediction-based resource 
measurement method that predicts the CPU utilization pattern 
for a given application by applying two learning algorithms:  an 
error correction neural network [10] and linear regression [11]. 
In addition, they used sliding windows [12] and cross-validation 
[13, 14] techniques in the training and prediction stages. 
Ardagna et al. [3] also developed a prediction-based resource 
measurement approach by applying an exponential smoothing 
prediction method. They believe this method is appropriate for 
predicting run-time and non-stationary behavior. They also 
performed dynamic load redirection [15, 16] periodically to 
predict short-term changes in the number of workload arrivals.  

In short, most researchers have applied prediction methods, 
such as neural networks, pattern recognition and linear 
regression to estimate VM workloads [17]. These methods 
predict the future workload of VMs by applying previous 



workload patterns in time slot t, determined on the basis of 
related historical data [8]. And, most are designed for SaaS and 
PaaS resource prediction or VM remapping or in situations 
where cloud providers are aware of the types of applications and 
software being executed and can trace their behavior. However, 
for IaaS (where IaaS is not delivered to PaaS and SaaS 
providers), there is no information about upcoming executing 
applications on each VM. In these cases, application behavior is 
not applicable when estimating VM workloads and CPU usage. 
In addition, a VM’s workload is affected by user behavior and 
the sudden decisions they make, so fluctuations in the workload 
could be independent of previous workloads and CPU load 
patterns. In other words, they could change dramatically on the 
basis of dynamic, unpredictable, and fluctuating resource user 
demand. Fig. 1 shows one example of this. Considering these 
facts, we propose a fuzzy workload prediction method that 
applies both historical and current VM CPU utilization and 
workload to predict probable poorly performing VMs. 

Fig. 1. CPU usage trend of a VM in a cloud cluster. 

The rest of this paper is organized as follows. Section II 
provides a brief description of fuzzy logic and fuzzy logic 
systems. Section III presents the fuzzy workload prediction 
method. In Section IV, the proposed method is implemented in 
a cloud cluster, and Section V presents the conclusion and future 
works. 

II. FUZZY LOGIC SYSTEMS 

Fuzzy logic mathematically emulates human reasoning and 
provides an intuitive way of designing function blocks for 
intelligent systems. It allows humans to express their knowledge 
in the form of related, but imprecise, inputs and outputs as 
linguistic variables, which simplifies knowledge acquisition and 
representation. The knowledge obtained is easy to understand 
and modify. In this regard, a fuzzy logic system (FLS) is 
technology that takes expert knowledge about a particular 
system into account when designing intelligent systems. 
Generally, an FLS, as shown in Fig. 2, includes three parts: 
fuzzification, a fuzzy inference engine, and defuzzification. In 
the fuzzification process, fuzzy sets are formed for all input 
variables. The fuzzy inference engine takes the input variables 
into account along with the logic relations between them. Fuzzy 
logic operations are used to generate the output. In the 

defuzzification process, the output fuzzy set is converted into a 
crisp value [18]. 

 

Fig. 2. A fuzzy logic system. 

III. THE FUZZY WORKLOAD PREDICTION METHOD 

Our fuzzy workload prediction (FWP) method not only 
applies neural networks (NN) to predict VM CPU usage patterns 
using historical data but also applies an FLS to control near 
future changes in CPU workload. It operates on every VM in use 
to deliver SaaS, PaaS, or IaaS. Based on FWP’s results, the 
method is able to determine which VM’s are performing poorly 
and, consequently, it can predict PM hotspots. To design the 
FWP, we first determined the conditions under which a VM 
might become overloaded in the near future. The corresponding 
input/output variables for the FWP algorithm are then defined 
on the basis of the determined conditions. These conditions and 
variables are taken into consideration to develop the FLS rules.  

