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Quantum key distribution (QKD) is often, more correctly, called key growing. Given a short key as a

seed, QKD enables two parties, connected by an insecure quantum channel, to generate a secret key of

arbitrary length. Conversely, no key agreement is possible without access to an initial key. Here, we

consider another fundamental cryptographic task, commitments. While, similar to key agreement,

commitments cannot be realized from scratch, we ask whether they may be grown. That is, given the

ability to commit to a fixed number of bits, is there a way to augment this to commitments to strings of

arbitrary length? Using recently developed information-theoretic techniques, we answer this question in

the negative.
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Introduction.—Quantum key distribution [1,2] allows
two honest parties, Alice and Bob, to establish a shared
secret key, using only insecure quantum communication.
However, a necessary precondition for this to be possible is
that they have access to a preshared initial key, to be used
for authentication—a fact that is sometimes overlooked in
the literature. It is easy to see that without such an initial
key, it is impossible for Alice to distinguish between Bob
and an eavesdropper pretending to be Bob—rendering
all further security considerations futile. Nevertheless,
once an initial key is available, this key can be grown,
i.e., expanded to arbitrary length [3].

Another similar example is coin tossing. It is known that
there is no unconditionally secure two-party protocol that
generates a fair random coin which cannot be biased by a
dishonest party [5]. However, if the two parties have
access to a certain number of ideal coin tosses to start
with, they can use protocols to obtain a larger number of
secure coin tosses. (Here, security holds in a standalone
model, where it is assumed that the protocol is invoked
only once [6].)

Following this line of thought, one may wonder whether
other cryptographic primitives, such as commitments [5],
can be grown in a similar way. A string commitment
protocol allows a sender to commit to a bit string that is
revealed to a receiver at a later point. The protocol is secure
for the sender (hiding) if the receiver cannot gain informa-
tion about the commitment before she reveals it and it is
secure for the receiver (binding) if the sender cannot
change the string once committed. Here, we are only
interested in unconditionally secure protocols, i.e., proto-
cols that are secure against dishonest parties with unlimited
computing power.

While it is known that unconditionally secure commit-
ments cannot be implemented using classical or quantum

communication only [7,8] (see also [9,10]), this Letter
strives to answer the question whether it is possible to
implement a long string commitment with a protocol that
uses a smaller number of bit commitments that are pro-
vided as a resource. (A bit commitment is a string commit-
ment of length one.) We will answer this question to the
negative, showing that it is impossible to expand commit-
ments even minimally, and even under relaxed security
criteria.
Commitments have a wide variety of applications in

theoretical cryptography, ranging from zero-knowledge
proofs [11] to secure coin tossing. In particular, commit-
ments can be used to implement statistically secure and
universally composable oblivious transfer [12–14], a func-
tionality that is sufficient to realize universal secure two-
party computation [15].
In [16] it has been shown that unconditionally secure

oblivious transfer cannot be extended using quantum pro-
tocols. We note that this already imposes certain bounds on
the resources that can be obtained from a limited number of
bit commitments [17]. Furthermore, bounds on the quality
of commitments for relaxed security definitions have been
shown in [18–20]. Conversely, it has been shown that
secure commitments can be implemented in relativistic
settings involving multiple sites [21] or using trusted re-
sources such as a noisy channel [22] or (trusted) distributed
randomness [23,24].
We now proceed with a more detailed specification of

string commitment as well as the class of protocols we
consider. We then briefly review the smooth entropy cal-
culus, which is required for our technical arguments. Our
main result that commitments cannot be grown is stated as
Theorem 1. This is supplemented with an alternative ver-
sion of the claim, which applies if the initial functionality
enables committing to quantum bits.
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String commitments.—A (classical) string commitment
of length ‘ is a functionality that takes a bit string
x 2 f0; 1g‘ from the sender and outputs the message com-
mitted to the receiver. Later, on input open from the sender,
the functionality sends x to the receiver.

In the following, we consider implementations of this
task by quantum protocols between two parties, Alice (who
holds system A) and Bob (B). They have access to a
noiseless quantum and a noiseless classical channel, as
well as to an additional resource, C (to be specified later).
In any round of the protocol, the parties may perform an
arbitrary quantum operation on the system in their posses-
sion conditioned on the available classical information
[25]—this includes generating the input for the available
communication interfaces. The use of the quantum channel
then corresponds to a party transferring a part of her system
to the other party. The classical channel measures the input
in a canonical basis and sends the outcome to the receiver.
We assume that the total number of rounds of the protocol
is bounded by some finite number. By padding the protocol
with empty rounds, this corresponds to the assumption that
the number of rounds is equal in every execution.

