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Abstract

Since, the availability of a biomass at a low cost is a key factor dictating its
selection for a biosorption, thus agro-industrial wastes and by-products are
considered as alternatives for heavy metal biosorption development. Utilizing
potentials of combination of common agro-industrial wastes and by-products let
us have different kinds of active binding sites at same time in wastewater
treatment. In order to make the biosorption process more suitable for heavy metal
removal, both batch and continuous systems have been studied. Two
breakthrough multi-metal binding biosorbent made from a combination of tea
wastes, maple leaves and mandarin peel (MMBB1) and a mixture of tea waste,
sawdust and corncob (MMBB2) were applied to evaluate their biosorptive
potential of heavy metal removal from synthetic multi-metal solutions. FTIR and
SEM were conducted, before and after biosorption, to explore the intensity and
position of the available functional groups and changes in adsorbent surface

morphology. Carboxylic and hydroxyl groups were found to be the principal

xxviii



functional groups for the sorption of metals. MMBB1 exhibited better performance
at pH 5.5 with maximum sorption capacities of 41.48, 39.48, 94.0 and 27.23 mg/g
for Cd(II), Cu(Il), Pb(II) and Zn(II), respectively. In batch system, MMBB1 was
selected for further process optimization, modification, characterization and
thermodynamic studies. The data indicated that Langmuir isotherm and pseudo-
second order Kkinetics model describe the experimental data very well. The
maximum amounts of biosorption capacity of modified MMBB increased to 69.56,
127.70, 345.20 and 70.55 mg/g for Cd(II), Cu(Il), Pb(II) and Zn(II), respectively.
Then a continuous fixed-bed study was carried out by utilizing the modified
MMBB for cadmium, copper, lead and zinc removal from synthetic solution and
real wastewater. The effect of operating conditions i.e. influent flow rate, metal
concentration and bed depth was investigated at optimal pH (5.5£0.1) for a
synthetic wastewater. Results confirmed that the total amount of metal adsorption
decreased with increasing influent flow rate and also increased with increasing
each metal concentration. The maximum biosorption capacity of 38.25, 63.37,
108.12 and 35.23 mg/g for Cd, Cu, Pb and Zn, respectively, were attained at 31 cm
bed height, 10 mL/min flow rate and 20 mg/L initial concentration. The Thomas
model found better describing the whole dynamic behaviour of the column.
Finally, desorption studies indicated that metal-loaded biosorbent could be used
after three consecutive sorption, desorption and regeneration cycles by applying a

semi—simulated real wastewater.
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Chapter 1 Introduction

1.1 Background of research

As a consequence of global industrialisation and extensive use of machines in
many industries, heavy metal ions, dyes, pesticides, humic substances, detergents
and other persistent organic pollutants have been released into the aquatic
environment. Besides, water sources shortage became a chronic worldwide
environmental concern. Therefore, it is very urgent to treat industrial wastewater
effluents, before they are discharged into the environment. It is essential that such
action is in accordance with effective health and environmental regulations
developed for various bodies of water (Shanmugaprakash and Sivakumar, 2015;

Fu and Wang, 2011; Kalavathy and Miranda, 2010).

1.1.1 Adbverse effects of heavy metal ions and related environmental concerns

Heavy metal ions such as cadmium, lead, zinc, nickel, copper, mercury and
chromium or their compounds are now recognized as serious toxic pollutants due
to their non-biodegradability, high environmental mobility and strong tendency
for bioaccumulation in the food chain (Vargas—Garcia et al., 2012; Akar et al,,
2012). For instance, in latest decades, the annual global release of heavy metal
reached 22,000 tons (metric tons) for cadmium, 939,000 tons for copper, 783,000
tons for lead and 1,350,000 tons for zinc (Ansari et al., 2014). The exposure to
these toxic components causes both long term and acute illnesses in human and
live stocks (Shanmugaprakash and Sivakumar, 2015; Kalavathy and Miranda,
2010).

1.1.2 Removal technologies for heavy metal removal

To remediate heavy metal polluted effluents, a wide range of physicochemical/
biological treatment technologies are currently employed in various industries
(e.g. filtration, reverse osmosis (RO), membrane bioreactor, adsorption, chemical
precipitation, coagulation, electroplating, evaporation, oxidation/ reduction, ion

exchange, activated sludge, aerobic and anaerobic treatment, electrolysis, magnetic
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separation, extraction, electrochemical techniques, etc.) (Patil et al., 2016; Fu et al.,
2013; Bhatnagar and Sillanpaa, 2010; Miretzky and Cirelli, 2010; Crini, 2006).
Nonetheless, some of existing methods are very technically complicated and not
effective enough especially in low concentrations when the target heavy metals
concentration falls below 100 mg/L. Additionally, some methods also have
disadvantages of high chemical reagent usage, high energy requirements, as well as
the disposal problem of toxic secondary sludge (Montazer-Rahmati et al., 2011;
Aksu et al. 2007). Recently, the attention has been addressed towards cheap agro-
industrial wastes and by-products as biosorbents (Bhatnagar et al, 2015;

Bhatnagar and Sillanpaa, 2010).

1.1.3 Biosorption

Among common and conventional methods for removing toxic metal ions from
aqueous solution, biosorption on cheap, biodegradable, abundant and very
available bio-wastes and by-products from agriculture and food industries cut the
process cost significantly (Witek-Krowiak et al., 2011). Generally, biosorption
process can reduce capital costs by 20%, operational costs by 36% and total
treatment costs by 28% compared with the current systems (Bulut and Tez, 2007;
Loukidou et al, 2004). Moreover, main advantages of these adsorbent are
acceptably reasonable adsorption capacity even in very low traces of pollutants,
high selectivity of metal ion wide range, high availability and low cost generation

and regeneration (Wan Ngah and Hanafiah, 2008).

Over the past decades of studying heavy metal biosorption, many attempts have
been carried out to reuse biosorbent for cycles by different eluents. A lot of them
have been successfully for regeneration of biosorbent without tangible changes in
biosorptive potential and a great number of papers have been published in this
field. In view of importance of economy in process design there have been a few
case studies focused on reutilizing and regeneration of the biosorbents as well as
metal recovery (Carolin et al, 2017; Peng et al, 2017; Won et al, 2014).
Particularly for precious metals such as Au, Pt, Pd, Rh, Os, Ir and Ru, because they
are very expensive unlike heavy metals and biosorbents are much less costly than

synthetic resins, biosorption-incineration combined process can be another option
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for recovery of precious metals from the biosorbents. After desorption, the ionic
form of metal ions can be reduced to metallic form along with oxidation of organic

constituents during incineration (Cui and Zhang, 2008).

1.2 Research gaps and needs

The lignocellulosic materials have some negative sides such as low uptake capacity
in raw form and releasing organic components in terms of high chemical oxygen
demand (COD), biological oxygen demand (BOD) and total organic carbon (TOC),
also they can cause secondary pollution as a sludge in water (Wan Ngah and
Hanafiah, 2008). Many investigations have been carried out to improve the
properties of the adsorbents and increase their capacity for metal ion uptake by
chemically modification with mineral/organic acids, bases, organic compounds
and oxidation agents (e.g. NaOH, CaO, CaCly, citric acid, acetic acid, formaldehyde,
NaC0O3, NaHCO3, HCI, H2SO4, HNO3, H202, EDTA, methanol, etc.) (Velazquez-
Jimenez et al., 2013; Wan Ngah and Hanafiah, 2008). The pre-treatments could
modify the surface characteristics either by removing or masking the functional

groups or by exposing more binding sites (Pehlivan et al., 2012).

Furthermore, though so many studies have been available on abundant and low-
cost agro-industrial wastes and by-products as the adsorbents for heavy metal
ions, all of them have been carried out to utilize a single adsorbent for this
purpose. Hence, as each kind of lignocellulosic material has special functional
groups and character, several types of appropriate biosorbents can be combined

for gaining probable better detoxification efficiency.

In addition, the major disadvantage of biosorption process in heavy metal removal
from aqueous solutions is producing a huge amount of solid biomasses to the
environment. A few studies have considered regeneration after each desorption
step to tackle the problem attributing to solid biosorbents by applying proper
desorbing and regenerating agents without significant loss of adsorptive capacity.

Last but not least, most studies on heavy metal removal by lignocellulosic
biomasses have been performed in batch experiments and only a few have been
reported in fixed-bed columns which are more relevant to real operating systems

of wastewater treatment.
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1.3 Research hypotheses

The primary hypothesis for this research is the development of a multi-metal
binding biosorbent (MMBB) as an efficient, affordable and sustainable medium for
the adsorption of Cd, Cu, Pb and Zn from aqueous solution. The secondary
hypothesis is applying modified MMBB in a continuous column followed by

investigating if its regeneration and reusability would be feasible.

1.4 Objectives of the research

The overall objective of this study is to develop a feasible process for heavy metal
removal from industrial wastewater through biosorption on a combination of

different lignocellulosic agro-industrial wastes and by-products.
The specific objectives of this study are as follows:

e To develop a multi-metal binding biosorbent (MMBB) combining various types
of lignocellulosic agro-industrial wastes and by-products and select the best

adsorbent for next experiments

e To investigate cadmium, copper, lead and zinc removal feasibility using the
selected MMBB in batch experiments and then optimization of process and

operation conditions

e To analyse the kinetic and equilibrium adsorption (pseudo-first-order,
pseudo-second-order and intra-particle diffusion models) of these

contaminants on different adsorbents

e To model batch equilibrium adsorption data by applying two-parameter
isotherm equations of Langmuir, Freundlich, Dubinin-Radushkevich and
Temkin and three-parameter models of Khan, Sips, Redlich-Peterson and

Radke-Prausnitz adsorption isotherms

e To design and operate a lab-scale fixed-bed column for evaluating the
applicability of selected and optimized MMBB for synthetic solution and real

wastewater
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To study the effects of bed height, initial concentration and inlet flow rate in the

column studies

e To display column adsorption data using the empirical models of Thomas,

Yoon-Nelson, Dose Response model

e To develop a suitable method to desorption and regenerate the adsorbents in

the continuous mode for three successive cycle

e To scale-up the MMBB packed bed column adsorption system by using BDST

model data

1.5 Research significance

The reusing of lignocellulosic agro-industrial wastes and by-product such as tea
waste, fruit peel and tree leaves as a heavy metal adsorbent results in double
environmental benefits. Not only does it give a chance to reduce agricultural waste
in a green way but also provides an efficient, beneficially low-cost technology and
reusable alternatives for heavy metal ions from wastewater. The proposed process
can be applied wherever industrial wastewater and agro-industrial waste and by-
product are readily available enough for a practical application. The combination

of different biosorbents might provide higher selectivity, as well.

Also the selected wastes have good results reported in other literatures for heavy

metal removal and highly available in Australia and all over the world as well.

1.6  Scopes of the research

This study involves the development of a multi-metal binding biosorbent (MMBB)
as a mixture of different selected biosorbents. Two selected MMBBs namely
MMBB1 (tea waste, maple leaves and mandarin peels) and MMBB2 (tea waste,
corncob and saw dust) are applied for the next experiments. Both MMBBs will be
employed for batch experiments and characterization tests to evaluate and then
compare their biosorptive capacities. The isotherm and Kkinetic studies are

performed in the batch mode with synthetic wastewater solutions.
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Multi-Metal Binding Biosorbent (MMBB) Development

Select the best adsorbents as two different combinations namely MMBB1 and MMBB2

i

Batch Experiments (Synthetic Solutions)

) . o ) Isotherm, kinetic and thermodynamic studies
Effect of process operation conditions and phisico-chemical parameters

V4

Optimization and Characterizations of Chemically Modified MMBB

NS

Column Experiments (Synthetic Solutions and Real Wastewater)

Desorption and regeneration experiments

Effect of culomn design parameters, and breakthrough modeling Applicability of modified MMBB for real municipal wastewater

Scale-up calculation Desorption and regeneration study

Figure 1.1 The main tasks and scope of this study
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[sotherm data were described by two-parameter models of Langmuir, Freundlich,
Dubinin-Radushkevich and Temkin and three-parameter models of Khan, Sips,
Redlich-Peterson and Radke-Prausnitz adsorption isotherms while kinetic data
were fitted with pseudo-first-order, pseudo-second-order and intra-particle
diffusion models. After modification and optimization of MMBB whose metal
biosorption capacity would be higher, desorption and regeneration potential will
be tested and then characterized by SEM/EDS. The influences of different
operating variables, process design conditions and also the breakthrough curve
modeling are investigated in a mini-column with the synthetic wastewater. The
modeling of the column data was done using Thomas, dose response, Yoon-Nelson,
and Bed depth service time (BDST) models. A real wastewater is applied to
validate the modified MMBB in real situation. The column adsorption, desorption
and regeneration tests will be conducted with real wastewaters. The raw
municipal wastewater was collected from Sydney Water Treatment Plant while the
synthetic wastewater was prepared by dissolving nitrate salt of each metal ion in

Milli-Q water.

1.7 Outline and structure of this thesis
A brief description of the contents of each chapter is presented herein below:

Chapter 1 introduces a context for this study and defines the research problem.
The research objectives, main tasks and scope, and significance are highlighted.

Chapter 1 comes to an end with the layout and structure of the thesis.

Chapter 2 (Literature review) presents: (i) characterization of lignocellulosic
materials, (ii) application of lignocellulosic wastes and by-products as biosorbent
in water and wastewater treatment for heavy metal ions, dyes, organic and
nutrient removal, (iii) mechanism of biosorption and desorption process, (vi)
reusability of heavy metal- loaded wastes and by-products and (v) conclusion,

future perspectives and research gaps

Chapter 3 presents the materials and methods used in this study. All experiments

in this study are described in detail. Contents of experiments, such as chemical
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preparation, experimental setup, analytical methods as well as instruments used

are introduced.

Chapter 4 investigates the competitive adsorption of Cd, Cu, Pb and Zn using two
MMBBEs, in batch system in regard with physico-chemical parameters such as pH,
contact time, biosorbent dose and initial metal concentration. It also includes
kinetic and isotherm modeling followed by characterization and desorption

studies of these MMBBEs.

Chapter 5 deals with optimization, chemical modification and characterization of
the selected new biosorbent to find the principal surface functional groups and
possible biosorption mechanisms. Desorption studies are carried out in terms of
eluent type, concentration and contact time of desorption process. The effect of

regeneration step by CaCl; will be then taken into consideration as well.

Chapter 6 aims to study chemically modified multi-metal binding biosorbent
(MMBB) in a fixed-bed column. The effect of bed height, flow rate, biosorbent
particle size, pH and initial metal concentration on packed bed reactors
performance have been investigated and the possibility of regeneration and reuse
has been studied. Moreover, Thomas and Dose Response models were applied for

experimental data to simulate the breakthrough curves.

Chapter 7 evaluates the capability and applicability of MMBB in real situation, the
MMBB packed-bed column was applied for a real wastewater stream. Bed Depth
Service Time (BDST) model parameters were used to find the column capacity in

order to predict the scale-up of a unit plant.

Chapter 8 summarizes key findings of this case study. Additionally, the unique
contributions of this study to the field of Cd, Cu, Pb and Zn biosorption are

highlighted. Chapter 8 ends with recommendations for future research.
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Chapter 2

Literature Review
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Chapter 2 Literature review

A major part of Chapter 2 was published in the following paper:

4 )

Abdolali, A., Guo, W.S,, Ngo, H.H.,, Chen, S.S., Nguyen N.C, 2014. Typical
lignocellulosic wastes and by-products for biosorption processes in water and

wastewater treatment: a critical review. Bioresource Technology 160, 57-66.

- /

2.1 Objectives

At present, the interests in utilization of cheap alternatives have been significantly
increased and many attempts have been made by researchers on feasibility of
biosorption potential of lignocellulosic materials (either natural substances or
agro-industrial wastes and by-products) as economic and eco-friendly options for
toxic metal ion and dye removal from wastewater streams (Xu et al., 2017; Santos
et al,, 2015; Ahmed and Ahmaruzzaman, 2014; Raval et al., 2016). In this chapter,
an overview of recent researches, the results and key finding on biosorption
process by lignocellulosic agro-industrial wastes and by-products will be pointed

out.

Chapter 2 (literature review) provides a research background for this study. As the
main part of this literature review, Chapter 2 continues with the current state of
studies on a wide variety of cheap biosorbents in natural and modified forms for
heavy metal ions, dyes, organic and nutrient pollutants removal. The efficiency of
each biosorbent has been also highlighted and discussed with respect to the
operating conditions (e.g. initial pH value, temperature, hydraulic residence time,
initial metal concentration, biosorbent particle size and its dosage), chemical
modification on sorption capacity and preparation methods, thermodynamics and

kinetics, as well as the applications.

The next section evaluates the potential of reusing and regenerating agricultural
wastes and by-products used for heavy metal removal. This section provides deep

insights into influential factors, desorbing and regenerating agents’ properties and
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desorption mechanisms as well. Additionally, Chapter 2 also justifies the selection
of agro-industrial wastes and by-products for the development of cadmium,
copper, lead and zinc adsorbents in this study. This Chapter ends with major

findings and research gaps, which guide the present research.

2.2 Characterization of lignocellulosic materials

Lignocellulosic materials have been called photomass because they are a result of
photosynthesis. Plant cell walls typically consist of three layers: the primary cell
wall, the secondary cell wall and the middle lamella. The primary cell wall
continuously extends with growing cells. The thick layer which is formed inside
the primary cell wall after cell growth termination is known as secondary cell wall.
The middle lamella forms an interface between secondary walls of adjacent plant
cells and keeps them together as glue. The primary cell wall consists of the
polysaccharides cellulose, hemicellulose and lignin. As shown in Figure 2.1, the
cellulose aggregates to microfibrils which are covalently connected to
hemicellulosic chains and form a cellulose-hemicellulose network that is

embedded in the lignin matrix (Kubicek, 2012).

There are several types of cellulose in the cell wall of lignocellulosic materials.
Cellulose (30-50%) is a linear polymer of 3-D-glucopyranose sugar units whose
average chain has a degree of polymerization of about 9,000-10,000 units.
Approximately 65% of the cellulose is highly oriented and crystalline with no
accessibility to water and other solvents, while the rest is composed of less
oriented chains which have association with hemicellulose (20-40%) and lignin
(15-25%). Hence, as its partial accessibility to water and other solvents, the
molecular structure of cellulose gives a variety of characteristics such as
hydrophilicity, chirality and degradability. Moreover, chemical reactivity is
strongly a function of the high donor reactivity of the OH groups in cellulose
molecules. In the crystalline structure of cellulose there are two parallel glucan
chains that are bound by hydrogen bonding and Van der Waals forces. The bound
sheets then stacked to needle-shaped fibres with the morphological hierarchy of

elementary fibrils, microfibrils and microfibrillar bands (Kubicek, 2012).
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With lower degree of polymerization than cellulose, the hemicellulose includes a
group of polysaccharide polymers and the hemicelluloses which are not crystalline
vary in structure and polymer composition depending on the source. In the
primary cell wall of cereals and hardwood, xylan is the predominant hemicellulose
polymer while in flowering plants, dicots and nongraminaceous monocots,
xyloglucan is the major component. A rigid network structure of cellulose
microfibrils is a result of cell wall extension via the length of the xyloglucan
polymers which makes cross-link several cellulose microfibrils. In addition,
hemicellulosic structure of the soft wood or gymnosperms cell walls consists

galactomannans and galactoglucomannans (Kubicek, 2012).

0
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OH OH
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o o on O Ho - OH
; T OH
OH Microfibril 4 . ! ils

Hemicellulose / Cellulose

Hemicellulose
Cellulose
Lignin

Figure 2.1 Lignocellulosic material wall and molecular structure (adapted from Xu

etal, 2014)

Lignins are highly branched without crystalline-structure and are composed of
nine carbon units derived from substituted cinnamyl alcohol of which the structure

and chemical composition are a function of their source. A rigid structure which
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strengthens the plant cell wall is also created by interaction between lignin and the
cellulose fibrils. There are also small amounts of water, ash, cyclic hydrocarbons,
organic and inorganic materials presented in lignocellulosic sources as extractives
which contains a large number of both lipophilic and hydrophilic constituents
(Kubicek, 2012; Cagnon et al., 2009; O’Connell et al., 2008). Chemical composition

of some common lignocellulosic materials is presented in Table 2.1.

Table 2.1 Chemical composition of some common lignocellulosic materials

Chemical Component (%)

Type

Cellulose Lignin Hemicellulose Ash Silica
Rice straw 25-35 10-15 20-30 15-20 9-15
Wheat straw 30-35 16-21 26-32 4.5-9 3-7
Barley straw 30-35 14-15 24-29 5-7 3-6
Sugarcane bagasse 32-44 19-24 25-35 1.5-5 <4
Bamboo 26-43 21-31 15-26 1.7-5 <1
Grass 30-40 10-25 35-50 5-15 -
Corncob 35-45 5-15  35-45 1-2 <1
Leaves 15-25 5-10 70-80 <1 -
Cotton waste 80-95 - 5-20 <1 -
Hardwood 40-55 20-25 25-40 <1 -
Softwood 40-50 25-35 25-35 <1 -
Olive stone 30-35 20-25 20-30 <1 5-9

Nut shell and stone 25-35 30-40 25-30 - -

Hemicellulose
31% other

The type of functional groups and chemical components in lignocellulosic wastes
and by-products are similar but in different amounts. They play an important role
in heavy metal ions sorption (Asadi et al., 2008). Additionally, in order to enhance
and reinforce the functional group potential and increase the number of active

sites, some pre-treatment methods using different kinds of modifying agents are
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applied within known protocols (Bhatnagar and Sillanpaa, 2010; Wan Ngah and
Hanafiah, 2008). As the agents include organic and mineral acids (HCl, HNOsg,
H2S04, acetic acid, citric acid and formic acid), bases and basic solutions (NaOH,
NazC03, Ca(OH)z and CaClz), oxidizing agents (H202 and K2MnO4) and many other
mineral and organic chemical compounds (formaldehyde, glutaraldehyde, CH30H,

poly ethylene imine and epichlorohydrin).

According to the research carried out by O’Cannell et al. (2008), chemical
modification can be applied to change certain properties of lignocellulosic
biosorbents such as hydrophilic or hydrophobic characters, elasticity, water
sorption ability, adsorptive or ion exchange capability, resistance to

microbiological attack and thermal resistance.

In fact, chemical modification conducts two main approaches to enhance
biosorptive capabilities: 1) the direct modification of the molecular structure
through the introduction of chelating or metal binding functionalities through
esterification (e.g. succinic anhydride and citric acid), etherification (e.g. sodium
methylate, epichlorohydrin and polyethyleneimine), halogenation (e.g. 3-
mercaptopropionic acid) and oxidation (e.g. sodium metaperiodate); and 2)
grafting of selected monomers and adding to main chain of polymers so as to
directly introduce metal binding capabilities or functionalization of grafted
polymer chains by chelating agents. Different methodologies like photografting,
high energy radiation and chemical initiation techniques have been applied to
activate the backbone or main polymer. Amide, amine, carboxyl and hydroxyl
binding ligands can be employed to form free radicals followed by
copolymerization and functionalization. The carboxyl functional groups play a

major role in metal removal using biosorbents (Tan and Xiao, 2009).

The variation in pH value can change the characterization and availability of metal
ions as well as surface functional group chemistry. It can be said that the main
parameters influencing pollutants removal are pH value of solution. Figure 2.2
shows the range of optimum pH of some different lignocellulosic biosorbents. In
lower and higher pH values (pH<2 and pH>9), predominant competition between

hydronium cation and metal ions, and soluble hydroxyl formation are the main
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factors contributing to depletion of adsorption capacity (Pérez Marin et al., 2009).
Recently, succinic, maleic and phtalic have been reported as good surface
modification agents due to their specifications to increase carboxyl groups (-
COOH) on the surface of biosorbent. Ethylene diamine tetraacetic dianhydride
(EDTAD), as a biodegradable agent with two anhydride groups per molecules, is a
proper option for surface modification through occurring esterification reaction,
introducing carboxylic acid and amine groups, as well as enhancing chelating

abilities and biosorption capacity (Pereira et al., 2010).

Olive waste

Coffee and tea waste
Sugarcane Bagasse
Corncob

Grass

Sawdust

Fruit waste

Wheat, barley and rice
Agave Bagasse

(a)

Olive waste

Coffee and tea waste
Sugarcane Bagasse
Grass

Sawdust

Fruit waste

Wheat, barley and rice

pH

opt

(b)
Figure 2.2 Optimum pH of some typical lignocellulosic agro-industrial wastes and

by-product for (a) heavy metal and (b) dye removal
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Velazquez-Jimenez et al. (2013) compared different types of modifying agents for
agave bagasse treatment. They reported that organic acids like citric, oxalic and
tartaric acid enforced weak and ineffective functional groups which were
responsible for metal adsorption. Meanwhile, the analytical results indicated that
concentration of oxygenated group like carboxyl group (-COOH) increased. This
enhancement was probably obtained by modification via protonating unavailable
functional groups with mineral acid like HNO3 followed by transforming and
oxidizing functional groups to carboxylic groups with NaOH. In another study,
according to Fourier transform infrared spectroscopy (FTIR) analysis, the number
of functional acid groups such as O-H and C-O (stretching vibrations of ethers and
alcohols) increased through phosphoric acid treatment while titrable acid groups
decreased through hydrogen peroxide treatment (Martin-Lara et al, 2012).
Leyva-Ramos et al. (2012) also investigated the modification agent molarity to
find the relationship between the capacity and acidic sites of corncob in natural

and modified forms as well as the probable biosorption mechanism.

Nevertheless, it is generally difficult to compare the adsorptive properties of
adsorbents directly, because there are considerable inconsistency in data
presentation and differences in experimental conditions, materials and
methodologies (e.g. different initial concentrations, pH value, temperature,

adsorbent dose, particle size, etc).

2.3 Application of lignocellulosic wastes and by-products as

biosorbent in water and wastewater treatment

2.3.1 Lignocellulosic wastes and by-products for heavy metal ion removal

Lignocellulosic waste materials have proper characteristics and structural
compounds to adsorb heavy metal ions on their surface binding sites through
interaction with the chemical functional groups (Abdel-Raouf and Abdul-Raheim,

2017; Bilal etal,, 2013; Ding et al., 2013).

Without going into too much detail, the maximum biosorption capacities of

different types of natural biosorbents, agro-industrial wastes and by-products for
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heavy metal removal are summarised in Table 2.2 and some of the results are
discussed hereinafter. Due to the different laboratory conditions (e.g. pH,
temperature, adsorbent dose, particle size), materials and methodologies, it is not

easy to conclude which biosorbent would be suitable for particular metal ion.

One of the main factors that sprightly influences whether an agro-industrial waste
or by-product is practical or not is the availability. For example, sugarcane
bagasse, an agro-waste from sugar industries has been extensively studied
because of its low price and high availability all over the world. This biosorbent
exhibited very high potential in heavy metal uptake during wastewater treatment
(Aloma et al., 2012; Liu et al., 2012). The biosorption capacity of sugarcane bagasse
could be noticeably improved by introducing carboxylic, amine and other
functional groups into the surface materials (Pereira et al,, 2010) or by removing
soluble organic compounds and increasing efficiency of metal sorption (Martin-
Lara et al.,, 2010). Based on the work of Pehlivan et al. (2013), the main factors
determining the adsorption of As(V) on sugarcane bagasse modified by iron(III)
oxy-hydroxide (HFO) were electrostatic interactions, ligand exchange and
chelation between positively charged surface groups =FeOH2* and negatively
charged As(V) ions. Aloma et al. (2012) concluded that nickel ion biosorption on
non-chemically modified sugarcane bagasse within temperature range of 25-65°C
was exothermic and spontaneous. Moreover, Langmuir isotherm was able to

simulate the experimental data better than Sips and Freundlich models.

Study on optimal preparation conditions for sugarcane bagasse, watermelon rind
and banana peels to use in Cu(II) removing from water was carried out by Liu et al.
(2012). The results demonstrated that 120 °C was the suitable drying temperature.
The drying time for sugarcane bagasse, watermelon rind and banana peel was 1, 3
and 2 hr, respectively. They found that fine powder (<150 pm) was the most
efficient size for Cu(ll) removal. However, for continuous biosorption process in
column, the mechanical strength should be considered as a result of biomass

particle size.

In other study, when rice husk was subjected to 1.5% alkali treatment and used for

Zn(1I), Cu(1I), Cd(ID), Ni(II), Pb(II), Mn(1I), Co(II), Hg(II) and Cr(VI) removal from
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single ion and mixed solutions, the ultimate biosorption capacity calculated from
Langmuir isotherm model was improved in the order of Ni?*< Zn?*~ Cd?* * Mn?* =
Co2+ < Cu?* =~ Hg?* < Pb%* at 32%0.5 °C between pH range of 5.5 and 6.0+0.1
(Krishnani et al., 2008). However, in other study, the pre-treatment of sugarcane
bagasse using NaOH and HCI had no significant effect on mercury biosorption

capacity (Khoramzadeh et al., 2013).

The other typical and abundantly available agro-industrial materials are wheat
and barley wastes, as the main crops all over the world. The feasibility of
utilization of these kinds of waste as very low-cost biosorbents were investigated
by Pehlivan et al. (2012), Muhamad et al. (2010) and Aydin et al. (2008). Esterified
barley straw was thermo-chemically modified with citric acid for copper
adsorption (Pehlivan et al, 2012). Increasing the temperature improved the
reaction efficiency but led to lower carboxyl content and increased cross-linking of
modified barley straw. Increasing citric acid concentration enhanced free carboxyl
groups on the biomass matrix. Besides, the results demonstrated that a significant
amount of free COOH groups remained in the biomass structure up to 4 hr reaction
time and then the increase in cross-linking occurred with more reaction time. On
the contrary, some case studies suggested the acids as modifying agent should be
used in lower concentrations due to prevention of cellulose structure damage and
high toxicity. In addition, Miretzky and Cirelli (2010) reported that alkali
treatments in comparison with acidic ones at the same conditions were more
effective on metal ion removal by solving cell wall matrix. Therefore, alkali
treatments could result in better diffusion through wall and make the functional
groups denser and thermodynamically more stable. The increase in Cd(II) and
Cu(IT) uptake on wheat straw with temperature raise was attributed to the
increase in the available active sites on the surface of the adsorbent by the opening
up of the cellulose fibres when wheat straw was soaked in a warmer solution

(Muhamad et al., 2010).