A. The Poorly Performing VM: Conditions and Variables 

Given CPU utilization fluctuates with the potential for very 
sudden increases and decreases within a short period of time, 
checking CPU usage at regular intervals, as applied in [19], is 
not a reliable means of estimating a VM’s upcoming CPU 
workload. Therefore, we monitor CPU usage trends and 
fluctuations over a small period of time (e.g., every two minutes) 
to forecast the VM’s workload level for the next interval. Four 
definitions are used to explain a poorly performing VM based 
on its CPU workload. Each is detailed below, where ct is the 
current time, t is a given period of time (e.g., two minutes), and 
time slot  𝑇𝑠 = {𝑐𝑡 − 𝑡, 𝑐𝑡} in seconds: 

Definition 1: If  𝑉𝑀𝑈𝑐𝑝𝑢
𝑘  is the total amount of CPU utilization 

of 𝑉𝑀𝑘, this VM will be overloaded if: 

lim
𝑠→𝑐𝑡 

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠) ≥ 80% , 𝑠 ∈ 𝑇𝑠                       (1) 

Virtual CPUs determine how many physical cores can be used 
by a VM. The number of virtual CPUs, together with the 
scheduler credit, determine the total CPU resource allocated to 
a VM [20]. Based on this definition, 𝑉𝑀𝑘 has the potential to be 
overloaded under the following conditions: 

Condition 1.1:  The CPUs allocated to  𝑉𝑀𝑘 remain busy 
during the last minutes of time slot 𝑇𝑠.  

To check this condition, the current value of CPU utilization by 

𝑉𝑀𝑘 ,  i.e.,  𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡),  should be determined. 

If   𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) ≥ 80% , we calculate the average value of 
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𝑉𝑀𝑈𝑐𝑝𝑢
𝑘  in the last part of time slot 𝑇𝑠  (𝑖. 𝑒. 𝑙𝑡). Based on these 

assumptions, 𝑉𝑀𝑘 will probably be overloaded if: 

  𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) ≥ 80% & 

Avg
𝑠𝑖 ∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖) ≥ 80%, 𝑙𝑡 ⊂ 𝑇𝑠                                    (2) 

Condition 1.2: The cumulative average of the CPU usage of  
𝑉𝑀𝑘 (calculated every 20 seconds) has an increasing trend.  

CPU usage usually fluctuates dramatically, and it is difficult to 
estimate its overall increasing or decreasing trend. Therefore, the 
cumulative average of CPU usage, as presented in [21], is used 
to estimate the trend during time slot 𝑇𝑠 as follows:  

 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥) = ∑

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖)

𝑥∗20

𝑥∗20
𝑖=1 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)}         (3) 

where 𝑑𝑖𝑣 is the integer division. The polynomial fitting tool in 
MATLAB is then applied to determine the overall trend 

of 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥). 𝐶𝐴𝑐𝑝𝑢

𝑘 (𝑥) has an increasing trend if the derivative 

of its fitted line (𝑓𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥)) is positive in 𝑇𝑠:         

𝑓𝐶𝐴′𝑐𝑝𝑢
𝑘 (𝑥) ≥ 0 , 𝑥 ∈  {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)}                   (4) 

Fuzzy Variable 1: We assume 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) is a variable that is 

defined based on 𝑉𝑀𝑘  utilization to control whether or not 
Conditions 1.1 and 1.2 are satisfied: 

𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) =

{
 
 

 
 
𝐻           [𝑉𝑀𝑈𝑐𝑝𝑢

𝑘 (𝑐𝑡) ≥ 80%] 𝑎𝑛𝑑         

         [ 𝐴𝑣𝑔
𝑠𝑖 ∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑠𝑖) ≥ 80%]  𝑎𝑛𝑑

  [𝑓𝐶𝐴′
𝑐𝑝𝑢
𝑘 (𝑥) ≥ 0]            

𝐿            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      

 (5) 

Definition 2: If  𝑉𝑀𝑒𝑡
𝑘 (𝑠) are the number of tasks scheduled for 

𝑉𝑀𝑘  , as a time series in time slot Ts, then 𝑉𝑀𝑘 will be 

overloaded if the time series 𝑉𝑀𝑒𝑡
𝑘 (𝑠) has an increasing trend. 

Condition 2.1:  The cumulative average of time series 

𝑉𝑀𝑒𝑡
𝑘 (𝑠) – which is the number of tasks executed by the 𝑉𝑀𝑘 at 

time slot S – shows that the overall trend of 𝑉𝑀𝑒𝑡
𝑘 (𝑠) has an 

increasing trend.   

