Detoxification of heavy metal ions from aqueous solutions using a novel lignocellulosic multi-metal binding biosorbent

BY Atefeh Abdolali

A Dissertation Submitted in fulfilment for the degree of DOCTOR OF PHILOSOPHY

> In Environmental Engineering

University of Technology, Sydney New South Wales, Australia

July 2017

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Student:

Atefeh Abdolali

Date:

This research was supported by an "Australian Government Research Training Program Scholarship".

ii

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Professor Huu Hao Ngo for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. Besides my advisor, I would like to thank my co-supervisor Dr Wenshan Guo for her mentor supports and useful comments on this dissertation. I appreciate Md Johir, UTS Environmental Engineering Laboratories Manager, for his patience guidance on the use of the laboratory equipment and for his supports in the lab.

This project would not have been possible without substantial help of Savo Grce and Brad Grief from Sydney Water providing me with municipal wastewater used in my experiments.

I gratefully acknowledge the funding sources that made my PhD work possible. I was funded by the Australian Government, under the Department of Innovation, Industry, Science and Research (DIISRTE) for Australian Postgraduate Award (APA) Scholarship. This research was also supported through an "Australian Government Research Training Program Scholarship". The financial support from Centre for Technology in Water and Wastewater (CTWW), UTS is highly appreciated as well.

Last but not the least, my most profound thanks, my most heartfelt appreciation, my deepest gratitude goes to my loving, supportive and encouraging family. I would like to thank my parents who raised me with a love of science and supported me in all my pursuits and to my brothers (Hamed and Ali) and my little sister (Mahshad) for supporting me spiritually throughout writing this thesis and my life in general. I would like to thank my husband, Ali, whose faithful support during my PhD study is so appreciated. Particularly in the last year by helping me to take care our beloved baby boy, Darian.

Thank you Atefeh Abdolali | July 2017

DEDICATION

To my loveliest love, my most favourite boy in the world;

My dearest **Darian**

Who spent whole days and nights of this project beside me!

v

JOURNAL PAPERS PUBLISHED

- Abdolali, A., Ngo, H.H., Guo, W.S., Zhou, J.L., Zhang, J., Liang, S., Chang, S.W., Nguyen , D.D., 2017. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab–scale continuous fixed–bed column. Bioresource Technology 229, 78–87.
- Abdolali, A., Ngo, H.H., Guo, W.S., Lu, S., Chen, S.S., Nguyen, N.C., Zhang, X., Wang, J., Wu, Y., 2016. A breakthrough biosorbent in removing heavy metals: equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Science of the Total Environment 542, 603–611.
- Abdolali, A., Ngo, H.H., Guo, W.S., Zhou, J.L., Du, B., Wei, Q., Wang, X.C., Nguyen, P.D., 2015. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresource Technology 193, 477–487.
- Abdolali, A., Ngo, H.H., Guo, W.S., Lee, D.J., Tung, K.L., Wang, X.C., 2014. Development and evaluation of a new multi-metal binding biosorbent Bioresource Technology 160, 98–106.
- Abdolali, A., Guo, W.S., Ngo, H.H., Chen, S.S., Nguyen, N.C., Tung, K.L., 2014. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresource Technology 160, 57–66.

CONFERENCE PRESENTATION

- Abdolali, A., Ngo, H.H., Guo, W.S., (2014). Standardized Preparation Method for a New Multi–Metal Binding Biosorbent for Cadmium, Copper, Lead and Zinc Biosorption. Presented poster at ESBES–IFIBiop Conference, Lille, France, 7th–10th September 2014.
- Abdolali, A., Ngo, H.H., Guo, W.S., (2013). Detoxification of heavy metalbearing effluents on a novel multi-metal binding biosorbent, Accepted article in the 6thInternational Conference on the "Challenges in Environmental Science and Engineering" (CESE-2013), Daegu, Korea, 29th October-2nd November 2013.