A string commitment scheme over strings of length ‘
generally consists of two phases. In the first, the commit
phase, the sender commits to an ‘-bit string x. Later, in the
opening phase the sender reveals x to the receiver. The total
system (consisting of the subsystems controlled by Alice
and Bob) is assumed to be in a pure state initially. By
introducing an additional space the quantum operations of
both parties can be purified; i.e., we can assume that the
parties apply, conditioned on the information shared over
the classical channel, isometries to their systems. Thus, we
will assume in the following that the state at the end of
the commit phase conditioned on all the classical commu-
nication is pure.

Security definitions.—Our main technical contribution
will be a quantitative statement on the impossibility of
growing string commitments. To formulate this statement,
we introduce two definitions that capture the cheating
probability of Alice and the information gain of Bob,
respectively. We emphasize that the properties required
in these definitions are only necessary (we therefore call
the definitions ‘‘weak’’), but would not be sufficient for the
security of a protocol [26]. Since we are interested in the
impossibility of certain protocols, this only strengthens our
results.

Using a commitment protocol, a (quantum) Alice can
always commit to a superposition of strings [7,27] as
follows: she prepares a state 1ffiffiffiffiffiffi

jXj
p P

x2XjxiX � jxiX0 , where

X is a subset of the ‘-bit strings. Then she honestly
executes the commit protocol with the first half of this
state as input and keeps the system X0. We denote the
resulting joint state of Alice, Bob, and the resource system

by �X
A0BC, where A0 stands for XX0A. Later, Alice can

measure X0 and execute the opening phase of the protocol

with the resulting string x. Thus, even for a perfectly
binding commitment scheme, we cannot require that there
is a fixed value x Alice is committed to after the commit
phase. Rather, we can only demand that

P
x2f0;1gnpx � 1

where px is the probability that Alice successfully reveals
some x in the opening phase.
In order to quantify the degree of bindingness of a

protocol, we consider the following attack by Alice.
First, she commits to a superposition of strings from a set
X0 � f0; 1g‘ as before. Then, she tries to map (by a local

transformation EA on her system) the resulting state �
X0

A0BC
to �X1

A0BC, corresponding to the commitment to a set X1 �
f0; 1g‘ which is disjoint from X0. Such an attack is
successful with probability at least� if the protocol cannot
detect the transformation with probability more than
1��. Using the trace distance, Dð�; �Þ: ¼ 1

2 jj�� �jj1,
this can be turned into a necessary condition for security,
formulated in terms of the closeness of the transformed

state, ðEA0 � 1BCÞð�X0

A0BCÞ, to the target state �X1

A0BC.

Definition: (Weakly �-binding.) We call a commitment
scheme weakly �-binding if

min
X0;X1

min
EA0

DððEA0 � 1BCÞð�X0

A0BCÞ; �X1

A0BCÞ � 1��;

where X0 and X1 are disjoint sets of strings from f0; 1g‘
and EA0 is a completely positive trace preserving map
acting on Alice’s system.
To define the hiding property, we consider the joint state

�x
AB of Alice’s and Bob’s systems that results from an

execution of the protocol where both parties are honest
and Alice commits to x. For a commitment scheme to be

"-hiding, we require thatDð�x
B; �

x0
B Þ � " for any x, x0. This

immediately implies the following (necessary) security
condition.
Definition: (Weakly "-hiding.) A bit commitment pro-

tocol is weakly "-hiding for uniform X if the marginal state
�XB after the commit phase is "-close to a state where X is
uniform with respect to B, i.e.,

min
�B

D

�
�XB;

1

jXj1X � �B

�
� ": (1)