The cumulative average of 𝑉𝑀𝑒𝑡
𝑘 (𝑠) is calculated every 20 

seconds as follows: 

𝐶𝐴𝑒𝑡
𝑘 (𝑥) = ∑

𝑉𝑀𝑒𝑡
𝑘 (𝑠𝑖)

𝑥∗20

𝑥∗20
𝑖=1 , 𝑥 ∈ {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)}      (6) 

where 𝑑𝑖𝑣  is the integer division. 𝐶𝐴𝑒𝑡
𝑘 (𝑥)  has an increasing 

trend if its polynomial fitted line has a positive derivative in 𝑇𝑠 
, i.e.,  

𝑓𝐶𝐴′𝑒𝑡
𝑘 (𝑥) ≥ 0 , 𝑥 ∈  {1,2,3, . . , 𝑑𝑖𝑣(

𝑇𝑠

20
)}                (7) 

 

Fig. 3. Estimating CPU utilization trend in time slot Ts [21]. 

Fuzzy Variable 2: Variable 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) is defined based on 

Condition 2.1 to show whether or not the status of  𝑉𝑀𝑒𝑡
𝑘 (𝑠) will 

lead to 𝑉𝑀𝑘  being overloaded: 

𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) = {

𝐻     𝑓𝐶𝐴′
𝑒𝑡
𝑘 (𝑥) ≥ 0                 

𝐿    Otherwise                           
   (8) 

Definition 3: Rao [20] proposed a metric called the productivity 
index (PI) to measure system processing capability. He defined 
PI as 

𝑃𝐼𝑘  (𝑠) =
𝐶𝑊𝑘(𝑠)

𝐶𝐶𝑘 (𝑠)
, 𝑠 ⊂ 𝑇𝑠                            (9) 

where 𝐶𝑊𝑘(𝑠𝑖) is the number of completed tasks and 𝐶𝐶𝑘(𝑠) is 
the amount of resources consumed (CPU utilization) during the 
time slot Ts by 𝑉𝑀𝑘 . According to Rao’s definition [20], 
𝑉𝑀𝑘  will become overloaded if PI begins to drop, although Rao 
believes that for online identification, a single PI metric is not 
enough to identify the system state because any change in PI 
could be due to either system capacity or changes in the input 
load. Condition 3.1 is suggested to determine the PI trend and 
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monitor a VM’s workload during Ts with a constant amount of 
resources. 

Condition 3.1: The time series 𝑃𝐼𝑘(𝑠) has a decreasing trend.  

Fuzzy Variable 3: Variable 𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠) is defined to indicate the 

increasing or decreasing trend of  𝑃𝐼𝑘(𝑠) during Ts as follows:  

𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠) = { 𝐻       𝑓𝑃𝐼′

𝑘(𝑠) ≤ 0, 𝑠 ∈ 𝑇𝑠              
𝐿        Otherwise                                        

 (10) 

where 𝑓𝑃𝐼𝑘(𝑠) is the polynomial fitted line of 𝑃𝐼𝑘(𝑠). 

Definition 4: The workload status of  𝑉𝑀𝑘 is estimated based 
on the CPU usage prediction results of a designed NN. 

In this approach, a three-layer NN is designed and then trained, 
based on historical data about the CPU usage of  𝑉𝑀𝑘, to predict 
its CPU usage pattern. It has an input layer with three 

neurons 𝐼 = {𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 , 𝑉𝑀𝑚𝑘 , 𝑉𝑀𝑐𝑘}, and a hidden layer with 

two hidden neurons 𝐻 = {ℎ1, ℎ2} inbetween. The output layer 

of the NN (𝑂 =  𝑁𝑁𝑅
𝑘(𝑇𝑠)) has one neuron that represents its 

prediction results for the upcoming CPU usage by 𝑉𝑀𝑘 . The 
activation functions that are applied in the designed NN are 
sigmoidal in the hidden layer and linear in the output.   

Condition 4.1: The prediction result of the designed NN 
indicates that 𝑉𝑀𝑘 will be overloaded. 