TABLE OF CONTENTS

Title page

Certificate of original authorship, i

Acknowledgements, iii

Dedication, iv

Journal papers published, vi

Conference presentation, vii

Table of contents, viii

List of tables, xiii

List of illustrations, xvi

Nomenclatures, xxi

Abbreviations, xxv

Greek symbols, xxvii

Abstract, xxviii

1 Chapter 1 Introduction 2

1.1 Background of research 2

1.1.1 Adverse effects of heavy metal ions and related environmental concerns 2

- 1.1.2 Removal technologies for heavy metal removal 2
- 1.1.3 Biosorption 3
- 1.2 Research gaps and needs 4
- 1.3 Research hypotheses 5
- 1.4 Objectives of the research 5
- 1.5 Research significance 6

- 1.6 Scopes of the research 6
- 1.7 Outline and structure of this thesis 8

2 Chapter 2 Literature review 11

- 2.1 Objectives 11
- 2.2 Characterization of lignocellulosic materials 12

2.3 Application of lignocellulosic wastes and by-products as biosorbent in water and wastewater treatment 17

2.3.1 Lignocellulosic wastes and by-products for heavy metal ion removal17

2.3.2 Lignocellulosic wastes and by–products for dye removal 24

2.3.3 Lignocellulosic wastes and by-products for organic and nutrient removal 31

- 2.4 Mechanism of biosorption and desorption process 33
- 2.5 Reusability of heavy metal-loaded wastes and by-products 38
 - 2.5.1 Desorptive properties of different desorbing agents 39
 - 2.5.2 Regeneration of biosorbent 42
- 2.6 Process costs and overall scheme of biosorption 44
- 2.7 Conclusion, future perspectives and research gaps 45
 - 2.7.1 Major findings and conclusions 45
 - 2.7.2 Future perspectives and research gaps 46

3 Chapter 3 Experimental investigations 51

- 3.1 Materials 51
 - 3.1.1 Preparation of heavy-metal-containing effluent 51
 - 3.1.2 The raw municipal wastewater 51
 - 3.1.3 Preparation of adsorbents 51
 - 3.1.4 Preparation of modified adsorbents 52
 - 3.1.5 Chemical reagents 52
- 3.2 Methods 52
 - 3.2.1 Biosorption studies in batch system 52
 - 3.2.2 Biosorption kinetic studies 55
 - 3.2.3 Biosorption isotherm studies 55
 - 3.2.4 Biosorption thermodynamic studies 56
 - 3.2.5 Desorption studies in batch system 56
 - 3.2.6 Biosorption studies in continuous fixed-bed column 57

- 3.2.7 Continuous desorption experiments 60
- 3.3 Calculations 61
 - 3.3.1 Batch biosorption process analysis and modeling 61
 - 3.3.2 Adsorption isotherm in batch system 62
 - 3.3.3 Fixed-bed biosorption process analysis and modeling 64
- 3.4 Analytical methods and instruments 66
- 3.5 Statistical analysis 66

Chapter 4 Feasibility studies and development of a multi-metal binding biosorbent (MMBB) 68

- 4.1 Introduction 68
 - 4.1.1 Research background 68
 - 4.1.2 Objectives 69
- 4.2 Selection of adsorbents 70
- 4.3 Characterization of adsorbents by FTIR 72
- 4.4 SEM analysis 73
- 4.5 Effect of different physico-chemical parameters 73
 - 4.5.1 Influence of pH 73
 - 4.5.2 Influence of contact time 76
 - 4.5.3 Influence of adsorbent dose 77
- 4.6 Adsorption kinetics 78
- 4.7 Adsorption isotherm 80
- 4.8 Desorption studies 88
- 4.9 Conclusion 93

Chapter 5 Heavy metal biosorption from synthetic wastewater by modified MMBB, characterization and optimization: batch study 95

- 5.1 Introduction 95
 - 5.1.1 Research background 95
 - 5.1.2 Objectives 95
- 5.2 Biosorption process optimization 96
 - 5.2.1 Influence of biosorbent ratio 96
 - 5.2.2 Influence of biosorbent particle size 96
 - 5.2.3 Influence of drying temperature 99
 - 5.2.4 Influence of chemical pretreatment 100
 - 5.2.5 Influence of ion strength 103

- 5.3 Characterization of adsorbents by FTIR 104
- 5.4 Effect of contact time and kinetic study 106
- 5.5 Adsorption isotherm 109
- 5.6 Adsorption thermodynamics 109
- 5.7 Desorption studies 113
- 5.8 SEM/EDS analysis 121
- 5.9 Biosorption mechanism 121
- 5.10 Conclusions 124

Chapter 6 Heavy metal biosorption from synthetic wastewater by modified MMBB: column study 127

