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Uncertainty relations give upper bounds on the accuracy by which the outcomes of two incompatible

measurements can be predicted. While established uncertainty relations apply to cases where the

predictions are based on purely classical data (e.g., a description of the system’s state before measure-

ment), an extended relation which remains valid in the presence of quantum information has been

proposed recently [Berta et al., Nature Phys. 6, 659 (2010)]. Here, we generalize this uncertainty relation

to one formulated in terms of smooth entropies. Since these entropies measure operational quantities such

as extractable secret key length, our uncertainty relation is of immediate practical use. To illustrate this,

we show that it directly implies security of quantum key distribution protocols. Our security claim remains

valid even if the implemented measurement devices deviate arbitrarily from the theoretical model.
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Introduction.—Quantum mechanics has the peculiar
property that, even if the state of a system is fully known,
certain measurements will result in a random outcome. In
other words, the information contained in the description
of a system’s state is generally not sufficient to predict
measurement outcomes with certainty. Heisenberg’s un-
certainty principle [1] can be seen as a quantitative char-
acterization of this property.

We consider a quantum system, A, and two positive
operator valued measurements (POVMs) acting on it, X
with elements fMxg, and Z with elements fNzg. In its
entropic version, as first proposed by Deutsch and later
proved by Maassen and Uffink [2] and Krishna et al. [3],
the uncertainty principle reads

HðXjSÞ þHðZjSÞ � q: (1)

H denotes the Shannon or von Neumann entropy and
characterizes the uncertainty about the measurement out-
comes X of X or Z of Z given any classical description, S,
of the state of A before measurement [4]. (The most
general classical description of A is a full characterization
of its density matrix.) The bound, q, quantifies the
‘‘incompatibility’’ of the two measurements and is inde-
pendent of the state of A before measurement [5]

q :¼ log2
1

c
; where c :¼ max

x;z
k ffiffiffiffiffiffiffi

Mx

p ffiffiffiffiffiffi
Nz

p k21: (2)

Onemaynow consider an agent, who, instead of holding a
classical description S ofA, has access to a quantum system,
B, which is fully entangledwithA. It is easy toverify that this
agent can predict the outcome of any possible orthogonal
measurement applied to A by performing a suitable mea-
surement on his share of the entangled state. In other words,
(1) is not valid in such a generalized scenario. However, as
first conjectured by Renes and Boileau [4], and later proved
by Berta et al. [6] and Coles et al. [7], the relation

HðXjBÞ þHðZjCÞ � q (3)

holds in general, for two disjoint, not necessarily classical
systems B and C. If both systems contain only a classical
description S of the state on A, we recover (1) [8].
To make the above statements more precise, let �ABC be

any quantum state on three systems A, B, and C. After
measuring A with respect to X and storing the outcome in a
classical register, X, the joint state of X and the system B is
given by [9]

�XB :¼ X

x

jxihxj � �xB; where �xB ¼ trACðMx�ABCÞ:

[The possible measurement outcomes of X are encoded in
an orthonormal basis fjxig and the probability of measuring
x is given by trð�xBÞ.] Similarly, we define �ZC, where the
measurement Z instead of X is applied to A and where we
keep system C instead of B. The conditional von Neumann
entropies in (3) are then evaluated for these states, i.e.,
HðXjBÞ ¼ Hð�XBÞ �Hð�BÞ.
The main contribution of this work is to generalize (3) to

smooth entropies [10,11], which are generalizations of the
von Neumann entropy. Crucially, in contrast to the latter,
they characterize operational quantities beyond the stan-
dard identical and independently distributed scenario [12].
For example, the smooth min-entropy (defined in the next
section) of a random variable X conditioned on a system B,
denoted H"

minðXjBÞ, corresponds to the number of bits

contained in X that are " close to uniformly distributed
and independent of the quantum system B, where " � 0
is the smoothing parameter. Similarly the smooth max-
entropy of Z conditioned on C, denoted H"

maxðZjCÞ, corre-
sponds to the number of bits that are needed in order to
reconstruct the value Z using the quantum system C up to a
failure probability ".
The generalized uncertainty relation reads

H"
minðXjBÞ þH"

maxðZjCÞ � q: (4)

PRL 106, 110506 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

18 MARCH 2011

0031-9007=11=106(11)=110506(4) 110506-1 � 2011 American Physical Society

http://dx.doi.org/10.1038/nphys1734
http://dx.doi.org/10.1103/PhysRevLett.106.110506