Fuzzy Variable 4: Variable  𝑁𝑁𝑅
𝑘(𝑇𝑠) is defined to show the 

NN prediction results as: 

𝑁𝑁𝑅
𝑘 (𝑇𝑠) =  {

𝑂      𝑉𝑀𝑘is overloaded       
 𝑈       𝑉𝑀𝑘is under − loaded

             (11) 

However, none of these conditions by themselves indicate risk 
unless they happen when some of other conditions are also 
satisfied. Therefore, a combination of the fuzzy variables 1-4 are 
applied by FLS as inputs to estimate the value of the output 
variable, which is defined as follows: 

Output Fuzzy Variable: The variable 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘   is defined to 

show the predicted 𝑉𝑀𝑘workload situation by FLS as: 

𝑉𝑀𝑙𝑜𝑎𝑑
𝑘  (𝑇𝑠) = {

𝑂       𝑉𝑀𝑘  is likely to be overloaded   
𝑁        Neutral condition                          
𝑈   𝑉𝑀𝑘is likely to be under − loaded 

  (12) 

In some situations, the FLS answer is neutral and does not 
suggest an obvious result. In such cases, the workload situation 
of  𝑉𝑀𝑘  will be forecast in the next prediction round. The 
defined variables are summarized in Table I, and the 
membership functions of these fuzzy variables are illustrated in 
Fig. 4.  

 

 

 

TABLE I.  THE FWP VARIABLES 

Symbol Definition 

CWk (Ts) The amount of work completed during the time slot Ts by VMk 

CCk (Ts) The amount of resource (CPU) consumed during the time slot 

Ts by VMk 

VMk
load VMk workload situation 

VMk
Ucpu The amount of CPU utilization by VMk 

VMk
m The amount of available memory of VMk 

VMk
c The number of CPUs allocated to VMk 

CAk
cpu (x) The cumulative average of time series VMk

Ucpu (si)  

fCA’ kcpu(x) The derivative of the fitted line to CAk
cpu (x) 

VMk
et (si) The number of executing tasks in the VMk at time si 

CAk
et (x) The cumulative average of time series VMk

et (si)  
fCA’ ket (x) The derivative of the polynomial fitted line to CAk

et (x) 

VMk
RisEt (Ts) Shows VMk’s workload has had an increasing or decreasing 

trend during Ts  

VMk
Huti (Ts) Shows CPU utilization of VMk has had an increasing or 

decreasing trend during Ts  

PIk
 (s) The PI for VMk during Ts 

PIk
Dec (Ts) Shows PIk (s) has had an increasing or decreasing trend during 

Ts 

NNk
R (Ts) The neural network forecasting results for CPU usage by VMk 

during Ts 

Fig. 4. The Membership Function of Input and Output Variables. 

B. Poorly Performing VMs: Rules 

The FLS rules were determined based on expert knowledge 
and the aforementioned conditions. Variables related to 

c. The membership function of 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘 (𝑇𝑠) 

Under-loaded 
Overloaded 

1 

1 0 

𝜇𝑁𝑁𝑅𝑘(𝑥) 

0.3 0.7 

a. The membership function of 𝑁𝑁𝑅
𝑘(𝑇𝑠) 

𝜇𝑉𝑀𝑙𝑜𝑎𝑑𝑘 (𝑥) 

1 0.75 

Under-loaded 
1 

Overloaded 

0 

Neutral 

0.25 0.5 

Low High 

1 

1 0 

𝜇𝐹(𝑥) 

0.3 0.7 

b. The membership function of 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠), 𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠), and 𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠) 



monitoring VM CPU usage and workload changes are used to 
predict which VM is likely to highly utilize its allocated 
resources and become overloaded. Forty-eight (16*3) rules can 
be extrapolated from the different combinations of four input 

variables ( 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠),  𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠),  𝑃𝐼𝐷𝑒𝑐
𝑘 (𝑇𝑠)   

and  𝑁𝑁𝑅
𝑘(𝑇𝑠) ) and the output variable  𝑉𝑀𝑙𝑜𝑎𝑑

𝑘  (𝑇𝑠) . In this 
paper, we can control the system using eleven rules, as 
summarized in Table II.  

TABLE II.  FLS RULES 

Based on 

historical 

data 

Based on actual data in the past 

specified minutes 

VM 

workload                             

situation D1    D2 D3 

𝑁𝑁𝑅
𝑘(𝑇𝑠) 𝑉𝑀𝐻𝑢𝑡𝑖

𝑘 (𝑇𝑠) 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘  

O and H and H and H then Overloaded 

O and H and L and H then Overloaded 

O and H and H and L then Overloaded 

O and L and H and H then Overloaded 

U and H and H and H then Overloaded 

U and H and H and L then Overloaded 

U and L and H and L then Neutral 

U and H and L and L then Neutral 

U and L and L and H then Under-loaded 

O and L and L and L then Under-loaded 

U and L and L and L then Under-loaded 

C. The FWP Algorithm  

The FWP algorithm responsible for predicting VMs with 
over- and under-utilization based on their CPU usage and 
workload status is summarized as follows. This algorithm plays 
a key role in cloud resource management and determines the 
origin and destination VMs for the extra workload in a cloud 
cluster.  