- 6.1 Research background 127
- 6.2 Objectives 127
- 6.3 Continuous biosorption experiments 128
 - 6.3.1 Influence of flow rate 129
 - 6.3.2 Influence of bed depth 130
 - 6.3.3 Influence of inlet metal concentration 132
 - 6.3.4 Influence of biosorbent particle size 134
 - 6.3.5 Influence of pH 137
- 6.4 Breakthrough curve modeling 138
- 6.5 Comparative study 140
- 6.6 Scale-up study 145
 - 6.6.1 Column Scale–up calculation 146
- 6.7 Conclusions 150

Chapter 7 Application of modified MMBB for real wastewater and desorption study 152

7.1 Objectives 152

7.2 Applicability of modified MMBB packed-bed column in treating a real wastewater 152

- 7.3 Continuous sorption and desorption experiments 154
- 7.4 Conclusions 161

Chapter 8 Conclusions and recommendations 163

- 8.1 Conclusion remarks 163
- 8.2 Future outlook 165

References 168

Curriculum Vitae 187

LIST OF TABLES

No	Table Title	Page
Chapter 2		
Table 2.1	Chemical composition of some common lignocellulosic	14
	materials	
Table 2.2	The performance of different types of agro-industrial	21
	wastes for heavy metal ion removal from aqueous solutions	
Table 2.3	The performance of different types of agro-industrial	25
	wastes for dye removal from aqueous solutions	
Table 2.4	The performance of different types of agro-industrial	32
	wastes for organic and nutrient removal from aqueous	
	solutions	
Table 2.5	Desorption efficiencies of different biosorbents at first and	47
	last sorption and desorption cycles	
Chapter 4		
Table 4.1	FTIR spectra and SEM images of unloaded and	74
	metal–loaded MMBB1	
Table 4.2	FTIR spectra and SEM images of unloaded and metal-	75
	loaded MMBB2	
Table 4.3	Comparison between adsorption rate constants, the	79
	estimated q_e and the coefficients of determination	
	associated with the Lagergren pseudo-first-order, the	
	pseudo-second order and intra-particle diffusion kinetic	
	models (pH 5.5±0.1; room temperature, 22±1 °C; initial	
	metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed:	
	150 rpm, particle size: 75–150μm)	
Table 4.4	Isotherm constants of two- and three-parameter models	82
	for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption onto MMBB2	
	(initial pH 5.5±0.1, initial metal Conc.: 1–500 mg/L, contact	
	time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5 g/L,	
	particle size: 75–150µm)	

No	Table Title	Page	
Table 4.5	Isotherm constants of two- and three-parameter models		
	for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption onto MMBB2		
	(initial pH 5.5±0.1, initial metal Conc.: 1–500 mg/L, contact		
	time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5 g/L,		
	particle size: 75–150µm)		
Table 4.6	Biosorption capacities of various biosorbent	87	
Table 4.7	ANOVA and One sample t-test data for sorption and	91	
	desorption experiments of Cd(II), Cu(II), Pb(II) and Zn(II)		
	biosorption onto MMBB1 (optimum pH 5.5±0.1; room		
	temperature: 22 ± 1 °C; sorption time: 3 hr ; desorption time:		
	3 hr; 5 cycles; initial metal conc.: 50 mg/L)		
Table 4.8	ANOVA and One sample t-test data for sorption and	92	
	desorption experiments of Cd(II), Cu(II), Pb(II) and Zn(II)		
	biosorption onto MMBB2 (optimum pH 5.5±0.1; room		
	temperature: 22 ± 1 °C; sorption time: 3 hr ; desorption time:		
	3 hr; 5 cycles; initial metal conc.: 50 mg/L)		
_			
Chapter 5			
Table 5.1	Comparison between adsorption rate constants, the	110	

- Table 5.1Comparison between adsorption rate constants, the 110
estimated qe and the coefficients of correlation associated
with the Lagergren pseudo-first-order and the pseudo-
second order kinetic models (initial metal Conc.: 50 ppm)
- Table 5.2Isotherm constants of non-linear Langmuir and Freundlich 111
models for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption on
unmodified and modified MMBB
- Table 5.3Maximum biosorption capacities of various adsorbents112
- Table 5.4Thermodynamic parameters, ΔG° (kJ/mol), ΔH° (kJ/mol) 115and ΔS° (kJ/mol K), for adsorption of Cd(II), Cu(II), Pb(II)and Zn(II) adsorption (initial metal Conc.: 1–50 mg/L)