It implies most existing uncertainty relations for two in-
compatible measurements [13]. In particular, it generalizes
and strengthens an uncertainty relation derived via opera-
tional interpretations of the smooth entropies [14]. We
recover (3) by applying the entropic asymptotic equiparti-
tion property [15] to (4). Moreover, for " ¼ 0 and disre-
garding B and C, we find a generalization to POVMs of a
result by Maassen and Uffink [2], bounding the uncertainty
in terms of Rényi entropies [16] of order 1=2 and 1,
namely, H1ðXÞ þH1=2ðZÞ � q.

The uncertainty principle has provided intuition for
various applications, in particular, in cryptography.
However, previous uncertainty relations could not be ap-
plied directly, since the von Neumann entropy is often not
the relevant measure of uncertainty. (See [6] for examples
and a discussion.) Our uncertainty relation overcomes this
limitation. Potential areas of application include entangle-
ment witnessing, the bounded storage model [17], and
quantum cryptography in general.

As an example, we show that the relation naturally leads
to a concise and general security proof for quantum key
distribution (QKD) [18,19]. When applied to practical
prepare-and-measure protocols, it yields a strictly stronger
security claim than previously known proofs. In particular,
nontrivial security bounds can be obtained for realistic
choices of the parameters (such as the number of exchanged
signals). In addition, these bounds do not depend on the
details of the measurement devices and are therefore maxi-
mally robust against imperfections in their implementation.

Smooth Entropies.—For our purposes, quantum states are
positive semidefinite operators with trace smaller or equal to
1 on a finite-dimensional Hilbert space. Given a state �A on
(a Hilbert space) A, we say that �AB extends �A on B if
trBð�ABÞ ¼ �A. A purification is an extension of rank 1. We
write��" � if the purified distance between� and � (which
is defined as the minimum trace distance between purifica-
tions of � and �; see [20] for details) does not exceed ".

We now define the smooth min- and max-entropy. Let
" � 0 and �AB be a bipartite state on A and B. The min-
entropy of A given B is defined as

HminðAjBÞ� :¼ max
�B

supf� 2 R: 2��1A � �B � �ABg;

where �B is maximized over all states on B and 1A is the
identity operator on A. Furthermore, the "-smooth min-
entropy is defined as H"

minðAjBÞ� :¼ max~�HminðAjBÞ~�,
where the optimization is over all states ~�AB �" �AB.

The smooth max-entropy is its dual [20,21] with regards
to any purification �ABC of �AB in the sense that

H"
maxðAjBÞ� :¼ �H"

minðAjCÞ�: (5)

We are now ready to restate our uncertainty relation.
Theorem 1.—Let " � 0, let �ABC be a tripartite quantum

state, and let X and Z be two POVMs on A. Then,

H"
minðXjBÞ� þH"

maxðZjCÞ� � q;

where the entropies are evaluated using �XB and �ZC,
respectively, and �XB, �ZC, and q are defined as above.
Proof of the Main Result.—It will be helpful to

describe the two measurements in the Stinespring
dilation picture as isometries followed by a partial trace.
Let U be the isometry from A to A, X and X0 given by
U :¼ P

xjxi � jxi � ffiffiffiffiffiffiffi
Mx

p
. The isometry stores two

copies of the measurement outcome in the registers X
and X0 and the postmeasurement state in A. Analogously,

V :¼ P
zjzi � jzi � ffiffiffiffiffiffi

Nz

p
. Furthermore, we introduce the

states �XX0ABC :¼U�ABCU
y and �ZZ0ABC :¼ V�ABCV

y, of
which the postmeasurement states appearing in Theorem 1,
�XB and �ZC, are marginals.
We now proceed to prove the theorem for the special

case where �ABC is pure and " ¼ 0.
The duality relation (5) applied to �ZZ0ABC gives

HmaxðZjCÞ� þHminðZjZ0ABÞ� ¼ 0: (6)

Comparing (6) with the statement of the theorem, it re-
mains to be shown thatHminðZjZ0ABÞ� � HminðXjBÞ� � q

holds. By the definition of the min-entropy, we have

HminðZjZ0ABÞ�
¼ max

�Z0AB
supf� 2 R: 2��1Z � �Z0AB � �ZZ0ABg

� max
�Z0AB

supf� 2 R: 2��c1X � �B � �XBg

¼ HminðXjBÞ� � q; (7)

where, in order to arrive at (7), we need to show that

2��1Z � �Z0AB � �ZZ0AB ) 2��c1X � �B � �XB: (8)