FWP Algorithm  

Input: All variables in Table I.   

[Begin] 

1. Monitor cloud blackboard data to calculate the value of 

following variables:  

 𝑉𝑀𝑈𝑐𝑝𝑢
𝑘 (𝑐𝑡) and  𝑉𝑀𝑈𝑐𝑝𝑢

𝑘 (𝑠𝑟) 

 𝐶𝐴𝑐𝑝𝑢
𝑘 (𝑥) and 𝑓𝐶𝐴′𝑐𝑝𝑢

𝑘 (𝑥)  

 𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) 

 𝐶𝐴𝑒𝑡
𝑘 (𝑥) and 𝑓𝐶𝐴′𝑒𝑡

𝑘 (𝑥) 
 𝑉𝑀𝑅𝑖𝑠𝐸𝑡

𝑘 (𝑇𝑠) 
 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) and  𝑓𝑃𝐼′𝑘(𝑠) 
2. Calculate NN results about VM workload situations 

(𝑁𝑁𝑅
𝑘(𝑇𝑠)) 

3. Determine the value of 𝑉𝑀𝑙𝑜𝑎𝑑(𝑇𝑠) for each VM based on 

FLS rules, then forecast the VMs’ workload. 

 [End] 

IV. IMPLEMENTATION RESULTS 

A. Environment Description 

The cloud environment used for implementation comprised: 
two data-stores; four PMs; 20 VMs; and 200 independent arrival 
computation, memory, and data-intensive tasks. Information 
about the VMs and the tasks is summarized in Tables III and IV, 
respectively. The PMs were homogenous and each had five 
different VMs (see Table V).  

TABLE III.  PROPERTIES OF VMS 

VM 

Id 

CPU 

speed in 

GHz  

Available 

memory in MB  

Bandwidth                  

in Mb/s  

Number of           

CPUs 

1-4 2.6 4096 1024 4 

5-8 2.6 4096 1024 2 

9-12 1.3 2048 1024 2 

13-16 1.3 1024 1024 1 

17-20 1.3 512 1024 1 

B. Results 

The tasks listed in Table IV were randomly allocated to the 
VMs, and the FWP algorithm was implemented on every VM to 
check its performance every two minutes. According to the FWP 
algorithm results, all VMs were under-loaded in the first round. 
In the second round (after four minutes), the FWP algorithm 
results show that  𝑉𝑀17 , located on  𝑃𝑀1 , would become 
overloaded, based on the value of its input variables. These 
variables were calculated as follows, where 𝑇𝑠 = (2,4):  

𝑉𝑀𝑈𝑐𝑝𝑢
17 (𝑐𝑡) = 85% ,   𝑐𝑡 = 4  

Avg
𝑠𝑖∈𝑙𝑡

𝑉𝑀𝑈𝑐𝑝𝑢
17 (𝑠𝑖) ≥ 81%, 𝑙𝑡 = (3,4) 

𝑓𝐶𝐴′𝑐𝑝𝑢
17 (𝑥)  ≥ 0   

By applying the values in Eq. (5), the value of  𝑉𝑀𝐻𝑢𝑡𝑖
𝑘 (𝑇𝑠) 

indicates that 𝑉𝑀17  had a high CPU utilization level. In 
addition, 𝑓𝐶𝐴′𝑒𝑡

17(𝑥)  ≥ 0 , which means that  𝑉𝑀17 had a rising 

workload pattern and the value of 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
17 (𝑇𝑠) was high (see 

Equation 8). Furthermore, 𝑃𝐼17(𝑇𝑠) showed a decreasing trend 
during Ts, therefore the value of 𝑃𝐼𝐷𝑒𝑐

17 (𝑇𝑠) was also high (see 
Equation 10). The designed NN prediction results 
(𝑁𝑁𝑅

17(𝑇𝑠)) also suggest that this VM had a high level of CPU 
usage during time slot Ts and would become overloaded, thus 
exhibiting low performance (see Equation 11).  

TABLE IV.  PROPERTIES OF TASKS 

Task Id 
Required 

CPUs  

CPU 

usage in 

GHz  

Total 

memory 

usage in MB  

Max level of 

memory usage in 

MB  

Computing Intensive Tasks 

1-20 1  186.372 2055.06 125.828 

21-40 1  21.186 985.616 62.912 

41-60 1  67.166 754.924 62.912 

61-80 1  8.261 471.848 73.4 

81-100 1  21.759 524.26 62.912 

101-120 1  2.263 125.82 41.94 

Memory Intensive Tasks 

121-140 1  41.097 11534.304 943.716 

141-160 1  38.367 9940.468 859.832 



161-180 1  38.372 1992.268 167.772 

Data Intensive Tasks 

181-200 1 2.833 377.484 125.828 

   
These results satisfy the first rule of the developed FLS (see 

Table II), and therefore suggest  𝑉𝑀17 as the poorly performing 
VM (see Equation 12). At the time,  𝑉𝑀17 was executing  𝑡5 
while it had 𝑇𝑠𝑒𝑡

17 = {𝑡7, 𝑡21, 𝑡45, 𝑡66, 𝑡181, 𝑡119, 𝑡126, 

 𝑡158, 𝑡183, 𝑡198}  in its task queue. The FLS also nominated 
𝑉𝑀2, 𝑉𝑀3, 𝑉𝑀5, 𝑉𝑀8, 𝑉𝑀9 and 𝑉𝑀15  as VMs that were under-
loaded as illustrated in Table VI. 

TABLE V.  RESOURCE ALLOCATION IN THE CLUSTER 

PM Id VMs 

1 𝑉𝑀1 𝑉𝑀5 𝑉𝑀9 𝑉𝑀13 𝑉𝑀17 

2 𝑉𝑀2 𝑉𝑀6 𝑉𝑀10 𝑉𝑀14 𝑉𝑀18 

3 𝑉𝑀3 𝑉𝑀7 𝑉𝑀11 𝑉𝑀15 𝑉𝑀19 

4 𝑉𝑀4 𝑉𝑀8 𝑉𝑀12 𝑉𝑀16 𝑉𝑀20 

TABLE VI.  THE FWP RESULTS 

VM  𝑁𝑁𝑅
𝑘(𝑇𝑠) 𝑉𝑀𝐻𝑢𝑡𝑖

𝑘 (𝑇𝑠) 𝑉𝑀𝑅𝑖𝑠𝐸𝑡
𝑘 (𝑇𝑠) 𝑃𝐼𝐷𝑒𝑐

𝑘 (𝑇𝑠) 𝑉𝑀𝑙𝑜𝑎𝑑
𝑘  

17 O and H and H and H then Overloaded 

2 U and L and L and L then 
Under-

loaded 

3 U and L and L and L then 
Under-

loaded 

5 U and L and L and H then 
Under-

loaded 

8 U and L and L and H then 
Under-

loaded 

9 O and L and L and L then 
Under-

loaded 

15 U and L and L and L then 
Under-

loaded 

V. CONCLUSION AND FUTURE WORKS 

Prediction methods, such as neural networks and linear 
regression, have been widely applied in previous works to 
forecast the resource utilization of VMs in cloud environments 
and estimate required resources and size for each VM. However, 
these prediction methods rely on related historical data in a time 
slot t to predict future resource utilization. Considering the fact 
that a VMs’ future workload and resource utilization patterns 
could be independent of their previous patterns, the proposed 
prediction method in this study not only uses a neural network 
to predict resource VMs utilization patterns but also considers 
other variables that control VM performance. The method is 
based on the resource utilization required to execute the VM’s 
allocated workload and applies a neural network along with 
defined fuzzy variables in an FLS to control near future changes 
in resource utilization for every VM. Through this approach, the 
time that a set of VMs are expected to begin performing poorly 
can be predicted. This method can also be used for physical and 
virtual resource discovery and predicting hot spots in PMs. 

A simulated implementation environment was used to assess 
various factors in the method, such as the number of tasks 
executed by each VM. We intend to implement our method in a 
real life environment in future work. In addition, the 

performance of the proposed method will be compared with 
current technologies. 
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