No	Table Title	Page
Chapter 6		
Table 6.1	Thomas, Yoon–Nelson and Dose Response model constants	141
	for Cd, Cu, Pb and Zn adsorption onto modified MMBB	
	column (pH 5.5 \pm 0.1, particle size = 425–600 μ m, room	
	temperature)	
Table 6.2	Dynamic adsorption capacity of cadmium, copper, lead and	144
	zinc onto different adsorbents	
Table 6.3	Parameters predicted from the BDST model for biosorption	145
	of Cd, Cu, Pb and Zn on MMBB (5, 10 and 15 g or 9.5, 21 and	
	31 cm) in a fixed-bed column	
Table 6.4	Proposed pilot-scale column parameters	149
Chapter 7		
Table 7.1	Desorption parameters for three cycles of biosorption and	160
	desorption cycles with municipal wastewater	

LIST OF ILLUSTRATIONS

No	Figure Caption	Page
Chapter 1		
Figure 1.1	The main tasks and scope of this study	7
Chapter 2		
Figure 2.1	Lignocellulosic material wall and molecular structure (adapted from Xu et al., 2014)	13
Figure 2.2	Optimum pH of some typical lignocellulosic agro-industrial wastes and by-product for (a) heavy metal and (b) dye removal	16
Figure 2.3	Common sorption/desorption mechanisms	37
Figure 2.4	Batch experiment schematic diagram for sorption/ desorption/regeneration cycles	41
Chapter 3		
Figure 3.1	Schematic diagram of batch desorption study	57
Figure 3.2	Schematic diagram of the experimental set up for a continuous process	59
Chapter 4		
Figure 4.1	Comparison between different agro-industrial wastes and by-products for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.5±0.1; room temperature, 22±1 °C; contact time: 24 hr; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm, particle size: 75–150µm)	71
Figure 4.2	Effect of initial pH of solution on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption (room temperature, 22±1 °C; contact time: 24 hr; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm, particle size: 75–150µm)	76
Figure 4.3	Effect of contact time on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption (pH 5.5±0.1; room temperature, 22±1 °C; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed:	77

No	Figure Caption	Page
	150 rpm, particle size: 75–150μm)	
Figure 4.4	Effect of biosorbent dose on Cd(II), Cu(II), Pb(II) and Zn(II)	78
	adsorption (pH 5.5±0.1; room temperature, 22±1 °C; contact	
	time: 3 hr; initial metal conc.: 50 mg/L; rotary speed: 150	
	rpm, particle size: 75–150μm)	
Figure 4.5	Biosorption capacity of Cd(II), Cu(II), Pb(II) and Zn(II) onto	90
	MMBB1 and MMBB2 washed by eluting agents (optimum pH	
	5.5 \pm 0.1; room temperature: 22 \pm 1 °C; sorption time: 3 hr ;	
	desorption time: 3 hr; 5 cycles; initial metal conc.: 50 mg/L)	
Chapter 5		
Figure 5.1	Effect of ratio of tea waste: maple leaves: mandarin peel on	97
	Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.0–	
	5.5±0.1; room temperature, 22±1°C; contact time: 24 h r;	
	initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary	
	speed: 150 rpm; particle size: 75–150μm)	
Figure 5.2	Particle size distribution of MMBB (<75 $\mu m,~75150~\mu m,$	98
	150–300 μm and 300–425 μm 425–600 μm , 600–1000 μm	
	and 1000–2000 μm)	
Figure 5.3	Effect of biosorbent particle size on Cd(II), Cu(II), Pb(II) and	98
	Zn(II) adsorption (initial pH 5.0–5.5±0.1; room temperature,	
	22±1 °C; initial metal Conc.: 50 mg/L; biosorbent dose: 5g/L;	
	rotary speed: 150 rpm; the ratio of 3:2:1 for TW:ML:MP)	
Figure 5.4	Drying rate of (a) tea leaves, (b) maple leaves and (c)	100
	mandarin peels at different drying temperature	
Figure 5.5	Effect of drying temperature on Cd(II), Cu(II), Pb(II) and	101
	Zn(II) adsorption (initial pH 5.0–5.5±0.1; room temperature,	
	22±1 °C; initial metal Conc.: 50 mg/L; biosorbent dose: 5g/L;	
	rotary speed: 150 rpm)	
Figure 5.6	Biosorption capacity of modified MMBB by different	102
	chemical and physical methods (initial pH 5.0–5.5±0.1; room	
	temperature, 22±1C; initial metal Conc.: 50 mg/L;	