Sawdust has also been widely studied as an alternative adsorbent and has shown
good stabilities (Asadi et al., 2008; Sud et al., 2008; Bulut and Tez, 2007; Prado et
al,, 2010). It has been identified that phenolic, hydroxyl and carboxylic functional

groups of sawdust are responsible for heavy metal uptake, as heavy metal ions
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could accumulate in secondary septum of wood in which the amount of lignin is
very low. Palumbo et al. (2013) found that metal adsorption onto biosorbent is
possibly a passive binding. They highlighted the effect of pH and natural organic
matter on Zn removal. Metal uptake has been manipulated by pH stronger than the
concentration of natural organic matter. S¢iban et al. (2007) investigated heavy
metal biosorption capacity of sawdust during synthetic and real cable factory
wastewater treatment. Heavy metal ion adsorption was influenced by the
existence of other ions and organic materials in real wastewater through three
phenomena, namely, synergism, antagonism and non-interaction. This study
showed that copper was better adsorbed from wastewater with multiple heavy
metal ions than from wastewater containing single Cu(ll) ion, whereas Cd
adsorption was inhibited by other metal ions and Zn removal were unaffected. As
expected, some metal ions have better affinity towards lignocellulosic biosorbents
than other ions and this fact ascertains the selectivity potential of functional group.
The highest amount of correlation coefficients, BET, Langmuir and Freundlich
models well described experimental data of zinc, copper and cadmium removal,

respectively.

Bulut and Tez (2007) released that Ni, Cd and Pb biosorption on walnut tree
sawdust was favourable at higher temperatures as the values of AG became more
negative and positive AH suggested endothermic nature of adsorption. The
randomness at solid-solution interface increased by temperature grows (positive
AS), leading to enhancement of adsorption at higher temperatures. This may be
related to adsorption surface activation and/or pore size enlargement. Reverse
trend was obtained for Pb biosorption on different types of sawdust as an

exothermic process (Prado et al., 2010).

As a pectin-rich by-product of fruit juice industry,the suitable chemical treatment
(e.g. mercapto-acetic acid (C2H402S) and carbon disulfide (CSz))can make orange
peels more favorable for metal adsorption due to the negativity amount of zeta

potential, indicating higher physical stability and surface activity (Sha et al., 2009).

Martin-Lara et al. (2012) investigated the biosorption properties and mechanical

strength of the olive stone modified by H2SO04 (1 M) for lead removal in a fixed-bed
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column. The column was retained over 14 cycles of use and life factor revealed that
biosorbent bed would be exhausted after 71.3 cycles. Furthermore, according to
the work study mentioned above, all biosorption were found to achieve
equilibrium in a very short contact time and all kinetic studies showed the
applicability of pseudo-second-order kinetic model and the second-order nature
of biosorption process of heavy metal ions onto raw and pre-treated biosorbents.
This can be attributed to assumption of chemical adsorption rate-controlling step
in biosorption process involving electron sharing or transferring between
adsorbent and adsorbate (Pereira et al.,, 2010; Aloma et al., 2012; Bulut and Tez,
2007; Ding etal., 2012).

Table 2.2 The performance of different types of agro-industrial wastes for heavy

metal ion removal from aqueous solutions

Adsorbent (modifying Adsorbate ™ Mechanism Reference
agent) (mg/g)
Ion exchange, Velazquez-Jimenez et
A B Cd 13.27
gave Bagasse (raw) complexation al,, 2013
Ion exchange, Velazquez-Jimenez et
A B HCI Cd 13.5
gave Bagasse (HC) complexation al,, 2013
Ion exchange, Velazquez-Jimenez et
A B HNO cd 12.5
gave Bagasse ( 3) complexation al,, 2013
Ion exchange, Velazquez-Jimenez et
A B NaOH Cd 18.32
gave Bagasse (NaOH) complexation al,, 2013
I h , .
Rice straw (raw) Cd 13.89 on eXF ange Ding et al,, 2012
chelating
Torab-Mostaedi et al.,
Grapefruit peel (raw) Cd 42.09 Ion exchange 28;‘; ostaedieta
L -R tal.,
Corncob (Citric acid) Cd 49.2 Ion exchange eyva-ramoseta
2012
Wheat stem (raw) Ccd 11.6 Complexation Tan and Xiao, 2009
Wheat stem (Methanol) Cd 0.35 Complexation Tan and Xiao, 2009
Wheat stem (NaOH) Cd 21.84 Complexation Tan and Xiao, 2009
Coconut shell @ (raw) Cd 37.78 Sousa etal., 2010
Coconut shell ® (raw) Cd 11.96 Sousa et al., 2010
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Adsorbent (modifying Adsorbate ™ Mechanism Reference
agent) (mg/g)
Complexation,
i h
Rice husk (raw) Cr 8.5 ‘on exchange Bansal et al., 2009
and surface
precipitations
Complexation,
i h
Rice husk (Formaldehyde)  Cr 10.4 lon exchange Bansal et al., 2009
and surface
precipitations
Rice husk (Alkali-treated) Cr 52.1 Ion exchange Krishnani et al., 2008
Olive pomace (raw) Cr 13.95 Ion exchange Krishnani et al., 2008
Orange peel (raw) Cu 50.94
fon e’;Chan_ge’ Sha et al., 2009
Orange peel (CzH4025) Cu 70.67 complexation
Sunflower hull (raw) Cu 57.14 Witek-Krowiak, 2012
I h ’
Barley straw (raw) Cu 4.64 on ex.c ange Pehlivan et al., 2012
chelation
I h ’
Barley straw (Citric acid) Cu 31.71 on ex.c ange Pehlivan et al., 2012
chelation
Garden grass (raw) Cu 58.34 Hossain et al., 2012
Coconut shell (raw) Cu 41.36 Sousa et al.,, 2010
Lentil shell (raw) Cu 9.59 Aydin et al., 2008
Rice shell (raw) Cu 2.95 Aydin et al., 2008
Wheat shell (raw) Cu 17.42 Aydin et al., 2008
Sawdust (raw) Cu 6.88 Séiban et al., 2007
Rice straw (HNO3-NaOH) Cu 8.13 Rocha et al,, 2009
Olive stone (raw) Cu 20.2 Fiol etal, 2006
Coconut shell @(raw) Cu 41.36 Sousa et al., 2010
Coconut shell ®)(raw) Cu 20.26 Sousa et al.,, 2010
Ion exchange, Velazquez-Jimenez et
A B Pb 35.6
gave Bagasse(raw) complexation al, 2013
Ion exchange, Velazquez-Jimenez et
A B HCl Pb 54.29
gave Bagasse (HCI) complexation al, 2013
Agave Bagasse (HNO3) Pb 42.31

Ion exchange,

Velazquez-Jimenez et
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Adsorbent (modifying Adsorbate ™ Mechanism Reference
agent) (mg/g)
complexation al, 2013
Ion exchange, Velazquez-Jimenez et
A B NaOH P A2
gave Bagasse (NaOH) b >0 complexation al, 2013
Rice husk (Alkali-treated) Pb 58.1 Ion exchange Krishnani et al., 2008
Corncob (raw) Pb 16.22 Tan etal,, 2010
Corncob (CH30H) Pb 43.4 Tan et al., 2010
Corncob (NaOH) Pb 7.89 Tan et al., 2010
I h ,
Sawdust (raw) Pb 15.9 or exc an-ge Bulut and Tez, 2007
complexation
Olive stone (raw) Pb 92.6 Fiol et al.,, 2006
Coconut shell @(raw) Pb 54.62 Sousa et al., 2010
Coconut shell ®)(raw) Pb 17.9 Sousa et al., 2010
Agave Bagasse (raw) 2.23 Aloméa etal., 2012
I h ,
Sawdust (raw) Ni 3.29 O eXCHANBE, B lut and Tez, 2007
complexation
Rice husk (Alkali-treated) Ni 5.52 Ion exchange Krishnani et al., 2008
Torab-Mostaedi et al.,
Grapefruit peel (raw) Ni 46.13 Ion exchange 28;"; ostaedieta
Cashew nut shell (raw) Ni 18.86 Kumar et al,, 2011
Olive stone (raw) Ni 21.3 Fiol et al.,, 2006
Coconut shell @(raw) Ni 16.34 Sousaetal., 2010
Coconut shell ®)(raw) Ni 3.12 Sousa et al., 2010
Ion exchange, Velazquez-Jimenez et
A B Z 7.84
gave Bagasse(raw) n 8 complexation al, 2013
Ion exchange, Velazquez-Jimenez et
A B HCl Z 14.43
gave Bagasse (HCI) n complexation al, 2013
Ion exchange, Velazquez-Jimenez et
A B HNO Z 12.4
gave Bagasse ( ) " complexation al, 2013
Ion exchange, Velazquez-Jimenez et
A B NaOH Z 20.24
gave Bagasse (NaOH) n 0 complexation al, 2013
Agave Bagasse (EDTAD)®© Zn 105.26 lIon exchange Pereira etal., 2010
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Adsorbent (modifying Adsorbate ™ Mechanism Reference

agent) (mg/g)

Agave Bagasse (EDTAD)@  Zn 45.45 Pereira etal, 2010
Sawdust (EDTAD)© Zn 80 Ion exchange Pereira etal., 2010
Sawdust (EDTAD)@) Zn 47.39 Pereira etal., 2010
Sawdust (raw) Zn 0.96 S¢iban et al., 2007
Rice straw (HNO3-NaOH) Zn 8.63 Rocha etal,, 2009
Rice husk (Alkali-treated) Zn 8.14 Ion exchange Krishnani et al., 2008
Coconut shell @ Zn 17.08 Sousa et al., 2010
Coconut shell ®) Zn 7.32 Sousa et al., 2010
Rice straw (raw) Hg 22.06 Rocha et al,, 2009
Rice husk (raw) Hg 36.1 Krishnani et al., 2008
Sugarcane Bagasse (raw) Hg 35.71 g(l)li);amzadeh etal,

@ single-component solution
() multi-component solution
(9 Synthetic wastewater

(d) Real wastewater

2.3.2 Lignocellulosic wastes and by-products for dye removal

Major pollutants in industrial wastewaters are high concentrations of TSS, COD,
color, acidity and other soluble substances. Wastewater from dyeing operations is
intense colored stream containing unfixed dyes along with salts and auxiliary
chemicals such as emulsifying agents. Thus, the removal of color from textile
industry and dyestuff manufacturing industry wastewaters represents a major
environmental concern. In addition, resistance of dyes to biological degradation
has made color removal from wastewaters more difficult, because most textile
dyes have complex aromatic molecular structures that resist degradation (Guo and
Ngo, 2012). Compared with other commercially used adsorbents such as activated
carbon, inexpensive, locally available and effective materials can be used as a
substitute for the removal of dyes from aqueous solution (Crini, 2006). An
extensive list of biosorbents and the parameters affecting dye removal have been

compiled in Table 2.3.
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Table 2.3 The performance of different types of agro-industrial wastes for dye

removal from aqueous solutions

Adsorbent Modifying agent ~ Adsorbate gmax (mg/g)  Reference
Sugarcane Succinic Methylene blue 478.5 Guimardes Gusmao
Bagasse anhydride etal, 2012
Gentian violet 1273.2 Guimardes Gusmao
etal,, 2012
Sugarcane raw Crystal violet 10.44 Parab etal., 2009
Bagasse
Sugarcane raw Methyl red 5.66 Saad et al., 2010
Bagasse H3PO4 Methyl red 10.98 Saad et al., 2010
Jute fibre raw Congo red 8.116 Roy etal, 2013
Rice husk raw Direct red-31 74.07 Safaetal, 2011
Carboxymethyl Direct red-31 41.84 Safaetal, 2011
cellulose sodium
Polyvinyl Direct red-31 11.44 Safaetal, 2011
alcohol+sodium
alginate
HCl Direct red-31 74.63 Safaetal, 2011
raw Direct orange-26 53.19 Safaetal, 2011
Carboxymethyl Direct orange 34.25 Safaetal, 2011
cellulose sodium
Polyvinyl Direct orange 16.78 Safaetal, 2011
alcohol+sodium
alginate
HCl Direct orange 46.95 Safaetal, 2011
Barley husk raw Solar red BA 400 Haq etal,, 2011
Citrus waste raw Reactive blue 19 37.45 Asgher and Bhatti,
2012
Sodium alginate Reactive blue 19 400 Asgher and Bhatti,
immobilized 2012
Glacial acetic Reactive blue 19 75.19 Asgher and Bhatti,
acid 2012
raw Reactive blue 49 135.16 Asgher and Bhatti,
2012
Sodium alginate Reactive blue 49 80.00 Asgher and Bhatti,
immobilized 2012
Glacial acetic Reactive blue 49 232.56 Asgher and Bhatti,
acid 2012
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Adsorbent Modifying agent ~ Adsorbate gmax (mg/g)  Reference
Capsicum Acetone Reactive blue 49 96.35 Tunali Akar et al,
annuumseed 2011
Oreganumstalk  raw Basic Red 18 172.41 Mavioglu Ayan et al,,
2012
HNO3 Basic Red 18 272.92 Mavioglu Ayan et al.,
2012
H3PO, Basic Red 18 280.73 Mavioglu Ayan et al,,
2012
raw Methylene blue 94.34 Mavioglu Ayan et al.,
2012
HNO3 Methylene blue 142.86 Mavioglu Ayan et al,,
2012
H3PO, Methylene blue 147.06 Mavioglu Ayan et al.,
2012
raw Acid Red 111 50.0 Mavioglu Ayan et al,,
2012
HNO3 Acid Red 111 112.36 Mavioglu Ayan et al,,
2012
H3PO, Acid Red 111 39.84 Mavioglu Ayan et al.,
2012
Date stone raw Methylene blue 43.47 Belala et al.,
Palm tree raw Methylene blue 39.47 2011
waste
Artocarpushete  raw Crystal violet 43.39 Sahaetal, 2012
rophyllus
(jackfruit) leaf
powder
Sunflower seed raw Methylene violet 92.59 Hameed, 2008
hull
Grass waste raw Methylene blue 457.64 Hameed, 2009a
Spent tea raw Methylene blue 300.05 Hameed, 2009b
leaves
Olive pomace raw RR198 7.21x10-5@  Akaretal., 2009
raw RR198 41.38 Akar et al., 2009
Beech sawdust  Calcium chloride = Methylene blue 12.2+1.8 Batzias and Sidiras,

2007
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Adsorbent Modifying agent ~ Adsorbate gmax (mg/g)  Reference
Zinc chloride 13.2+2.0 Batzias and Sidiras,
2007
Magnesium 15.6+2.4 Batzias and Sidiras,
chloride 2007
Sodium chloride 9.7+0.6 Batzias and Sidiras,
2007
Mango seed raw Victazol Orange 44.8 Alencar etal., 2012
HCI 71.6 Alencar et al,, 2012
Tea waste FeClz.6H,0+FeCl  Janus green 129.87 Madrakian et al,
2.4H20 2012
Methylene blue 119.05 Madrakian et al,
2012
Thionine 128.21 Madrakian et al,
2012
Crystal violet 113.64 Madrakian et al,
2012
Congo red 82.64 Madrakian et al,
2012
Neutral red 126.58 Madrakian et al,
2012
Reactive blue 19 87.72 Madrakian et al,
2012
@ mol/g

As the most commonly used dyes in textile and paper industries, the removal of
methylene blue was conducted by Guimaraes Gusmado et al. (2012) using
succinylated sugarcane bagasse. The carboxylate functions in the sugarcane
bagasse structure have negative charges to interact to cationic dyes and hence the
functionality can be modified by succinic anhydride and sodium bicarbonate
solution. After esterification, FTIR spectroscopy illustrated the presence of
carboxylate group (-COO-Na*) and symmetric stretching of ester groups (-C-O-
C=0) which were responsible to dye biosorption.In another similar study,
adsorptive capability of sugarcane fibre to remove crystal violet was studied by
Parab et al. (2009). Compared to sawdust and coir pith biosorption, the results

revealed a good correlation of Freundlich and Redlich-Peterson (R-P) isotherm
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models. The experimental data also indicated coir pith achieved the highest

adsorption capacity followed by sawdust and sugarcane fibre.

Other researchers conducted batch and column experiments to simulate kinetics of
methylene blue adsorption on calcium chloride, zinc chloride, magnesium chloride
and sodium chloride treated beech sawdust. The Freundlich and Langmuir
adsorption capacity in batch study remarkably increased by pre-treatments
following the order of NaCl>CaCl.>MgCl2>ZnClz. In the case of column adsorption
process, the adsorption capacity coefficient of the bed at different breakthrough
values could be calculated by the Bed Depth Service Model developed by Bohart
and Adams for all used modifying agents (Batzias and Sidiras, 2007). Han et al.
(2007) conducted the similar study to investigate the effects of pH, adsorbate
concentration, bed depth, flow rate and ionic strength and existed salt on
methylene blue removal using rice husk in a continuous fixed-bed column system.
The Thomas and Bed Depth Service Time models properly described the
adsorption of methylene blue. Generally, breakthrough occurs faster at higher flow
rate and dye concentration due to more mass transfer rate, whereas breakthrough
time increases significantly with the decrease in the flow rate. The presence of
other metal ions such as Na* and Ca?* resulted in steeper slope and shorter
breakthrough time. The effect of CaCl; was stronger than that of NaCl at the same

dye concentrations.

Acetone-treated capsicum seeds were used for reactive blue 49 uptake in batch
and continuous column systems. According to FTIR spectra, -NH,-OH and C=C
groups participated in dye removal through chemisorption mechanism. This
process well described by Langmuir model in both batch and continuous modes. In
batch biosorption experiments, ionic strength increase made a slight decrease in
dye removal efficiency, while there were no significant changes obtained by

increasing initial dye concentration (Tunali Akar et al.,, 2011).

Asgher and Bhatti (2012) compared raw, immobilized and acetic acid-treated
citrus waste to remove reactive blue 19 and reactive blue 49 from aqueous
solution. Very excellent performance was achieved for both dyes. Acidic pH range

was the optimum condition under which dye molecules bound with surface active
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sites of biomass (-NH,-OH and C=0 groups) via hydrogen ions as bridging ligands.
The physio-sorption was the predominant mechanism of removing reactive blue
19 and reactive blue 49 biosorption using citrus waste. The biosorption process of

both dyes adequately followed all Langmuir, Freundlich and Temkin isotherms.

Hameed (2008, 2009a, 2009b) investigated the methyl viole removal using
sunflower seed hull andmethylene blue removal using grass waste and spent tea
leaves.The experimental data wereanalysed in terms of initial pH, initial dye
concentration, biosorbent dose and contact time in order to find the best kinetic
and isotherm model. For all dyes, the pseudo-second order-order kinetic model
was better than pseudo-first-order and intra particle diffusion models. Methylen
violet uptake on sunflower seed hull followed Freundlich while Langmuir equation
was found to be in good agreement with sorption data ofmethylen blue on grass
and tea waste. The dye removal is strongly dependant on pH, biosorbent dose,
initial dye concentration as well as biosorbent typeaccording to the results of
maximum dye biosorption capacitiesreported in literatures. In adition, the rough
surface of these adsorbent provided a suitable bed for dye binding or

entrappingaccording to SEM images.

The other study conducted by Madrakian et al. (2012) dealt with capability of
magnetite nanoparticles loadedtea waste for adsorption of sevendyes (Janus green,
methylene blue, thionine, crystal violet, Congo red, neutral red and reactive blue
19). In this study, cationic dyesindicated higher adsorptionremoval than anionic
dyes. The authors suggested that the increase in intensity of some peaks (e.g. -OH,
aliphatic C-H, C-0, NHz in amid bands) depicted in FTIR analysis could be
attributed to the welleffectiveness ofmagnetite nanoparticles modification as a
chemical modifier. They also reported very excellent biosorption removal(up to

98%) for all tested dyesunder optimum experimental conditions.

The possibility of using phosphoric acid (H3PO4-) treated sugarcane bagasse to
remove methyl red dye was explored by Saad et al. (2010). The efficiency of dye
removal by H3PO4 treated bagasse was less than activated carbon and followed by
untreated bagasse. Study on the effect of pH indicated that activated carbon
decolourization remained 100% for all pH values, whereas for both treated and

untreated bagasse, lowest percentage of dye removal was recorded at pH of 2. Dye
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adsorption was significantly increased between the pH values of 3 and 6 and then
gradually decreased in the pH range of 7-10. This trend illustrated that ion
exchange mode and electrostatic attraction between dye anions and negatively
charged surface of biosorbent. The kinetics of methyl red adsorption followed the
pseudo-first-order kinetic expression and Langmuir isotherms model fit well the

experimental data.

Safa et al. (2011) concluded that carbonyl, carboxyl and amide groups of rice husk
were involved in Direct Red-31 and Direct Orange-26 removal at low pH values.
Besides, at basic pH range, formation of more ionic species such as hydroxyl and
carboxyl showed competition with dye anions for active sites and hence
biosorption decreased.They also reported different biosorbent surface behaviours
could be seen by different chemical modification agents. More positively charged
active sites and stronger electrostatic attraction were created by acid treatment
and surface protonation. Alkali treatment led to surface functional group
deprotonation and interior biosorbent surface activation, and salt treatment could
produce more binding sites for dyes. Additionally, cationic surfactant created
positive charge impregnation on adsorbent surface. These several modification

methods increased dye removal on rice husk in the following order:

Glutaraldehyde methanol< ethanol< NaOH< NH4OH< boiling< native< Triton X-
100< heat treated< cationic surfactant< MgS0O4< CaCl2-H20< NaCl< HNO3< H2S04<
HCIL.

Akar et al. (2009) studied RR198 biosorption onto olive pomace in synthetic and
real wastewater treatment. They found this process was spontaneous and
endothermic in nature by calculating the thermodynamic parameters and well
fitted by Langmuir isotherms better than both Freundlich and Dubinin-
Radushkevich models. RR198 biosorption onto olive pomace was independent of
ionic strength in the concentration range of 0.01-0.15 M, whereas, it decreased in
the ionic strength over 0.15 M. Besides, there was no tangible decrease in
biosorption capacity of olive pomace when it was utilized for treating real

wastewater containing several interfering species.

The feasibility of barley husk to remove synthetic dye, namely direct solar red BA,
was explored by Haq et al. (2011). The thermodynamic study suggested that
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adsorption was physical and spontaneous due to the negative changes in free
Gibbs energy. Similar to other biosorbents, biosorption capacity of barley husk
either increased with the decrease of particle size or reduced with the increase of
initial dye concentration (>100 mg/L) in the aqueous solution. The latter might be
attributed to the fact that interactions between dye anions became prevalent and
subsequently, resulting in lessening affinity of the dye binding sites on the
biosorbent. The authors also reported that existence of salts and anionic or
cationic surfactants (detergents) in wastewater could lead to lowering dye

removal.

2.3.3 Lignocellulosic wastes and by-products for organic and nutrient

removal

Recently, many attempts have been made for finding low-cost and effective
anion/cation exchangers produced from agricultural by-products to remove
organic pollutants and nutrients from aqueous solutions (Table 2.4). It is well
known as the pH of the solution is one of the effective parameters on adsorptive
potential of biomass and affects its surface charge as well as the degree of
ionization of different pollutants (Ahmad et al., 2009; Stasinakis et al., 2008). At
higher pH, negatively charged adsorbent sites increase, which enhance the

adsorption of positively charged cations through electrostatic forces of attraction.

Ofomaja (2011) studied the kinetics, isotherm models and possible mechanism of
biosorption process in terms of removing large organic pollutant molecule like 4-
nitrophenol using mansonia (Mansonia altissima) wood sawdust. From calculated
kinetic rates of pollutant sorption into macro-, meso- and micropores, the process
mechanism was found to be complex, consisting of both external mass transfer and
intra-particle diffusion. This process was quite well described by the pseudo

second-order kinetic model and Freundlich isotherm.

Brandao et al. (2010) reported that natural sugarcane bagasse could adsorb up to
99% of gasoline and 90% of n-heptane in aqueous solutions within only 5 min.
However, at low concentration of gasoline and n-heptane, monolayer biosorption
could be simulated by Langmuir model. However, none of Langmuir, Freundlich,

Temkin and Dubinin-Radushkevich models could well describe the process at high
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concentration of n-heptane and for gasoline contaminated solution at
concentration more than 0.04 mg/L. According to measured correlation
coefficients, Freundlich presented the best simulations, followed by Dubinin-
Radushkevich and Temkin isotherms and then Langmuir. The presence of ethanol
in gasoline could enhance the solubility of gasoline in water, thereby improving the

adsorptive capacity of sugarcane bagasse.

Table 2.4 The performance of different types of agro-industrial wastes for organic

and nutrient removal from aqueous solutions

Adsorbent Modifying agen  Adsorbate (max (Mg/g) Reference
Sugarcane raw Gasoline 8.36 Brandao et al., 2010
Bagasse

n-heptane 2.77 Brand do et al.,, 2010
Sawdust raw Ammonium 1.7 Wahab et al,, 2010
Sawdust raw 4-nitrophenol 21.28 Ofomaja, 2011
Wheat straw raw Nitrate 0.14x10-3() Wang et al,, 2007

Epichlorohydrin Nitrate 2.08x10-3(2) Wang et al., 2007

Wheat straw Epichlorohydrin Nitrate 52.8+1.0 Xuetal, 2010

Phosphate 45.7+1.1 Xuetal, 2010
Wheat stalk Epichlorohydrin Phosphate 60.61 Xuetal, 2011
Cotton stalk Epichlorohydrin Phosphate 50.54 Xuetal, 2011
Banana peel raw Phenol 688.9 Achaketal,, 2009

@mol/g

Achak et al. (2009) found that banana peel was a low-cost and efficient adsorbent
for olive mill wastewater purification containing phenolic compounds with a high
biosorptive capacity of 688.9 mg/g. Equilibrium state was attained within 3 hr and
96% of phenolic compounds were removed completely. Alkali condition was more
favorable for phenol adsorption and lower pH value was more suitable for
desorption process. They also explained that in case of using water for biosorbent

recovery, if the cation or anion attached on biomass surface were very weak,
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physiosorption via Van der Waals attraction was the main mechanism. If alkali
water (pH 12) was used, adsorption mechanism could be ion exchange, while
chemisorption was dominant mechanism if acetic acid was employed. Based on the
results, since 0.17, 0.30 and 0.12 g/g of desorbed phenolic compounds could be
obtained by neutral pH water (pH 7.3), acetic acid (pH 1.2) and alkaline water (pH

12), respectively, chemisorption might be the main mechanism of phenol removal.

Maximum biosorption capacity of NHs*was obtained at pH of 8 using sawdust as
biosorbent (Wahab et al., 2010). The biosorption was resulted from ammonium
cation binding to negatively charged lignin and cellulose chains. Nevertheless, at
range of acidic pH values, biosorption took place due to polar functional groups of
lignin such as alcohols, aldehydes, ketones, acids and hydroxides. Equilibrium
states were quickly reached within 20 min. The FTIR spectral characteristics of
raw sawdust before and after ammonium biosorption illustrated that acidic groups
of carboxyl and hydroxyl were predominant contributors in the complexation of

ammonium ions and ion exchange processes.

Xu et al. (2010) applied a new method for preparation of wheat straw as an anion
exchanger based on aminated intermediate (epoxypropyltriethylammonium
chloride). Methanol solution was used as organic solvent to facilitate
epichlorohydrin and triethylamine reaction, and pyridine was applied as a weak-
base catalyst to open the strained epoxide rings. The maximum sorption capacities
of modified wheat straw for nitrate and phosphate were approximately 52.8 and
45.7 mg/g, respectively, which could be comparable with the maximum
biosorption capacity obtained from commercial anion exchange resin, activated
carbon and other modified adsorbents. In addition, after four subsequent cycles of
adsorption-desorption, both of eluting agents (HCl and NaCl) showed an excellent

recovery performance without significant loss in biosorption capacity.

2.4 Mechanism of biosorption and desorption process

In fact, biosorption process includes a combination of several mechanisms
including electrostatic attraction, complexation, ion exchange, covalent binding,
Van der Waals attraction, adsorption and micro-precipitation (Montazer-Rahmati

et al,, 2011; Witek-Krowiak, 2012). Common mechanisms occurring in biosorption
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process are illustrated in Figure 2.3. Physical adsorption takes place because of
weak Van der Waals’ attraction forces, whereas the so-called chemisorption is a
result of relatively strong chemical bonding between adsorbates and adsorbent

surface functional groups (Bhatnagar and Sillanpaa, 2010).

The main mechanisms known for metal and dye adsorption on cellulosic
biosorbents are chelating, ion exchanging and making complexion with functional
groups and releasing [H30]* into aqueous solution. lonic exchange is known as a
mechanism which involves electrostatic interaction between positive cations and
the negatively charged groups in the cell walls (Fiol et al., 2006). Many studies
confirmed that ion exchange mechanism could be included in biosorption process
rather than complexation with functional groups on the biosorbent surface. They
also showed the role of sodium, potassium, calcium and magnesium present in the
adsorbent during ion exchange (Ding et al., 2012; Tunali Akar et al, 2012;
Krishnani et al., 2008).

The mechanisms also can be anticipated and verified through the understanding of
the surface structure and functional groups, thermodynamic and kinetic studies as
well as by combination of different methods of FTIR (Fourier Transform Infra-
Red), SEM (Scanning Electron Microscopy), EDX (Energy Dispersive X-Ray), TEM
(Transmission Electron Microscopy), Raman microscopy, XPS (X-ray
photoelectron spectroscopy), and some conventional techniques like titration,
chemical blocking of functional groups and concomitant release of cations from
biosorbent during the sorption (Oliveira et al, 2014; Torab-Mostaedi et al,, 2013;
Witek-Krowiak, 2012; Ofomaja., 2011).

According to the results obtained from the intra-particle diffusion kinetic model,
adsorption can be described as multiple sorption rates attributed to fast film
diffusion, rate-limiting gradual adsorption stage (pore diffusion) and final slow
equilibrium step of intra-particle transportn batch systems, intra-particle
diffusion was not the only rate controlling step but generally it is important in the
biosorption kinetic process as adsorbent size was the main parameter of
biosorption process(Ahmad et al. 2009). On the other hand, in continuous flow

system, film diffusion is more likely the rate limiting step (Rangabhashiyam et al.,

Chapter 2 | Page 34



ATEFEH ABDOLALI DOCTORAL THESIS

2013). The mechanisms also can be anticipated and verified through the
understanding of the surface structure, in order to make easier biosorption
process design (Witek-Krowiak, 2012). The main mechanisms were usually found
for biosorption process are ion exchange with other metal ions being in
wastewater like Na*, K*, Ca?* and Mg?2+*, complexion with functional groups and
releasing [H30]* into aqueous solution and chelating with surface functional
groups (mainly—COOH, C=C, C—O and O—H) which was controlled by chemical
sorption step regarding with pseudo-second-order kinetic model (Ding et al,,
2012). Biosorption can be carried out by proton exchange using mineral and
organic acids such as HCl, HNO3 H2SO4 and acid acetic, by exchange with other ions
like applying CaClz or by chelating agents (for example EDTA). It is well known that
under acidic conditions the adsorbent surface is protonated by [H30]* ions to make
possible desorption of positively charged metal ions from the adsorbent surface

(Ozdes et al. 2009).