For this, we apply the partial isometry W :¼ UVy
followed by a partial trace over X0 and A on both sides of
the inequality on the left-hand side. This implies

2��trX0A½Wð1Z � �Z0ABÞWy� � �XB: (9)

Moreover, substituting the definition of W, we find

trX0A½Wð1Z � �Z0ABÞWy�
¼ X

x;z

jxihxj � hzjtrAð
ffiffiffiffiffiffi
Nz

p
Mx

ffiffiffiffiffiffi
Nz

p
�Z0ABÞjzi (10)

� c1X � �B: (11)

To get (10), we used the orthonormality of fjxigx and fjzigz
as well as the cyclicity of the partial trace over A.
Moreover, in the last step, we used that

ffiffiffiffiffiffi
Nz

p
Mx

ffiffiffiffiffiffi
Nz

p ¼ j ffiffiffiffiffiffi
Nz

p ffiffiffiffiffiffiffi
Mx

p j2 � c1A:

Finally, combining (11) with (9) establishes (8), conclud-
ing the proof for " ¼ 0 and pure states.
Next, we generalize this proof to "-smooth entropies.

The purified distance used in the definition of the smooth
entropies has some interesting properties [20] that we use
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in the following: (i) Let E be any trace nonincreasing
completely positive map (e.g., a partial isometry or a
partial trace). Then, ��" � implies Eð�Þ�" Eð�Þ. (ii) Let
�AB be a fixed extension of �A. Then, �A�" �A implies
that there exists an extension �AB of �A that is " close to
�AB. Furthermore, if �AB is pure and jsuppf�Agj � dimB,
then �AB can be chosen pure.

Let ~�ZC �" �ZC be a state that minimizes the smooth
max-entropy, i.e., H"

maxðZjCÞ� ¼ HmaxðZjCÞ~�. Using the

properties of the purified distance discussed above, we
introduce a purification ~�ZZ0ABC, a state ~�XX0ABC :¼
W ~�ZZ0ABCW

y and its marginal ~�XB, which are " close to
the corresponding states �. Applying the duality relation
(6) as well as the argument in (7) to ~� results in
HmaxðZjCÞ~� þHminðXjBÞ~� � q, from which the claim

follows due to the maximization over close states used in
the definition of the smooth min-entropy.

Finally, to generalize the result to mixed states, we write
down the uncertainty relation for a purification �ABCD of
�ABC, i.e., H

"
minðXjBÞ þH"

maxðZjCDÞ � q. The claim is

now a direct consequence of the data-processing inequality
[20] establishing H"

maxðZjCDÞ � H"
maxðZjCÞ.

Application to Quantum Key Distribution.—In the
following, we consider practically relevant prepare-and-
measure schemes such as the Bennett-Brassard 1984
protocol (BB84) [18]. In these schemes, one party, called
Alice, prepares a sequence of nonorthogonal quantum
states and sends them over a public quantum channel to a
second party, Bob, who measures these states. The corre-
lated data gathered during this first phase of the protocol
form the raw keys, from which Alice and Bob can then
extract a final secret key by a classical postprocessing
procedure (requiring only local operations and communi-
cation over an authenticated channel).

Amid recent hacking attacks on commercial QKD sys-
tems [22,23], it is important to point out that information-
theoretic security proofs for quantum cryptography rely on
several assumptions in addition to the validity of quantum
mechanics. (1) The two parties, Alice and Bob, have access
to genuine randomness. (2) The information that leaves
each lab is restricted to what the protocol allows. (3) The
measurement devices work according to the specifications
of the protocol. These assumptions are often not satisfied
by realistic implementations.