xvii

No	Figure Caption	Page
	biosorbent dose: 5g/L; rotary speed: 150 rpm)	
Figure 5.7	Experimental data for cadmium, copper, lead and zinc	105
	biosorption on modified MMBB at different ionic strength	
	levels	
Figure 5.8	FTIR spectra of unmodified and modified MMBB before and	107
	after metal biosorption	
Figure 5.9	Effect of contact time on Cd(II), Cu(II), Pb(II) and Zn(II)	108
	adsorption	
Figure 5.10	Van't Hoff plots for Cd(II), Cu(II), Pb(II) and Zn(II)	114
	adsorption(initial pH 5.5±0.1; initial metal Conc.: 1–50	
	mg/L; contact time: 3 h; biosorbent dose: 5 g/L	
Figure 5.11	Comparison between Cd, Cu, Pb and Zn elution from metal-	116
	loaded modified MMBB using different desorbing agents (Ci:	
	50 ppm)	
Figure 5.12	Elution of Cd, Cu, Pb and Zn from metal-loaded modified	117
	MMBB using different mineral acids: 0.1M HCl, H_2SO_4 and	
	HNO ₃	
Figure 5.13	Effect of HCl concentration on desorption efficiency of	118
	metal-loaded modified MMBB	
Figure 5.14	Desorption efficiency of modified MMBB after each	119
	sorption/ desorption step without and with regeneration by	
	CaCl ₂	
Figure 5.15	Biosorption capacity of modified MMBB after each sorption/	120
	desorption step without and with regeneration step by \mbox{CaCl}_2	
Figure 5.16	SEM images of (a) unmodified MMBB before metal	122
	adsorption (b) modified MMBB before metal adsorption, (c)	
	modified MMBB after metal adsorption, (d) modified MMBB	
	after 5 cycles of cycles of sorption/desorption and (e) and	
	(f) modified MMBB after five cycles of	
	sorption/desorption/regeneration by $CaCl_2$	
Figure 5.17	EDS spectra of (a) unmodified MMBB, (b) modified MMBB	123

Figure 5.17 EDS spectra of (a) unmodified MMBB, (b) modified MMBB 123

No	Figure Caption	Page
	before biosorption and (c) modified MMBB after biosorption	
Figure 5.18	Comparison of (a) individual and (b) total metal ions	124
	adsorbed and released in biosorption process (initial heavy	
	metal conc.: 50 mg/L)	
Chapter 6		
Figure 6.1	Effect of influent flow rate on the breakthrough curve of Cd,	131
	Cu, Pb and Zn adsorption onto modified MMBB (pH 5.5±0.1,	
	bed height = 21 cm, influent metal concentration = 20 mg/L,	
	particle size = 425–600 μm, room temperature)	
Figure 6.2	Effect of bed height (MMBB weight = 5, 10 and 15 gr) on the	133
	breakthrough curve of Cd, Cu, Pb and Zn adsorption onto	
	modified MMBB (pH 5.5±0.1, influent flow rate = 10 mL/min	
	or HLR = $1.578 \text{ m}^3/\text{m}^2$ hr, influent metal concentration = 20	
	mg/L, particle size = 425–600 μm, room temperature)	
Figure 6.3	Effect of influent metal concentration on the breakthrough	135
	curve of Cd, Cu, Pb and Zn adsorption onto modified MBB	
	(pH 5.5 \pm 0.1, bed height = 21 cm, influent flow rate = 10	
	L/min or HLR = 1.578 m ³ /m ² hr, particle size = 425–600 μ m,	
	room temperature)	
Figure 6.4	Effect of particle size on the breakthrough curve of Cd, Cu,	136
	Pb and Zn adsorption onto modified MMBB (pH 5.5±0.1, bed	
	heights = 17, 19.5 cm and 21 cm, influent flow rate = 10	
	mL/min or HLR = $1.578 \text{ m}^3/\text{m}^2$ hr, influent metal	
	concentration = 20 mg/L, room temperature)	
Figure 6.5	Effect of influent pH on the breakthrough curve of Cd, Cu, Pb	139
	and Zn adsorption onto modified MMBB (bed height = 21	
	cm, influent flow rate = 10 mL/min or HLR = $1.578 \text{ m}^3/\text{m}^2$	
	hr, influent metal concentration = 20 mg/L, particle size =	
	425–600 μm, room temperature)	
Figure 6.6	BDST model of different MMBB weight = 5, 10 and 15 g (9.5,	143
	21 and 31 cm) (pH 5.5 \pm 0.1, influent flow rate = 10 mL/min,	