The studies on Cr(VI) removal claimed that anionic chromium ion species could
bind to the positively charged adsorbent surface and converted to Cr(III) through
two mechanisms: 1) direct reduction by contact with the electron-donor groups of
biosorbent; and 2) indirect mechanism consisting three steps of binding of anionic
chromium(IV) ion to positively-charged surface of biosorbent, reduction to Cr(III)
and then release the created Cr(III) ions. Low pH values could accelerate the rate
of reduction reactions in both of two mechanisms (Blazquez et al., 2009; Krishnani
et al., 2008). Besides, thermodynamic study and a good perception of temperature
influence on biosorption process can help to understand the adsorption

mechanism (Adamczuk and Kotodynska, 2015; Farooq et al., 2010).

In other study, Schiewer and Patil (2008) reported that the protonated citrus peels
exhibited very good ability to Pb removal very similar to some ion exchange resins.
They discovered, even at high ionic strength environment, Pb removal efficiency
remained more than 90% which indicated that electrostatic attraction was not the

main binding mechanism.

Along with kinetic and thermodynamic studies, isotherm models can also

contribute to information about mechanism of adsorption. Blazquez et al. (2010)
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described the types of Pb(II) biosorption on olive stone and two-phase olive mill
solid. They highlighted that the type of biosorption is a function influences the
shape of adsorption isotherm. This shape associates with formation of
monomolecular or multimolecular layer adsorption via both strong and weak

adsorbate-adsorbent interactions. Furthermore, based on hypothesis of Dubinin-
1

v2Bp-R

from Dubinin-Radushkevich isotherm can evaluate sorption properties and

Radushkevich isotherm, mean free energy of adsorption (E = ) calculated

indicate if main mechanism is chemical reaction dominated by ion exchange

(8<E<12 kJ/mol) or physical adsorption (E<8 k] /mol) (Ding et al., 2012).

Desorption mechanism is similar to that of metal biosorption, therefore, desorbing
agent or desorption conditions can be rationally selected (Rangabhashiyam et al,,
2013). Heavy metal ions recovery cannot thoroughly fulfilled by desorption. This
might be due to metal ions being trapped in the adsorbent porous structure of
biosorbent and therefore difficult to release (Ozdes et al, 2009). Langmuir
parameter amounts determine metal ion desorption being occurred in shorter or

longer time because of metal ion affinity to surface functional groups.

Mata el al. (2009) reported that among cadmium, lead and cupper cadmium
presented the lowest affinities for sugar-beet pulp and consequently recovered in
shorter time (30 min) by 0.1M HNOsz in comparison to lead (60 min) and copper
(120 min). They also found that during desorption by mineral acid (HCl, HNO3 and
H2S04), biosorbent can become swollen in the acid solution and the mass loss of
biosorbent was the result of this damage that was observed between the first and
last cycles. Hence, an efficient eluent is one that desorbs the metal completely

without any damaging the biomass structure and functionality to be able to reuse.
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Figure 2.3 Common sorption/ desorption mechanisms

In other study, Njikam and Schiewer (2012) suggested that mineral acids such as
HCI, which is cheap and relatively harmless are promising desorbing agents for
efficient citrus peels regeneration. Rate-limiting step of desorption could be
proposed by proper assuming of how the desorption rate depends on the quantity
of metal ion-saturated binding sites. After each sorption and desorption cycle, the
total amount of the newly adsorbed metal ions and that which could not be
removed from the spent biosorbent by desorption increase. This can be explained
as (i) surface functional group hydrolysis and decomposing, (ii) fewer number of

unoccupied sites for further sorption and (iii) biosorbent mass loss during
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successive sorption and desorption cycles (Gundogdu et al., 2009, Mehta and Gaur,

2005, Yao et al,, 2009, Pan et al., 2009).

2.5 Reusability of heavy metal- loaded wastes and by-products

As mentioned before, the major disadvantage of biosorption is producing huge
amount of solid biomass or aqueous solutions with high concentration of heavy
metals to environment. To tackle the problem attributing to solid biomass
discharge, applying proper desorbing and regenerating agent would be effective.
Therefore, the biosorption process becomes economically and feasibly more
attractive (Zafar et al., 2014, Das and Das, 2013, Gautam et al, 2014). On the other
hand, for the problem of disposing outputs of desorption process, the metal ions
can be removed or precipitated by low-cost chemicals and then recovered for
using in industry. For this purpose, a lot of aspects such as process operation cost,
biosorbent disponibility and value of recovery metal should be considered (Ronda
etal, 2015).

The role of desorbing and regenerating agents implication can be improved in
terms of biosorption capacity, desorption efficiency and also biosorbent stability
after a number of sequential sorption, desorption and/or regeneration cycles. In
many studies, it is very well known that under acidic conditions the adsorbent
surface is protonated by [H30]* ions to make possible desorption of positively
charged metal ions from the adsorbent surface (Asberry et al. 2015). Higher
concentration of acids or bases used as desorbing agents might damage the
biosorbent structure, hydrolyze polysaccharides on the surface of the biomass and
subsequently decrease the sorption and desorption efficiency and biosorbent mass
loss. On the other hand, as a result of excess amount of [H30]* ions on the
biosorbent surface and reducing the metal biosorption capacity, regeneration step
has been recommended. In some cases, after washing by deionized water,
regenerating agent has been applied. Regeneration step could increase the stability
and reusability of biosorbents and repairing the damage caused by the desorbing
agents and removing the excess protons after each elution and providing new

binding sites for next biosorption step. However, a complete desorption of heavy
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metal ions could not be achieved which might be due to metal ions entrapped in

the intra-pores (Ronda et al., 2015; Mata et al., 2010; Mata et al., 2009).

2.5.1 Desorptive properties of different desorbing agents

Desorbing agent must be low-cost, eco-friendly, non-toxic, non-damaging and
effective for metal desorption (Kim et al.,, 2014; Das and Das, 2013; Singha and Das,
2011). Desorption experiments were usually carried out in a similar way to the
biosorption studies (Gong et al., 2005). The metal-desorbed biomass was used in
repeated sorption and desorption cycles with or without regeneration step to
determine reusability potential of the adsorbent in batch system as illustrated in
Figure 2.4. After adsorption step, metal-loaded biosorbent was filtered, dried,
weighed and shaken with desorbing agents on an orbital shaker. Biosorbent-
eluent suspension was centrifuged and the supernatant was filtered and analyzed
for metal ions desorbed for further calculations. The biosorbent was repeatedly
washed with distilled water after each desorption to eliminate any excess
chemical. Biosorbent stability or any probable weight loss was controlled by
weighing biomass after drying in oven. Desorption usually continued for enough
time within that the outlet metal concentration remained constant and equal or

close to zero.

Generally, desorption efficiency of metals adsorbed on biomass either in intact or
chemically modified form was studied by many researchers to regenerate and
reuse over a number of subsequent adsorption/ desorption cycles by acidic or
alkali desorbing agents (Nguyen et al., 2014, Hossain et al., 2012, Liang et al,,
20094, Liang et al,, 2009b).

HFO-treated sugarcane bagasse was applied for As(V) removal. Arsenic-loaded
biosorbent was eluted by HCl and NaOH at different pH values. As(V) desorption
by using 30% HCI, was 17%, whereas the highest recovery of 85% was reached
with 1 M NaOH (Pehlivan et al., 2013).The biosorption properties and mechanical
strength of olive mill solid waste modified by H2SO4 (1 M) for lead removal were
studied in a fixed-bed column. This biosorbent retained over 14 cycles of use in
continuous system and the life factor revealed that biosorbent bed would be

exhausted after 71.3 cycles. Among CH3COOH, HCl, H20, H2S04, NaOH, NaCl and
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NazCOs, as the eluting agents, HCI presented the best desorption efficiency of Pb(II)

from acid-treated olive stone (Martin-Lara et al., 2012).

Natural and modified orange peel after grafting of methyl acrylate was used to
remove Cu, Cd, Pb and Ni. The adsorption and desorption experiments showed
dilute HCI solution with concentration of 0.05 mol/L could be an appropriate
elution agent for reuse orange peel for 5 cycles without tangible decrease in
biosorption capacity (Feng et al., 2011; Feng et al., 2009a; Feng et al., 2009b). By
applying HCl to regenerate similar adsorbent loaded with Cu?* and Cd?* ions, CSz-
treated orange peel can be used at least 5 cycles of adsorption-desorption without

any changes in adsorptive ability (Schiewer and Patil, 2008).

Other study on wheat bran to lead uptake showed an endothermic and
spontaneous adsorption process. To regenerate lead-loaded biosorbent, 0.5 M HCI
showed better result in comparison with distilled water for three cycles of
sorption/ desorption with no tangible change in biosorption capacity (Bulut and

Baysal, 2006).

Zafar et al. (2014) explained the effect of chemical pretreatment and desorbing
agent of nickel uptake by rice bran wastes. In terms of nickel biosorption capacity
and economic efficiency pretreatment by nitric acid and hydrochloric acid were
more effective than sodium hydroxide, aluminium hydroxide, sulphuric acid,
formic acid, formaldehyde solution, acetic acid and methanol. Desorption studies
revealed that biomass could be washed by nitric acid (0.1 M) more efficient rather
than potassium hydroxide and calcium chloride (with same molarity). Nickel
recovery slightly decreased with the increase in adsorption and desorption cycles.
After three cycles, desorption efficiency of rice bran modified by nitric acid and
hydrochloric acid reduced by about 20%. In this case nitric acid properly played
the role of both chemical modification and desorbing agent as well. It may attribute
to effectively release polysaccharides, also easily protonate pure amino sugar

(namely °-glucosamine) and also increase the biomass porosity.
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Nitric acid has been used for washing the citrus peel saturated by cadmium in
different concentrations. Cadmium desorption was very fast within the first 60 min
and after 240 min, desorption efficiency reduced as a result of probable biomass
structure damages. The same results could be achieved for higher concentrations
of acid. However, desorption efficiency of EDTA reported in other studies showed

that long exposure with complexing or chelating agents unlike mineral acids did
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not make any biosorbent damage. Besides, chelating agents such as EDTA are more
expensive than common mineral acids even in low concentrations. Therefore,
applying cheap HCl with lower environmental concerns than other acids is
recommended as industrial desorbent (Njikam and Schiewer, 2012, Pessoa de

Franca et al., 2002, Schiewer and Volesky, 1997).

Khan et al. (2012) compared the leaching of Ni ions from mustard oil cake in single
and multiple metal ion solutions. Adsorption efficiency of Ni(Il) ions onto
biosorbent in single metal and multi-metal system were 68.7% and 51.3%,
respectively as expected. Saline and alkaline desorbents for releasing Ni ions
binding to biosorbent were less effective than acidic medium. Among studied
desorbents, nickel desorption efficiency by both 0.05M and 0.1M HCI in single
metal ion system was reported almost 100% (99.4% and 99.8%, respectively)
while in multi-metal system decreased to only 44.75%. In addition the biosorption
efficiency in continuous process was comparatively less than batch process due to
not enough contact time of the effluent with biosorbent. On the other hand
desorption efficiency in batch system was slightly higher than continuous fixed-
column in initial cycles (3 cycles) and then decreased from 66% to 59.6% at
seventh cycle. This behaviour was basically due to continuous usage of the

biosorbent.

Desorption process like biosorption is influenced by temperature and eluent
concentration. Based on the study has been carried out by Bernardo et al. (2009)
to investigate chromium desorption from metal-loaded agro-waste materials such
as agave bagasse, oat and sorghum straws, the authors announced an interaction
between Cr(III) ions and EDTA due to a chelate formation at 55 °C (not seen at
lower temperatures of 25 and 35 °C). Moreover, desorbing and regenerating
properties of EDTA were more preferable than HNO3 and NaOH because of less

considerable biomass weight loss and not any biosorbent color change.

2.5.2 Regeneration of biosorbent

It is desirable to desorb and recovered the adsorbed metals and also regenerate
the adsorbent materials for another cycle of application. The regeneration of the

adsorbent can be achieved by washing loaded adsorbent with an appropriate
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desorbing solution. Desorbing and regenerating agents must be cheap, effective,

non-polluting and non-damaging to the adsorbent structure (Ozdes et al. 2009).

It is necessary to explain that the word of “regeneration” in different articles refers
to applying metal-loaded biosorbents in several cycles of sorption and desorption
steps in batch or continuous systems and in a few studies showed applying a
chemical to make the surface mechanically stable, repair the surface damage by
eluents or removing the protons of acidic desorbents before reutilizing in next
sorption and desorption cycle. The other variable that affects the biosorption
efficiency in a consecutive series of sorption and desorption is cell wall and the
richness of polysaccharides. The progressive decrease of biosorptive potential of
biomasses is as a direct result of both micro and macro restructuration. Therefore,
some chemicals such as CaClz, Ca(OH)2 and NaOH were suggested to be applied as

regenerating agent based on biomass type (Mata et al.,, 2010).

Besides, in literature, a slight structural modification was reported for some
chemical like EDTA rather than alkaline and acidic solution when they were used
as desorbents. Therefore, for these materials both desorbing and regenerating

potential can be simultaneously considered (Bernardo et al., 2009).

The reusability and economic feasibility of mustard oil cake to remove nickel ions
was studied in seven cycles of sorption and desorption and the Ni ions leached to
HCI solution in batch and continuous process. In spite of the fact that HCI could
introduce some surface active sites on biosorbent surface it stopped at third cycles
because of decomposition of surface functionalities (Khan et al., 2012).

Other similar study was completed by Reddy et al. (2012) to find the effect of HCI
concentration varied from 0.1 to 0.6 M to regenerate Moringa oleifera leaves. The
M. oleifera leaves powder was esterified by NaOH followed by citric acid
modification and then applied for Cd, Ni and Cu removal.0.4M hydrochloric acid
was chosen as a suitable concentration for five cycles of sorption and desorption.
The results showed that esterified M. oleifera leaves powder can be used
repeatedly at least four times without significantly losing the biosorption capacity
for Cd(II), Cu(II) and Ni(II). The biosorption efficiency of fifth Sorption/ Desorption

cycle was comparatively equivalent with first one (>90% for all metals).
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Mata et al. (2009 and 2010) using 0.1M HNO3 as desorbing agent and 1M CaCl; as
regenerating agent for sugar-beet pectin gel beads in order to Cd, Cu and Pb
uptake. It was very successful to reuse pectin gel beads after nine cycles of
sorption/ desorption/ regeneration. The results were very promising. Calcium
chloride can increase the stability and reusability of biomass and repairing the
damage caused by the desorbing agents and removing the excess protons after
each elution providing new binding sites. Pectin gel beads were successfully
reused (9 cycles) without any significant loss in biosorbent mass (an average
20%). Metals uptake levelled off for lead and copper removal and increased for
cadmium after using a 1M CaCl; regeneration step after each desorption. In
contrast, without regenerating step, the biomass loss was more than 20%. It was
obvious that the biosorbent appearance, coarse porosity and even visible structure
and mechanical stability demolish completely. In other study, calcium chloride was
successfully utilized as an eluent to desorbed cadmium, lead and nickel adsorbed
on brown algae of Cystoseira indica. In that investigation, calcium chloride was
compared with sodium chloride and acetic acid for five consecutive cycles of

sorption and desorption (Montazer-Rahmati et al., 2011).

In Table 2.5, desorption efficiency and reusability of some common biosorbents
are listed. According to these results, it can be concluded that the factors are
responsible for selecting the adequate desorbent for metal recovery are biomass

type, metal and concentration of eluent.

2.6  Process costs and overall scheme of biosorption

In order to estimate the costs of biosorption treatment process, capital investment
and plant operating costs are excluded from discussion as they rely on the plant
type and nature of wastewater and pollutants to be treated. The cost of collection,
transportation, processing and pre-treatment of biosorbents, providing and
maintaining optimal conditions along with biosorbents regeneration and then
disposal of exhausted biosorbents are major aspects to be considered for the
process cost estimation (Vijayaraghavan and Balasubramanian, 2015). Many
researchers employed natural wastes and by-products generated from

agricultural and food industries such as bacterial or fungal wastes from food
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industries, activated sludge from wastewater treatment plants, seaweed and plant
residues (Abbas et al., 2014). Most of these wastes or by-products are considered
to have low commercial importance and cause disposal problems and extra costs;
hence they can be obtained from respective industries for free or at low cost. The
cost regarded to transportation can be minimized if the local source of wastes
applies for wastewater treatment facilities (Volesky, 2007). As discussed earlier
some sort of biosorbent pre-treatment is always necessary to obtain high
biosorption efficiency and performance, consequently the major cost is usually
associated with the biosorption process preparation including chemical costs as
well as disposal costs of chemical wastes. In real wastewater treatment process, by
considering the volume of wastewater, the pH control is practically possible for
keeping optimum treatment conditions. Besides, once a biosorbent is completely
utilized in repeated cycles, landfilling or chemical or thermal destruction
techniques seem only practical and ultimate biosorbent disposal procedures,
however they are not cost-effective and eco friendly. Landfilling is expensive due
to high tax whereas destructive techniques such as incineration or exposure to
strong acids/bases may lead to sludge disposal costs. Some exhausted biosorbents
can also be reused as a renewable source of biofuels or compost for soils once
heavy metal ions are completely removed from the exhausted biosorbents (Kumar

et al, 2017; Vijayaraghavan and Balasubramanian, 2015).

2.7 Conclusion, future perspectives and research gaps

2.7.1 Major findings and conclusions

According to a substantial number of researches carried out on wastewater
treatment via biosorption processes, a growing trend to use lignocellulosic agro-
industrial wastes and by-products as an abundant alternative can be seen. The
application of lignocellulosic-based biosorbents for removing various pollutants
from water and wastewater offers many attractive features such as the
outstanding adsorption capacity for a wide range of pollutants and the fact that

these materials are low—cost, non—toxic and biocompatible.
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It can be concluded that the obtained maximum adsorption capacity, selectivity
and regeneration efficiency of lignocellulosic agro-industrial wastes and by-
products provide some idea for selecting proper adsorbent for metallic and
organic pollutants, dyes, and nutrients removal. There is a favourable pH range for

aquatic pollutants in which maximum adsorption takes place.

Additionally, the research results can help to propose optimum operation
conditions for future studies on water and wastewater detoxification, as well as to
improve environmental issues of aquatic industrial waste disposal and to facilitate

solid wastes minimization.

However, most of studies have focused on influential parameters, isotherm,
thermodynamic and kinetic studies in batch mode. Thus, the main problems that
currently exist with agro-industrial wastes and by-products are lack of informaion
about the biosorption mechanism, material characterization, removal efficiency

and reusability of adsorbents in continuous mode.

2.7.2 Future perspectives and research gaps

Although much work has been implemented on the biosorptive capabilities of
different lignocellulosic wastes and by-products for wastewater purification, there

are still significant research gaps as follows.

e It is desirable to develop sustainable biosorbents whose selectivity for
pollutants removal varied by biosorbent type, operation conditions and

physico-chemical parameters.

e Although lignocellulosic wastes and by-products have adsorption capacity
limitation in comparison with current commercial adsorbents, a good
adsorbent selection with proper chemical modification can considerably

improve adsorptive properties of the material.
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Table 2.5 Desorption efficiencies of different biosorbents at first and last sorption and desorption cycles

Biosorbent Desorbing
Metal ion S/D Cycles Desorption efficiency (%) Reference
(modification) agent
Rice bran (HNO3) Ni(II) HNO3 3 89.4%@ and 68.2%®) Zafar etal., 2014
Rice bran (HCI) Ni(II) HNO3 3 86.5%@ and 67.4%®) Zafar et al., 2014
Mustard oil cake Ni(I1)(© HCI 3 99.8%@ and 59.6%®) Khan et al,, 2012
Mustard oil cake Ni(II)@ HCI 1 44.75%® Khan etal, 2012
Grapefruit peels Ni(ID) HCI 5 98%@and 95%® Torab-Mostaedi et al.,, 2013
Grapefruit peels Cd(1n HCI 5 97% @ and 93%® Torab-Mostaedi et al., 2013
Pine bark Pb(1I) HCI 5 86% @ and 21%(®) Gundogdu et al. 2009

@First cycle of sorption/ desorption
(Last cycle of sorption/ desorption
(9Single metal system

(Dmulti-metal system
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e A notable disadvantage of employing agro wastes and by-products is leaching
soluble organic compounds into water as secondary pollutions and weakening
the mechanical structure stability during the treatment process. This might
limit their use in large scale applications and in fixed-bed columns with high

influent flow rate. Accordingly further research is needed in this regard.

e In the past decades, the effects of pH, metal ion concentration, biomass
concentration, contact time, temperature and ion strength on biosorption have
been widely studied, but information regarding desorption as one of the most
important aspects of any successful biosorption-process development is still
scanty. Hence, a breakthrough in adsorbent development is required to solve
the critical problems of metal ion recovery along with biosorbent regeneration
even for low-cost agro wastes and by-products to keep the process cost down

and also to introduce green technologies for wastewater purification.

e To find the most economic and highly effective desorbing agent, along with
determining optimum elution conditions, desorption kinetic models (e.g.
Lagergren zero-order, pseudo-first and second order kinetic models) should
be deliberately considered in future studies or modified for desorption process
if required. Desorptive performance of many more chemicals can be studied to
improve desorption efficiency and precious metal recovery by suitable eluents
in the matter of the functional groups and characteristics of each type of

lignocellulosic materials.

e The number of papers on batch biosorption and the current developed kinetic
and isotherm models can provide proper explanation and simulation for most
of the mechanism studies on biosorption process and continuous process in

fixed-bed column or Continuous Stirred-Tank Reactor (CSTR).

e Despite the fact that many attempts have been made on wastewater treatment
via biosorption process, but more researches are needed for industrial
application in terms of economy and feasibility. The feasibility of using
lignocellulosic wastes and by-products will be studied in pilot scale and then

subsequently checked in commercial industrial scale. Besides, the disposal of
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used adsorbent in safe and environmental friendly way and making the
valuable end-use of these wastes should be deliberately considered in future

studies.
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Chapter 3 Experimental investigations

3.1 Materials

3.1.1 Preparation of heavy-metal-containing effluent

The stock solution containing Cd, Cu, Pb and Zn were prepared by dissolving
cadmium, copper, lead and zinc nitrate salt, Cd(NO3)2:4H20, Cu3(NO)2-3H20,
Pb(NO3)2 and Zn(NO3)2:6H20 in Milli-Q water. For remove any inaccuracies in
metal concentration, all stock solutions were chemically analyzed to correct their
concentration to use in experiments with required amounts. The chemical analyses
and concentration measurements were carried out by Microwave Plasma-Atomic

Emission Spectrometer, MP-AES (Agilent Technologies, USA)

3.1.2 The raw municipal wastewater

The real wastewater used in this study was the primary effluent, downstream of
the Malabar WWTP sedimentation tanks collected from Sydney Water Plant, NSW,
Australia. Prior to the adsorption test, the sewage was settled for 24 hr, filtered
using a 150 pm sieve, and used for column adsorption tests without any pH
alterations. The concentrations of Cd, Cu, Pb and Zn and major quality parameters
of the solutions before and after passing through the column were determined
according to standard procedures. Since the concentrations of Cd, Cu, Pb and Zn
were very low, an appropriate amount of metallic nitrate salts were added to
provide the desired initial concentrations for each metal ions. Semi- simulated

wastewater used in this content refers to this adapted municipal wastewater.

3.1.3 Preparation of adsorbents

The biosorbents applied in metal removal process for selecting the best ones in
term of biosorption capacity were sawdust (SD), sugarcane (SC), corncob (CC), tea
waste (TW), apple peel (AP), grape stalk (GS), mandarin peel (MP), orange peel
(OP), maple leave (MP), passion fruit skin (PS), garden grass (GG), mango skin
(MG), lychee rind (LC), avocado peel (AV), eucalyptus leave (EU), egg shell (ES),

coffee waste (CW) and also coir peat (CP). All biosorbents were collected from
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Sydney area or local markets. After using or removing their useable parts, they
were washed by tap and distilled water to remove any dirt, color or impurity and
then dried in the oven (Labec Laboratory Equipment Pty Ltd., Australia) at 105 °C
overnight. Having ground and sieved (RETSCH AS-200, Germany) to different sizes
(<75 pm, 75-150 pm, 150-300 pm 300-425 um, 425-600 um and 600-1000 um),
the natural biosorbents were kept in a desiccator prior to use in future

experiments.

3.1.4 Preparation of modified adsorbents

Biosorbent was physical modified by heating (50-150 °C in a drying oven for 24
hr) and boiling (100 g biosorbent in 150 mL water). For chemical modification, HCI
(IM), NaOH (1M), HNOs3 (1M), H2S04 (1M), CaClz (1M), formaldehyde (1%) and
mixture of NaOH (0.5M) and CaClz (1.5M) in ethanol were used as the modification
agents. 10 g of each biosorbent was soaked in 1 L of each solution and thoroughly
shaken (150 rpm) for 24 hr at room temperature. Pretreatment with sodium
chloride and calcium chloride solution containing 500 mL ethanol, 250 mL NaOH
(0.5M) and 250 mL CaCl; (1.5M) was same as the other chemicals. Afterwards, all
materials were filtered and rinsed several times with distilled water to remove any
free chemicals until the neutral pH to be obtained and dried in oven over night. All

biosorbents were kept in a desiccator prior to use in future experiments.

3.1.5 Chemical reagents

All the reagents used for analysis were of analytical reagent grade from Scharlau
(Spain) and Chem-Supply Pty Ltd (Australia). Solution pH was adjusted with 1M
HCl and 1M NaOH solutions.

3.2 Methods

3.2.1 Biosorption studies in batch system

The batch experiments were performed with synthetic multi-metal solution with
concentration of 3000 mg/L for each metal by dilution in Milli-Q water for

predetermined metal concentration. A known weight of adsorbent (5 g/L) was
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added to a series of 200 mL Erlenmeyer flasks containing 50 mL of metal solution
on a shaker (Ratek, Australia) at room temperature and the flasks were shaken at
150 rpm for 24 hr. To avoid vaporizing aqueous solution, all flasks covered with
the parafilm during biosorption process. Once equilibrium reached, to separate the
biomasses from solutions, the solutions were filtered by Whatman™ GF/C-47
mm/circle (GE Healthcare, Buckinghamshire, UK) filter paper and final
concentration of metal was measured using MP-AES. All the experiments were

carried out in duplicates.

The amount of heavy metal ion adsorbed, q(mg/g) was calculated from the
following Equation:

_ v(€i—Cp
m

(3.1)

where, Crand Ci (mg/L) are the initial and equilibrium metal concentrations in the
solution, respectively. v (L) the solution volume and m (g) is the mass of
biosorbent. All the experiments were carried out in duplicates and the deviation

within 5%.

3.2.1.1 Characterization of adsorbents by FTIR and SEM

To determine the functional groups involved in biosorption of Cd(II), Cu(Il), Pb(II)
and Zn(II) onto MMBB, a comparison between the Fourier Transform Infrared
Spectroscopy (FTIR) before and after meal loading was done using SHIMADZU
FTIR 8400S (Kyoto, Japan). Metal-loaded biosorbent were filtered and dried in the
oven. The small amount of samples was placed in the FTIR chamber on the KBr
plates for analysing the functional groups involving in biosorbent process by

comparing with unused multi-metal biosorbent.

Scanning Electron Microscopy (SEM) and Energy Dispersive X- ray Spectrometry
(EDS) of the free and loaded MMBB was performed on ZEISS EVO|LS15 (Germany)
at an electron beam voltage of 15 kV, pressure of about 7x10- ¢ Torr, temperature
of 20 °C, spot size of 10-200 pm and with the working distance of 9-11mm. The
MMBB samples were examined before and after modification, biosorption,

desorption and regeneration to elucidate the porous properties of the biosorbents.
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3.2.1.2 Effects of process parameter

Influence of pH

In order to study the effect of pH on heavy metal adsorption, the initial pH of the
solutions varied from 2 to 5.5, by adding appropriate amount of NaOH or HCI
solutions. The batch procedure at each pH was followed as above described using

an initial concentration of 50 mg/L.

Influence of contact time

The contact time varied from 15 min to 24 hr for the biosorption of Cd(II), Cu(II),
Pb(II) and Zn(II) adsorption on MMBB at different initial concentration of 50 mg/L

and room temperature with similar procedure explained above.

Influence of adsorbent dose

The dependency of Cd(II), Cu(II), Pb(II) and Zn(II) adsorption on biosorbent dose
was studied at room temperature and optimum pH by varying biosorbent dose

(0.2,1,2,5,10 and 20 g/L).

Influence of particle size

In order to study the effect of particle size on adsorption, batch experiments as
above described were carried out using the biosorbent with different particle sizes
of <75 pum, 75-150 um, 150-300 pm 300-425 pm, 425-600 pm, 600-1000 um and

1-2 mm and an initial metal concentration of 50 mg/L, at room temperature.

Effect of biosorbent ratio

The effect of proportions for selected biosorbent for heavy metal removal was
fulfilled with different proportions of the biosorbents. In order to test the
significance and adequacy of the model, statistical testing of the model in the form
of analysis of variance (ANOVA) was conducted. 1:1:1 ration is considered as

reference ratio for any comparison.
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Influence of temperature

The effect of temperature on the Cd, Cu, Pb, and Zn adsorption was investigated in
the range 298-323 K (25-50 °C) in batch experiments already described and initial

concentration of 1-50 mg/L.

Influence ion strength

The effect of ionic strength on biosorption is studied by performing equilibrium
sorption tests in batch systems. The flasks contained heavy Cd, Cu, Pb and Zn with
initial concentrations of 10, 50 and 100 mg/L. Ionic strength of solutions varied by
adding NaNOs with concentrations of 0.1 and 0.2 M. These relatively high
concentrations were chosen for simulating the real wastewaters. For comparison
with lower ionic strength level, there was a reference case with no addition of

NaNOs to the heavy metal solution.

Effect of biosorbent drying temperature

All of biosorbents were dried at various temperatures to investigate the influence
of drying temperature increasing from 50 to 150 °C on drying rate and remaining

weight.