Our novel security proof allows us to drop
Assumption 3, which concerns Bob’s measurement device,
completely. Moreover, Assumption 2 can be weakened to
allow for certain imperfections of Alice’s state preparation.
The proof is based on the intuition, first formalized by
Mayers [24] and captured by the uncertainty relation,
that security of QKD can be derived from the fact that
Alice has a choice between two incompatible bases for
state preparation. The fact that Bob can accurately estimate
the states Alice prepared in both bases directly implies that
an eavesdropper cannot. Furthermore, this implication

holds independently of how Bob obtains his data, i.e., no
assumption about Bob’s measurement device is required.
The proof relies on two main ingredients: (i) the uncer-

tainty relation (Theorem 1) and (ii) the following result that
bounds the number of secret key bits that can be extracted
from raw keys by classical postprocessing. Assume that
Alice and Bob hold correlated data, X and X0, about which
an adversary may have information E. Then, Alice and Bob
can employ a classical postprocessing procedure (usually
consisting of an error correction scheme concatenated with
a procedure called privacy amplification [25,26]), which
generates a shared secret key of length [27]

‘ � H"
minðXjEÞ �H"

maxðXjX0Þ: (12)

(This can be seen as a single-shot version of the Devetak-
Winter bound [28].) In other words, the length of the key
that can be generated is essentially determined by the
difference between the uncertainty that the adversary has
about Alice’s raw key X, measured in terms of the smooth
min-entropy, and the uncertainty that Bob has about X,
measured in terms of the smooth max-entropy.
While the following arguments are rather general, we

may for concreteness consider the BB84 protocol. For the
purpose of the proof we use its entanglement-based ver-
sion, which implies security of the original prepare-and-
measure scheme [29]. Here, it is assumed that Alice and
Bob start with an untrusted joint quantum state, �AB, from
which they extract a secret key. This state is supposed to be
a sequence of maximally entangled qubits but may, in the
presence of an adversary or noise, be arbitrarily corrupted.
The protocol then proceeds as follows. First, Alice and Bob
both measure each of these qubits with respect to a basis
chosen at random from two possibilities,X and Z, resulting
in bit strings X (for Alice) and X0 (for Bob). Next, they
perform statistical tests on a few sample bits taken from X
and X0 in order to estimate the correlation. If this correla-
tion is sufficiently large, they apply the above-mentioned
postprocessing procedure to turn their raw keys into a fully
secret key of an appropriate length, ‘. Otherwise, if the
estimated correlation is too small, they abort the protocol.
To prove that this protocol produces a secret key, it

suffices to verify that the entropy difference in (12) is
positive under the condition that the raw keys passed the
correlation test. The second term of (12), H"

maxðXjX0Þ,
directly depends on the correlation strength between the
raw keys. For example, if X and X0 consist of n bits, of
which at most a fraction � disagree (according to the
statistical test performed during the protocol), we have

H"
maxðXjX0Þ & nhð�Þ; (13)

where hð�Þ denotes the binary entropy and n is the number
of bits in the raw key.
The first term in (12), H"

minðXjEÞ, depends on the corre-

lations betweenX and the adversary’s informationE, which
is not accessible to Alice and Bob. The challenge is to
bound these correlations from the data that is available,
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namely, the correlations between X and X0. This is exactly
where our uncertainty relation steps in.

Recall that, according to the protocol description, Alice
and Bob measure each of their qubits with respect to one
out of two different bases. One may now think of a hypo-
thetical run of the protocol where Alice and Bob use
the opposite basis choice for the measurement of each of
their qubits, resulting in outcomes Y and Y0, respectively.
We may then apply our uncertainty relation, which gives

H"
minðXjEÞ � qn�H"

maxðYjY0Þ ¼ qn�H"
maxðXjX0Þ;

where q is evaluated for Alice’s apparatus [30]. The last
equality follows because the choice of basis was random
for each qubit, and hence the correlation between Y and Y0
is identical to the one between X and X0. Inserting this into
(12) and using (13), we conclude that the protocol gener-
ates a secure key of length

‘ � n½q� 2hð�Þ�: (14)

We emphasize that, in contrast to security proofs based
on previous versions of the uncertainty relation, e.g.,
[6,31], this security proof does not rely on additional
arguments such as the postselection technique [32], the
de Finetti theorem [33], and the quantum asymptotic
equipartition property [11,15]. Employing these tools
introduces additional terms in (14) that reduce the extract-
able key length significantly for experimentally feasible
values of n. Our proof technique will, therefore, lead to
tighter finite-key bounds [34,35].

Finally, we note that our approach is different from
recent device-independent security proofs for
entanglement-based protocols [19], which are based on a
violation of Bell’s theorem [36,37]. In these proofs
Assumption 3 applies to both parties and cannot be
dropped—instead, it may be replaced by the assumption
that the measurement devices are memoryless.
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