No	Figure Caption	Page
	influent metal concentration = 20 mg/L, particle size = 425–	
	600 μm, room temperature)	
Chapter 7		
Figure 7.1	Breakthrough curves of Cd, Cu, Pb and Zn adsorption onto	155
	modified MMBB from synthetic and real municipal	
	wastewater (bed height = 21 cm, influent flow rate = 10	
	mL/min or HLR = $1.578 \text{ m}^3/\text{m}^2$ hr, influent each metal	
	concentration = 20 mg/L, particle size = $425-600 \mu$ m, room	
	temperature)	
Figure 7.2	Breakthrough curves for Cd, Cu, Pb and Zn adsorption from	156
	municipal wastewater by modified MMBB in three cycles of	
	sorption/ desorption/ regeneration (pH 5.5±0.1, bed height	
	= 21 cm, flow rate = 10 mL/min or HLR = $1.578 \text{ m}^3/\text{m}^2 \text{ hr}$,	
	influent metal concentration = 20 mg/L, particle size = 425–	
	600 μm, room temperature)	
Figure 7.3	Performance of modified-MMBB packed-bed column in	158
	three successive cycles of sorption, desorption and	
	regeneration (sample size $N = 2$)	
Figure 7.4	Desorption kinetic of Cd, Cu, Pb and Zn adsorbed on	159
	modified MMBB (10 g , desorption solution = 0.1 M HCl, flow	
	rate = 10 mL/min)	

Symbol	Description	Unit
a	Dose Response model exponent	
А	Column area	cm ²
Å	Angstrom	
as	Sips model constants	L/mg
bL	Langmuir constant	L/mg
C=C-C	Asymmetric stretching aromatic rings	
$C_2H_4O_2S$	Mercapto-acetic acid	
$C_2H_4O_2S$	Thioglycolic acid	
C_2H_6O	Ethanol	
C_3H_6O	Acetone	
$C_6H_8O_7$	Citric acid	
Ca(OH)2	Calcium hydroxide	
CaCl ₂	Calcium chloride	
CaO	Calcium oxide	
Cads	Adsorbed metal concentration	mg/L
C _b	Breakthrough concentration,	mg/L
$Cd(NO_3)_2 \cdot 4H_2O$	Cadmium nitrate tetrahydrate	
Ce	Effluent metal ion concentration	mg/L
C _{eq}	Equilibrium metal concentration	mg/L
C_{f}	Equilibrium metal concentrations	mg/L
CFp	Overall sorption process concentration factor	
CH ₂ O	Formaldehyde	
CH_2O_2	Formic Acid	
CH ₃ COOH	Acetic Acid	
CH ₃ OH	Methanol	
Ci	Initial/ Influent metal concentrations	mg/L
-С-О-С=О	Symmetric stretching of ester groups	
-СООН	Carboxyl groups	
Cp	Eluted metal concentration at t_p	mg/L

Symbol	Description	Unit
CS ₂	Carbon disulfide	
Cu ₃ (NO) ₂ ·3H ₂ O	Copper nitrate trihydrate	
Di	Inner diameter	cm
E	Mean free energy of adsorption calculated by	kJ/mol
	Dubinin-Radushkevich isotherm	
g	gram	
g/L	gram per litre	
H_2O_2	Hydrogen peroxide	
H_2SO_4	Sulphuric acid	
H_3PO_4	Phosphoric acid	
Н-С-Н	Asymmetric and symmetric stretch	
HCl	Hydrochloric acid	
HFO	Iron(III) oxy-hydroxide	
HNO ₃	Nitric acid	
hr	hour(s)	
К	Kelvin	
K ₁	The first-order reaction rate equilibrium	min ⁻¹
	constant	
K ₂	The second–order reaction rate equilibrium	g mg ⁻¹ min ⁻¹
	constant	
K_2MnO_4	Potassium manganate	
k _{BDST}	BDST adsorption rate constant that describes	L/mg h
	the mass transfer from the liquid to the solid	
	phase	
K _F	Freundlich constant	L/g
Kp	Intra-particle diffusion kinetic model	mg g ⁻¹ min ^{-0.5}
	constant	
K _{RP}	Redlich-Peterson model constants	L/g
Ks	Sips model constants	L/g
\mathbf{k}_{Th}	Thomas rate constant	mL/ mg min
k_{Y-N}	Yoon–Nelson proportionality constant	1/min