Smooth entropies.—Our proof is based on the insight
that every conceivable protocol that aims to extend bit
commitment allows for an attack, which can be established
using known results on privacy amplification and the
smooth entropy formalism. (Privacy amplification has
also been used in [19] to construct attacks on commitment
schemes.) The detailed proofs of the technical statements
can be found in [28].
Let �XB ¼ P

xPðxÞjxihxj � �x
B be a classical-quantum

(CQ) state. Then the min-entropy of X conditioned on B,
denotedHminðXjBÞ�, corresponds to the negative logarithm
of the probability of guessing X correctly from a quantum
memory B [29]. The smooth min-entropy of a state is
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defined as H"
minðXjBÞ�: ¼ max~�HminðXjBÞ~�, where the

optimization is over all (subnormalized) states "-close to
�XB in terms of the purified distance, which corresponds to
the minimum trace distance between their purifications.
The purified distance between two states, � and ~�, is upper

bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð�; ~�Þp

[30].
The leftover hash lemma against quantum side informa-

tion [31] (see also [32]) asserts that the smooth
min-entropy of H"

minðXjBÞ� characterizes the amount of

uniform randomness that can be extracted from X with
respect to the quantum side information B. A consequence
of this is the following fact: for any CQ state �XB ¼
1
2‘

P
x2f0;1g‘ jxihxj � �x

B there exists a function f:f0; 1g‘ !
f0; 1g such that

Dð�f;X0

B ; �f;X1

B Þ � 2�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21�H"

min
ðXjBÞ�

p
; (2)

where �
f;Xz

B ¼ 1
jf�1ðzÞj

P
x2f�1ðzÞ�x

B.

In order to derive bounds on the conditional min-entropy
when the conditioning system is manipulated, we use the
following data-processing inequalities. Let �XBC be a CQ
state, where C is an additional quantum register with
dimension jCj. Then, the min-entropyH"

minðXjBCÞ� cannot
increase by more than logjCj when a projective measure-
ment C ! Z is applied,

H"
minðXjBCÞ� � H"

minðXjBZÞ� � logjCj: (3)

Moreover, if the classical register Z is discarded, we have

H"
minðXjBZÞ� � H"

minðXjBÞ� � logjZj: (4)

The following fact, also used in the proofs of [7,8,33], is
an essential building block of our impossibility proofs: let
�0

AB and �1
AB be two pure states corresponding to the joint

state of Alice and Bob when committing to ‘‘0’’ and ‘‘1’’,
respectively. If the marginal state of�0

AB and�1
AB on Bob’s

system is (almost) the same, then there exists a unitary UA

on Alice system that (approximately) transforms �0
AB into

�1
AB, i.e., ðUA � 1BÞj�0

ABi � j�1
ABi. This reasoning can be

generalized to joint states �b
YAYB that are pure conditioned

on all the classical information Y available to both Alice
and Bob as follows. IfDð�0

YB; �
1
YBÞ � ", then there exists a

unitary UYA such that

DðUYA�
0
YAYBU

y
YA; �

1
YAYBÞ �

ffiffiffiffiffiffi
2"

p
; (5)

where we omitted the identity operator on YB.
Main result.—One can trivially implement a string com-

mitment of length n from n bit commitments. Furthermore,
it is easy to see that, using a resource which allows the
parties to commit to n qubits, one can implement n indi-
vidual commitments to 2 bits each using superdense
coding [34], and, therefore, also a string commitment of
length 2n. Our main result essentially states that these two
trivial implementations are essentially optimal.

More precisely, we first consider implementations of
string commitments based on a functionality that enables
n perfect (classical) bit commitments. We show that the
length of the implemented string commitment is approxi-
mately upper bounded by n if this is required to be highly
binding and hiding.
Theorem 1.—Every quantum protocol which uses nA bit

commitments from Alice to Bob and nB bit commitments
from Bob to Alice with n ¼ nA þ nB as a resource and
implements an "-hiding and �-binding string commitment
of length ‘ must satisfy

‘ � n� 2 log

�ð1��Þ2
4

� ffiffiffiffiffiffi
2"

p �
� 1:

In particular, if � ¼ " � 0:01, then ‘ < nþ 6.
Proof.—In the following, we construct an attack by

Alice on a modified protocol that does not use the resource
bit commitments and is not necessarily hiding. In this
protocol we make Bob more powerful in the sense that
he can simulate the original protocol locally. Thus, any
successful attack of Alice against the modified protocol
implies a successful attack against the original protocol.
In the modified protocol, Alice, instead of using the

resource bit commitments, measures the bits to be com-
mitted, stores a copy, and sends them to Bob, who stores
them in a classical register CA. When one of these commit-
ments is opened, he moves the corresponding bit to his
register B. Bob simulates the action of his commitments
locally as follows: instead of measuring a register Y and
sending the outcome to the commitment functionality, he
applies the isometry U:jyiY � jyyiYY0 purifying the mea-
surement of the committed bit and stores Y0 in another
register CB. When Bob has to open the commitment, he
measures Y0 and sends the outcome to Alice over the
classical channel. Furthermore, the state conditioned on
the classical communication is again pure.
Let �XABC ¼ 1