3.2.2 Biosorption kinetic studies

A series of contact time experiments for cadmium, copper, lead and zinc
adsorption on modified MMBB from 0-3 hr were carried out at pH 5.5%0.1 and
room temperature. Each sample was taken each 15 min from 1 L solution
containing Cd, Cu, Pb and Zn ions with initial concentration of 10, 50 and 100 mg/L
and 5 g of biosorbents. Experimental data of kinetic studies were fitted to the

pseudo- first and pseudo- second order kinetic models.

3.2.3 Biosorption isotherm studies

The isotherm study was performed by mixing 5 g/L MMBB with 50 mL solution of
various Cd, Cu, Pb and Zn concentrations (10-500 mg/L) in a series of Erlenmeyer

flasks. The initial pH values were kept at optimal pH (5.5+0.1). The suspensions
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were shaken at 150 rpm, room temperature for 3 hr on a rotary shaker to ensure
the equilibrium was fully reached. The relationship between metal biosorption
capacity and metal concentration at equilibrium has been described by very
common Langmuir and Freundlich isotherm models. The kinetic and isotherm
constants were evaluated by non-linear regression using MATLAB® software.
Furthermore, residual root mean square error (RMSE), error sum of square (SSE)
and coefficient of determination (R?) were used to measure the goodness of fitting

along with model parameters.

3.2.4 Biosorption thermodynamic studies

The impact of temperature on the Cd, Cu, Pb, and Zn adsorption was evaluated by
performing experiments in the range 298-323 K (25-50 °C). The amount of 5 g/L
MMBB was added to several 200 mL Erlenmeyer flasks containing 50 mL of
solution with different initial heave metal concentration (1-50 mg/L). The pH of
suspensions was kept at optimal pH (5.5%0.1). After being covered with parafilm,
to keep the reaction constant, the flasks were shaken at 150 rpm in a thermostatic
shaker. At the end of the contact time, the suspensions were filtered and the

filtrates were analyzed to identify cadmium, copper, lead and zinc concentration.

3.2.5 Desorption studies in batch system

Desorption study was carried out in a similar way to the biosorption studies. After
adsorption step, metal- loaded biosorbent (5 g/L) was filtered, dried, weighed and
shaken with 50 mL of desorbing agents in 200 mL Erlenmeyer flasks at 150 rpm on
an orbital shaker. The suspension of metal- loaded MMBB and eluent was
centrifuged (SigmaZ203, Germany) at 4000 rpm for 15 min and the supernatant was
filtered and analyzed for metal ions desorbed. Desorption of metal-loaded
biosorbent was studied with different eluting agents including NaCl, CaClz, NaOH,
CH3COOH, HCl, HNO3, H2S04 and Milli-Q water. Following biosorption cycle with
contact time of 3 hr, metal-loaded biosorbent was filtered and then added in 100
ml of above solutions and shaken at 150 rpm for 3 hr. After desorption, adsorbent
was washed repeatedly with Milli-Q water to remove any residual eluting solution

and used for the next biosorption cycle.
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In order to evaluate the regeneration properties of 1M CaClz, desorption
experiments were performed with and without regeneration step in five

consecutive sorption/ desorption cycles.

Heavy metal Desorbing Regenerating
solution agent agent
O

Biosorption Desorption Regeneration

Figure 3.1 Schematic diagram of batch desorption study

3.2.6 Biosorption studies in continuous fixed-bed column

The continuous sorption of Cd(II), Cu( II), Pb(Il) and Zn(I) by MMBB was
performed in a mini glass column of 100 cm long and 22 mm of inner radius
(Figure 3.2). 5, 10, 15 g of biosorbent (particle size distribution = 425-600 pum)
mixture was uniformly packed into the column with respective bed heights of 9.5,
21 and 31 cm. A disk with a 150 pm pore was constructed on the bottom of the
glass column to support the biosorbent and also prevent any loss. The column was
first filled with glass beads (~5 cm) at the bottom. It was then packed with 2 g
glass wool (about 2 cm), modified MMBB, 2 g of glass wool and this was followed
by another layer of glass beads (~5 cm) for an even liquid flow across the column’s
cross—sectional area. The glass wool prevented venting of MMBB accompanied by
effluent. The column was packed with a defined amount of MMBB (5, 10, 15 g) to
achieve the desired bed height. Once the columns were filled, the biosorbent beds
were fully immersed by distilled water, and then the bed was left to swell to ensure
complete air bubbles expulsion. Following this the column was compacted by
gravity. The fixed bed’s packing was kept at a constant density. To ensure
consistent packing porosity, the column was packed at varied bed heights using a
constant bulk density of MMBB which was determined from the packing bulk

density in a 0.5 m high column.
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Column leaching experiments were conducted at room temperature, and the
leaching rate was maintained at 10, 20 and 30 mL/min. In other word, the
superficial velocity (v) also called hydraulic loading rate (HLR) was kept at 1.578
m3/m? hr, 3.156 m3/m? hr and 4.734 m3/m? hr. The metal solutions were fed into
the top of the column from a 20 L storage tank using a mechanical pump. The feed
synthetic solution containing various Cd, Cu, Pb and Zn concentrations (10, 20, 30
mg/L) and semi- simulated wastewater passed through the column in a
downward direction at different flow rates (10, 20, and 30 mL/min) or HLR of
1.578 m3/m? hr, 3.156 m3/m? hr and 4.734 m3/m? hr.

The top of the column was connected to a peristaltic pump (Masterflex® Console
Drive, Model No. 77521-47, Cole-Parmer Instrument Company) using a silicone
tube to obtain a constant steady downward flow. These experimental parameter
values were selected to be as close as possible to those derived from industrial
electroplating processes which have been used by other researchers. A stream of
synthetic or semi—simulated real wastewater was pumped through the column. 10
mL samples were collected at predefined time intervals to: firstly, assess the
residual concentration of metals; and secondly, determine the retained amount of
heavy metal by Microwave Plasma—Atomic Emission Spectrometer, MP—AES
(Agilent Technologies, USA). In order to ensure the formation of a complete
breakthrough curve, each experiment was run for approximately 10 hr. The
samples were taken at 15min intervals in the first 4 hr and then at 30min intervals

for the rest of the experiment.

The column capacity, qc (mg), for a given inlet concentration and flow rate is equal
to the area under the plot of the adsorbed metal concentration, where C; and Ce
(mg/L) are the influent and effluent metal ion concentrations, respectively, versus

time (min) and is calculated as follows (Martin-Lara et al., 2016):

Caas = Ci — C¢ (3.2)
_ QA Q t=t
e = Tooo — mfho Cags dt (3.3)

where Q is the flow rate (mL/min), A is the area under the breakthrough curve and

t (min) could be trotal, tsat OT tp that represent the total flow time, the saturation or
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exhaustion time (Ce/Ci = 90%), or the breakthrough time (Ce/Ci = 10%),

respectively.

_\—/i\
A
A Glass wool
B MMBB
B C Glass beads
D Untreated wastewater tank
P Pump
&
[@
Y
Sample
D analysing
in MPAES Metal Conc. data
[

Figure 3.2 Schematic diagram of the experimental set up for a continuous process

The amount of metal ions sent to the column at different time, in mg, can be

calculated from the following expression;

C;Qt
Myptal = l(l)m (3.4)

And the metal removal (%) can be calculated from the ratio of column capacity to

the amount of metal ions sent to the column as;

%R = —<— x 100 (3.5)

Myotal

The biosorption capacity, q, the weight of Cd(II), Cu(II), Pb(II) and Zn(II) adsorbed

per unit dry weight of biosorbent (mg/g) can be determined as following;
— de
q=1 (3.6)

where M is the total mass of the biosorbent in the column (g).
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The equilibrium metal concentration, Ceq (mg/L);

Ceq = % (3.7)

Ve = Qt (3.8)

In each experiment the mass transfer zone, MTZ (cm) was calculated by:

MTZ = L(1 - == (3.9)

sat

where L is the bed height (cm).

The empty bed contact time (EBCT) in the column (min) is achieved from the ratio

of bed volume (mL) to the flow rate (mL/min) as follows (Ohura et al., 2011):

EBCT = Bed volume (3.10)

Flow rate

3.2.7 Continuous desorption experiments

The desorption study in batch experiments showed that 0.1 M HCl (5g/L) was the
best desorption agent. Prior to conducting the desorption test, metal-loaded fixed-
bed column was thoroughly washed with a large amount of distilled water for 30
min (20 mL/min) to eliminate unbound heavy metal ions. After each desorption
cycle by passing 0.1M HCI (10 mg/L), the column was washed with distilled water
for 30 min (20 mL/min) in order to eliminate the rest of the acid placed in the bed.
Then 1 M CaCl; solution with flow rate of 10 mL/min passed through the column to
regenerate the used biosorbent. The column was followed by rinsing again using
distilled water for 30 min (20 mL/min) and then run for another biosorption cycle

(10 mL/min).

The elution efficiency (%E) can be obtained by dividing the amount of metal
desorbed by the amount of metal adsorbed in the previous biosorption stage and
the amount of metal remaining on the biosorbent following desorption stage. As a
result, the efficiency of metal ion removal was determined for each cycle using the

following equations (Martin-Lara et al., 2016):
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Q ,t=t
Atotald = T5op Jr=o Ce At (3.11)
Qeq = 2t (3.12)
%E = —=4_ x 100 (3.13)
ditded

where Qe is g of desorbed metal per g of adsorbent and M is the total mass of the
biosorbent in the column. In the first cycle the adsorbent is free of heavy metal
ions (gi = 0), but in the consecutive cycles gi (mg/g) is different from zero, as the
desorbing agent was not completely efficient. Hence, some heavy metal ions were

retained at the adsorbent binding sites.

3.3 Calculations

3.3.1 Batch biosorption process analysis and modeling

3.3.1.1 Adsorption kinetics in batch system

In batch systems, the adsorption kinetics was described by a number of models
with varying degrees of complexity such as pseudo-first-order, pseudo-second-
order and intra-particle diffusion kinetic model. The pseudo-first-order Kkinetic
model known as the Lagergren equation and takes the form as Febrianto et al,

20009:

qt = qe[1 — exp (—K )] (3.14)

where, gt and qe are the metal adsorbed at time t and equilibrium, respectively, and

K1 (min-1) is the first-order reaction rate equilibrium constant.

The pseudo-second-order kinetic model considered in this study is as follows:

Lo 4L (3.15)

ac K292 qe

where, Kz (g mg-1 min-1) is the second-order reaction rate equilibrium constant.
The intra-particle diffusion model follows:

qe = Kpt'/? +C (3.16)
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3.3.2 Adsorption isotherm in batch system

To optimize the design of biosorption process, it is necessary to acquire the
appropriate correlation for equilibrium curve. In this study, the metal biosorption
capacity as a function of metal concentration at equilibrium state has been
described by very common two-parameter models of Langmuir, Freundlich,
Dubinin-Radushkevich and Temkin and three-parameter models of Khan, Sips,
Redlich-Peterson and Radke-Prausnitz adsorption isotherms. All the model
parameters were evaluated by non-linear regression using MATLAB® software.
Furthermore, residual root mean square error (RMSE), error sum of square (SSE)
and coefficient of determination (R?) were used to measure the goodness of fitting

along with model parameters.

Langmuir isotherm model is as follows:

q, = dmLiite (3.17)

1+b1Ce

where, (qmL is the maximum metal biosorption and by(L/mg) the Langmuir
constant. These constants related to monolayer adsorption capacity and energy of

adsorption respectively (Montazer-Rahmati et al. 2011).

Freundlich isotherm model is an empirical equation presented as follows

(Montazer-Rahmati et al., 2011):

q. = KpC,™" (3.18)

where Kr (L/g) is Freundlich constant and n the Freundlich exponent. It is assumed
that the stronger binding sites on a heterogeneous surface are occupied first and

binding strength decreases with increasing degree of site occupation.

The Dubinin-Radushkevich (D-R) equation is generally expressed as follows:
e = qp-r exp(—Bp_geh_g) (3.19)

ep_g = RTIn(1 + Cie) (3.20)

Chapter 3|Page 62



ATEFEH ABDOLALI DOCTORAL THESIS

Where ep-g, the Polanyi potential, is a constant related to the biosorption energy, R
is the gas constant (8.314 kJ/mol) and T is the absolute temperature (K). gp-r and

Bp-r are the D-R isotherm constants in mg/g and mol?/kJ?, respectively.

According to Temkin isotherm, interactions between adsorbate and adsorbent
make linear decrease in adsorption energy and heat of adsorption. The model is

mathematically represented as (Febrianto et al., 2009):

RT
qe = _ln(KTeCe) (3.21)

bre
where bre (k] /mol) and Kre (L/g) are Temkin model constants.
Radke-Prausnitz isotherm can be represented as (Montazer-Rahmati et al., 2011):

Br-pP
Qe = —RTR-Pe (3.22)

Br-p-1
ar-p+rr-pCq

where ar-p and rr-p are Radke-Prausnitz model constants and Br-p the Radke-
Prausnitz model exponent. Radke-Prausnitz isotherm constants, ar-p and rr-p for

Cd(11), Cu(II), Pb(I1) and Zn(II).

The Sips isotherm is a combination of the Langmuir and Freundlich isotherm
models and is expected to describe heterogeneous surfaces much better. At high
sorbate concentrations it predicts a monolayer adsorption capacity characteristic
of the Langmuir isotherm whereas at low sorbate concentrations it reduces to the
Freundlich isotherm. It is given as (Febrianto et al., 2009):

Bs

KsC,
=t (3.23)

e

1+agsC,

where Ks and as are the Sips model constants in L/g and L/mg, respectively and [3s

is the Sips model exponent. Cd(II), Cu(Il) and Zn(II) biosorption data was

Unlike Sips model, the Redlich-Peterson isotherm behaves like the Freundlich
isotherm at high adsorbate concentrations and comes close the Henry's law at low
amounts of concentration. The model can be presented as (Febrianto et al., 2009;

Montazer-Rahmati et al., 2011):
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KRrpCe

Brp
e

e = (3.24)

1+agrpC

where Krp and arp are the Redlich-Peterson model constants in L/g and L/mg,
respectively and Brp is the Redlich-Peterson model exponent which lies between 0

and 1.

3.3.3 Fixed-bed biosorption process analysis and modeling

In continuous biosorption systems, the concentration profiles in the liquid and
adsorbent phases vary in both space and time. The mathematical and quantitative
modeling approaches are applied for design and optimization of fixed-bed
columns. Consequently, from the perspective of process modeling, the dynamic
behaviour of a fixed-bed column can be described in terms of the effluent
concentration-time profile, i.e. the breakthrough curves (Chu, 2004). Several
models have been applied to predict the breakthrough performance and also to
calculate the column Kkinetic constants and evaluate the fixed—bed columns’

adsorption capacity of the fixed-bed columns (Cruz-Olivares et al., 2013)

3.3.3.1 Thomas model (Th)

The Thomas model is the most model which is used in evaluation of the
performance of a fixed-bed column and prediction of breakthrough curves. This
model complies with the Langmuir kinetics of adsorption which means that the
axial dispersion in the column adsorption can be assumed negligible (Gutiérrez-
Segura et al,, 2014). It is because of the rate of driving force follows the second-

order reversible reaction kinetics.

C 1
== 3.25
Ci  1+exp [(k%h)(thM—CiQt)] ( )

where kry is the Thomas rate constant (mL/ mg min) and qrn is the maximum

adsorption capacity for heavy metal ions (mg/g).
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3.3.3.2 Dose Response model (DR)

The Dose Response model has been widely applied in pharmacology to describe
different types of processes. It can also be used to describe biosorption in columns

(Cruz-Olivares et al., 2013). The DR model is represented by the equation:

C 1
Cop 3.26
. ) (5:26)

where a is a constant and qp-r is the maximum adsorption capacity for heavy metal

ions (mg/g) calculated by Dose Response model.

3.3.3.3 Yoon-Nelson model (YN)

The Yoon-Nelson model is a relatively simple model based on the adsorption of
gases on activated charcoal. According to this model, the rate of decrease in the
probability of adsorption for each adsorbate molecule is proportional to the
probability of sorbate sorption and the probability of sorbate breakthrough on the

sorbent. The equation is (Cruz-Olivares et al., 2013):

€ _ _exp (ky_nt—Ky_nT) (3.27)

Cj - 1+exp (Ky—-nt—Kky-NT)

where ky_y is the Yoon-Nelson proportionality constant (1/min) and t is the time

required for retaining 50% of the initial adsorbate (min).

3.3.3.4 Bed Depth Service Time (BDST) model

The BDST model was derived from the equation described by Adams-Bohart, but
was modified by Hutchins (Izquierdo et al., 2010). It is one of the most widely used
models that describes heavy metal adsorption in a fixed-bed column. BDST is a
simple model able to predict the relationship between the depth and service time
in terms of metal concentration and biosorption parameters. The model is based
on physically measuring the capacity of the bed at different breakthrough values
i.e. 10%, 30%, 60% and 90%. It ignores the intra-particle mass transfer resistance
and also neglects the external film resistance. As a result, the adsorbate is directly

adsorbed onto the biosorbent surface.
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The BDST model estimates the required bed depth for a given service time by the
following equation (Riazi et al., 2016):

C 1
c= S, ) (3.28)

1+exp [kBDSTCi( CiVSTL—t

where Ngpst is the biosorption capacity (mg/L), v is the linear flow velocity of
metal solution through the bed (cm/h), kepsr is the adsorption rate constant that
describes the mass transfer from the liquid to the solid phase (L/mg h) and L is the
bed height (cm).

3.4 Analytical methods and instruments

Heavy metal ions (Cd?*, Cu?*, Pb2* and Zn?2*) and other metal ions such as Na* K*
Mg2* and Ca?* and were determined by 4100 MP-AES Spectrometer (Microwave
Plasma-Atomic Emission Spectrometry), Agilent Technologies (USA). The pH and
conductivity were measured by Hach HQ40d Multi meter. The chemical oxygen
demand (COD) analysis was carried out with Hach DR/2000 Spectrophotometer.
The total organic carbon (TOC) measurement was conducted using Multi N/C
3100, Analytik Jena AG. The total suspended solid (TSS) determination was done in

accordance with the standard method.

3.5 Statistical analysis

Experiments were implemented in duplicate, and the data represented the mean
values. The highest deviation was limited to 5%. The error bars indicating the

standard deviation were shown in figures wherever possible.
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Chapter 4
Feasibility Studies and Development

of a Multi-Metal Binding Biosorbent

Chapter 4|Page 67



ATEFEH ABDOLALI DOCTORAL THESIS

Chapter 4 Feasibility studies and development of a multi-metal binding

biosorbent (MMBB)

A major part of Chapter 4 was published in the following papers:

/ Abdolali, A., Ngo, H.H., Guo, W.S,, Lee, D.J.,, Tung, K.L., Wang, X.C,, 201 \
Development and evaluation of a new multi-metal binding biosorbent.

Bioresource Technology 160, 98-106.

Abdolalj, A., Ngo, H.H., Guo, W.S,, Ly, S,, Chen, S.S., Nguyen, N.C,, Zhang, X,
Wang, J.,, Wu, Y., 2016. A breakthrough biosorbent in removing heavy
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4.1 Introduction

4.1.1 Research background

In recent years, biosorption has been considered as cost effective alternatives for
removing metals and the interest in utilization of cheap alternatives has been
significantly increased (Bulut and Tez, 2007; Gupta et al., 2009; Gadd, 2009a; Gadd,
2009b, Volesky, 2007). Many attempts have therefore been made by many
researchers on feasibility of biosorption potential of lignocellulosic materials as
economic and eco-friendly options, both natural substances and agro-industrial
wastes and by-products. These adsorbents may be classified either on basis of
their availability (natural materials and industrial/ agro-industrial/ domestic
wastes or by-products and synthesized ones) or depending on their nature
(organic and inorganic materials) (Tang et al,, 2013; Gupta et al., 2009). Among
inexpensive biosorbents, most of the studies have been engrossed in
lignocellulosic wastes (as naturally intact or chemically modified) such as sawdust,
weed and wood waste (Asadi et al., 2008; Bulut and Tez, 2007; Pereira et al,
2010), sugarcane bagasse (Homagai et al., 2010; Martin-Lara et al., 2010; Pereira
et al., 2010), fruit rind, pulp and seeds (Feng et al., 2011; Liu et al., 2012; Martin-
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Lara et al., 2010; Torab-Mostaedi et al., 2013), wheat or barley straw (Pehlivan et
al., 2012), rice husk, hull and straw (Asadi et al., 2008; Kazemipour et al., 2008),
olive pomace and stone (Blazquez et al,, 2009; Martin-Lara et al.,, 2012), etc . The
heavy metal bio-recovery can be affected by physico-chemical parameters of the
solution such as pH, ion strength, initial metal concentration, temperature and by
other characteristics of the adsorbent like concentration, presence of organic and
inorganic functional groups and chemical modification (Gupta et al, 2009;
Montazer-Rahmati et al.,, 2011; Pehlivan et al., 2012; Tan and Xiao, 2009; Tan et al.,
2010; Velazquez-Jimenez et al., 2013).

All of the previous attempts have been made to study the agro-industrial wastes
and by-products individually. The novelty of the present work is using
combination of selected agro-industrial multi-metal binding biosorbents for
removal of cadmium, copper, lead and zinc ions from synthetic aqueous multi-
metal solutions. The significant difference between previous studies and current
work is gaining the advantages and also using the biosorptive potentials of various
biosorbents in a combination. The purpose of blending different lignocellulosic
materials is having all potentials of biosorbents for heavy metal uptake (Martin-
Lara et al., 2010; Martin-Lara et al, 2010). Also these wastes were selected
because of the good results reported in other literatures for heavy metal removal
(Feng et al, 2011; Amarasinghe and Williams, 2007). Additionally, they are

properly available in Australia and also all over the world.

4.1.2 Objectives

The present work is a preliminary study on developing a new multi-metal binding
biosorbent (MMBB) by combining a group of high biosorptive capability natural
lignocellulosic agro-industrial wastes. Firstly, the adsorption studies were carried
out to select the best combination of different biosorbents, selected from various
types of biosorbents compared in similar conditions. These wastes were selected
because of the good results reported in other literatures for heavy metal removal.
Besides, they are properly available in Australia and also all over the world. Then
the experiments were continued to compare the effect of different contact times,

pH, initial metal concentration, and biosorbent dose on biosorptive potential of
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selected combination. The results were mainly evaluated by two popular kinetic
models of pseudo-first-order and pseudo-second-order correlations and three
two-parameter and four three-parameter adsorption models (Langmuir,
Freundlich, Dubinin-Radushkevich, Khan, Radke-Prausnitz, Sips and Redlich-
Peterson). Finally, the appropriate isotherm and kinetic models were established.
Also elution efficiency (sorption and adsorptions cycles) on adsorption capacity
were then studied and the selected adsorbent was characterized using SEM and

FTIR.

4.2  Selection of adsorbents

The most important factors for selecting an adsorbent are adsorption capacity,
reusability, local availability, compatibility, kinetics and cost (Nguyen, 2015).
Eighteen individual biosorbents, namely, sawdust (SD), sugarcane (SC), corncob
(CC), tea waste (TW), apple peel (AP), grape stalk (GS), mandarin peel (MP),
orange peel (OP), maple leave (MP), passion fruit skin (PS), garden grass (GG),
mango skin (MG), lychee rind (LC), avocado peel (AV), eucalyptus leave (EU), egg
shell (ES), coffee waste (CW) and also coir peat (CP), individually (biosorbent dose:
5 gr/L, 50 mg/L initial metal Conc. at room temperature and pH of 5.0-5.5, rotary
speed of 150 rpm for 24 hr) were evaluated and compared in terms of biosorption
capacity (Figure 4.1). As can be seen in Figure 4.1, the results indicate TW, ML, MP,
OP and CP showed satisfying biosorptive capacity for all heavy metal ions
(cadmium, copper, lead and zinc). SD and CC had quite less biosorptive potential in
comparison with GG, AV, LC, GS and PS. AP, SC, ES and EU results for Pb, Zn, Cd and
Cu were very unsatisfactory that this type of waste will not be considered for study
in combination with other biosorbents. Two different combinations of TW:ML:MP
(MMBB1) containing the best ones and TW:SD:CC (MMBB2) as a combination of
TW with highest biosorption capacity with two low biosorption capacity were
selected to apply for further batch experiments. The purpose of this selection was
showing how influential the component of combination (with very different
biosorptive potential) was. The equal ratio of each biosorbent in the MMBBs was

chosen for the experiments.
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Figure 4.1 Comparison between

rotary speed: 150 rpm, particle size: 75-150 pm)

different agro-industrial wastes and by-products

for CA(II), Cu(Il), Pb(I) and Zn(lI)

adsorption(initial pH 5.5+0.1; room temperature, 22+1 °C; contact time: 24 hr; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L;
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4.3 Characterization of adsorbents by FTIR

To determine the functional groups involved in biosorption of Cd(II), Cu(II), Pb(II)
and Zn(I[) onto MMBB1 and MMBB2, a comparison between the FTIR spectra
before and after meal loading was done using SHIMADZU FTIR 8400S (Kyoto,
Japan). The FTIR spectrum of MMBB exhibited a large number of absorption
peaks, indicating the complexity in nature of this adsorbent. It also confirmed
changes in functional groups and surface properties of MMBBs. The shift of some
functional groups bands and their intensity significantly changed after heavy metal

biosorption (Table 4.1 and Table 4.2).

From Table 4.1 and Table 4.2, the shifts may be attributed to carboxylic (C=0) and
hydroxylic (O-H) groups on both MMBB'’s surface. They were dominantly active
groups in Cd(II), Cu(ll), Pb(II) and Zn(II) biosorption process, suggesting that
acidic groups, carboxyl and hydroxyl, are main contributors in the complexation of
metal cations and ion exchange processes. For MMBB1, amine and amide groups
were found between medium intensity peaks in the frequency range of 1640-1560
with 132.13 cm-1 shift after biosorption process. Meanwhile, for MMBB2, the
medium intensity peaks relating to amine and amide groups were found between
the frequency ranges of 3400-3250 with 4.9 cm-! shift after biosorption process.
The peaks detected in spectra of MMBB1 were laid between 1320-1000 cm-1,
which is related to C=0 stretch in amides, ketones, aldehydes, carboxylic acids and
esters (Feng et al., 2011). In addition, a shift of 32.79 cm-1 was in the range of
1500-1450, and is attributed to C=C-C asymmetric stretching aromatic rings. In
Table 4.2, the strong peaks between 1320-1000 cm-! and also 1820-1680 cm™!
present the existing of C-O stretch (COOH) and C=0 stretch in amides, ketones,

aldehydes, carboxylic acids and esters, respectively (Hossain et al., 2012).

A big change (78.12 cm™!) occurred on MMBB1 after metal loading. This is
reflected in the strong and broad band present between 3500-3200 cm-1. This may
be assigned to complexation of metal ions with the ionized O-H groups of
polymeric compounds (i.e. alcohols, phenols and carboxylic acids) of cellulose and

lignin of lignocellulosic materials (Hossain et al, 2012; Feng et al., 2011). The
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changes of peaks in the range of 3000-2850 cm-1and 3100-3000 cm-! for MMBB1
and in the range of 3000-2850 cm~! and 1470-1450 cm-! for MMBB2. These
variations indicated the involvement of H-C-H asymmetric and symmetric stretch
and C-H stretch of aromatic rings on MMBB1 and H-C-H asymmetric and
symmetric stretch and C-H stretch of alkanes which can be found in the molecular

structure of MMBB2, respectively.

The other detected peaks in Table 4.1 represent existence of H-C=0:C-H stretch
in aldehydes in the range of 2850-2700 cm-1 of MMBB1.

4.4 SEM analysis

From Table 4.1 and 4.2, SEM depicts the morphology changes of unloaded and
loaded biosorbent. SEM images exhibited the morphological changes on the
biosorbent surface before and after metal biosorption. After biosorption of heavy
metal ions, the surface became smoother with less porosity with probable metal

entrapping and adsorbing on biosorbent.

4.5 Effect of different physico-chemical parameters

4.5.1 Influence of pH

The adsorption of cadmium, copper, lead and zinc was studied as a function of pH
altering in the range of 2.0-5.5+0.1. Heavy metal ions exhibit amphoteric property
which means these substances can act as either an acid or a base, depending on the
pH. Minimum solubility for Cd, Cu, Pb and Zn is about 11.0, 8.1, 10.0 and 10.1
(Huang et al., 2017; Rudnicki et al.,, 2014). In the synthetic solution containing
multi-metal ions, copper and lead hydroxide significantly precipitated above pH
6.0. Therefore, the initial pH values above 5.5 are not preferable due to the
observed presence of metal hydroxide precipitation, so as the experiments were
not conducted beyond pH 5.5. Figure 4.2 represents the effect of pH of the
adsorption of cadmium, copper, lead and zinc altering in the range of 2.0-5.5. It can
be seen that the adsorption capacity of metals increased with increasing in pH

values in all cases.
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Table 4.1 FTIR spectra and SEM images of (a) unloaded and (b) metal-loaded MMBB1

DOCTORAL THESIS

SEM images

Frequency (cm1) Transmittance (%) Bond/Functional group

Unloaded Loaded Unloaded Loaded

514.05 510.19 21.47 16.45 C-Br stretch/ Alkyl halides

1005.92 1007.85 84.40 76.06 C=0 stretch/ Alcohols, carboxylic acids, esters
and ethers

1491.04 1458.25 83.57 74.93 C-C stretch(In-ring)/ Aromatics

1590.38 1458.25 84.23 74.93 N-H band/ 1° amines and amides

1654.03 1654.03 78.75 72.34 -C=C- stretch/ Alkanes

2721.68 2820.05 85.77 77.18 H-C=0: C-H stretch/ Aldehydes

2958.93 2957 83.06 75.48 H-C-H Asymmetric and symmetric
stretch/Alkanes

3096.85 3096.85 82.54 75.04 C-H stretch/ Aromatics

3348.57 323091 81.42 74.19 -C=C-H: C-H stretch/ Alkynes

3482.63 3404.51 81.61 74.24 O-H stretch, H-Bonded/ Alcohols and Phenols
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Table 4.2 FTIR spectra and SEM images of unloaded and metal-loaded MMBB2

Frequency (cm1)

Transmittance (%)

Bond/Functional group

SEM images

Unloaded Loaded Unloaded Loaded

1185.2 1175.9 79.1 68.55 C-0 stretch (COOH)/ Alcohols, carboxylic acids,
esters and ethers

3295.16 3290.26 64.5 53.5 N-H band/1° and 2° amines and amides

2892.51 2882.11 73.26 65.70 H-C-H Asymmetric and symmetric
stretch/Alkanes

1503.12 1509.12 72.33 65.54 N-0 asymmetric stretch/Nitro compounds

1465.4 1461.8 62.75 61.13 C-H band/Alkanes

1776.43 1767.33 69.3 64.3 C=0 stretch/Amides, ketones, aldehydes,
carboxylic acids and esters

3381.64 3373.34 71.8 64.4 O-H stretch, H-Bonded/ Alcohols and Phenols

Chapter 4|Page 75



ATEFEH ABDOLALI DOCTORAL THESIS

Although all metal adsorption followed similar pattern, the adsorption capacity of
Cu and Pb increased significantly by increase in pH values However, the changes of
Cu and Pb adsorption on both MMBB1 and MMBB2 was much more obvious than
that of Zn and Cd when the pH value increased from 2.0 to 5.5+0.1;

For MMBB1: Cu; 1.30 to 6.90 mg/g, Pb: 4.51 to 10.84 mg/g, Zn: 0.33 to 2.83 and Cd:
0.79 to 3.28 mg/g

For MMBB2: Cu; 1.07 to 5.70 mg/g, Pb: 2.50 to 8.53 mg/g, Zn: 0.29 to 1.83 and Cd:
1.30to 1.72 mg/g ).

The results indicated that the optimum pH value was 5.5 for all metals.
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Figure 4.2 Effect of initial pH of solution on Cd(II), Cu(lI), Pb(Il) and Zn(II)
adsorption (room temperature, 22+1 °C; contact time: 24 hr; initial metal conc.: 50

mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm, particle size: 75-150um)

4.5.2 Influence of contact time

A series of contact time experiments for cadmium, copper, lead and zinc
adsorption on MMBB1 and MMBB2 from 0-24 hr were carried out at 50 mg/L

initial concentration and room temperature. It is evident from the Figure 4.3 that
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the rate of metal uptake was very fast within first 30 min as a result of the
exuberant number of available active sites on adsorbent surfaces and then
decreased until equilibrium was reached. Biosorption capacity leveled off at
equilibrium state within 180 min. Therefore, the biosorption time was set to 180

min in each experiment.
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Figure 4.3 Effect of contact time on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption (pH
5.5%£0.1; room temperature, 22+1 °C; initial metal conc.: 50 mg/L; biosorbent dose:

5g/L; rotary speed: 150 rpm, particle size: 75-150pum)

4.5.3 Influence of adsorbent dose

Biosorption capacity was also affected by biosorption dose and amount of available
active sites and this effect is shown in Figure 4.4. There is a hike in removal
efficiency of all heavy metal ions. The experimental results indicate that the
percentage removal of all metal ions on MMBB1 and MMBB2 represents an
equilibrium pattern for biosorbent amounts of 5 g/L. and more. As it plateaued, the
optimum amount of adsorbent for future study would be 5 g/L whose highest
removal efficiencies were about 68 %, 75 %, 85 % and 55 % for Cd, Cu, Pb and Zn,
respectively for MMBB2 and 70%, 84%, 98 % and 61% for Cd, Cu, Pb and Zn,
respectively, on 5 g/L. MMBB1.
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Figure 4.4 Effect of biosorbent dose on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption
(pH 5.5%0.1; room temperature, 22+1 °C; contact time: 3 hr; initial metal conc.: 50

mg/L; rotary speed: 150 rpm, particle size: 75-150um)

4.6 Adsorption kinetics

In batch systems, the adsorption kinetics was described by a number of models
with varying degrees of complexity such as pseudo-first-order, pseudo-second-

order and intra-particle diffusion kinetic model.

A kinetic investigation was carried out to quantify the adsorption rate controlling
steps in Cd(II), Cu(II), Pb(II) and Zn(II) uptake on MMBB. The pseudo-first-order

and pseudo-second-order kinetic models were applied for kinetic study.

The experimental data and obtained parameters of these models were measured
by MATLAB® and summarized in Table 4.3. These kinetic models were exploited to
describe the probable mechanism of biosorption. As shown in Table 4.3, with
comparison between adsorption rate constants, the estimated e and the
coefficients of correlation associated with the Lagergren pseudo-first-order, the
pseudo-second-order and intra-particle diffusion kinetic models at room

temperature for MMBBs, it is obvious that both kinetic models of pseudo-first-
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order and pseudo-second-order Kkinetic models well described all metal
biosorption rather than intra-particle diffusion model. However, the coefficients of
correlation (R?) of pseudo-second-order kinetic model were slightly larger than
those of pseudo-first-order kinetic model for copper and cadmium. For lead and
zinc ions, the Lagergren pseudo-first-order described equilibrium state and
experimental data better than the other kinetic model. Totally, the kinetic models
indicated that chemical reaction would be presumably the rate limiting step of Cd,
Cu, Pb and Zn biosorption on MMBB. The calculated ge for pseudo-second-order
kinetic model (1.92, 5.88, 8.06 and 1.60 mg/g for Cd(II), Cu(II), Pb(II) and Zn(II),

respectively) are also close to the experimental values (1.89, 5.57, 8.04 and 1.60

mg/g).

The experimental data and obtained parameters of these models for MMBB2 are
shown in Table 4.3. The results indicate that pseudo-second-order kinetic model
can describe experimental data better than the two other kinetic models (R? =
0.99), suggesting that chemical reaction would be presumably the rate limiting
step of Cd, Cu, Pb and Zn biosorption on MMBB2. The calculated value of ge for
pseudo-second-order kinetic model (3.40, 6.39, 8.99 and 2.68 mg/g for Cd(II),
Cu(II), Pb(II) and Zn(II), respectively) are also close to the experimental values

(3.30, 6.40,9.02 and 2.88 mg/g).

Table 4.3 Comparison between adsorption rate constants, the estimated ge and
the coefficients of determination associated with the Lagergren pseudo-first-
order, the pseudo-second order and intra-particle diffusion kinetic models (pH
5.5%£0.1; room temperature, 22+1 °C; initial metal conc.: 50 mg/L; biosorbent dose:

5g/L; rotary speed: 150 rpm, particle size: 75-150pum)

Model Parameter Metal
Cd Cu Pb Zn
MMBB1
Experimental Qeexp (Mg/g) 3.30 6.40 9.02 2.88
1st—order kinetic model K1 (min-1) 3.36 6.39 9.06 2.64
(e,cal (mg/g) 10.70 8.047 8.93 5.17
R2 0.990 0.999 0.995 0.998
2nd—grder kinetic model K> x103 (gmg-1 min-1) 3.40 6.39 8.99 268

Chapter 4|Page 79



ATEFEH ABDOLALI DOCTORAL THESIS

Model Parameter Metal
Cd Cu Pb Zn
Qe.cal (Mg/8) 11.08 3.32 0.72  0.08
R2 0.995 0.999 0.985 0.988
Intra-particle diffusion Kp (mg g-1min-9-5) 0.05 0.53 0.25 0.08
model C 1.73 5.35 8.96 0.79
R2 0.92 0.89 0.88 0.90
MMBB2
Experimental Qeexp (MgE/g) 1.89 5.57 8.04 1.60
1st—order kinetic model K1 (min-1) 0.03 0.10 0.07 0.02
Qe.cal (Mg/8) 1.19 598 839 1.21
R2 0.79 0.95 094 0.85
2nd—grder kinetic model K> x103 (gmg-1 min-1) 0.17 0.08 0.06 0.09
Qe.cal (Mg/8) 1.92 588 8.06 1.60
R2 0.99 0.99 099 0.99
Intra-particle diffusion Kp (mg g-1min-9-5) 0.07 1.12 0.15 0.07
model C 1.16  4.35 6.19 0.68
R2 0.93 0.81 0.88 0.90

4.7 Adsorption isotherm

The correlation between the adsorbed and the aqueous metal concentrations at
equilibrium has been described by the Langmuir, Freundlich, Dubinin-
Radushkevich, Sips, Redlich-Peterson, Radke-Prausnitz and Khan adsorption
isotherm models. All the model parameters which were evaluated by non-linear
regression using MATLAB® software are presented in Table 4.4. Furthermore,
residual root mean square error (RMSE), error sum of square (SSE) and

correlation of determination (R?) were used to measure the exactness of fitting.

The Langmuir equation describes the equilibrium condition better than the other
models (R%: 0.99 and small RMSE values). From Table 4.4, the maximum amounts
of biosorption capacity of MMBB1 by monolayer adsorption assumption for Cd, Cu,
Pb and Zn obtained from Langmuir equation are 41.48, 39.48, 94.00 and 27.23
mg/g, respectively. Some metal ions have better affinity towards biosorbents than
other ions and this fact ascertains the selectivity potential of functional group

(S¢iban et al, 2007). This phenomenon can be confirmed by calculating the
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Langmuir parameter of by representing this attraction. by values for Pb (0.007

L/mg) was higher than Cu, Cd and Zn.

Furthermore, it was understood that the Langmuir isotherm corresponded to a
dominant ion exchange mechanism while the Freundlich isotherm showed
adsorption-complexation reactions taking place at the outer heterogeneous

surface of the adsorbent (Asadi et al., 2008; Kazemipour et al., 2008).

Among three-parameter isotherm models, for Cu(Ill) and Zn(II), Khan isotherm
describes biosorption conditions moderately better than Sips and Redlich-
Peterson models, while for Cd(II) and Pb(II), the Sips model was found to provide
the best correlation of the biosorption equilibrium data. The foregoing analysis of
isotherm models shows that the better fit for Cd(II), Cu(II), Pb(II) and Zn(II)
biosorption is produced by three-parameter isotherm models rather than two-

parameter isotherm models.

Maximum monolayer adsorption capacities of MMBB2 (qm,.) were 31.73, 41.06,
76.25 and 26.63 mg/g for Cd(1I), Cu(II), Pb(II) and Zn(II) sorption, respectively.

The by, values of Cd(II), Cu(Il), Pb(Il) and Zn(II) biosorption which were estimated
from this isotherm are 0.005, 0.010, 0.034 and 0.005 L/mg, respectively and shows
the steepest initial isotherm slope (the highest by) is for Pb(II) as can be expected.

From Table 4.5, it is apparent that equilibrium data of Cd(II), Cu(II) and Pb(II)
biosorption onto MMBB?2 fitted well by the Freundlich isotherm (R? = 0.99) and for
Zn(II) the Langmuir isotherm was quite better fitted than Freundlich isotherm
according to the values of R? of Langmuir isotherm model (0.97) being higher than
that of Freundlich isotherm (0.95) as well as values of RMSE and SSE which are
quite less than those of the other three models. Besides, it was understood that the
Langmuir isotherm corresponded to a dominant ion exchange mechanism while
the Freundlich isotherm showed adsorption-complexation reactions taking place
in the adsorption process (Asadi et al., 2008).

Temkin model constants, bre (k] /mol) and Kre (L/g), were 0.77, 0.55, 0.31 and 0.77
kJ/mol and 0.15, 0.21, 1.16 and 0.08 L/g, for for Cd(II), Cu(Il), Pb(II) and Zn(II),
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respectively. This model is not a proper correlation for examined heavy metals

according to Rz, RMSE and SSE values.

Radke-Prausnitz isotherm constants, ar-p and rr-p for Cd(II), Cu(Il), Pb(Il) and
Zn(1II) were calculated as 5.10, 9.24, 3.25 and 4.10 L/mg, 0.21, 0.63, 2.57 and 0.18
L/g, respectively.

As the results listed in Table 4.5, among two-parameter isotherms, both
Freundlich and Langmuir models agreed very well with experimental data rather
than the other two-parameter isotherm models and these are confirmed by small
values of RMSE and SSE and R? amounts closed to 1.0, too. This result indicates the
formation of monolayer coverage of metal ions at the outer heterogeneous surface
of the sorbent.

Table 4.4 Isotherm constants of two- and three-parameter models for Cd(II),
Cu(II), Pb(II) and Zn(II) adsorption onto MMBB1 (Initial pH 5.5£0.1, initial metal
Conc.: 1-500 mg/L, contact time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5
g/L, particle size: 75-150pm)

Metal
Models

Cadmium Copper Lead Zinc

Two-parameter models

Langmuir ¢, = %IZLC?
gm.L(mg/g) 41.48 39.48 94.00 27.23
bi, (L/mg) 0.001 0.004 0.007 0.002
SSE 35.74 62.35 13.50 0.84
R2 0.99 0.99 099 0.99
RMSE 3.45 4.56 212 053
Freundlich ¢, = KFCel/n
Kr 0.92 1.64 7.80  0.46
n 1.88 1.96 238 180
SSE 50.37 44,37 50.11 2092
R2 0.79 0.92 098  0.97
RMSE 4.09 3.84 4.08 098

Dubinin- Radushkevich g, = qp_g exp(—Bp_r€3_r)
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Models Metal
Cadmium Copper Lead Zinc

qor (mg/g) 22.78 32.17 56.32 12.19
Bpr 0.075 0.042 0.016 0.067
SSE 13.94 32.99 335 781
R2 0.96 0.94 087 092
RMSE 2.15 3.31 10.57 1.61

Three-parameter models

Khan ¢, = %
qmxk(mg/g) 21.53 43.04 85.43 16.30
ax 0.013 0.23 0.09 0.68
bx(L/mg) 0.006 0.097 0.003 0.004
SSE 15.2 1.02 28.66 1.39
R2 0.95 0.99 096  0.99
RMSE 2.74 0.71 3.78 0.83

Redlich-Peterson ¢, = %
Bre 0.21 3.03 081 0.44
Kre (L/8) 0.08 0.20 417 0.18
are(L/mg) 0.67 0.02 0.15 041
SSE 66.39 27.45 1.02 391
R2 0.79 0.95 099  0.97
RMSE 5.76 3.70 071 121

. kscPs

-
Bs 3.56 1.80 0.77 113
Ks (L/g) 0.028 0.017 4457 0.051
as (L/mg) 1.29 5.14 0.05 0.02
SSE 7.59 15.01 043 145
R2 0.97 0.97 099 0.98
RMSE 1.95 2.74 046  0.85

DOCTORAL THESIS
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Table 4.5 Isotherm constants of two- and three-parameter models for Cd(II),
Cu(II), Pb(II) and Zn(II) adsorption onto MMBB2(Initial pH 5.5%0.1, initial metal
Conc.: 1-500 mg/L, contact time: 3 hr, rotary speed: 150 rpm, biosorbent dose: 5
g/L, particle size: 75-150pm)

Metal
Models

Cadmium  Copper Lead Zinc

Two-parameter models

Langmuir ¢, = %
qmi(mg/g) 3173  41.06 7625 26.63
by (L/mg) 0.005 0010 0.034 0.005
SSE 2.24 4.52 65.03 3.89
R2 0.99 0.99 0.97 0.97
RMSE 0.75 1.06 4.03 0.98
Freundlich ¢, = KFCel/n
Kr 0.21 0.63 2.57 0.18
n 1.37 1.63 1.74 1.42
SSE 1.83 0.27 12.71  6.65
R2 0.99 0.99 0.99 0.95
RMSE 0.67 0.25 1.78 1.29

Dubinin- Radushkevich  q, = qp_g exp(—Bp_ge3_r)

qo-r (Mg/g) 18.00 2168 4799 14.56
Bp-r 0.008 0.005  0.004 0.018
SSE 18.54 59.54  40.60 6.50
R2 0.91 0.83 081 096
RMSE 2.15 3.85 10.07  1.27

Temkin ¢, = :;TTeln(KTeCe)

Kre (L/g) 0.15 0.21 116  0.08
bre (kJ/mol) 0.77 0.55 031  0.77
SSE 50.17 56.4 4234  26.89
R? 0.75 0.84 080  0.82
RMSE 3.54 3.75 1029  2.59
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Metal
Models
Cadmium  Copper Lead Zinc
Three-parameter models
Radke-Prausnitz ¢q, = AR-PTR-PCe
ar-p+7r-pCe
ar-p(L/g) 5.10 9.24 3.25 4.10
Br-p 0.68 0.61 0.57 0.70
rr-r (L/mg) 0.21 0.63 2.57 0.18
SSE 1.33 0.26 12.71  6.65
R2 0.99 0.99 0.99 0.95
RMSE 1.52 0.99 2.05 1.48
. KrpCe

Redlich-Peterson g, = m
are(L/mg) 1.25 0.10 2.09 5.39
Bre 0.27 0.60 0.19 0.56
Krp (L/g) 5.65 0.89 1.00 0.05
SSE 1.83 6.77 0.23 2.87
R2 0.99 0.99 0.99 0.98
RMSE 0.78 4.75 0.27 0.97

Bs
. KsC,
S = —
P e T sl

as (L/mg) 0.001 0.004 0.063 0.001
Bs 0.83 0.59 0.38 1.72

DOCTORAL THESIS

Chapter 4|Page 85



ATEFEH ABDOLALI DOCTORAL THESIS

Metal
Models
Cadmium  Copper Lead Zinc
Ks (L/g) 0.20 0.66 3.68 0.002
SSE 1.52 0.25 2.92 1.89
R2 0.99 0.99 0.99 0.98
RMSE 0.23 0.29 0.98 0.79

The Sips isotherm is a combination of the Langmuir and Freundlich isotherm
models and is expected to describe heterogeneous surfaces much better. At high
sorbate concentrations it predicts a monolayer adsorption capacity characteristic
of the Langmuir isotherm whereas at low sorbate concentrations it reduces to the

Freundlich isotherm (Febrianto et al., 2009).

As the results given by Sips model, the experimental results of Cd(II), Cu(Il) and
Zn(II) biosorption onto MMBB2 are well fitted by all Sips better than Redlich-
Peterson and Radke-Prausnitz models due to small RMSE and SSE as well as high
RZ close to 1.0.

Unlike Sips model, the Redlich-Peterson isotherm behaves like the Freundlich
isotherm at high adsorbate concentrations and comes close the Henry's law at low

amounts of concentration (Febrianto et al., 2009; Montazer-Rahmati et al., 2011).

Brp is the Redlich-Peterson model exponent which lies between 0 and 1 (0.27,
0.60, 0.19 and 0.56 for Cd(II), Cu(II), Pb(II) and Zn(II), respectively). Pb(II)
biosorption data is best correlated by the Redlich-Peterson as confirmed by the

smallest values of RMSE, SSE and R?values very close to 1.0 (0.999).

Various kinds of agro-industrial wastes and by-products were studied for heavy
metal removal. A comparison between maximum adsorptive capacities of MMBB
and some other adsorbents is shown in Table 4.6. These study results are
compatible with other adsorbents by higher or at least equal sorption potential for

heavy metal removal from aqueous solutions. Furthermore, combination of several
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types of low-cost agro-industrial waste might provide more selectivity as a result
of increase in different effective functional groups involved in metal binding.

Hence, this kind of adsorbent will be recommended for its significant advantages.

1
V2Bp-Rr

Dubinin-Radushkevich isotherm which is applied to evaluate sorption properties

Moreover, the mean free energy of adsorption (E = ) calculated from

and indicates if main mechanism is chemical reaction dominated by ion exchange
or physical adsorption. Based on hypothesis of D-R isotherm, E values between 8
and 12 kJ/mol mean chemical adsorption by ion exchange process whereas E
values less than 8 kJ/mol means physical adsorption. Hence, according to
calculated Bp-r for Cd, Cu, Pb and Zn, E values show physical adsorption for
cadmium and zinc removal (7.81 and 5.27 kJ/mol, for Cd and Zn, respectively) and
ion exchange process for lead and copper biosorption (9.45 kJ/mol for Cu and
10.54 kJ/mol for Pb) when MMBB2 was examined. For MMBB1, calculated Bp-r for
Cd, Cu, Pb and Zn and then E values showed physical adsorption or ion exchange
for all metal removal process whose calculated values are 2.58, 3.45, 5.59 and 2.73

kJ/mol for Cd, Cu, Pb and Zn respectively which are all less than 8 k] /mol.

Table 4.6 Biosorption capacities of various adsorbents

Adsorbent Adsorbate gmax(mg/g) Reference
MMBB1 Cd(11) 41.48 Present study
Cu(I) 39.48
Pb(II) 94.00
Zn(ID) 27.23
MMBB2 Cd(1n 31.73 Present study
Cu(ID) 41.06
Pb(1I) 76.25
Zn(ID) 26.63
Cashew nut shell Zn(1I) 24.98 Kumar et al., 2012
Rice straw Cd(In 13.89 Ding et al., 2012
Sugarcane bagasse Cd(In 69.06 Gargetal., 2008
Sawdust Cu(In 6.88 Séiban et al.,, 2007
Zn(ID) 0.96
cd(1n) 0.15
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Adsorbent Adsorbate gmax(mg/g) Reference

Olive stone Pb(1I) 92.6 Fiol etal., 2006
cd(In) 77.3
Ni(II) 21.3
Cu(ID) 20.2

Orange peel Pb(1I) 113.5 Fengetal, 2011
cd(1n 63.35
Ni(1I) 9.82

Tea waste Cu(II) 48 Amarasinghe and
Pb(1I) 65 Williams, 2007

Comparison between maximum adsorptive capacities of some adsorbents
investigated by other researchers is shown in Table 4.6. This study results are
compatible with other adsorbents by higher or at least equal sorptive potential for
heavy metal removal from aqueous solutions. Besides, combination of several
types of low-cost agro-industrial waste provides more selectivity as a result of
increase in different effective functional groups (also confirmed by FTIR
characterizations) involved in metal binding. As a consequence, these kinds of

adsorbent combinations will be recommended for their significant advantages.

4.8 Desorption studies

The ability of biosorbent regeneration and batch sorption and desorption studies
were conducted using four eluting agents (0.1 M NacCl, 0.1 M CaCl, 0.1 M CH3COOH
and Milli-Q water) for MMBB2 and five desorbing agents (0.1 M NaCl, 0.1 CaCL.,
0.1 M NaOH, 0.1 M HCI and also Milli-Q water) for MMBB1. The biosorption
capacity of eluted biosorbent was tested in five repeated cycles at optimum pH
5.5+0.1 and 50 mg/L initial metal concentrations. The contact time was 3 hours for
sorption and desorption in each cycle. The biosorption capacity of MMBB1 and
MMBB2 for Cd(II), Cu(Il), Pb(II) and Zn(II) removal in the five cycles are indicated
in Figure 4.5. To evaluate level of significance in the sorption and desorption cycles
on the biosorption capacity, SPSS software was used for statistical testing of the
model in the form of analysis of variance (ANOVA) and the one-sample t-test were
done. For a 5% level of significance, the ANOVA data are given in Table 4.7 and
Table 4.8.
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From Table 4.7, for a 5% level of significance, the ANOVA data are for Cd(II) Cu(II)
and Zn(Il) adsorbed on MMBB], P value is higher than 0.05 and also the values
of F are lower than the critical F: 2.74 < 3.89 for Cd(II) (P value: 0.25), 2.32 < 3.80
for Cu(II) (P value: 0.34) and . F: 2.55 < 3.89 for Zn(II) (P value: 0.19). These values
indicate the region of acceptance with 95% confidence; in other words, the
variation of sorption capacities of the five desorbents is not significant after five
cycles. But for Pb(II), the P value is lower than 0.05 (0.009) and the Fvalue is
higher than the critical F: 5.16> 3.89. Therefore, the type of desorbent affects the
sorption capacity and there is significant difference between the five desorbing

agents in Pb(II) removal.

For a 5% level of significance, T values for NaCl, CaCl;, HCl, NaOH and Milli-Q
water are listed in Table 4.7. For all heavy metals, the P value is higher than 0.05
and also the values of T are lower than the critical T (3.28): 2.16, 2.44, 1.86, 2.83
and 2.55 for Cd(1I), 1.85, 1.91, 3.13, 2.78 and 3.02 for Cu(ll), 4.23, 5.44, 4.42, 4.18
and 5.35 for Pb(I) and 1.57, 2.20, 1.60, 1.85 and 2.16 for Zn(II), respectively. It is
obvious from the t-tests that for 0.1 M NaCl, 0.1 CaCLz, 0.1 M NaOH, 0.1 M HCIl and
also Milli-Q water, the number of desorption times does not change the
biosorption process efficiency. Biosorption results show that the effect of HCl and
CaClz on the biosorbent is significant with the highest increase in the sorption

capacity.

From Table 4.8, for all metals, P value is less than 0.05 and also the values of F are
higher than the critical F. Therefore, the type of eluent affects the sorption capacity
and there is significant difference between the four desorbing agents in Cd(II),
Cu(IT), Pb(II) and Zn(II) removal. In this case, a P value less than 0.05 would result
in the rejection of the null hypothesis at the 5% (significance) level. In addition, for
a 5% level of significance T values for NaCl, CH3COOH and CaCly, for all Zn(II) and
Cd(II), the P value is higher than 0.05 and also the values of T are lower than the
critical T (2.13).
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Biosorption Capacity (mg/g)
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0.1 M NaCl 0.1 M CaCl2 0.1 M HCl 0.1 MNaOH | Milli-Q water
mCd 2.79 3.01 3.19 2.4 1.45
ECu 4.02 4.49 6.64 4.69 428
mPb 8.41 9.32 9.85 7.2 5.4
DZn 2.09 1.93 2.21 1.55 0.93
MMBB1
_9
o0
= 8
E7
26
(5
g5
S 4
g3
)
B2
21
]
m 0
0.1 MNaCl | 0.1M CaCl2 0.1M Milli-Q water
' ' CH3COOH
ocd 2.36 2.23 1.41 0.68
ECu 5.67 5.05 3.09 291
EPb 8.22 7.82 5.94 5.13
mZn 2.12 2.07 0.85 0.40
MMBB2

Figure 4.5 Biosorption capacity of Cd(II), Cu(Il), Pb(Il) and Zn(II) onto MMBB1

and MMBB2 washed by eluting agents (optimum pH 5.5+0.1; room temperature:

22+1 °C; sorption time: 3 hr ; desorption time: 3 hr; 5 cycles; initial metal conc.: 50

mg/L)
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In other word, it is obvious from the t-tests that for these eluents, the number of
elution times does not affect the biosorption process. However, biosorption results
show that the effect of CaClz and NaCl on the biosorbent is significant and causes
higher increase in the sorption capacity in comparison with CH3COOH and Milli-Q
water when MMBB2 was used. Hence, these two chemicals are recommended as
elution agents and desorption of cadmium, copper, lead and zinc from the
biosorbent for MMBB2. Of course the much lower cost of NaCl should also be taken

into consideration.

Table 4.7 ANOVA and One sample t-test data for sorption and desorption
experiments of Cd(II), Cu(II), Pb(II) and Zn(II) biosorption onto MMBB1 (optimum
pH 5.5%0.1; room temperature: 22+1 °C; sorption time: 3 hr ; desorption time: 3 hr;

5 cycles; initial metal conc.: 50 mg/L)

Statistical Analysis Method Metal
Cd Cu Pb Zn
One-way ANOVA for NacCl, CaClz, HCIl, NaOH and Milli-Q water
F factor 2.74 2.32 5.16 2.55
Feritical factor 3.29 3.29 3.29 3.29
Standard deviation 1.14 1.50 0.85 0.78
P value 0.25 0.34 0.009 0.19

One-sample T for NaCl

T factor 2.16 1.85 4.23 1.57
Teritical factor 3.28 3.28 3.28 3.28
P 0.18 0.15 0.24 0.28

One-sample T for CaCl;

T factor 2.44 1.91 5.44 2.20
Teritical factor 3.28 3.28 3.28 3.28
P 0.12 0.23 0.24 0.32

One-sample T for HCI

T factor 1.86 3.13 4.42 1.66
Teritical factor 3.28 3.28 3.28 3.28
P 0.29 0.26 0.72 0.19
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Statistical Analysis Method Metal
Cd Cu Pb Zn

One-sample T for NaOH

T factor 2.83 2.78 4.18 1.85
Teritical factor 3.28 3.28 3.28 3.28
P 0.31 0.15 0.67 0.23

One-sample T for Milli-Q water

T factor 2.55 3.02 5.35 2.16
Teritical factor 3.28 3.28 3.28 3.28
P 0.43 0.26 0.46 0.29

Table 4.8 ANOVA and One sample t-test data for sorption and desorption
experiments of Cd(II), Cu(II), Pb(II) and Zn(II) biosorption onto MMBB2 (optimum
pH 5.5+0.1; room temperature: 22+1 °C; sorption time: 3 hr ; desorption time: 3 hr;

5 cycles; initial metal conc.: 50 mg/L)

Statistical Analysis Method Metal
Cd Cu Pb Zn
One-way ANOVA for NaCl, CaClz, CH3COOH and Milli-Q water
F factor 12.23 4.66 4.86 4.59
Feritical factor 3.23 3.23 3.23 3.23
Standard deviation 1.08 0.90 0.65 0.87
P value 0.0002 0.0158 0.0136 0.0166

One-sample T for NaCl

T factor 2.31 4.08 4.66 0.02
Teritical factor 2.13 2.13 2.13 2.13
P 0.04 0.007  0.004 0.49

One-sample T for CaCl;

T factor 0.64 4.92 4.47 1.19

Teritical factor 2.13 2.13 2.13 2.13

P 0.27 0.004  0.005 0.15
One-sample T for CH3COOH

T factor 1.93 7.16 5.19 2.81

Teritical factor 2.13 2.13 2.13 2.13
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Statistical Analysis Method Metal
Cd Cu Pb Zn
P 0.06 0.001  0.003 0.02

One-sample T for Milli-Q water

T factor 5.00 5.60 4,76 5.48
Teritical factor 2.13 2.13 2.13 2.13
P 0.003 0.02 0.004 0.005

4.9 Conclusion

Two new multi-metal binding biosorbent containing tea waste, maple leaves and
mandarin peel as MMBB1 and tea waste, corncob and sawdust as MMBB2 were
found to be an effective and low-cost alternatives for detoxifying of heavy metals
contaminated aqueous solutions. The pH, contact time, adsorbent dose and initial
metal concentrations of the adsorbate significantly governed the overall process of
cadmium, copper, lead and zinc cations adsorption. For both MMBBS, the sorption
equilibrium time was reached within 3 hr and pseudo-second-order kinetic model

well fitted the experimental data.

The maximum amounts of biosorption capacity of MMBB1 by monolayer
adsorption assumption for Cd, Cu, Pb and Zn obtained from Langmuir equation are
41.48, 39.48, 94.00 and 27.23 mg/g, respectively. These amounts for MMBB2 were
31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(Il), Pb(II) and Zn(II) sorption,
respectively. Desorption studies showed that NaCl was successfully used as eluent
without affecting its sorption capability after five cycles of sorption and desorption
of MMBB2 and HCl was the best choice for MMBB1 according to statistical data.
MMBB1 was selected to modify and being investigated for further optimization

and characterization.

In addition, FTIR spectra analyses confirmed that carboxyl and hydroxyl were the
main functional groups in the complexation of metal cations and ion exchange

processes.
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Chapter 5
Heavy metal biosorption from
synthetic wastewater by modified
MMBB, characterization and

optimization: batch study
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Chapter 5 Heavy metal biosorption from synthetic wastewater by modified

MMBB, characterization and optimization: batch study

A major part of Chapter 5 was published in the following paper:

4 N

Abdolali, A., Ngo, H.H., Guo, W.S,, Zhou, ].L., Du, B., Wei, Q., Wang, X.C,,
Nguyen, P.D., 2015. Characterization of a multi-metal binding biosorbent:

chemical modification and desorption studies. Bioresource Technology 193,

477-487.

- J

5.1 Introduction

5.1.1 Research background

Over the past decades of studying heavy metal biosorption, many attempts have
been carried out to apply different types of biosorbents, to optimize the operation
conditions, to improve the mechanical strength of lignocellulosic biosorbents and
to reuse the biosorbents in successive cycles by different eluents (Bhatnagar et al.
2015; Nguyen, 2015). A successful adsorption process depends on the selection of
a proper adsorbent. In view of importance of economy in process design, this
chapter focuses on process optimization, biosorbent modification,

characterization, reutilizing and regeneration of the biosorbents.

5.1.2 Objectives

This chapter mainly explored characterization of the selected new biosorbent
(MMBB1 or shortened to MMBB hereinafter) to find the principal surface
functional groups and possible biosorption mechanisms involved in the
biosorption in terms of chemical modification and desorbing agents using Fourier
Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and
Scanning Electron Microscopy/ Energy Dispersive X-ray Spectroscopy (SEM/EDS).
Desorption studies were carried out in terms of eluent type, concentration and
contact time of desorption process. The effect of regeneration step by CaClz was

taken into consideration as well.
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5.2 Biosorption process optimization

5.2.1 Influence of biosorbent ratio

The effect of proportions for each biosorbent in MMBB (TW:ML:MP combination)
for heavy metal removal was fulfilled with different proportions (Figure 5.1). All
materials were separately weighed and mixed for removing any error and
inaccuracy. Apparently, there are no significant differences between the equal

proportions of 1:1:1 and the others, especially for lead and copper.

Since the ratio of 3:2:1 for TW:ML:MP showed the highest metal biosorption
capacity, this ratio therefore will be used for further studies. The pH, moisture
content (%), loss of mass and bulk density (g/cm3) of MMBB were 4.97, 18.86, 0.93
and 0.36, respectively.

5.2.2 Influence of biosorbent particle size

The particle size distribution of modified MMBB is given in Figure 5.2. This figure
illustrates that MMBB had a wide range of particle sizes (75-2000 pm). In addition,
the majority (72.5%) of MMBB was retained on the larger sieves in the range of
300um to 1000 pm. The result suggests that this biosorbent combination may have

a proper permeability when been used in a fixed-bed column.

The tests for studying the effect of particle size of biosorbent were conducted for 5
g/L adsorbent dose and an initial concentration of 50 mg/L. The results of
different particle sizes of <75 pm, 75-150 um, 150-300 pm and 300-425 pm 425-
600 pm, 600-1000 pm and 1-2 mm are indicated in Figure 5.2. It was found that
biosorption capacity slightly increased by decreasing particle size. The reason was
that these particle size distributions were very small (less than 300pum). The
smaller biosorbent size (<600 pm) exhibited better performance in regard with
metal removal. Nonetheless, the smaller size provides a higher surface area for
metal adsorption, the mechanical stability reduces particularly in column (Liu et
al, 2012). Hence, the size of 75-150 um MMBB was selected for the batch

experiments.
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Biosorption Capacity (mg/g)
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Biosorbent ratio ’bﬂ).
1:1:1 | 2:1:1 | 1:2:1 | 1:1:2 | 3:1:1 | 1:3:1 | 1:1:3 | 4:1:1 | 1:4:1 | 1:1:4 | 2:2:1 | 1:2:2 | 2:1:2 | 1:2:3 | 1:3:2 | 2:3:1 | 3:2:1
ocCd| 2.58 | 2.02 | 1.78 | 1.51 | 1.71 | 1.16 | 1.28 | 1.27 | 0.72 | 1.16 | 1.33 | 1.02 | 1.11 | 3.02 | 2.92 | 298 | 3.21
BZn| 246 | 190 | 1.68 | 196 | 1.56 | 1.35 | 144 | 1.35 | 1.35 | 1.53 | 1.09 | 1.27 | 1.22 | 233 | 2.26 | 2.31 | 2.38
BCu| 6.67 | 6.73 | 6.46 | 6.47 | 6.67 | 637 | 6.26 | 6.69 | 6.26 | 6.26 | 6.33 | 6.10 | 6.38 | 6.60 | 6.46 | 6.71 | 6.91
BPb| 10.00 | 10.01| 9.86 | 9.71 | 9.89 | 9.99 | 9.66 |[10.01| 9.88 | 9.67 | 9.85 | 9.71 | 9.85 | 9.85 [ 10.00 | 10.21 | 10.08

Figure 5.1 Effect of ratio of tea waste: maple leaves: mandarin peel on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial pH 5.0-

5.5+0.1; room temperature, 22+1°C; contact time: 24 h r; initial metal conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: 150

rpm; particle size: 75-150um)
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Figure 5.2 Particle size distribution of MMBB (<75 pm, 75-150 pm, 150-300 pm
and 300-425 pm 425-600 um, 600-1000 pm and 1000-2000 pum)
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Metal Removel, %

20 A

<75 pum 75-150 yum  150-300 um 300-425 pm 425-600 um 600-1000 ym  1-2 mm

Biosobent particle size (um
Figure 5.3 Effect of biosorbent particle size on Cd(II), Cu(Il), Pb(II) and Zn(II)
adsorption (Initial pH 5.0-5.5+£0.1; room temperature, 22+1°C; initial metal Conc.:

50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm; the ratio of 3:2:1 for
TW:ML:MP)
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In column study, the larger particle size would be selected due to proper
mechanical strength and good efficiency in column adsorption with high flow rate

and also reusability (Chapter 6).

5.2.3 Influence of drying temperature

A few researchers investigated the effect of temperature of drying on biosorptive
capacity of biosorbent for metal removal. In some literatures, biosorption
performance was enhanced by increase in drying temperature. Thermal
pretreatment can make larger surface sites and improve biosorbent surface

activity and kinetic energy (Liu et al., 2012).

The drying time of tea leaves and mandarin peels have very similar pattern. For tea
leaves, at 150C the remaining weight plateaued after 2 hr while at 75°C, the

constant weight could be achieved within 6 hr. For maple leaves, due to low
content of moisture, there were no remarkable differences between drying time in
different drying temperature which were within 3 hr for lower drying
temperatures and 2 hr for higher temperatures. However, when the temperature
was higher than 105C, there is no significant change in the drying rate for all

three types of biosorbent after 2 hr of drying in oven.

All of biosorbents were dried at various temperatures to investigate the influence
of drying temperature on drying rate and remaining weight. As can be expected,
increasing drying temperature made a significant improvement of drying rate. The
drying time was reduced remarkably with an increase in temperature within 50 to
150 °C. However, in this study for metal concentration of 50 mg/L, the temperature

did not affect the amount of Cd, Cu, Pb and Zn biosorption on MMBB (Figure 5.5).

Therefore, for low energy consumption in a short time of drying and also to avoid
any physical damage of biosorbent structure, all biosorbent was dried at lower

temperature (105 °C) as an optimum temperature in this study.
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5.2.4 Influence of chemical pretreatment

NaOH has been used to hydrolyse protein of biosorbents and methyl esters of
cellulose, hemicellulose, pectin and lignin (Calero et al., 2013; Ronda et al., 2013;
Feng et al., 2009a). Methyl ester bonds can be saponified to carboxyl (-COOH),
carboxylate (-COO) and alcoholic (-OH) ligands. It also leads to a decrease in the

degree of polymerization and crystallinity as follows:

R-COOCH3 + NaOH - R-COO-+ CH30H + Na*

(a) (b)
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Figure 5.4 Drying rate of (a) tea leaves, (b) maple leaves and (c) mandarin peels at

different drying temperature

Strong acids such as HCI, H,SO4 or HNO3 can protonate unavailable functional

groups in the structure of biosorbents by oxidizing functional groups and
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transforming them to carboxylic groups (Chatterjee and Schiewer, 2014; Ronda et

al,, 2013; Schiewer and Balaria, 2009; Nadeem et al., 2008).

—o—Cd —=—Cu Pb ——7n

10 I:

K

Biosorption Capacity (mg/g)

50 70 90 110 130 150

Drying Temperature (°C)

Figure 5.5 Effect of drying temperature on Cd(II), Cu(Il), Pb(II) and Zn(II)
adsorption(Initial pH 5.0-5.5+0.1; room temperature, 22+1°C; initial metal Conc.:

50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm)

Besides, alkali treatments in comparison with acidic ones at the same conditions
were more effective on metal ion removal and made the functional groups denser
and thermodynamically more stable (Velazquez-Jimenez et al., 2013). Dilute NaOH
treatment leads to an increase in surface area, while treatment with nitric acid

reduces the surface area and total pore volume (Ronda et al., 2013).

Formaldehyde can increase stability of the material and surface structure. It can be
applied to pretreatment for prevention of organic leaching and metal uptake
enhancement. Chen and Yang (2005) reported that formaldehyde reacts with the
hydroxyl group of biosorbent to form acetyl groups and increase the structural

stability of the biomass.

Pectin acid of lignocellulosic materials is precipitated by treating with calcium

chloride and its solubility in solution decreases. In addition, CaCl; makes
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biosorbent stable in term of mechanical structure by releasing organic compounds
and volatiles (Feng et al., 2009a). It has been also reported that the formation of
reactive carboxyl groups’ cross-links with calcium might increase by adding a

given amount of calcium ions (Sriamornsak, 2003).
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Figure 5.6 Biosorption capacity of modified MMBB by different chemical and
physical methods (Initial pH 5.0-5.5£0.1; room temperature, 22+1 °C; initial metal

Conc.: 50 mg/L; biosorbent dose: 5g/L; rotary speed: 150 rpm)
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Finally, it should be noted that the enhancement obtained in biosorption capacity
with pretreatments of MMBB by mineral acids was due to the functional groups
replacement with more soluble compounds and improvements of surface

characteristics (Velazquez-Jimenez et al., 2013; Ofomaja and Naidoo, 2011).

The calculated biosorption capacities for each metal ion were shown in Figure 5.6.
The biosorption capacity of all metals increased after modification by NaOH which
are 10.58, 9.00, 13.42 and 10.70 mg/g for Cd, Cu, Pb and Zn, respectively. HC],
HNO3 and H2S04 indicated reverse results due to probable damage of biosorbent
structures by these mineral acids. CaCl; and formaldehyde improve lead removal
whereas cadmium, copper and zinc removal decreased by formaldehyde-treated

MMBB.

It can be concluded that, chemical modification by sodium hydroxide and the
solution containing sodium hydroxide, calcium chloride and ethanol were more
effective than the other chemical and physical pretreatment. Since calcium chloride
made biosorbent structure more durable for reusing in successive and continuous

processes, all biosorbents were pretreated by NaOH, CaCl; and ethanol.

5.2.5 Influence of ion strength

From FTIR, MMBB was characterized by negative charge due to dissociation of two
weakly acidic active sites (carboxylic and amino acid). Another important
parameter in biosorption is the ionic strength because of the nature of the active
sites of biomasses and the type of physico-chemical interactions among these
active sites and ionic species in the solution (Pagnanelli et al., 2014; Beolchini et al,,
2006). Rather than hydroxide ions and the pH of solution, biosorption process is

strongly dependent on water chemistry and presence of electrolyte ions.

Sodium as a common ion in wastewater competes with heavy metal ions for
electrostatic binding to the biomass (Schiewer and Volesky, 1997). Therefore, the
amount of heavy metals bound reduced by light metals (represented by ionic
strength). Deprotonated functional groups are negatively charged; consequently
they will electrostatically attract any cation. However, potassium and sodium ions

do not compete directly with the covalent binding of heavy metals ions onto the
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biosorbent surface. It is probably due to the poor complex with surface active sites
(Vilar et al., 2005). The effect of Na* is more influential respecting the uptake of
weakly bound heavy metals such as Zn or Ni, while strongly bound metals such as

Pb and Cu are less affected by the ionic strength (Schiewer and Wong, 2000).

In this study, having investigated the effect of pH value and the presence of [H30]*
ions, the effect of ionic strength on biosorption is studied by performing
equilibrium sorption tests in batch systems. The flasks contained heavy Cd, Cu, Pb
and Zn with initial concentrations of 10, 50 and 100 mg/L. Ionic strength of
solutions varied by adding NaNOs with concentrations of 0.1 and 0.2 M. These
relatively high concentrations were chosen for simulating the real wastewaters.
For comparison with lower ionic strength level, there was a reference case with no
addition of NaNOs to the heavy metal solution. The results are shown in Figure 5.7.
Respecting covalent heavy metal speciation, in the studied pH range (2.5-6.0+0.1),
the main form of Me2* and its speciation are not remarkably influenced by the
presence of Na* (Beolchini et al., 2006). The ionic strength only has a slight effect
on cadmium, copper, lead and zinc ion uptake capacity at lower Na* concentration
(0.1 M) by modified MMBB regardless of heavy metal concentrations. Besides,
increasing of heavy metal concentration can cover the effect of ionic strength effect
of high sodium concentration (0.2 M). Hence, it can be concluded that electrostatic
binding of MMBB has nontangible contribution of covalent binding within
biosorption process. In other study, it has been reported that strongly bound
metals such as lead and copper are less affected by the ionic strength (Vilar et al.

2005).

5.3 Characterization of adsorbents by FTIR

FTIR analysis was performed to investigate the major functional group in
cadmium, copper, lead and zinc binding process. The FTIR spectra of the
unmodified and modified MMBB by NaOH, CaCl, and ethanol before and after
metal loading were compared (Figure 5.8). The major band assignments and
functional groups are as follows. A medium band at about 1051-1012 cm!
corresponds to deformation vibration of groups C-N stretch of aliphatic amines.

Broad bands at 1300-1000 cm! have been assigned to C-O stretching in acids,
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alcohols, phenols, ethers and esters. Two bands (<200 cm-1 apart) were the

appearance of N=0 bend of nitro compounds between 1400-1300 cm-1.
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Figure 5.7 Experimental data for cadmium, copper, lead and zinc biosorption on

modified MMBB at different ionic strength levels

The bands at 1579 and 1523 cm-! for modified MMBB and at 1546 and 1533cm™!
for unmodified MMBB, respectively, correspond to stretching of carbonyl group
and carboxylic acid (C=0) of primary amines (T amine). The band at 1589 cm!
corresponds to deformation vibration of N-H bends of primary amines (1" amine).
The region between 2000 and 3000 cm~! presents two major adsorption bands. At
about 2341 and 2343 cm-! for modified MMBB and at 2345 and 2353 cm-! for
unmodified MMBB, a doublet peak can be seen due to the existence of B-H stretch.
The band around 2916 cm-! was exhibited in presence of C-H stretching of CH:

groups (asymmetric and symmetric stretches). Besides, a very broad weak band at
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3144 and 3487 cm-! might attribute to the presence of intermolecular hydrogen
bonded O-H stretch of phenols and alcohols.

The changes after modification can be obviously seen in FTIR spectra as the
fingerprint of sodium hydroxide pretreatment due to the formation of the
intermolecular hydrogen bond and complexation of heavy metal ions by
carboxylate groups. According to literature (Tan and Xiao, 2009; Gurgel and Gil,
2009), ester product and carboxyl acid compounds will have a strong sharp peak
at ~2900 cm-1 (alkyl C-H) and a strong and sharp peak at ~1700 cm-1 (C=0). The
absorption band wave number of the carboxylate groups (COO-) is about 1670-
1600 cm-1, which shifted to low wave number because of the formation of the
intermolecular hydrogen bond. This confirms that basic modification of biosorbent
makes methyl ester hydrolyse, ester groups decrease and subsequently
carboxylate groups increase. The FTIR analysis of the chemically modified MMBB
in comparison with unmodified form also confirmed that carboxylate groups play

an important role in heavy metal adsorption.

5.4  Effect of contact time and kinetic study

It is evident from Figure 5.9 that the rate of metal uptake was very fast within first
60 min for initial metal concentrations of 10 and 50 mg/L in comparison with 100
mg/L. The biosorption capacity levelled off after 120 min of contact time for
cadmium, copper and zinc ions with initial concentration of 100 mg/L while for

lead, there is no difference between metal removal in different initial content.

The experimental kinetic results were fitted to pseudo first-order and pseudo
second-order kinetic models. The kinetic model parameters, residual root mean
square error (RMSE), error sum of square (SSE) and correlation of determination
(R?) were measure and presented in Table 5.1. According to calculated kinetic and
fitting parameters and also comparison between adsorption rate constants, the
estimated ge and the coefficients of correlation associated with the Lagergren
pseudo-first-order and the pseudo-second-order Kkinetic models, cadmium,
copper, lead and zinc biosorption process followed pseudo second-order kinetic

model.
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It is obvious that chemical reaction would be presumably the rate limiting step of
Cd, Cu, Pb and Zn biosorption on both modified and unmodified MMBB. The
calculated values of ge for pseudo-second-order kinetic model (modified MMBB)
are 10.94, 10.75, 13.56 and 9.68 mg/g for Cd(II), Cu(Il), Pb(Il) and Zn(II),
respectively, approximately close to the experimental values (11.69, 11.63, 13.75
and 10.33 mg/g).

100

Transmittance, %

Modified MMBB after biosorption

Modified MMBB before biosorption

88 - Unmodified MMBB after biosorption
Unmodified MMBB before biosorption
86 T T T T
3500 3000 2500 2000 1500 1000

Wavenumber, cm-1

Figure 5.8 FTIR spectra of unmodified and modified MMBB before and after metal

biosorption
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Figure 5.9 Effect of contact time on Cd(II), Cu(II), Pb(II) and Zn(II) adsorption
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5.5  Adsorption isotherm

The correlation between the adsorbed and the aqueous metal concentrations at
equilibrium was described by the Langmuir and Freundlich (Table 5.2). The
Langmuir equation describes the equilibrium condition better than Freundlich
model (R%: 0.99 and small RMSE values). The maximum amounts of biosorption
capacity by monolayer adsorption assumption for Cd, Cu, Pb and Zn obtained from
Langmuir equation are 41.48, 39.48, 94.0 and 27.23 mg/g, respectively, for
unmodified MMBB. These amounts were 69.56, 127.70, 345.20 and 70.55 mg/g for
Cd(1II), Cu(II), Pb(II) and Zn(II), respectively, for modified MMBB. Furthermore, it
was understood that the Langmuir isotherm corresponded to a dominant ion
exchange mechanism while the Freundlich isotherm showed adsorption-
complexation reactions taking place at the outer heterogeneous surface of the

adsorbent (Cay et al., 2004).

Table 5.3 summarizes the qm values of various biosorbents for the comparison
purpose. Table 5.3 reveals that this modified MMBB possessed relatively high qm
values, which were favourably comparable to most of the biosorbents in the
literature for heavy metal removal from aqueous solutions. As found hereinbefore,
combination of several types of low-cost agro-industrial waste might provide
more selectivity as a result of increase in different effective functional groups

involved in metal binding.

5.6  Adsorption thermodynamics

The biosorptive potential of modified MMBB for Cd(II), Cu(II), Pb(II) and Zn(II)
removal was studied at the temperatures of 25, 30, 40 and 50 °C. The experimental
results indicated dependency of adsorption on the temperature and are listed in
Table 5. The thermodynamic parameters for the adsorption process such as Gibbs
free energy change (AG°), enthalpy change (AH°), and entropy change (AS°) were
calculated to evaluate thermodynamic feasibility of the sorption process and to

confirm its nature.
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Table 5.1 Comparison between adsorption rate constants, the estimated ge and the coefficients of correlation associated with the

Lagergren pseudo-first-order and the pseudo-second order kinetic models (Initial metal Conc.: 50 ppm)

Kinetic models Parameter Metal
Cd@ Cd(®) Cu( Cu(®) Pb() Pb(®) Zn(a) Zn(b)
Experiment ge(mg/g) 3.30 11.63 6.40 11.69 9.02 13.75 2.88 10.33
Pseudo-first-order q; = q.[1 — exp (—K;t)]
ge(mg/g) 3.36 10.94 6.39 10.75 9.06 13.56 2.64 9.68
Ki(hr-1) 10.70 11.02 8.047 5.95 8.93 3.33 5.17 10.62
R2 0.99 0.99 0.99 0.88 0.99 0.99 0.99 0.97
SSE 0.10 3.47 0.005 13.99 0.354 0.37 0.007 291
RMSE 0.08 0.65 0.006 1.32 0.165 0.21 0.02 0.60
Pseudo-second- K,q2t
order T K>q.t
ge(mg/g) 3.40 11.63 6.39 11.74 8.99 13.7 2.68 10.32
Kz (mg g-thr-1) 11.08 1.46 3.32 0.78 0.72 9.83 0.08 1.57
R2 0.99 0.99 0.99 0.95 0.98 0.99 0.98 0.99
SSE 0.04 0.62 0.53 6.27 1.14 0.12 0.07 0.53
RMSE 0.05 0.28 0.006 0.88 0.29 0.12 0.76 0.25

(a) Un-modified MMBB
(b) Modified MMBB
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Table 5.2 Isotherm constants of non-linear Langmuir and Freundlich models for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption on

unmodified and modified MMBB

Metal
Isotherm models
Cd@ cd® Cu®@ Cu® Pb(a) Pb(b) Zn() Zn®)
Langmuir o = %
qm.L (Mg/g) 41.48 69.56 39.48 127.70 94.00 245.20 27.23 70.55
br (L/mg) 0.001 0.004 0.004 0.001 0.007 0.060 0.002 0.004
R? 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
RMSE 3.45 2.59 4.56 2.87 2.12 0.71 0.53 2.25
Freundlich ge = KzCM™
Kr 0.92 1.24 1.64 0.75 7.80 0.37 0.46 1.17
n 1.88 1.71 1.96 1.40 2.38 1.15 1.80 1.67
R2 0.79 0.95 0.92 0.97 0.98 0.99 0.97 0.95
RMSE 4.09 4.49 3.84 4.26 4.08 1.36 0.98 9.06

(@  Un-modifiedMMBB

(®)  ModifiedMMBB
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Table 5.3 Maximum biosorption capacities of various adsorbents

Adsorbent Adsorbate gmL(mg/g) Reference

Tomato waste P Cu(ID) 34.48 Yargicetal, 2014

Olive tree pruning2 Pb(II) 33.90 Anastopoulos et al., 2013
Olive tree pruning® Pb(II) 82.64 Anastopoulos et al,, 2013
Cabbage waste @ Cd(1Dn) 20.56 Hossain et al., 2014
Cabbage waste @ Cu(ID 10.31 Hossain et al.,, 2014
Cabbage waste @ Pb(1I) 60.56 Hossain et al., 2014
Cabbage waste @ Zn(II) 8.97 Hossain et al.,, 2014
Orange peel b Pb(II) 113.5 Fengetal, 2011

Orange peel b Cd(In 63.35 Fengetal, 2011

Cashew nut shell 2 Zn(II) 24.98 Kumar etal., 2012

Rice straw 2 Cd(II) 13.89 Ding et al.,, 2012

(d  Unmodified MMBB

(®)  Modified MMBB

The Gibbs free energy indicates the degree of spontaneity of sorption process, and
the higher negative value reflects a more energetically favourable sorption. AH®
and AS° were obtained from the slop and intercept of the Van't Hoff plots (Figure
5). The negative values of (AG®) for all metal ions indicate the spontaneous nature
of metal biosorption on modified MMBB. The negative value of AH® showed that

the sorption process was exothermic in nature.

Except for zinc, calculated AS° values for cadmium, copper and lead were positive,
reflecting the increased randomness at the solid/solution interface during

sorption. It also indicates an affinity of the sorbent towards Cd, Cu and Pb ions. In
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addition, the low value of AS° may imply that no remarkable change in entropy

occurred during the sorption of Cd, Cu, Pb and Zn ions on modified MMBB.

5.7  Desorption studies

It is desirable to desorb and recovered the adsorbed metals and also regenerate
the adsorbent materials for another cycle of application. The regeneration of the
adsorbent can be achieved by washing loaded adsorbent with an appropriate
desorbing solution. Desorbing agent must be cheap, effective, non-polluting and

non-damaging to the adsorbent structure (Ozdes et al. 2009).

In Figure 5.11, the desorption potential of the eluents is compared for first cycle of
sorption/ desorption to select the best desorbing agent. It is apparently that Milli-
Q water was very ineffective for releasing bonded metal onto MMBB. Sodium
chloride and sodium hydroxide showed very weak potential for detaching
adsorbed metal in comparison with the acids. It is well known that under acidic
conditions the adsorbent surface is protonated by [H30]* ions to make possible
desorption of positively charged metal ions from the adsorbent surface (Ozdes et
al,, 2009). Among these three mineral acids, HCI was slightly better than HNO3z and
H2S04 for all metals.

Copper was almost completely desorbed with 0.1M HCI. Other metal ions recovery
cannot thoroughly fulfilled by desorption. This might be due to heavy metal ions
being trapped in the adsorbent porous structure and therefore difficult to release

(Ozdes et al. 2009).

According to the Langmuir parameter presented in Table 5.2, lead biosorption
presented the highest affinities for modified MMBB, therefore desorbed in longer
time than other metals. The lead recovery was the lowest and copper showed the
highest amounts which were 76.26 and 99.93 %, respectively by applying HCI as
he desorbing agent. Cadmium and zinc desorption efficiency were 96.33 % and

91.93 % respectively for HCI, and 96.90 % and 92.90 %, respectively for HNOs.

Chapter 5|Page 113



ATEFEH ABDOLALI
9
8
7 bQ—n =
6
25
=4
3 Cd- k=1/b
2 ACd- k=k"n
1 <¢ Cd- k=qge/Ce
0
3.0 3.1 3.2 33 34
1/T (x1073), 1/K
12
10 A— A A A
S < < >
8
Q
Y]
= 6
- Pb- k=1/b
4
APb- k=k"n
2
< Pb- k=qe/Ce
0
3.0 3.1 3.2 33 34

1T (x1073), 1/K

DOCTORAL THESIS

— 0
Cu- k=1/b
A Cu- k=kn
<¢ Cu- k=qe/Ce
3.0 3.1 3.2 3.3 3.4
/T (x1073), 1/K
— a0
b—5 —a—b
Zn- k=1/b
AZn- k=k"n
¢ Zn- k=qe/Ce
3.0 3.1 32 33 34

1T (x107), 1/K

Figure 5.10 Van't Hoff plots for Cd(II), Cu(II), Pb(II) and Zn(II) adsorption(initial

pH 5.5%0.1; initial metal Conc.: 1-50 mg/L; contact time: 3 h; biosorbent dose: 5
g/L

Generally, desorption efficiency of all metals did not tangibly change by using these

three acids. It is necessary to note that because of low solubility of lead sulphate,

H2S04 could not be utilized for lead recovery.

For desorption study, the optimum conditions were determined and metal-loaded

modified MMBB was desorbed using HCl, HNO3 and H2S04 (0.1M) for enough time

within that the outlet metal concentration remained constant and equal or close to

Zero.
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Table 5.4 Thermodynamic parameters, AG°(k]/mol), AH® (k]/mol) and AS°(k]/mol K), for adsorption of Cd(II), Cu(II), Pb(II) and
Zn(II) adsorption(Initial metal Conc.: 1-50 mg/L)

Metal T(K) € AG® AH° AS° & AG® AH° AS° y N AH° AS°
T T T
4 < <
cd 298 114  -17.44 -411 087 2.97 -1981 -10.06 0.61 1.01 -17.13 -6.95 0.02
303 1.07  -17.57 3.24 -20.36 0.98 -17.34
313 1.00 -17.98 3.28 -21.07 0.98 -17.92
323 090  -18.27 3.56 -21.96 1.01 -18.57
Cu 298 059  -15.81 -1545 275 1429  -2370 -1830 258 0.37 -14.66 -16.58 3.20
303 058  -16.03 17.01  -24.54 0.45 -15.40
313 055  -16.42 30.77  -26.89 0.37 -15.42
323 13 -19.25 2551  -27.25 1.00 -18.55
Pb 298 829  -22.35 -11.93  0.90 1.13 -1741 -12.65 165 14.35 -23.71 -12.68 0.92
303 691  -2227 1.12 -17.70 14.92 -24.21
313 689  -23.00 2.48 -20.34 18.25 -25.53
323 1043 -2485 1.42 ~19.50 17.65 -26.26
Zn 298 023  -1347 -3.64 -054 532 -2126 -17.72 2.62 0.33 -14.38 -2.57 -0.91
303 023  -13.70 13.00  -23.86 0.22 -13.55
313 022  -14.04 1172  -24.38 0.23 -14.13
323 0.2 -14.23 1323  -2548 0.24 ~14.68
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Figure 5.11 Comparison between Cd, Cu, Pb and Zn elution from metal-loaded

modified MMBB using different desorbing agents (Ci: 50 ppm)

Figure 5.12 shows the elution curves of metal-loaded modified MMBB with HCI,
HNO3 and H2S04 until desorption efficiency amount levelled off. Lead desorption
by HCl was slower than other metal desorption. The lead desorption equilibrium
took place within 3 hr whereas other metal desorption efficiency reach

equilibrium state in 2 hr.

The effect of HCl concentration was indicated in Figure 5.13. Metal desorption
efficiency increased by about 9, 47, 70 and 26 % for Cd, Cu, Pb and Zn, respectively,
when HCI concentration increased from 0.01M to 0.1M. Higher acid concentration
might damage the biosorbent structure and reduce the sorption and desorption

efficiency due to biosorbent mass loss.

The metal-desorbed modified MMBB was used as the regenerated sorbent in five
repeated sorption and desorption cycles and five successive cycles of sorption,
desorption and regeneration to determine reusability potential of the adsorbent.
After adsorption, the metal-loaded modified MMBB were filtered, oven dried,
weighed and soaked in 0.1M HCI desorption solution with biosorbent

concentration of 5 g/L. After each desorption step, biosorbents was washed
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properly by distilled water, then contacted with 1M CaCl; for 12 hr at 4C to be

regenerated. In each cycle, the biosorbent was repeatedly washed with distilled

water after each desorption to eliminate any excess chemical. Biosorbent stability

or any probable weight loss was controlled by weighing MMBB after drying in

oven.
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Figure 5.12 Elution of Cd, Cu, Pb and Zn from metal-loaded modified MMBB using
different mineral acids: 0.1M HCl, H,SOsand HNO3
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Figure 5.13 Effect of HCI concentration on desorption efficiency of metal-loaded

modified MMBB

The results were very promising. Calcium chloride can increase the stability and
reusability of MMBB and repairing the damage caused by the desorbing agents and
removing the excess protons after each elution providing new binding sites. HCI
was the best eluent for the reutilization of MMBB among all studied chemicals
without destroying its sorption capability. MMBB were successfully reused (5
cycles) without any significant loss in both biosorption capacity and biosorbent
mass. Metals uptake levelled off or increased after using a 1M CaCl; regeneration
step after each desorption. After the fifth step of sorption and desorption, for Cd
and Pb ions, biosorption capacity increased from 10.95 mg/g to 11.90 mg/g and
8.78mg/g to 9.20 mg/g, respectively, while Cu and Zn removal decreased by 3.76
and 8.57 mg/g, respectively (Figure 5.14).

The results were very promising. Calcium chloride can increase the stability and
reusability of MMBB and repairing the damage caused by the desorbing agents and
removing the excess protons after each elution providing new binding sites. HCI
was the best eluent for the reutilization of MMBB among all studied chemicals
without destroying its sorption capability. MMBB were successfully reused (5
cycles) without any significant loss in both biosorption capacity and biosorbent

mass. Metals uptake levelled off or increased after using a 1M CaCl; regeneration
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step after each desorption. After the fifth step of sorption and desorption, for Cd
and Pb ions, biosorption capacity increased from 10.95 mg/g to 11.90 mg/g and
8.78mg/g to 9.20 mg/g, respectively, while Cu and Zn removal decreased by 3.76
and 8.57 mg/g, respectively (Figure 5.14).
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Figure 5.14 Biosorption capacity of modified MMBB after each sorption/

desorption step without and with regeneration step by CaCl

Desorption efficiency of cadmium, copper, lead and zinc decreased by about 26, 37,
29 and 36 %, respectively (Figure 5.15). During desorption by hydrochloric acid,
biosorbent can become swollen in the acid and the mass loss of MMBB was the
result of this damage that was observed between the first and fifth cycles. After five
cycles, however, biosorbent mass decreased by 32%, without regeneration by

CaCla.
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The biosorbent surface remained coarsely porous to entrap the metal ions, CaClz
could repair the damage caused by the acid during desorption and remove the
excess protons remaining from that step (Mata et al. 2010; Mata et al. 2009). In
addition, it was seen that the metal desorption efficiency and biosorption capacity
remained constant or increased to a slight extent for all metals. This might be as a
result of slightly chemical modification by CaClz. Similarly, Mata et al. (2009 and
2010) using 0.1M HNOs3 as desorbing agent and 1M CaCl; as regenerating agent for
pectin gel beads in order to Cd, Cu and Pb uptake. It was very successful to reuse
pectin gel beads after nine cycles of sorption/ desorption/ regeneration. In other
study, calcium chloride was successfully applied as an eluent to desorbed
cadmium, lead and nickel adsorbed on brown algae of Cystoseira indica. In that
investigation, calcium chloride was compared with sodium chloride and acetic acid
for five consecutive cycles of sorption and desorption (Montazer-Rahmati et al.,

2011).
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Figure 5.15 Desorption efficiency of modified MMBB after each sorption/

desorption step without and with regeneration by CaClz
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Therefore, when regeneration step by calcium chloride added to sorption and
desorption experiments, the mass loss of biosorbent decreased only 18%. It was
obvious that after five cycles of sorption/ desorption/ regeneration, the biosorbent

appearance, visible structure and mechanical stability did not demolish at all.

5.8  SEM/EDS analysis

SEM analysis (Figure 5.16) depicts the morphology changes of unloaded and
loaded biosorbent. After biosorption of heavy metal ions, the surface became
smoother with less porosity with probable metal entrapping and adsorbing on

biosorbent.

The electron micrograph of the biosorbent before and after modification by NaOH
and CaCl; after metal adsorption presents several sites on MMBB. The EDS graphs
of MMBB samples (Figure 5.17) clearly show a strong peak of Ca and a moderate
peak of Na after chemical modification. The distribution of peaks changed in
element and intensity. Besides, after metal adsorption the strong peaks attributing
to Cd, Cu, Pb and Zn appeared significantly. The variance in intensity of K, Na and
Ca peaks might be due to ion exchange mechanism of metal uptake. Overall, the
Cd(1D), Cu(ID), Pb(II) and Zn(II) intake by biosorbent was confirmed by SEM/EDS

analysis.

5.9  Biosorption mechanism

The metal binding takes place as a passive mechanism based on the chemical
properties of surface functional groups. The mechanisms involved in metal
bioaccumulation are complicated; therefore the interpretation is very difficult.
Usually these mechanisms are related to electrostatic interaction, surface
complexation, ion-exchange, and precipitation, which can occur individually or in

combination (Oliveira et al., 2014).
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Figure 5.16 SEM images of (a) unmodified MMBB before metal adsorption (b)
modified MMBB before metal adsorption, (c) unmodified MMBB after metal
adsorption, (d) modified MMBB after metal adsorption (e) modified MMBB after 5
cycles of cycles of sorption/ desorption and (f) modified MMBB after five cycles of

sorption/ desorption/ regeneration by CaCl

The main mechanisms are known for metal sorption on lignocellulosic biosorbents
are chelating, ion exchanging and making complexion with functional groups and
releasing [H30]* into aqueous solution. lonic exchange is known as a mechanism
which involves electrostatic interaction between positive metallic cations and the
negatively charged groups in the cell walls. The ion exchange reaction could be

represented as (Fiol et al., 2006):
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2
=S — Mz, (s) + Me’*(aq) © = S—Me (s) + HM“*(aq)

Where M+ represents Na*, K*, Mg2+ or Ca%* and Me?2* is heavy metal ions like Pb2+,
Cd?*, Ni2*, Cu?*, etc. On the other hand, many characterization studies confirmed
that ion exchange mechanism was included in heavy metal biosorption process
rather than complexation with functional groups on the biosorbent surface and
also showed the role of sodium, potassium, calcium and magnesium present in the

adsorbent in ion exchange mechanism (Ding et al., 2012; Akar et al., 2012).
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Figure 5.17 EDS spectra of (a) unmodified MMBB, (b) modified MMBB before
biosorption and (c) modified MMBB after biosorption

The amount of adsorbed heavy metal ions and released alkali ions (Na*, K*, Mg2*
and Ca?*) concentration (mg/L) is shown in Figure 5.18. Apparently, metal
adsorption on biosorbent surface made Na*, K*, Mg2?* and Ca2* ions release in
aqueous medium. It confirmed the possibility of ion exchange mechanism in
biosorption process by comparing total amount of adsorbed heavy metal ions

(1.43 mmol/L) and released alkali ions (1.51 mmol/L) which were approximately
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equal. SEM/EDS analysis confirmed that the variance in intensity of K, Na and Ca

peaks might be due to ion exchange mechanism of metal uptake.
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Figure 5.18 Comparison of (a) individual and (b) total metal ions adsorbed and

released in biosorption process (Initial heavy metal conc.: 50 mg/L)

In addition, according to calculated Bp-r for Cd, Cu, Pb and Zn, E values show
physical adsorption or ion exchange for four metal removal process whose
calculated values are 2.58, 3.45, 5.59 and 2.73 kJ/mol for Cd, Cu, Pb and Zn

respectively which are all less than 8 kJ/mol.

5.10 Conclusions

The results of this chapter show that modified MMBB may be efficiently used as a
renewable biosorbent to remove Cd2+, Cu2*, Pb2*and Zn?* ions from aqueous
solutions. As shown in FTIR studies, unmodified and modified MMBB have similar
surface functional groups where by carboxylic acid groups involved in heavy metal
binding. Modified MMBB revalues as an agricultural based biosorbent for heavy
metal removal from a multi-component synthetic solution. In order to improve the
biosorptive potential of MMBB, a solution containing sodium hydroxide, calcium
chloride and ethanol were more effective than the other chemical and physical
pretreatment. The maximum biosorption capacity calculated by Langmuir

equation increased from 41.48 to 69.56 mg/g, 39.48 to 127.70 mg/g, 94.0 to
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345.20 mg/g and 27.23 to 70.55 mg/g for Cd(II), Cu(ll), Pb(Il) and Zn(II),

respectively when MMBB was chemically modified.

It was proven to have excellent desorption performance by metal desorption of
0.1M HCI for reutilization by following regeneration step with CaCl; in five cycles.
SEM represents biosorbent surface remained coarsely porous to entrap the metal
ions after five cycles of sorption/ desorption/ regeneration. Thermodynamic
parameters revealed that heavy metal removal was spontaneous and feasible with

negative Gibbs free energy and enthalpy changes for all metals.
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Heavy metal biosorption from
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Chapter 6 Heavy metal biosorption from synthetic wastewater by modified

MMBB: column study

A major part of Chapter 6 was published in the following paper:

4 N

Abdolalj, A., Ngo, H.H., Guo, W.S,, Zhou, ].L., Zhang, ]., Liang, S., Chang, SW.,

Nguyen, D.D., 2017. Application of a breakthrough biosorbent for removing
heavy metals from synthetic and real wastewaters in a lab—scale continuous

fixed—bed column. Bioresource Technology 229, 78-87.

- J

6.1 Research background

Although numerous studies on biosorption of heavy metals in batch systems have
been reported in the literature, in order to evaluate the feasibility of biosorption
processes for real applications, continuous biosorption studies in packed bed
columns would be more useful (Bhatnagar et al. 2015). In addition, a large volume
of wastewater can be continuously treated using a defined quantity of adsorbent in
the column. Reuse of biosorbent is also possible which makes the treatment

process cheaper and more sustainable (Aksu et al., 2007)

6.2 Objectives

The biosorptive capacity of MMBB was investigated in term of biosorbent particle

size, bed height, flow rate and inlet metal concentration in a fixed-bed column.

The general target of the present study was to develop a continuous heavy metal
biosorption process in a fixed-bed column to investigate the applicability of MMBB
in situations closer to reality. The specific objectives were investigating the effect
of different operating variables (flow rate, bed depth, feed concentration,
adsorbent particle size and influent pH) on the performance of MMBB packed bed
column. The results were used to estimate the dynamic adsorption capacity and to
examine the possibility of using common mathematical models (Thomas, Yoon-

Nelson, Dose Response and Bed Depth Service time or BDST) for predicting the

Chapter 6|Page 127



ATEFEH ABDOLALI DOCTORAL THESIS

breakthrough curves of heavy metal biosorption. Finally, the experimental data of

lab-scale MMBB packed bed column was employed for sale-up calculations.

6.3 Continuous biosorption experiments

One of the most important factors in measuring the feasibility of a biosorbent in a
real and practical application is the performance of biosorption process in a
continuous fixed-bed column. In fact, the results from batch studies only present
the biosorption equilibrium and kinetics (Shanmugaprakash and Sivakumar,
2015), therefore, in order to predict the performance of MMBB to remove Cd(II),
Cu(Il), Pb(Il) and Zn(II) ions in the continuous mode, the experiments were
carried out in a continuous reactor. The column internal radius was 22 mm and
the height of 100 cm. The performance of the fixed-bed column was studied by
varying the efficiency of the flow rate, influent concentration, pH, bed height and

biosorbent particle size.

Based on the results obtained from batch studies, metal adsorption onto modified
MMBB was strongly pH dependent and the optimum pH value was observed at
5.5+0.1. Thus in the continuous mode experiments, the pH value of the synthetic
solution was adjusted to 5.5x0.1. The breakthrough curve showed the relative
concentrations (C;/Ci) on the y-axis versus time (t in min) on the x-axis. All the
breakthrough curves followed the typical S-shape curve for column operation as
the ratio of the effluent concentration at time t (C¢) to the influent concentration
(Ci) versus time or throughput volume. The breakthrough curve’s shape is
determined by the shape of the equilibrium isotherm and any individual transport
process can change it (Long et al, 2014). The most efficient adsorption
performance will be obtained when the shape of the breakthrough curve is as
sharp as possible (Chu, 2004). Results show that the adsorption of each metal ion
onto the biomass surface strongly depended on the flow rate (Acheampong et al,,
2013; Cruz-Olivares et al., 2013; Aksu et al., 2007). Initially each metal ion was
rapidly adsorbed on the biomass due to the high availability of active sites. In
consequence, the metal ions were captured around or inside the cells; meanwhile
the effluent from the bottom of the bed was almost free of solute. As the solution

continued to flow, due to the gradual occupancy of the available active sites, the
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uptake became less effective and, accordingly, the outlet concentration started to
increase until the saturation point was reached or at least until the outlet

concentration was 90% of inlet concentration.

[t is necessary to note that in a packed-bed column, channelling is often reported
to be of great importance in process design despite there has been a shortage of
theoretical and experimental works connected with channelling effects on column
performance. However, it can be assumed that the wall effects play no role in
adsorber performance in cases where cylindrical apparatus diameter to particulate
biosorbent diameter ratio is greater than 20 (Saha et al, 2017; Tobis and
Vortmeyer,1991; Tobis and Vortmeyer, 1988). Therefore the wall effect was

assumed negligible in this column study.

6.3.1 Influence of flow rate

The breakthrough curves at three different flow rates (10, 20 and 30 mL/min) or
HLR of 1.578, 3.156 and 4.734 m3/m? hr are shown in Figure 6.1. The bed height
was constant at 21 cm and the initial metal concentration at 20 mg/L. An increase
in the flow rate reduced the volume of effluent treated before the bed became
saturated and decreased the service time of the bed and vice versa. The slower
flow rate provides more residence time for mass transfer into the pores,
subsequently lets metals ions to access more active sites. Increasing the flow rate
increased the steepness of the breakthrough curves. Also, the breakpoint time as
well as saturation occurred faster with a higher flow rate. In other words, by
increasing the flow rate the external film diffusion mass transfer resistance
decreases, culminating in fast saturation and early breakthrough time. Moreover,
with decrease in linear flow rate, the intra-particle diffusion becomes more
effective due to longer residence time. An increase in the contact time between
metal containing solution and the biosorbent in a packed-bed column at lower
influent flow rates explained this result. The best performance was obtained at the

lowest flow rate.

Generally, the column’s removal efficiency fell when the flow rate increased, and

the mass transfer zone decreased when the flow rate ebbed (Riazi et al., 2016). The
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biosorption capacity in flow rate of 10 mL/min was 23.72, 43.32, 54.53 and 19.36
mg/g for Cd, Cu, Pb and Zn, respectively, which was higher than the other two flow
rates of 20 and 30 mL/min. These findings agree with those documented in

another study (Acheampong et al.,, 2013).

6.3.2 Influence of bed depth

Figure 6.2 presents the breakthrough curves of Cd(II), Cu(II), Pb(II) and Zn(II)
biosorption onto MMBB obtained at various bed depths with a metal concentration
of 20 mg/L and a constant flow rate of 10 mL/min (HLR = 1.578 m3/m? hr). Three
bed depths of 9.5, 21 and 31 cm, corresponding to 5, 10 and 15 g dry weight of
MMBB, respectively, were investigated. The breakthrough curves (Figure 6.2)
indicate that the breakthrough time and exhaustion (or saturation) time increased
remarkably with an increase in bed depth from 9.5 to 31 cm. Breakthrough
occurred at 77, 48, 32 and 45 min for 9.5 cm and 172, 180, 150 and 105 min for 31
cm bed height within Cd, Cu, Pb and Zn biosorption, respectively.

A Similar raising pattern can be obtained for saturation time. This was attributed
to the more adsorbent specific surface and more available metal binding sites at
higher bed height, which meant that consequently the total adsorbed metal ions
increased. Moreover, an increase in the bed depth resulted in a wide mass transfer

zone, which made the breakthrough curves moderately steeper.

In fact when the bed depth increased the diffusion mass transfer predominated in
comparison with the axial dispersion phenomenon. For that reason, an enormous
increase in the breakthrough time was observed. As Riazi et al. (2016) and
Acheampong et al. (2013) reported for better performance of a fixed-bed column,
the biosorbent’s higher bed height would be more desirable if more active binding

sites are to be provided.
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Figure 6.1 Effect of influent flow rate on the breakthrough curve of Cd, Cu, Pb and Zn adsorption onto modified MMBB (pH 5.5%0.1,

bed height = 21 cm, influent metal concentration = 20 mg/L, particle size = 425-600 um, room temperature)
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6.3.3 Influence of inlet metal concentration

The Effect of initial concentration on the breakthrough curves is shown in Figure
6.3, using a bed depth of 21 cm at flow rate of 10 mL/min (HLR = 1.578 m3/m? hr).
The breakthrough curves of Cd?*, Cu?*, Pb%* and Zn?* were obtained from

variations in the metal concentration in the column influent over time.

As can be seen in Figure 6.3 the shape and the gradient of the breakthrough curves
changed significantly with an increase in metal concentration. The higher influent
metal concentration resulted in the faster breakthrough and saturation and as a
consequence the sharper breakthrough curves shifted to the left. This earlier
exhaustion might be a result of two things: firstly the greater concentration
gradient; and secondly, smaller mass transfer resistance at a higher metal
concentration. The breakthrough times were 281.6, 279.2, 171.0 and 221.6 min for

Cd, Cu, Pb and Zn, respectively using an influent metal concentration of 10 mg/L.

When the influent metal concentration increased to 30 mg/L, breakthrough took
place in about 127.5, 158.3, 94.1 and 125 min for Cd, Cu, Pb and Zn, respectively.
As presumed, an increase in inlet metal concentration (10 to 30 mg/L) gave an
earlier saturation time from 510 to 225, 420 to 250, 277.5 to 165 and 430 to 195
for Cd, Cu, Pb and Zn, respectively.

These results demonstrated that the diffusion process of metal removal is highly
concentration dependent (Bennani et al, 2015). Due to higher influent
concentrations, higher driving force for mass transfer and also larger

concentration gradient was expected.
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Figure 6.2 Effect of bed height (MMBB weight = 5, 10 and 15 gr) on the breakthrough curve of Cd, Cu, Pb and Zn adsorption onto
modified MMBB (pH 5.5%0.1, influent flow rate = 10 mL/min or HLR = 1.578 m3/m? hr, influent metal concentration = 20 mg/L,

particle size = 425-600 um, room temperature)
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In addition, a decrease in the diffusion coefficient or mass transfer coefficient led
to a lower concentration gradient and a slower mass transport of heavy metal ions
from the film layer to the adsorbent’s surface. These results confirmed that the
change of initial concentration as a driving force affects the saturation rate,
breakthrough time and adsorption zone length (Chen et al, 2012; Baral et al,
2009; Aksu et al., 2007). The dynamic adsorption capacities of cadmium, copper,
lead and zinc was raised from 13.04, 28.90, 32.73 and 11.73 mg/g to 35.96, 47.51,
81.92 and 33.05mg/g respectively by elevating the inlet metal concentration from

10 to 30 mg/L.

6.3.4 Influence of biosorbent particle size

The other important parameter in a fixed-bed column with downward flow is the
particle size distribution of packing materials. It is because of the handling and
channelling problems during the operation which should be studied. As 425-600
um was the most common particle size (Figure 5.2), the main physical
characteristics of modified MMBB at this particle size were investigated. The
particle density and bulk density of this particle size were 0.86 and 0.42 g/L, and a
porosity of 80.26%. Thus MMBB possessed a low density but a high porosity and
was appropriate for being applied in the packed bed column and continuous mode

experiments.

Beside, according to the BET analysis, MMBB has a specific surface area of 1.3 m?/g
with an average pore diameter of 5.55 nm. The atomic and ionic radius of Cd, Cd?+,
Cu, Cu?*, Pb, Pb2*, Zn and Zn2* is 152, 95, 128, 73, 175, 119, 137 and 74pm
(1000pm = 1nm), respectively. Then the sorption process can take place on the

surface and inside the pores.

In current work, the particle size of 300-425, 425-600 and 600-1000 pm were
used for Cd, Cu, Pb and Zn removal. The bed depths corresponded to 10 g of MMBB
were 17, 19.5 and 21 cm for 300-425, 425-600 and 600-1000 um, respectively.
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Figure 6.3 Effect of influent metal concentration on the breakthrough curve of Cd, Cu, Pb and Zn adsorption onto modified MBB (pH

5.5%0.1, bed height = 21 cm, influent flow rate = 10 L/min or HLR = 1.578 m3/m? hr, particle size = 425-600 um, room temperature)
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Figure 6.4 Effect of particle size on the breakthrough curve of Cd, Cu, Pb and Zn adsorption onto modified MMBB (pH 5.5+0.1, bed

heights = 17, 19.5 cm and 21 cm, influent flow rate = 10 mL/min or HLR = 1.578 m3/m? hr, influent metal concentration = 20 mg/L,

room temperature)
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The effect of biosorbent particle size on the shape of the breakthrough curves of
cadmium, copper, lead and zinc on modified MMBB is illustrated in Figure 6.4. It is
shown that the breakthrough time decreased with decreasing the biosorbent
particle size for constant metal concentration of 20 mg/L. At larger particle size
distribution, the breakthrough curves were dispersed and breakthrough took place
slowly. As the biosorbent with smaller particle was packed in the column, sharper
and steeper breakthrough curves and earlier breakthrough time were received

from the experiments for all heavy metal ions.

These results demonstrate that the change in the particle size affects the saturation
rate and breakthrough time in continuous mode while no significant change was

seen in the batch biosorption process.

6.3.5 Influence of pH

As obtained from batch experiments, the pH of solution is one of important
controlling factors in the heavy metal adsorption process; hence the synthetic
solutions at different pH, namely 4.5 and 5.5 were monitored for observing the
column behaviour in term of this parameter. Because of hydroxide formation of
cadmium, copper, lead and zinc, the experiments were carried out within the acidic

range.

The effect of influent pH value on cadmium, copper, lead and zinc removal by
modified MMBB packed-bed column is presented in Figure 6.5. As can be seen,
shorter breakthrough time or steeper breakthrough curve occurred at pH 4.5. The
breakthrough time was about 81, 72, 51 and 85 min for Cd, Cu, Pb and Zn,
respectively. Likewise, the exhaustion or saturation time took place faster at 322.5,
288, 150 and 210 min for Cd, Cu, Pb and Zn, respectively when influent pH
remained at 4.5. Hence, higher pH value of the feed solution results in a more
effective operation of the column or higher maximum metal adsorption capacity as
well as longer breakthrough time. This result was in agreement with previous
batch adsorption experiments as well as other studies (Christoforidis et al. 2015;

Antunes et al., 2003).
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6.4 Breakthrough curve modeling

As Nur (2014) reported, a well-researched model can be used as a reliable
solution to design, optimise and predict the breakthrough curves of fixed-bed
columns because an appropriate numerical solution can help to reduce the number
of experiments associated with new operating conditions. Table 6.1 listed the
calculated parameters of Thomas, Yoon-Nelson and Dose Response models
derived from the experimental data when initial influent concentration, flow rate
and bed depth were varied. The best results for adsorption capacity were obtained

at a flow rate of 10 mL/min and height of the bed of 31 cm.

All parameters and the models’ correlation coefficient values were generated by
MATLAB non-linear curve fitting tools. The correlation coefficient values indicate a
proper agreement between the experimental data and column data generated

using the models (Table 6.1).

From Table 6.1, for Thomas and Dose Response models the values of the calculated
adsorption capacity increased as initial concentration rose. This is because at a
higher concentration, mass transfer is enhanced due to the mass gradient’s higher
driving force, and led to an improvement in the adsorption capacity. Where
external and internal mass diffusion steps are not the limiting steps, Thomas and
Dose Response models are suitable for describing the adsorption processes (Cruz-
Olivares et al.,, 2013). Moreover, the values of maximum biosorption capacities
calculated from fitting the experimental data to Thomas and Dose Response

models were also very similar.

The results showed that the Yoon-Nelson model less adequately matches the
experimental data (the values of RZ%). The time required to reach 50% of the
retention decreases when the inlet concentration increased, due to rapid

saturation in the higher concentration.
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Figure 6.5 Effect of influent pH on the breakthrough curve of Cd, Cu, Pb and Zn adsorption onto modified MMBB (bed height = 21
cm, influent flow rate = 10 mL/min or HLR = 1.578 m3/m? hr, influent metal concentration = 20 mg/L, particle size = 425-600 pm,

room temperature)
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6.5 Comparative study

From Table 6.1, the highest metal adsorption capacities of modified MMBB at the
exhaustion times were 38.25, 63.37, 108.12 and 35.23 mg/g for Cd, Cu, Pb and Zn,
respectively. The maximum adsorption capacity values were achieved for a bed
height of 31 cm, flow rate of 10 mL/min and initial metal concentration of 20
mg/L, particle size of 425-600 um, and influent pH of 5.5. Biosorption capacity of
Pb was the highest in comparison to those of other metals due to better affinity
towards biosorbents. This phenomenon can be confirmed by calculating the
Langmuir parameter of by, representing this attraction. In addition, thermodynamic
study revealed that except for zinc, calculated AS° values for cadmium, copper and
lead were positive, reflecting the increased randomness at the solid/solution
interface during sorption. It also indicates an affinity of the sorbent towards Cd, Cu
and Pb ions. Biosorption capacities of some biosorbents with reference to Cd(II),
Cu(II), Pb(II) and Zn(II) removal in a packed-bed column study are summarised in
Table 6.2. As observed, the biosorption capacity of modified MMBB is comparable
with the reported biosorption capacities. . It is, however, too difficult to conclude
which adsorbent performed better since experimental operating conditions were

completely different.

If behaviour in batch reactors is compared to performance in a fixed-bed column,
maximum biosorption capacities of copper, lead and zinc which were calculated by
Langmuir and Thomas models, respectively were higher when biosorption process
was carried out in a fixed-bed column with the same conditions. According to
Gupta et al. (2004) a higher column capacity can result from a large concentration
gradient continuously present at the interface zone as the metal solution passes
through the column, whereas the concentration gradient decreases with time in
batch experiments. However, shorter contact time because of high influent flow
rate through a column might cause less biosorption efficiency in continuous mode.
In this study, the initial metal concentration changed in the batch experiments
from 1 to 500 mg/L while in the column, the influent metal concentration did not
exceed 30 mg/L. As a result, the maximum biosorption capacities calculated by

Langmuir and Thomas cannot indicate any rational comparison in this regard.
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Table 6.1 Thomas, Yoon-Nelson and Dose Response model constants for Cd, Cu, Pb and Zn adsorption onto modified MMBB

column (pH 5.5%0.1, particle size = 425-600 um, room temperature)

Metal Conditions Thomas Yoon-Nelson Dose Response
Q Bed height C; q Krh grh R2 kyn T R2 a gp-r R2

Cd 10 21 20 23.72 0.485 23.66 0.991 0.016 210.7 0.971 3.128 23.53 0.989
20 21 20 12.43 0.572 1236  0.998 0.023 155.2 0.987 3.271 1195 0991
30 21 20 4.55 0.768 4.52 0.994 0.034 127.8 0.993 4.393 4.46 0.988
10 21 10 13.04 1.358 13.03  0.999 0.027 282.4 0.986 3.768 12.81  0.988
10 21 30 35.96 0.483 3593 0.996 0.025 1309 0.996 3.265 3474 0985
10 9.5 20 14.10 1921 14.03 0.992 0.038 101.6 0.987 3.941 13.61 0.984
10 31 20 38.25 0.238 38.07 0.994 0.029 283.2  0.990 4.575 37.76  0.989

Cu 10 21 20 43.32 0.615 43.18 0.994 0.025 210.6 0.991 4.962 4243 0991
20 21 20 24.30 0.751 24.23 0.996 0.029 178.6  0.992 5.334 24.03  0.990
30 21 20 14.42 1.191 1438 0.995 0.036 128.0 0.994 5.328 14.14  0.989
10 21 10 28.90 2.123 2888 0.999 0.033 279.5 0.985 5.656 2838  0.993
10 21 30 47.51 0.879 47.46  0.997 0.026 158.2 0.997 4.081 4699  0.993
10 9.5 20 28.25 1.525 28.03 0.992 0.034 142.7 0.985 4.222 27.26  0.990
10 31 20 63.37 0.773 63.14 0.991 0.038 321.7 0.988 4.668 63.27  0.992

Pb 10 21 20 54.53 0.749 54.48 0.996 0.032 126.1 0.985 3.739 54.25  0.995
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Metal Conditions Thomas Yoon-Nelson Dose Response
Q Bed height C; q Krh grh R2 kyn T R2 a gp-r R2
20 21 20 27.74 0.988 27.64 0.993 0.039 95.9 0.989 3.686 2691 0991
30 21 20 12.67 1.549 1254 0.994 0.045 79.9 0.993 3.543 11.78 0991
10 21 10 32.73 0.871 32.61 0.995 0.032 174.1 0.986 5.722 3241 0.992
10 21 30 81.92 0.168 81.87 0.992 0.037 196.2 0.991 5.799 81.19  0.990
10 9.5 20 19.02 2.36 17.88  0.992 0.047 89.4 0.984 4.074 1784  0.992
10 31 20 108.12 0.295 107.27 0.991 0.026 186.3 0.990 4418 103.64 0.989

Zn 10 21 20 19.36 0.542 19.18 0.993 0.033 178.6  0.982 5.572 19.24  0.987
20 21 20 10.95 0.855 10.89  0.998 0.034 136.7 0.986 4431 10.33  0.988
30 21 20 3.68 1.710 3.50 0.993 0.032 105.9 0.972 3.134 3.60 0.987
10 21 10 11.73 1.684 1156 0.993 0.035 218.6 0.984 4.401 11.54 0991
10 21 30 33.05 0.068 3293 0.997 0.032 123.1 0.987 3.905 3247 0.992
10 9.5 20 16.32 2.263 16.25  0.997 0.045 81.23 0.985 3.492 15.55  0.989
10 31 20 35.23 0.153 35.15 0.995 0.041 256.3 0.989 5.132 3479  0.987

Notation: bed depth (cm); Q, flow rate (mL/min); C; influent metal concentration (mg/L); g, adsorption capacity (mg/g); km, Thomas model
rate constant (mL/mg min), qm, Thomas sorption capacity (mg/g); ky-n, Yoon-Nelson model rate constant (1/min); T, the time required for

50% breakthrough (min), a is a constant and qp-r is Dose Response model adsorption capacity of heavy metal ions (mg/g)
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Figure 6.6 BDST model of different MMBB weight = 5, 10 and 15 g (9.5, 21 and 31 cm) (pH 5.5%0.1, influent flow rate = 10 mL/min,

influent metal concentration = 20 mg/L, particle size = 425-600 pum, room temperature)
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Table 6.2 Dynamic adsorption capacity of cadmium, copper, lead and zinc onto different adsorbents

Adsorbent/adsorbate Gi Bed depth Q qrh Qexp Reference

(mg/L)  (cm) (mL/min)  (mg/g) (mg/g)
Pongamia oil cake /Zn 100 15 5 49.7 84.2 shanmugaprakash —and  Stvalumar,

2015

Citrus Maxima peel/Cd 300 2 3 144 - Chao et al,, 2014
Citrus Maxima peel/Cu 300 2 3 98.1 - Chao etal, 2014
Citrus Maxima peel/Pb 300 2 3 173 - Chao et al,, 2014
Passion fruit shell/Cd 300 2 3 55.8 - Chao et al,, 2014
Passion fruit shell /Cu 300 2 3 36.3 - Chaoetal.,, 2014
Passion fruit shell /Pb 300 2 3 59.4 - Chaoetal.,, 2014
Sugarcane bagasse/Cd 300 2 3 26.7 - Chaoetal, 2014
Sugarcane bagasse /Cu 300 2 3 22.2 - Chao et al, 2014
Sugarcane bagasse /Pb 300 2 3 31.8 - Chaoetal, 2014
Agaricus bisporus/Pb 35 2 3 67.7 67 Long et al,, 2014
Allspice residue/ Pb 15 15 20 14.3 16.2 Cruz-Olivares et al., 2013
Allspice residue/ Pb 25 15 20 13.4 15.9 Cruz-Olivares et al.,, 2013
Sunflower waste/Cd 10 30 1 - 23.6 Jain etal,, 2013
Coconut shell/Cu 10 20 10 53.5 7.2 Acheampong et al,, 2013
Wheat straw/Cd 100 50 300 12.13 16.9 Muhamad et al., 2010
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Table 6.3 Parameters predicted from the BDST model for biosorption of Cd, Cu, Pb
and Zn on MMBB (5, 10 and 15 g or 9.5, 21 and 31 c¢m) in a fixed-bed column

Breakpoint Slope Intercept Ngpst Kgpst MTZ Leriical R2
(%) (hr/cm)  (hr) (mg/L) (L/mgh) (cm)  (cm)
Cd 10 0.073 0.631 51.63 0.167 6.23 8.64 0.992
30 0.09 0.676 63.65 0.060 12.44 0.995
60 0.102 1.359 72.14 0.014 18.92 0.991
Cu 10 0.102 -0.194 74.39 0.528 6.74 1.90 0.998
30 0.118 0.229 86.06 0.172 14.19 0.999
60 0.153 0.072 111.59 0.262 19.06 0.994
Pb 10 0.091 -0.292 66.99 0.347 7.19 3.21 0.992
30 0.126 0.17 92.75 0.230 13.19 0.999
60 0.147 0.077 108.21  0.243 18.82 0.999
Zn 10 0.046 0.342 32.00 0.314 6.22 7.43 0.993
30 0.063 0.525 43.83 0.079 12.84 0.998
60 0.079 0.923 54.96 0.021 18.66 0.998

While on the subject, taking into consideration the results from Table 6.1 and the
parameters influencing metal adsorption in a fixed-bed column as discussed
previously (Sections 6.3.1-6.3.5), the optimal conditions for all heavy metal ions
were obtained at flow rate of 10 mL/min or HLR of 1.578 m3/m? hr, bed depth of

31 cm and inlet metal concentration of 20 mg/L.