Symbol	Description	Unit
L	litre	
L	Bed height	cm
L _{critical}	Critical bed depth	cm
М	Molarity	mol/L
n	Mass of biosorbent in batch system	g
M	Total mass of the biosorbent in the column	g
n _{total}	Amount of metal ions sent to the column at	mg
	different time	
ng/g	milligram of adsorbate per gram of adsorbent	
MgCl ₂	Magnesium chloride	
MgSO ₄	Magnesium sulphate	
nin	minute(s)	
nol/g	mol per gram	
1	Freundlich exponent	
Na ₂ CO ₃	Sodium carbonate	
laCl	Sodium chloride	
laHCO ₃	Sodium bicarbonate	
IaNO ₃	Sodium nitrate	
laOH	Sodium hydroxide	
I _{BDST}	BDST biosorption capacity	mg/L
IH_4^+	Ammonium	
IH₄OH	Ammonium hydroxide	
b(NO ₃) ₂	Lead nitrate	
2	Volumetric flow rate	mL/min
c	Column capacity (mg)	
D-R	Maximum adsorption capacity for heavy	mg/g
	metal ions calculated by Dose Response	
	model	
le	Metal adsorbed at equilibrium	mg/g
e,d	gram of desorbed metal per gram of	mg/g
	adsorbent in column	

Symbol	Description	Unit
q _{m,L}	Langmuir maximum metal biosorption	mg/g
	capacity	
q _t	Metal adsorbed at time t	mg/g
q Th	Thomas maximum adsorption capacity for	mg/g
	heavy metal ions	
rpm	round(s) per minute	
t	time	min
t _b	Breakthrough time ($C_e/C_i = 10\%$)	min
t _p	The time when the elution rate reaches the	min
	peak	
t _{sat}	Saturation or exhaustion time $(C_e/C_i = 90\%)$	min
t _{total}	Total flow time	min
V	Solution volume in batch mode	L
v	Superficial velocity or the linear flow velocity	cm/min
	of metal solution through the bed	
V _{W,b}	Treated water volume	L
$Zn(NO_3)_2 \cdot 6H_2O$	Zinc nitrate hexahydrate	
ZnCl ₂	Zinc chloride	
ΔG°	Gibbs free energy change	kJ/mol
ΔH°	Enthalpy change	kJ/mol
ΔS°	Entropy change	kJ/mol K
%Е	Elution efficiency	%
%R	Metal removal (%)	%
[H ₃ O]+	Hydronium	
°C	Degree Celsius	

ABBREVIATIONS

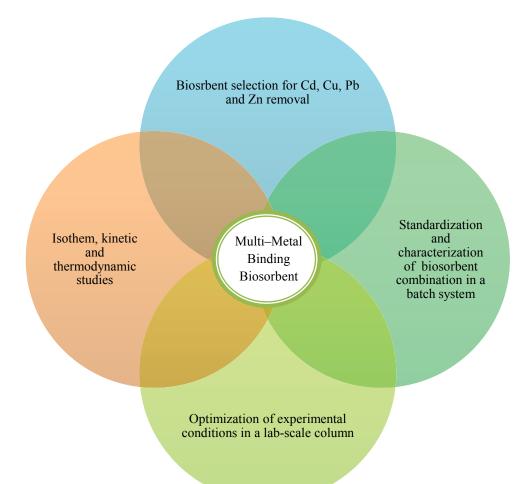
Symbol	Description
BDST	Bed Depth Service Time
CSTR	Continuous Stirred–Tank Reactor
AER	Adsorbent exhaustion rate in column
ANOVA	Analysis of Variance
AP	Apple peel
AV	Avocado peel
BET	Brunauer Emmett Teller
BOD	Biological Oxygen Demand
CC	Corncob
COD	Chemical Oxygen Demand
СР	Coir peat
CW	Coffee waste
EBCT	Empty Bed Contact Time (min)
EDTA	Ethylene diamine triacetic acid
EDTAD	Ethylene diamine tetraacetic dianhydride
EDX	Energy Dispersive X-Ray
ES	Egg shell
EU	Eucalyptus leave
FTIR	Fourier Transform Infrared Spectroscopy
GG	Garden grass
GS	Grape stalk
HLR	Hydraulic Loading Rate (m³/m² hr)
LC	Lychee rind
MG	Mango skin
ML	Maple leave
MMBB	Multi–Metal Binding Biosorbent
MP	Mandarin peel
MP-AES	Microwave Plasma-Atomic Emission Spectrometer
MTZ	Mass Transfer Zone (cm)