2‘

P
xjxihxj � �x

ABC, where C stands for

CACB, be the state resulting from the execution of the
modified protocol when the input X of Alice is uniformly
distributed. Its marginal state �XAB is the corresponding
state at the end of the commit phase of the original commit-
ment protocol. The state �XB must be weakly "-hiding.
Thus, by the definition of the smooth min-entropy and

setting ~": ¼ ffiffiffiffiffiffi
2"

p
, we get

H~"
minðXjBÞ� � logjXj ¼ ‘: (6)

Therefore, inequalities (3) and (4) imply that

H~"
minðXjBCACBÞ� � H~"

minðXjBÞ� � n � ‘� n: (7)

From (2) we know that there exists a function f such that

Dð�X0

BC; �
X1

BCÞ � 2�, where �: ¼ ~"þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21�H~"

min
ðXjBCÞ�

p
and

�
Xz

BC ¼ 1
jf�1ðzÞj

P
x2f�1ðzÞ�x

BC. In order to construct a concrete

attack, let Alice choose a bit z and commit to a uniform
superposition of all strings x with fðxÞ ¼ z. Then the

PRL 107, 090502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

26 AUGUST 2011

090502-3



resulting joint state �
Xz

A0BC at the end of the commit phase is

pure conditioned an all the shared classical information.
According to (5) there exists, therefore, a unitary UA0

on Alice’s system that transforms �
Xz

A0BC into a state which

is 2
ffiffiffiffi
�

p
-close to �

X1�z

A0BC in terms of the trace distance. The

definition of weakly �-binding implies that 1� � � 2
ffiffiffiffi
�

p
and, together with (7), the statement follows.

Next, we consider protocols which use a quantum com-
mitment functionality that allows the parties to commit to
(and later reveal) n qubit states. By slightly modifying the
proof of the theorem, we show that there cannot exist a
protocol that uses such a resource and implements a string
commitment of length larger than 2n. We consider again a
modified protocol, where Bob simulates the resource sys-
tem as follows: Alice, instead of using the resource, sends
the committed qubits to Bob, and Bob keeps all the qubits
that he would send to the commitment functionality in the
original protocol in a register C. Let �XABC be the joint
state after the execution of the commit phase when Alice’s
input X is uniformly distributed. We have H~"

minðXjBÞ� �
logjXj ¼ ‘ as in (6). Inequalities (3) and (4) together imply
that conditioning on an additional quantum system C
cannot decrease the smooth min-entropy by more than
2 logjCj. Thus, we have
H~"

minðXjBCÞ� � H~"
minðXjBÞ� � 2 logjCj ¼ ‘� 2n: (8)

Now we proceed as in the proof of the main theorem to get

‘ � 2n� 2 log

�ð1� �Þ2
4

� ffiffiffiffiffiffi
2"

p �
� 1: (9)

Note that the same reasoning applies to any resource which
can be simulated by Bob such that the resulting state at the
end of the commit phase is pure conditioned on all the
classical communication and the simulated resource uses
an additional memory of size at most logjCj. Thus, in-
equality (9) holds for arbitrary such resources with
logjCj � n.

Conclusions.—We proved that it is impossible to use a
small number of bit commitments as a resource to imple-
ment a larger string commitment that is both arbitrarily
binding and hiding. This is in stark contrast to correspond-
ing positive results for other cryptographic primitives, such
as quantum key distribution or coin flipping, where the
resource of interest, once available in finite number, can be
enlarged ad infinitum.

The techniques we use to show our impossibility results
can be applied to prove more general results on the possi-
bility and efficiency of two-party cryptography. In particu-
lar, they can be used to prove bounds on the efficiency of
implementations of string commitments from oblivious
transfer and, more generally, from resources that distribute
trusted correlations to the parties. Moreover, the impossi-
bility results on implementations of oblivious transfer pre-
sented in [16] can be improved using these techniques.
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Skubiszewska, in Advances in Cryptology: Proceedings
of CRYPTO ’91, Lecture Notes in Computer Science
Vol. 576 (Springer, New York, 1992), pp. 351–366.
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