6.6  Scale—up study

[so-concentration lines for removing Cd, Cu, Pb and Zn ions in a fixed-bed at C;/Ci=

10%, 30%, 60% and 90% were determined (Figure 6.6).

As presented in Table 6.3, a consistent increase in slopes and a subsequent
increase in the corresponding dynamic sorption capacity, Ngpst, were observed for
Ct¢/Ci ratios of 10-90%. Apart from this, the rate constant, kgpst, outlined the rate of

solute transfer from the fluid phase to the solid phase.

The kspst value declined at higher C:/C; ratio due to progressive binding sites

saturation during heavy metal removal. Moreover, at 50% breakthrough, C:/Ci = 2,
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therefore reducing the logarithmic term of the BDST equation to zero with a good
correlation coefficient suggested the BDST model’s conformity with the sorption of
Cd, Cu, Pb and Zn by modified MMBB. The critical bed depth, Lcitical, is calculated by
setting t = 0 and C¢ = Cp. The critical bed depths of Cd, Cu, Pb and Zn adsorption
were 8.64, 1.90, 3.21 and 7.43 cm, respectively.

This value presents the minimum theoretical bed height of the adsorbent in a
packed-bed column which is sufficient such that the effluent concentration att =0
will not exceed the breakthrough concentration, C,. In addition, the calculated
depth of the adsorption zone for all metals was about 19 cm and the Empty Bed
Contact Time (EBCT) was 8.0 min.

The data obtained from laboratory and pilot scale is used as the basis for the
designing a full or industrial scale adsorption column. One of the most important

design parameters is bed depth for a specific adsorption service time.

6.6.1 Column Scale-up calculation

According to scale-up principles that Okochi reported (2013), the column
adsorption system can be easily scaled-up to pilot-scale and then to full
industrial-scale by using the data obtained from lab-scale column. As a matter of
fact, the similarity in mass transfer and hydrodynamic features between the lab-
scale column and the pilot-scale column makes similar breakthrough curves. It can
be assumed because there is no change in the boundary conditions, dimensionless
parameters and mechanisms when the size of the system changes. The scale-up
does not affect some dynamic parameters of adsorption system such as empty bed
contact time (EBCT) and also superficial velocity (Ohura et al, 2011; Nguyen,
2015). On the other hand, the ratio of the internal diameter to the bed depth
remains constant while the column size increases. BDST model parameters can be
helpful for developing an applicable heavy metal biosorption process in larger
scale. Based on the scale-up principles, the design parameters for a pilot-scale

column are listed in Table 6.4.

Estimate superficial velocity for the pilot-scale column;
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Note: LC goes for lab-scale column and PC for pilot-scale column.

QLC 10 cm3/min _ . 3 2
VICE VRC S S e 2.63 cm/min = 1.578 m3/m? hr

— vpc=2.63 cm/min = 1.578 m3/m? hr

Estimate bed depth for the pilot-scale column;

Dic _ DLc Hrc 21
— = —=—=>5 Hpc=—= X Dpp==—X5=47.72 cm
Hye  Hic Drc PC™502

— Hpc=47.72 cm
Estimate bed volume for the pilot-scale column;

Vepc = Apcx Hec = nx(§)2x47.72 =937.12 cm3

— Vepc=937.12 cm3

Estimate biosorbent amount for the pilot-scale column;

LC

m
dPC_V_Pc mpc = Vpe X dpc = Vpe X dic = Vpe X ==

=3936¢g

—->mpc=393.6g

Estimate volumetric flow rate for the pilot-scale column;

vpc=—, Qpc=vpcx Apc =2.63x mx2.52=51.64 cm3/min = 3.09 L/hr
— Qpc =3.09 L/hr

Estimate empty bed contact time (EBCT) for the pilot-scale column;
EBCTpc = 2*€ = 47.72+2.63 = 18.14 min

— EBCTpc=18.14 min

Estimate service time at 10% breakthrough for the pilot-scale column;
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C 1 HpcXNBpsT 1 C;
From ¢ = NBDST i tee = Cixv K xC; In (C_ -1
i 1+exp [kBDSTCi( Civ L—t)] i*VpC BDST A Vi b

- tpcca=46.2h
- tpccu=67.3h
— tpcpp=60.5h
- tpczn=28.6 h

Ngpst and Kgpst are recalled from Table 6.3 for cadmium, copper, lead and zinc at

10% breakthrough.

Estimate the volume of treated water at 10% breakthrough for the pilot-scale

column;

Vwpc= Qpcx tpc=3.09x tpc  (for each metal ion)
- Vwecca= 142.4 L

- Vwpccu= 2079 L

— Vwpcpp=186.8 L

— Vwpczn= 88.5 L

Estimate biosorbent exhaustion rate for the pilot-scale column;

mpc _ 393.6
Vwepc Vwec

AER = (for each metal ion)

— AERcq=2.76 g/L
— AERcy=1.89 g/L
— AERpp =2.11 g/L

— AERzn = 4.44 g/L
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Table 6.4 Proposed pilot-scale column parameters

Parameters Lab-scale column

Pilot-scale column

Scale-up ratio

Column design criteria

Inner diameter, D; (cm) 2.2

Column area, A (cm?) 3.80

Biosorbent weight, m (g) 10

Operation conditions

Influent concentration, C; (mg/L) 20

Superficial velocity, v (m3/m2 hr) 2 1.578

Volumetric flow rate, Q (L/hr) 0.6

Empty bed contact time, EBCT (min) 8.0

Service time, ty, (hr) < 2.25,1.9,1.38 and 1.73
Treated water volume, Vwy (L) b< 1.35, 1.15, 0.83 and 1.04

Adsorbent exhaustion rate, AER (g/L)c  7.41,8.70,12.05 and 9.61

5.0
19.63
337.36

20

1.578

3.09

18.1

46.2,67.3,60.5 and 28.6
142.4,207.9, 186.8 and 88.5
2.76,1.89, 2.11 and 4.44

0.44
0.19
0.03

1
1
0.19
0.44

0.05, 0.03, 0.02 and 0.06
9.5,5.5,44and 11.7 4
2.7,4.6,5.7 and 2.2

? Hydraulic Loading Rate (HLR = Q/A)

bService time and treated water volume were calculated at 10% breakthrough.
¢For Cd, Cu, Pb and Zn, respectively

d(Scale-up ratio for Cd, Cu, Pb and Zn) x103
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6.7 Conclusions

The effect of column design parameters, such as flow rate, inlet metal
concentration, bed depth, biosorbent particle size distribution and influent pH was
examined. The results revealed that lower flow rate, higher bed depth, smaller feed
concentration, smaller particle size and lower influent pH facilitated the
adsorption performance of the column, which was evidenced by longer service
time and higher treated volume. The highest dynamic adsorption capacity of
modified MMBB for Cd, Cu, Pb and Zn was obtained at flow rate of 10 mL/min, bed
depth of 31 cm, pH 5.5+0.1, MMBB particle size of 425-600 and inlet metal
concentration of 20 mg/L (Table 6.1) from Synthetic solution. The highest metal
adsorption capacity of modified MMBB at the exhaustion time was 38.25, 63.37,
108.12 and 35.23 mg/g for Cd, Cu, Pb and Zn, respectively.

Although all of the predictive models explained the dynamic behaviour of the
breakthrough curves fairly well, the Thomas model strongly correlated the
experimental data, as deduced from the statistical calculated parameters (i.e.
R2>0.99). Furthermore, the BDST model fitted well the experimental data
(R%2>0.99) and successfully described the linear relationship between bed depth
and column service time. The depth of adsorption was predicted accurately about
19 cm by the BDST model. Besides, this model was applied for column scale-up
calculation from a mini lab-scale column to a pilot-scale one. The competitively
high values of column capacity and the low cost of these biosorbents make this
new multi-metal binding biosorbent a better choice for continuous treatment of

effluents polluted with heavy metal ions.
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Chapter 7
Application of modified MMBB for
real wastewater and desorption

study
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Chapter 7 Application of modified MMBB for real wastewater and desorption

study

7.1 Objectives

The purpose of the biosorption process is to remove pollutants from industrial
wastewater effluents which regularly contain other anions and cations rather than
specified heavy metal ions. For this reason, continuous biosorption process
experiments were also done under identical experimental conditions utilising a
semi—simulated real wastewater as the column feed. Desorption, regeneration and
reuse properties of MMBB packed bed column were evaluated by selected

desorbing and regenerating agents from batch studies.

7.2  Applicability of modified MMBB packed-bed column in treating a

real wastewater

As mentioned before, the real wastewater used in this study was the primary
effluent, downstream of the Malabar WWTP sedimentation tanks collected from
Sydney Water plant, NSW, Australia. Prior to the adsorption test, the sewage was
settled for 24 hr, filtered using a 150 um sieve, and used for column adsorption

tests without any pH alterations.

The municipal wastewater was collected from Sydney Water was not
contaminated by Cd, Cu, Pb and Zn, and therefore an appropriate amount of
metallic nitrate salts was added to provide the desired initial concentrations of 20
mg/L of each metal ion. The pH of this semi-simulated real wastewater was
5.9£0.1 (above the optimal pH) and no change in pH value was required for the

actual application of modified MMBB in a fixed-bed column.

The municipal wastewater composition was determined as follows: pH 7.37+0.1,
salinity 0.45%, turbidity 83.5 NTUs, electrical conductivity 863 uS/cm, total
dissolved solids (TDS) 567 mg/L, total suspended solids (TSS) 97 mg/L,
ammonium 62 mg/L, nitrate 3.45 mg/L, orthophosphate 5.4 mg/L, total organic
carbon (TOC) 21.55 mg/L, chemical oxygen demand (COD) 246 mg/L, chloride
118.32 mg/L, calcium 28.62 mg/L, magnesium 9.67 mg/L, iron 0.29 mg/L, copper
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0.2 mg/L, lead 0.35 mg/L, manganese 0.05 mg/L, nickel 0.03 mg/L, also zinc and
cadmium were undetectable. Obviously, the concentration of heavy metals was
negligible in municipal wastewater. Hence an appropriate amount of metallic
nitrate salts were added to provide the desired initial concentrations of 20 mg/L of
each metal ion. The concentrations of Cd, Cu, Pb and Zn and major quality
parameters of the solutions before and after passing through the column were
determined according to standard procedures. All the laboratory experiments
were conducted in accordance with national and institutional guidelines for the

protection of human subjects and animal welfare.

The results presented in Figure 7.1 indicate that the modified MMBB packed-bed
column removed more than 90% of Cd(II), Cu(II), Pb(II) and Zn(II) ions from 3227,
2617,1714 and 2019 mL municipal wastewater in 322, 261, 171 and 201 minutes,
respectively. From Figure 7.1, the breakthrough time and the dynamic biosorption
capacity of cadmium, copper, lead and zinc eliminated from the municipal
wastewater were quite similar to those from the synthetic solution. Moreover, by
using a column packed with only 10 g of modified MMBB, the levels of copper, lead
and zinc concentrations in the effluent were within the recommended standard

discharge limit of heavy metal ions (about 5, 10 and 10 mg/L, respectively).

Cadmium has been identified as the major heavy metal of concern which needs to
be remediated using another treatment method. As a result of successful metal
removal by modified MMBB column, the effect of co-existing ions in the municipal
wastewater on the continuous adsorption process could be negligible. It is also
proven that modified MMBB can remove heavy metal ions from real municipal
wastewater in the dynamic adsorption system as a final remark. However, if
behaviour in batch reactors is compared to performance in a fixed-bed column
utilising the same operating conditions, biosorption capacities of copper and lead
are higher when the biosorption process is carried out in a fixed-bed column.
According to Gupta et al. (2004), because a large concentration gradient
continuously presents at the interface zone as the metal solution passes through
the column, a higher column capacity can be obtained whereas the concentration

gradient decreases with time in batch experiments.
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7.3 Continuous sorption and desorption experiments

Regeneration of metal-loaded adsorbent, subsequent reuse of the biosorbent and
recovery of adsorbate(If possible) would make the wastewater treatment process
economically feasible, reasonable and sustainable (Jain et al., 2013; Naddafi et al,,
2007). The main factors for choosing suitable eluents and regenerating agents are

the type of biosorbent and the biosorption mechanism (Bhatnagar et al., 2015).

In batch studies, desorption of Cd, Cu, Pb and Zn ions was evaluated by applying
different desorbing agents and the best eluent was hydrochloric acid The results
showed that 0.1 M HCI was noted to most effectively desorbed 96.33%, 99.93%,
76.26% and 91.93% respectively for cadmium, copper, lead and zinc. The spent
adsorbent was regenerated by 1 M CaCl..

Calcium chloride can increase the stability and reusability of MMBB and repairing
the damage caused by the desorbing agents. It can also remove the excess protons
after each elution and thereby provide new binding sites. This observed
mechanical stability and stiffness of the modified MMBB make it suitable for fixed-
bed column applications. Thus the reusability of modified MMBB for removing
heavy metal from real wastewater was conducted using 0.1 M HCl (10 mL/min)
within three successive cycles of alternating sorption and desorption in a
continuous system , supplemented by a solution of cadmium, copper, lead and zinc.

The influent concentration of each metal was adjusted to 20 mg/L for each metal.

The desorption of Cd(II), Cu(Il), Pb(II) and Zn(II) from loaded modified MMBB
took place rapidly. Actually the breakthrough curves of these three cycles showed
no tangible change for three adsorption times especially in the first three cycles. A
negligible loss in bed height and mass of modified MMBB was observed after three
cycles, and the obtained results for biosorption and desorption are presented in

Figure 7.2 and Figure 7.3.

For the first adsorption step, the breakthrough of Cd(II), Cu(Il), Pb(Il) and Zn(II)
was 82.4, 75, 51.6 and 83.8 min, while the exhaustion taking place at 423, 261.7,
171.4 and 201.7 min, respectively.
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Figure 7.2 Breakthrough curves for Cd, Cu, Pb and Zn adsorption from municipal wastewater by modified MMBB in three cycles of

sorption/ desorption/ regeneration (pH 5.5+0.1, bed height = 21 cm, flow rate = 10 mL/min or HLR = 1.578 m3/m? hr, influent

metal concentration = 20 mg/L, particle size = 425-600 pm, room temperature)

Chapter 7|Page 156



Atefeh Abdolali DOCTORAL THESIS

For the third time, the breakthrough time achieved at was 55, 56.2, 42.3 and 53.6
min and exhaustion time occurred at 270, 231, 157.5 and 186.4 min. After three
cycles of sorption, desorption and regeneration, there was a modest decline in the
metal uptake at the exhaustion times which were 49.94, 50.76, 56.38 and 53.87 %
for Cd, Cu, Pb and Zn, respectively. It means the regenerated modified MMBB was
still able to remove heavy metal ions even after the third cycle with moderately
similar removal efficiency (Table 7.1). Nonetheless a decrease in the total amount

of heavy metal removal was probably due to possible biosorbent damage.

Table 7.1 also shows that some heavy metal ions are irreversibly bound to the
surface of modified MMBB. The desorption efficiency amounts decreased when the
the number of cycles rose from 48.08, 47.61, 57.37 and 45.88 % in the first cycle to
22.80, 23.69, 34.44 and 23.80 % in the third cycle for Cd, Cu, Pb and Zn.
Biosorption and desorption efficiency progressively decreased, as the biosorption

and desorption cycles continued as reported by Bulgariu and Bulgariu (2016).

Figure 7.4 indicates the desorption curves obtained for Cd, Cu, Pb and Zn. These
unsymmetrical-shaped desorption curves are very similar. The initial metal
concentration increase is followed by a flatter reduction in that within the first 30
min, the maximum concentration peak was achieved for all heavy metal ions in the
first 10 min. The advantage of applying acidic eluent with a higher desorption rate
was reported by Martin-Lara et al. (2016). Moreover, from these desorption
profiles, the maximum concentration peak, C, (mg/L), in which the eluted metal
concentration reached to its maximum value at the time of t, (min) can be
measured. The peak information provides a clue to the elution rate. Besides, the
overall sorption process concentration factor (CFp) is calculated as Cp divided by
the inlet metal concentration. This term implies the factor by which the metal
concentration increases compared to its initial concentration in the influent.
Therefore, in order to desorb the maximum quantity of metal within a short time

or a low effluent volume, CFp should be high as possible (Martin-Lara et al., 2016).

Chapter 7|Page 157



Atefeh Abdolali DOCTORAL THESIS

(o)
(=]
D
(=]

B Cd (Sorption) ®Cd (Desorption) B Cu (Sorption) ® Cu (Desorption)

(9,1
[«
1
Wi
(]
1

N
[e]
1
I
[w]
1

Adsorption/Desorption (%)
s
Adsorption/Desorption (%)
(%)

(e}

20 - 20 -
10 - 10 -
0 - 0 -
Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3
70 60 - -
B Pb (Sorption) HPb (Desorption) B Zn (Sorption) ™ Zn (Desorption
$ 60 - X 50
= =
250 1 S
E 24
240 - 2
D D 30 -
S 30 S
= £ 20 -
£20 A =
g g
210 - 2 101
0 - 0 -

Cycle 1 Cycle 2 Cycle 3 Cycle 1 Cycle 2 Cycle 3

Figure 7.3 Performance of modified-MMBB packed-bed column in three successive cycles of sorption, desorption and

regeneration (sample size N = 2)

Chapter 7|Page 158



Atefeh Abdolali

150
120
90
60

30

Cnoncentration (mg/L)

210
180
150
120
90
60
30
0

Cnoncentration (mg/L)

——Cd (Cycle 1)
——Cd (Cycle 2)
Cd (Cycle 3)

10 20 30 40 50 60 70 80 90

time (min)

——Pb (Cycle 1)
——Pb (Cycle 2)
Pb (Cycle 3)

0

T T T T T T LI B

10 20 30 40 50 60 70 80 90
time (min)

DOCTORAL THESIS
150 -
Cu (Cycle 1)
] ——Cu (Cycle 2)
- 120 Cu (Cycle 3)
=
g 90 -
e
E 60 -
g
% 30 -
= -
U 0 n T LI

Cnoncentration (mg/L)

150

120

90

60

30

0

time (min)

0 10 20 30 40 50 60 70 80 90

Zn (Cycle 1)
Zn (Cycle 2)
Zn (Cycle 3)

| I

0 10 20 30 40 50 60 70 80 90

time (min)

—
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Table 7.1 Desorption parameters for three cycles of biosorption and desorption cycles with municipal wastewater

*

Metal  Cycle t, (min) tsac(min)  qi(mg/g) qc(mg/g) gea(mg/g) %R %E tp (min) C, (mg/L) CF,
Cd 1 82.4 423 0 9.58 461 4790  48.08 9 157.94 8.08
2 65 322.7 4.97 9.82 4.13 49.12 2794 9 129.16 6.61
3 55 270 5.69 9.90 3.57 4994 2280 7 111.35 5.70
Cu 1 75 261.7 0 9.66 4.60 4830 47.61 9 139.82 7.05
2 60 235 5.06 9.94 4.08 49.69 27.22 10 124.33 6.27
3 56.2 231 5.85 10.15 3.79 50.76  23.69 9 117.6 5.93
Pb 1 51.6 171.4 0 11.21 6.43 56.04 5737 8 223.40 10.99
2 48 166.2 4.78 11.23 5.98 56.14 37.38 12 211.42 10.40
3 42.3 157.5 5.24 11.28 5.69 56.38 3444 11 182.67 8.99
Zn 1 83.8 201.7 0 10.44 4.79 5220 4588 15 139.07 6.63
2 63.7 195 5.65 10.70 4.38 53.50 26.79 14 117.61 5.61
3 53.6 186.4 6.32 10.77 4.07 53.87 23.80 18 109.82 5.23
*CFp = Cp/Ci
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7.4 Conclusions

Chapter 7 investigated heavy metal removal by modified MMBB fixed-bed column
from real wastewater. The results clearly demonstrated that it was feasible to
eliminate Cd, Cu, Pb and Zn from municipal wastewater in a dynamic adsorption

system.

Desorption studies by 0.1M HCI showed that the reusability of modified MMBB is
feasible. After three cycles of sorption, desorption and regeneration of metal-
loaded modified-MMBB, the metal uptake at the exhaustion time slightly
decreased from 49.94, 50.76, 56.38 to 53.87 % for Cd, Cu, Pb and Zn, respectively.
Column regeneration experiment by using 0.1M CaClz within three successive
cycles of sorption, desorption and regeneration demonstrated that modified
MMBB could serve as a viable low-cost potential biosorbent for the removal of
Cd(I1), Cu(II), Pb(II) and Zn(II) ions from aqueous solution in a continuous column

mode. Calcium chloride can increase the stability and reusability of MMBB.
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Chapter 8

Conclusions and Recommendations
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Chapter 8 Conclusions and recommendations

The previous Chapters provide insights into different aspects of developing a
lignocellulosic multi-metal binding biosorbent (MMBB) for cadmium, copper, lead
and zinc removal from multi-metal solutions in both batch and continuous modes.
Initially two different biosorbent combinations were used for heavy metal
biosorption and then the better MMBB with considering its maximum batch
biosorption capacity was selected for detailed analyses on further optimization,
characterization and application in continuous fixed—bed column for real
wastewater. The overall concluding remarks of this thesis, the unsolved problems,

and the direction for future studies are major contents of Chapter 8.

8.1 Conclusion remarks

A novel multi-metal binding biosorbent (MMBB) was developed by combining a
group of three from the selective natural lignocellulosic agro-industrial wastes and
by—products for effectively eliminating cadmium, copper, lead and zinc from
aqueous solutions. Two MMBBs with different combinations (MMBB1: tea waste,
maple leaves, mandarin peels and MMBB2: tea waste, corncob and sawdust) were
selected among eighteen lignocellulosic biosorbents. Both combinations indicated
the highest biosorption capacity at pH of 5.5+0.1 when the other conditions were
similar. FTIR analysis for characterizing the MMBBs explored that these MMBBs
contains more functional groups available and mainly carboxyl and hydroxyl
groups were responsible for metal binding. Comparing these two MMBBs for heavy
metal removal from synthetic solution revealed that MMBB1 showed higher
maximum biosorption capacities of 41.48, 39.48, 94.00 and 27.23 mg/g for Cd(II),
Cu(IT), Pb(I) and Zn(II), respectively. The monolayer adsorption capacity of
MMBB2 were 31.73, 41.06, 76.25 and 26.63 mg/g for Cd(II), Cu(Il), Pb(II) and
Zn(II), respectively. In addition, the kinetic study demonstrated that heavy metal
biosorption onto MMBB1 and MMBB2 was rapid, and the equilibrium reached
within first hour. The Pseudo—second order model most satisfactorily described
the kinetic data, suggesting the dominance of chemisorptions mechanism.
Furthermore, NaCl and HCl were successfully used as eluent for desorption

process of metal-loaded MMBB1 and MMBB2, respectively. Their sorption
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capability after five cycles of sorption and desorption still remained excellent

without remarkable change.

MMBB1 was selected for further experiments on optimization in terms of terms of
influence of temperature, chemical modification, biosorbent ratio in the
combination, biosorbent drying temperature, ionic strength in the solution and
biosorbent particle size. The results helped to understand the possible mechanism
and characterization analysis before and after metal sorption. The solution
containing sodium hydroxide, calcium chloride and ethanol were more effective
than the other chemical and physical pretreatment to improve the biosorptive
potential of MMBB1. Its maximum biosorption capacity which calculated by
Langmuir isotherm were 69.56, 127.70, 345.20 and 70.55 mg/g for Cd(II), Cu(II),
Pb(Il) and Zn(II), respectively. The ionic strength only has a slight effect on
cadmium, copper, lead and zinc removal at lower Na* concentration (0.1 M) by
modified MMBB regardless of heavy metal concentrations. The calculated
thermodynamic parameters showed feasible, spontaneous and exothermic
biosorption process. Desorption studies by more eluent agents confirmed 0.1M HCl
was more effective for desorption and CaClz could successfully regenerate and
improve the biosorbent structural damage after each desorption step. Moreover,
mass loss of biosorbent decreased only 18% with regeneration while without
regeneration step, it was 32%. SEM/EDS analysis confirmed that the variance in
intensity of K, Na and Ca peaks might be due to ion exchange mechanism of metal
uptake. According to calculated Bp-r for Cd, Cu, Pb and Zn, E values show physical
adsorption or ion exchange for four metal removal process whose calculated
values are 2.58, 3.45, 5.59 and 2.73 kJ/mol for Cd, Cu, Pb and Zn respectively which
are all less than 8 kJ/mol.

Continuous biosorption system in a fixed—bed column found to performs feasible
to eliminate Cd, Cu, Pb and Zn from synthetic and real wastewater. Thomas, Dose
Response and Yoon-Nelson models satisfactorily interpret the experimental
breakthrough curves under varying conditions of effluent flow rate, feed
concentration and biosorbent bed height. Taking into account the results from
Thomas model, it would seem that the dynamic adsorption capacity of

modified-MMBB fixed—bed column increased with a lower flow rate, a higher bed
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depth, and a higher feed metal concentration. The highest metal adsorption
capacity of modified MMBB at the exhaustion time was 38.25, 63.37, 108.12 and
35.23 mg/g for Cd, Cu, Pb and Zn, respectively. The bed depth service time (BDST)
model was used to scale-up the continuous sorption experiments as well. The
critical bed depth of Cd, Cu, Pb and Zn uptake were 8.64, 1.90, 3.21 and 7.43 cm,
respectively. Also, the depth of adsorption was predicted accurately about 19 cm
by BDST model. The results obtained from column regeneration showed that the
reusability of modified MMBB was feasible and modified MMBB could efficiently
remove cadmium, copper, lead and zinc from industrial wastewater after three

cycles of sorption/ desorption/ regeneration.

The batch and column experiments presented that the alkaline treated multi-metal
binding biosorbent can be successfully used for large scale treatment of industrial
wastewater due to the abundant availability worldwide, low cost, simple

processing and unique physical characteristics.

8.2 Future outlook

The present research provided an initial glimpse into the possibilities of using a
novel multi-metal binding biosorbent combining different types of biomasses for
heavy metal removal from aqueous solutions. Furthermore, it identified the
influences of operation conditions on biosorbents’ performance in batch and

continuous experiments for synthetic and real municipal wastewater.

Process improvements via optimization of influential factors, characterization and
kinetic, thermodynamic and equilibrium isotherm studies are necessary. This is
not only for finding how suitable, efficient and economically friendly this
breakthrough biosorbent is but also for further studies in a column for real
wastewater and to verify the experimental models. Then the following

improvements are suggested for future work:

e Future research needs to explore other combinations of agro—industrial wastes
and by—products for the removal of heavy metal ions that have good adsorption

capacities.
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e Rather than chemical surface modifications, biological surface modifications can
be considered to improve the biomass bindings in the combination and to

improve the surface structure and selectivity

e More studies on characterization approaches can be took into account to help

understanding the biosorption mechanism.

e More trials need to extend the application of multi-metal binding biosorbents in
pilot—scale fixed—bed columns which have more relevance to real operating
systems. The reason is dealing with several problems such as non-uniform
distribution of the flow, selective flow path or uneven packing in a large packed-

bed column.
e A technique can develop this kind of studies for efficient extraction methods and

heavy metal recovery after desorption and biosorbent regeneration (e.g.

through electrochemical techniques such as electro-winning).
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