Symbol	Description
ОР	Orange peel
рН	potential Hydrogen
ppm	Part per million
PS	passion fruit skin
R ²	Coefficient of determination
RMSE	Residual Root Mean Square Error
RO	Reverse Osmosis
SC	Sugarcane bagasse
SD	Sawdust
SEM/EDS	Scanning electron microscopy with X–ray microanalysis
SSE	Error Sum of Square
TEM	Transmission Electron Microscopy
тос	Total Organic Carbon
TSS	Total Suspended Solids
TW	Tea waste
WWTP	Water and Wastewater Treatment Plant
XPS	X-ray Photoelectron Spectroscopy

GREEK SYMBOLS

Symbol	Description	Unit
βrp	Redlich-Peterson model exponent	
βs	Sips model exponent	
μ	micro	
τ	the time required for retaining 50% of the initial adsorbate	min

PhD DISSERTATION ABSTRACT


Author:	ATEFEH ABDOLALI	
Date:	July 2017	
Thesis title:	Detoxification of heavy metal ions from aqueous solutions using a novel lignocellulosic multi–metal binding biosorbent	
Statistical data:	188 pages, 22 tables, 39 figures, and 188 references	
School:	Civil and Environmental Engineering	
Supervisors:	Prof. Dr Huu Hao Ngo (Principal supervisor)	
	Dr Wenshan Guo (Co-supervisor)	
Keywords:	Agro-industrial waste; Biosorption; Breakthrough curve;	
	Chemical Modification; Fixed-bed column; Heavy metal;	
	Kinetics; Modeling	

Abstract

Since, the availability of a biomass at a low cost is a key factor dictating its selection for a biosorption, thus agro-industrial wastes and by-products are considered as alternatives for heavy metal biosorption development. Utilizing potentials of combination of common agro-industrial wastes and by-products let us have different kinds of active binding sites at same time in wastewater treatment. In order to make the biosorption process more suitable for heavy metal removal, both batch and continuous systems have been studied. Two breakthrough multi-metal binding biosorbent made from a combination of tea wastes, maple leaves and mandarin peel (MMBB1) and a mixture of tea waste, sawdust and corncob (MMBB2) were applied to evaluate their biosorptive potential of heavy metal removal from synthetic multi-metal solutions. FTIR and SEM were conducted, before and after biosorption, to explore the intensity and position of the available functional groups and changes in adsorbent surface morphology. Carboxylic and hydroxyl groups were found to be the principal

functional groups for the sorption of metals. MMBB1 exhibited better performance at pH 5.5 with maximum sorption capacities of 41.48, 39.48, 94.0 and 27.23 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. In batch system, MMBB1 was selected for further process optimization, modification, characterization and thermodynamic studies. The data indicated that Langmuir isotherm and pseudosecond order kinetics model describe the experimental data very well. The maximum amounts of biosorption capacity of modified MMBB increased to 69.56, 127.70, 345.20 and 70.55 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II), respectively. Then a continuous fixed-bed study was carried out by utilizing the modified MMBB for cadmium, copper, lead and zinc removal from synthetic solution and real wastewater. The effect of operating conditions i.e. influent flow rate, metal concentration and bed depth was investigated at optimal pH (5.5 ± 0.1) for a synthetic wastewater. Results confirmed that the total amount of metal adsorption decreased with increasing influent flow rate and also increased with increasing each metal concentration. The maximum biosorption capacity of 38.25, 63.37, 108.12 and 35.23 mg/g for Cd, Cu, Pb and Zn, respectively, were attained at 31 cm bed height, 10 mL/min flow rate and 20 mg/L initial concentration. The Thomas model found better describing the whole dynamic behaviour of the column. Finally, desorption studies indicated that metal-loaded biosorbent could be used after three consecutive sorption, desorption and regeneration cycles by applying a semi-simulated real wastewater.

Graphical abstract:

